
Published as a conference paper at ICLR 2023

NOISE INJECTION NODE REGULARIZATION FOR RO-
BUST LEARNING

Noam Levi§ & Tomer Volansky
Department of Physics
Tel Aviv University
Tel Aviv, Israel
{noam,tomerv}@mail.tau.ac.il

Itay M. Bloch§

Berkeley Center for Theoretical Physics,
University of California and
Theoretical Physics Group,
Lawrence Berkeley National Laboratory,
Berkeley, CA, U.S.A.
itayblochm@berkeley.edu

Marat Freytsis
NHETC, Department of Physics and Astronomy
Rutgers University
Piscataway, NJ, U.S.A.
marat.freytsis@rutgers.edu

ABSTRACT

We introduce Noise Injection Node Regularization (NINR), a method of inject-
ing structured noise into Deep Neural Networks (DNN) during the training stage,
resulting in an emergent regularizing effect. We present theoretical and empiri-
cal evidence for substantial improvement in robustness against various test data
perturbations for feed-forward DNNs when trained under NINR. The novelty in
our approach comes from the interplay of adaptive noise injection and initializa-
tion conditions such that noise is the dominant driver of dynamics at the start of
training. As it simply requires the addition of external nodes without altering the
existing network structure or optimization algorithms, this method can be easily
incorporated into many standard architectures. We find improved stability against
a number of data perturbations, including domain shifts, with the most dramatic
improvement obtained for unstructured noise, where our technique outperforms
existing methods such as Dropout or L2 regularization, in some cases. Further,
desirable generalization properties on clean data are generally maintained.

1 INTRODUCTION

Nonlinear systems often display dynamical instabilities which enhance small initial perturbations
and lead to cumulative behavior that deviates dramatically from a steady-state solution. Such in-
stabilities are prevalent across physical systems, from hydrodynamic turbulence to atomic bombs
(see Jeans & Darwin (1902); Parker (1958); Chandrasekhar (1961); Drazin & Reid (2004); Stro-
gatz (2018) for just a few examples). In the context of deep learning (DL), DNNs, once optimized
via stochastic gradient descent (SGD), suffer from similar instabilities as a function of their inputs.
While remarkably successful in a multitude of real world tasks, DNNs are often surprisingly vulner-
able to perturbations in their input data as a result (Szegedy et al., 2014). Concretely, after training,
even small changes to the inputs at deployment can result in total predictive breakdown.

One may classify such perturbations with respect to the distribution from which training data is
implicitly drawn. This data is typically assumed to have support over (the vicinity of) some low-
dimensional submanifold of potential inputs, which is only learned approximately due to the discrete
nature of the training set. To perform well during training, a network need only have well-defined
behavior on the data manifold, accomplished through training on a given data distribution. However,
data seen on deployment can display other differences with respect to the training set, as illustrated

§Equal contribution

1

Published as a conference paper at ICLR 2023

fdata(x, y)

fimages(x, y)

Domain Shift

fcorrupted(x + ϵ, y)

Generalization

fadv(x + ϵadv, y)

Figure 1: Illustration of perturbations to data inputs with respect to the joint probability distribution manifold
of features and labels. Points indicate {sample, label} pairs {x,y}, where different colored points correspond
to samples drawn from different marginal distributions. Black points represent pairs from a training dataset
{xi,yi}Ni=1, with the red spheres indicating corrupted inputs, determined by shifted distribution functions
fcorrupted(x+ ϵ, y). The gray arrow represents an adversarial attack, performed by ascending up the gradient
of the network output to reach the closest decision boundary, while generalization from training to test data is
depicted as interpolation from black to blue points. Finally, domain shift is a shift in the underlying distribution
on the same manifold, depicted by the green arrow and points.

in Fig. 1. These distortions introduce vulnerabilities that are a crucial drawback of trained DNNs,
making them susceptible to commonly occurring noise which is ubiquitous in real-world tasks. By
studying how networks dynamically act to mitigate the negative effects of input noise, we identify a
novel dynamical regularization method starting in a noise-dominated regime, leading to more robust
behavior for a range of data perturbations. This is the central contribution of this work.

Background: Regularization involves introducing additional constraints in order to solve an ill-
posed problem or to prevent over-fitting. In the context of DL problems, different regularization
schemes have been proposed (for a review, see Kukačka et al. (2018) and references therein). These
methods are designed to constrain the network parameters during training, thereby reducing sensi-
tivity to irrelevant features in the input data, as well as avoiding overfitting. For instance, weight
norm regularization (L2, L1, etc.) (Cortes & Vapnik, 1995; Zheng et al., 2003) can be used to reduce
overfitting to the training data, and is often found to improve generalization performance (Hinton,
1987; Krogh & Hertz, 1991; Zhang et al., 2018). Alternatively, introducing stochasticity during
training (e.g., Dropout (Srivastava et al., 2014)), has become a standard addition to many DNN ar-
chitectures, for similar reasons. These methods are mostly optimized to reduce the generalization
error from training to test data, under the assumption that both are sampled from the same underlying
distribution (Srivastava et al., 2014). Here, we propose a new method which is instead tailored for
robustness. Our method relies on noise-injection, that actively reduces the sensitivity to uncorrelated
input perturbations.

Our contribution: In this paper, we employ Noise Injection Nodes (NINs), which feed random
noise through designated optimizable weights, forcing the network to adapt to layer inputs which
contain no useful information. Since the amount of injected noise is a free parameter, at initialization
we can set it to be anything from a minor perturbation to the dominant effect, leading to a system
breakdown for extreme values. The general behavior of NINs and how they probe the network is
the main goal of Levi et al. (2022), while we focus here on their regularizing properties in different
noise injection regimes. The results of Levi et al. (2022) are explicitly recast in the context of
regularization in App. C for a linear model, which captures the main insights.

Our study suggests that within a certain range of noise injection parameter values, this procedure
can substantially improve robustness against subsequent input corruption and partially against other
forms of distributional shifts, where the maximal improvement occurs for large noise injection mag-
nitudes approaching the boundary of this window, above which the training accuracy degrades to
random guessing. To the best of our knowledge, this regime has not been previously explored.

In the following, we analyze how the addition of NINs produces a regularization scheme which we
call Noise Injection Node Regularization (NINR). The main features of NINR are enhanced stability,
simplicity, and flexibility, without drastically compromising generalization performance. In order to
demonstrate these features, we consider two types of feed-forward architectures: Fully Connected
Networks (FCs) and Convolutional Neural Networks (CNNs), and use various datasets to train the
systems. We compare NINR robustness improvement with standard regularization methods, as well
as performance of these systems when using input corruption during training (CDT). Our results

2

Published as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

σnoise

T
es

t
A

cc
ur

ac
y

Convolutional DNN

No Regularization

In-NNR-Decay

In-NNR-Catapult

Full-NNR-Decay

Full-NNR-Catapult

L2

Dropout

CDT-0.4

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

σnoise

T
es

t
A

cc
ur

ac
y

Fully Connected DNN

0.0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

σnoise
T

es
t

A
cc

ur
ac

y

Fully Connected DNN

0.0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

σnoise

T
es

t
A

cc
ur

ac
y

Fully Connected DNN

Figure 2: Robustness against random input perturbations tested on FC network (left) and CNN (right).
Test accuracy vs. the scale of input noise corruption defined in Eq. (7) is shown for L2, Dropout, in-NINR, full-
NINR and CDT with σnoise = 0.4. Shades indicate 2 standard deviations estimated over 10 distinct runs. For
the input-NINR (full-NINR) fully-connected implementations we take σϵ = 51.8 (16.4) in the decay phase and
σϵ = 231.6 (51.8) in the catapult phase. Similarly, for the convolutional implementations we take σϵ = 2.8
(0.9) in the decay phase and σϵ = 87.5 (62) in the catapult phase. This key result illustrates that NINR
significantly increases the robustness of generic architectures trained on the FMNIST dataset, while marginally
affecting generalization (σnoise = 0). Comparing the CDT and input-NINR curves demonstrates the advantage
of our regularization method. While both techniques perform similarly well on data corruption of σnoise = 0.4,
CDT is significantly worse on clean data. This is a result of the CDT network being forced to fit both noise
and data, without the ability to suppress the latter, a crucial attribute of NINR. Here, the learning rate is fixed to
η = 0.05 with mini-batch size B = 128. Each training run is performed for 500 SGD training epochs in total,
or until 98% training accuracy has been achieved. For further details, see Sec. 3 and App. A.

can easily be generalized to other architectures and more complex NINR topologies. In Fig. 2,
we present our main results, comparing networks trained on the FMNIST dataset and demonstrating
improved robustness against input perturbations without compromising generalization on clean data.

The paper is organized as follows. In Sec. 2 we briefly review important analytical and empirical
results that are explored in depth in the work of Levi et al. (2022), demonstrating in this work
how NINs implicitly generate adaptive regularization terms in the loss function. In Sec. 3, we
empirically study the effectiveness of NINR. We begin by evaluating its effect on robustness against
perturbations, including domain shifts and those adversarially designed, demonstrating the enhanced
performance of NINR. We then verify that generalization performance on clean data is not hindered
by training with NINR. We discuss related work in Sec. 4, finally concluding in Sec. 5.

2 NOISE INJECTION NODES REGULARIZATION

In the following sections we explain how an effective regularization scheme against input corruption
naturally emerges as a consequence of adding a NIN to a DNN. First, we discuss how the NIN
generates implicit regularization terms directly from computing the effective loss function. Then, we
review the adaptive nature of these terms as they relate to Noise Injection Weight (NIW) dynamics
during training, and discuss the expected robustness gains depending on the evolution of the NIWs.

2.1 EMERGENT REGULARIZATION TERMS

In order to see how NINs generate implicit regularization terms, we study a vanilla feed-forward
DNN setup. Consider a supervised learning problem modeled by a neural network optimized under
SGD, with an associated single sample loss function, L : Rdin → R. The loss depends on the model
parameters θ = {W (ℓ), b(ℓ)|ℓ = 0, ..., NL − 1}, where NL is the number of layers, and the weights
and biases associated with a given layer are W (ℓ) ∈ Rdℓ×dℓ+1 , b(ℓ) ∈ Rdℓ+1 . At each SGD iteration,
a mini-batch B consists of a set of labeled examples, {(xi,yi)}|B|

i=1 ∈ Rdin × Rdlabel . The addition
of a NIN in a given layer, ℓNI, corresponds to a random scalar input, ϵ ∈ R, sampled repeatedly for
each SGD training epoch from a chosen distribution1, connected via NIWs WNI ∈ R1×dℓNI+1 . We
define for a given layer ℓ, the preactivation z(ℓ) = W (ℓ)x(ℓ) + b(ℓ), therefore the addition of a NIN
to a dense layer results in a translation to the preactivation at ℓNI, as z(ℓNI) → z(ℓNI) + ϵWNI.

1One may also generate ϵ only once, before training. We empirically find no difference between the two
options, which is expected from large batch averaging. For |B| ≲ 10, differences begin to emerge.

3

Published as a conference paper at ICLR 2023

The batch-averaged loss function including a NIN can be written as a series expansion2 in the noise
translation parameter ϵWNI,

L(θ,WNI) =
1

|B|
∑

{x,y,ϵ}∈B

L(θ,WNI;x, ϵ,y) =
1

|B|
∑

{x,y,ϵ}∈B

eϵW
T
NI∇z(ℓNI)L(θ;x,y). (1)

Equation (1) follows from noting that the NIN induced translation can be written as an operator. For
further details see App. B. Expanding in the parameter ϵWNI, we obtain an infinite series given by

L(θ,WNI) = L(θ) +

∞∑
k=1

Rk(θ,WNI). (2)

Here, L(θ) is the loss function in the absence of any NIN, while Rk are batch-averaged derivatives
of the loss function with respect to the preactivations at the noise injected layer,

Rk(θ,WNI) ≡
1

|B|
∑

{x,y,ϵ}∈B

(ϵWT
NI · ∇z(ℓNI))

k

k!
L(θ;x,y). (3)

These functions are products of the moments of the injected noise, the values of the NIWs them-
selves, and preactivation derivatives of the loss function in the absence of injected noise.

It is impossible to estimate when a perturbative analysis in ϵ is valid without specifying L(θ;x,y),
as all Rk may become equally important, or the series itself may not converge. Furthermore, since
we will be interested in rather large values of ϵ, where the effect of higher Rk terms is noticeable, the
validity of the perturbative calculation is called into question even further. However, in order to gain
intuition, we first study how the training procedure is altered by the NIN in the limit of small ϵ ≪ 1.
To make further progress, we will later validate our analysis below using a combination of empirical
tests, and an investigation of a linear toy model where Rk = 0 for k > 2. For sufficiently small ϵ
and analytic activation and loss functions, the series converges and the full loss is well-approximated
by the first two leading terms in ϵ. For the rest of this work, we consider noise sampled from a
distribution with zero mean, relaxing this assumption only for some empirical results in App. D.2.
Under this assumption the first two terms can be cast into simple forms,

R1 = WT
NI · ⟨ϵgℓNI

⟩, R2 =
1

2
WT

NI⟨ϵ2HℓNI
⟩WNI . (4)

Here, batch averaging is denoted by ⟨· · ·⟩, while gℓNI
= ∇z(ℓNI)L(θ,x,y) and HℓNI =

∇z(ℓNI)∇T
z(ℓNI)

L(θ,x,y) are the network-dependent local gradient and local Hessian, respectively.
As proven in Levi et al. (2022), the magnitude of R1 can then be estimated using ⟨ϵgℓNI

⟩2 ∼
σ2
ϵ ⟨g2ℓNI

⟩/|B|, where ⟨g2ℓNI
⟩ is the vector of the batch-averaged squared values of the local gradients

and σ2
ϵ is the variance of the injected noise3, while R2 may be estimated using ⟨ϵ2HℓNI

⟩ ≈ σ2
ϵ ⟨HℓNI

⟩
up to corrections scaling as O(

√
1/|B|).

While R1 may take both positive and negative values, the sign of HℓNI depends on the network
architecture. Since the spectrum of the local Hessian is generally unknown, our analytical results
are only valid for certain limiting cases. Particularly, we focus on the case of Mean Squared Error
(MSE) loss and linear activation functions, where we find that the local Hessian H is a positive
semi-definite (PSD) matrix, implying that R2 is a strictly non-negative penalty term, and Rk terms
with k > 2 vanish identically. For the motivated case of piecewise linear activations, it was shown
in Botev et al. (2017) that the local Hessian is PSD, aside from non-analytical points, hinting that R2

acts as a regularizer for these networks as well. This implies that for networks with piecewise linear
activations and MSE loss, an analysis similar to ours below, which keeps only the first two terms in
the expansion of Eq. (2), is expected to hold not only for small ϵ, but also for large values. We will
use this construction to understand how these terms evolve during training in the next section.

2In practice, piecewise analytic activation functions such as ReLU are often used, and if the noise causes the
crossing of a non-analytic point, the above expansion receives corrections. Empirically, we find this subtlety to
not change any of our qualitative conclusions.

3We note that the noisy loss function Eq. (1) is invariant under the simultaneous rescaling of wNI → λwNI
and ϵ → λ−1ϵ. Nonetheless, the SGD optimization equations are not invariant under this transformation,
implying, in particular, that the value of the injected noise variance, σ2

ϵ , is a relevant parameter, not degenerate
with the initialization values of the NIW. As a consequence, in order to fully explore the parameter space
of noise injection, the noise (or more precisely, its variance) cannot be assumed to be small, and large noise
injection values must be considered.

4

Published as a conference paper at ICLR 2023

Figure 3: NIW dynamics during training for the various phases discussed in Sec. 2.2, for a single hidden
layer FC network with ReLU activations trained on the full FMNIST dataset, as specified in App. A. Here,
we show the evolution of the NIWs norm (blue) as well as the hidden layer weights norm |W (ℓNI+1)| (red)
against the training (violet) and test (green) loss (solid) and accuracy (dashed). Left to right: The NIN
magnitude determines the phase of the system, ranging from the smallest amount in the decoupled phase, to
an overwhelming amount in the divergent phase. The behavior displayed by the NIWs, as well as the loss
corroborates the predictions discussed in Sec. 2.2 and App. C, with experimental details in App. A.

The interpretation of R1 and R2 can now be made clear: R1 induces a constrained random walk
for in the norm of noise injection weights as well as for the data weights at layers ℓ > ℓNI, with
a step size that changes according to the local gradient during training. On the other hand, R2,
which doesn’t depend on |B|, can be understood as a straightforward regularization term for the
local Hessian, working to reduce its eigenvalues. These results imply that in the limit of large batch
size, and in particular full batch SGD (i.e., gradient descent), regularization via R2 is dominant. 4.

Further understanding of why pushing the local Hessian to smaller eigenvalues is expected to reduce
the sensitivity to noise corruption comes by looking at the loss for corrupted inputs. Consider there-
fore a network without a NIN but with corrupted inputs, described by the substitution, x → x+ δ,
with δ a random vector. To arrive at similar expressions to Eqs. (1) to (4), one can transform the
preactivations z(0) → z(0) +W (0)δ to obtain,

L(θ)|x→x+δ =
1

|B|
∑

{x,y}∈B

eδ
TW (0)·∇

z(0)L(θ;x,y), (5)

Under the assumption that the components of the vector δ are drawn i.i.d. from N (0, σ2
δ), the first

two terms above assume simple forms5, similar to Eq. (4),

R1 = ⟨δTW (0) · g0⟩, R2 =
1

2
σ2
δ Tr

(
(W (0))T ⟨H0⟩W (0)

)
. (6)

As before, for sufficiently large |B|, R1 is subdominant and the main regularization term due to the
noise is dictated by H0. Thus if a NIN is inserted to the first layer, it will act to reduce H0 and thereby
reduce the sensitivity to data corruption. Furthermore, since DNN structure in general, and loss
function in particular, couples the input layer to all succeeding layers, H0 contains information about
deeper layers and will benefit from reducing the local Hessian away from the input layer. In Sec. 3
we show results for NINs coupled to the input layer or to all layers. The above readily generalizes in
this setup, resulting in multiple emergent regularization terms, which we briefly discuss in App. B.

Despite the similarities in their descriptions, we stress that a system trained on corrupted data and a
system with a NIN are not the same. In the former the noise cannot be dynamically reduced without
dramatically altering the optimization trajectory, implying that the DNN is not expressive enough to
memorize the full data information (Ziyin et al., 2022). Conversely, in the latter, the noise has its own
weights and the system can therefore improve by suppressing them without harming generalization.
Nonetheless, both systems are driven towards regions with smaller local Hessian eigenvalues.

2.2 EVOLUTION OF NOISE INJECTION WEIGHTS

The dynamical nature of the NINR and the corresponding NIWs strongly depends on the noise
distribution, parameterized in this study by σϵ. While the NIWs are updated with each learning

4In fact, it is shown in Levi et al. (2022) that all odd-terms in the expansion Eq. (2), are suppressed by the
square root of the batch size, while the even terms are not.

5We comment on the slight subtlety of biases in Eq. (6). In any reasonable scenario, biases would not be
corrupted, but if bias is treated as the zeroth component of x, the zeroth component of δ should be ≡ 0. Taking
this into account, the trace operation of Eq. (6) should not sum over the zeroth dimension.

5

Published as a conference paper at ICLR 2023

step, only under certain conditions is their impact on the network performance actively suppressed
as the training progresses. Below we briefly describe four distinct phases of the NIWs. These are
illustrated in Fig. 3, where we show the evolution of the relevant quantities (weights, loss, accuracy)
for a model trained on FMNIST, demonstrating the different behavior in each phase. A complete
treatment of these phases is discussed in Levi et al. (2022), while a brief derivation relating them
with regularization is given in App. C for a linear network.

Decoupled phase. For σϵ ≪ 1 one has R1 ≫ R2, and the correction to the loss function may
assume positive and negative contributions. As a consequence, the NIWs follow a small-step random
walk without substantially affecting the behavior of the network.

Decay phase. For larger but not too large σϵ, one may ensure R2 > R1 at initialization while the
NIN can still be treated perturbatively. In this regime, the NIWs initially experience exponential
decay until R2 ∼ R1, at which point they evolve according to the stochastic gradient. It is in this
phase that one can begin to see noticeable improvement in robustness, with only minor slowing of
the training. Increasing σϵ boosts the improvement until another phase is encountered.

Catapult phase. The discrete nature of the training algorithm will result in a stiff numerical regime
at sufficiently large σϵ. Above a critical value (for the linear network discussed in App. C we find
σϵ,cat ∼ 2dℓNI/η where dℓNI is the dimension of the NIN layer and η is the learning rate), the effect
of the NIN on the network is so significant that it causes an initial increase of the data weights,
which in turn leads to an exponential increase for the loss function, followed by a recovery to a new
minimum6. The improvement in robustness is most extreme in this phase; however, the convergence
of the network is slowed somewhat, rendering the usefulness of this phase to only some applications.
It is possible that a scheduled increase of the training rate after the recovery from the initial increase
in the data weights could speed up the convergence. We leave such investigation to future work.

Divergent phase. Further increasing σϵ leads the DNN to a breakdown of the dynamics, where the
network is unable to suppress the NIN and thus cannot learn any information.

The above discussion of phases as a function of σϵ should be taken as schematic. Other hyperpa-
rameters, such as the batch size, may also influence the phase diagram. Nonetheless, we empirically
observe these phases repeating across multiple architectures and tasks, and find them to broadly cap-
ture the evolution of the NIWs. Overall, the decay and catapult phases are expected to produce an
increase in robustness against input perturbations, and we empirically verify this expectation in the
following sections. While we only have an analytic prediction of σϵ,cat for a simple linear network,
in other architectures it can also be obtained empirically using only the training data.

3 EXPERIMENTS

In this section, we empirically show the effect of NINR on robustness for the different phases of
noise injection, following similar methodologies to Hoffman et al. (2019). After discussing the
two different architectures used in this paper, we begin our investigation by demonstrating that in
certain cases NINR provides a significant increase in robustness against corruption of input data by
random perturbations. We then discuss the performance of NINR for domain shifts, demonstrating
its effectiveness. Next, we verify that NINR does not drastically reduce the network accuracy at the
original task (e.g., before corruption). This is equivalent to ensuring the generalization properties of
the network are not harmed due to the addition of NINs. In the main text we present results mostly
for the FMINST dataset (Xiao et al., 2017). These results also extend to more complex scenarios,
demonstrated in similar experiments for the CIFAR-10 (Krizhevsky et al., 2014) dataset in App. E,
while evidence for improvement against adversarial attacks is given in App. D as well as results for
other noise distributions and optimizers beyond SGD.

Throughout this section, we compare NINR to both unregularized DNNs, and networks explicitly
regularized using L2 or Dropout. We also compare NINR to implicit regularization by training with
varying amounts of input data corruption. For all of our experiments, we use either an FC or a
CNN (see Fig. 2 and App. A for full details). We optimize using vanilla SGD with cross-entropy
loss. We preprocess the data by subtracting the mean and dividing by the variance of the training
data, as is done for all subsequent datasets. The learning rate is fixed to η = 0.05 with mini-batch

6An analogous phase related to the size of the training step was discussed in Lewkowycz et al. (2020).

6

Published as a conference paper at ICLR 2023

Figure 4: Left: An illustration of a fully connected NINR (fcNINR) for which a Noise Injection Node is
appended to a representation x(ℓ). Right: Implementation of NINR for a convolutional network (cNINR),
where the Noise Injection Node is connected pixel-wise to the image representation x(ℓ), to be subsequently
fed into a convolutional layer.

size B = 128. Each training run is performed for 500 SGD training epochs in total, or until 98%
training accuracy has been achieved, unless otherwise specified. All test accuracy evaluations are
done with the NIN output set to 0, i.e., ϵ = 0. The model parameters θ,WNI are initialized at
iteration t = 0 using a normal distribution as σ2

θ0
, σ2

WNI,0
= 1/dℓ, 1/dℓNI

. The hyperparameters are
chosen to match reference implementations: the L2 regularization coefficient (weight decay) is set
to λWD = 5 · 10−4 and the dropout rate is set to pdrop = 0.5. When using L2 or Dropout, they are
applied at/after each layer. When using input CDT as a regularization method, we corrupt the input
data according to Eq. (7) below. We further stress that once a NIN has been added to the network,
no further modifications to the training algorithm or architecture are required, and after choosing
where to connect the NIN, the only free parameter is the injected noise variance σ2

ϵ .

3.1 REALIZATIONS IN DIFFERENT ARCHITECTURES

The way in which NINR is implemented depends on the type of layer to which the NIN is connected.
Here, we comment on the two different realizations of NINR used in our experiments and depicted
in Fig. 4. For both realizations we consider two distinct topologies: either we add a NIN at the input
layer (in-NINR) or we couple the NIN to every hidden layer including the input one (full-NINR).
Fully Connected Layers In the case of dense FC layers, we implement NINR (which we denote
by fcNINR) by extending the input vector by an additional noisy pixel ϵ, initialized randomly per
sample at each training epoch, and densely connecting the modified input vector to the next layer.
The theoretical discussion in Sec. 2 was derived for a realization of this type.
Convolutional Layers Connecting a NIN at the input of a convolutional layer raises the need for
a procedure for Convolutional NINR (cNINR). Since FC layers are insensitive to the input image
geometry, taking x → {x, ϵ} is tantamount to adding a noise mask for the entire input. In a CNN,
the same interpretation can be maintained by adding the noise to the input directly in a pixel-wise
fashion, x(ℓ) → x(ℓ)+WNI · ϵ , which is subsequently fed into the convolutional layer. Importantly,
this modification preserves the form of the original layer, while converging to the original x(ℓ) for
either σϵ → 0 or ||WNI|| → 0. This can also be thought of as adding an auxiliary layer that is a
non-dynamic identity matrix from the perspective of all data weights, while being densely connected
from the perspective of the NIN7.

3.2 ROBUSTNESS AGAINST DISTRIBUTIONAL SHIFTS

3.2.1 INPUT CORRUPTION

Often, training is done with examples taken in ideal conditions, which would not always exist in
real-world data. This implies that the test data would be sampled from a distribution that is identical
to the one trained on, albeit with an added noise component. To test the stability of networks against
natural corruption, we perturb each test input image according to

xi →
√

1− σ2
noisexi + σnoiseδi, (7)

7As our procedure for cNINR preserves the structure of the original x(ℓ), it can be easily applied for other
architectures beyond convolutional layers, including densely connected layers.

7

Published as a conference paper at ICLR 2023

Table 1: A test of domain shift, trained on MNIST up to 100% training accuracy and evaluated on the USPS
test dataset, comparing L2, Dropout, in-NINR, and full-NINR as discussed in the text. We exclude CDT from
this table, as it is not as prevalent as the other regularization schemes, and is tailored for random noise. The
fully-connected and CNN NINR noise magnitudes are those of Fig. 2. Errors indicate 2σ confidence intervals
over 10 distinct runs for full training. We find the test accuracy on the full clean MNIST dataset to be similar
across all regularization schemes, with ∼ 97% and ∼ 98% for FC and CNN respectively.

None L2 Dropout in-NINR
(Decay)

in-NINR
(Catapult)

full-NINR
(Decay)

full-NINR
(Catapult)

FC(%) 82.3± 2.0 82.5± 1.2 87.5 ± 1.2 82.1± 1.6 84.1± 2.0 82.0± 2.0 83.3± 1.4
CNN(%) 80.3± 4.8 80.5± 3.8 83.8± 4.6 82.6± 4.6 88.5± 3.4 82.3± 4.0 89.7 ± 2.0

where each component of the perturbation vector is drawn from N (0, 1). In all cases except CDT,
the networks are trained using clean FMNIST training data, but their accuracy is evaluated on cor-
rupted FMNIST testing data.

In Fig. 2, we demonstrate that models trained with NINR are more robust against the noise defined
above compared to those trained via other regularization methods. This verifies our expectation that
in the decay phase, NINR improves stability, at least as well as CDT for large corruption, while (un-
like CDT) it does not degrade generalization performance for small corruption or clean data. We also
note that noise injection offers the best results for robustness within the catapult regime. However,
to arrive at the same accuracy on the clean test dataset, more training epochs are generally required.
Lastly, we empirically observe that in-NINR in the catapult phase offers the greatest improvement in
stability against input corruption for both networks, as in-NINR most closely resembles input data
corruption. We repeat this experiment for the CIFAR-10 dataset in App. E, where the similar trends
persist, though at the cost of a longer training time in the catapult phase.

3.2.2 DOMAIN SHIFT

Another test of the generalization properties induced by NINR can be realized by considering Do-
main Shift problems. Here, we consider the generalization between two different datasets, rep-
resenting different marginal distributions, by training models with NINR on the MNIST dataset,
and testing their performance on data drawn from a new target domain distribution: the USPS test
set (Hull, 1994). In order to match the input dimensions of the MNIST data, we follow the original
rescaling and centering done in LeCun et al. (1998). The USPS images were size normalized to fit
a 20× 20 pixel box while preserving their aspect ratio, and then centered in a 28× 28 image field,
followed by the standard preprocessing procedure.

The results are presented in Table 1. We observe generalization improvement for both FC and
convolutional networks when using different regularization schemes, compared to unregularized
networks. Of particular interest are the gains obtained when implementing both in- and full-NINR
in the catapult phase, with the convolutional network. As the architecture becomes more complex,
the improvements from NINR’s adaptive scheme becomes more pronounced. The enhanced perfor-
mance implies that NINR in the catapult phase could prove very beneficial for domain adaptation
tasks. This is not entirely surprising as the USPS dataset is expected to lie close to the MNIST
training set in distribution space, as there are no new correlated features such as several different
digits in one image. Further experiments for domain shift adaptation on the MNIST-C dataset can
be found in App. F. For other datasets, with large distributional shifts away from MNIST, and novel
input correlations, we do not expect NINR to generically outperform other regularization methods.

3.2.3 GENERALIZATION TO TEST DATA

In this section we report some effects of NINR on generalization from training to test data. While
we showed above that NINR can substantially improve network performance on corrupted data, it
is also important that it does not fundamentally impair the network’s generalization properties.

Generically, introducing input corruption during training to increase robustness can be shown to
have a negative effect on generalization on clean data. This is unsurprising as it appears that the
network essentially memorizes the noise (Zhang et al., 2016), which is clearly not part of the true
data distribution. As the learning process with NINR inherently leads to a suppression of the noise

8

Published as a conference paper at ICLR 2023

Table 2: Generalization on clean test data, evaluated on the FMNIST dataset. Comparison is made between
L2, Dropout, in-NINR, full-NINR and CDT, and we highlight regularization methods which worsen general-
ization by italicizing. For CDT, two values (σnoise = 0.2, 0.4) for the amount of corruption are considered.
The fully-connected and CNN NINR noise parameters are those used in Fig. 2. Errors indicate 2σ confidence
intervals over 10 distinct runs. The NINR implementations, except perhaps the in-NINR at the catapult phase,
have comparable generalization performance with to the rest of the regularization schemes, aside from CDT,
where performance is diminished as the network learns the noisy distribution rather than the original one.

None L2 Dropout
in-NINR
(Decay)

in-NINR
(Catapult)

full-NINR
(Decay)

full-NINR
(Catapult)

CDT
(0.2)

CDT
(0.4)

FC(%) 87.7± 2.6 89.9± 3.4 88.3± 0.5 89.1± 0.7 86.2 ± 0.8 88.5± 1.8 88.2± 0.6 86.6 ± 0.9 85.5 ± 3.8
CNN(%) 91.0± 1.0 92.2± 0.7 91.0± 1.1 91.0± 1.2 89.0 ± 0.6 91.0± 0.8 90.0± 0.2 84.6 ± 2.6 84.1 ± 6.4

during the late stages, its generalization capabilities are expected to be far less affected. We verify
this by comparing the performance of a network trained with NINR against networks trained with
L2, Dropout, CDT, and against unregularized DNNs.

In Table 2 we show generalization performance on the FMNIST test set for the FC and CNN
architectures using the full dataset, consisting of 60 000 training examples with a 60/40 train-
ing/validation split. Our main observation is that optimizing with NINR in the decay phase, as
with the commonly used L2 and dropout regularizers, leads to performance on clean data with in-
domain test samples as least as good as the unregularized case. (In no case is the performance better
at a statistically significant level.) We note that some degradation occurs when training with noise
injection in the catapult phase, for a fixed number of training epochs. This degradation can be ame-
liorated by training for a longer period. Contrasting NINR with CDT, Table 2 clearly demonstrates
that generalization is compromised for the latter, as the network cannot distinguish data from noise,
learning the corrupted distribution. We further verify these results for CIFAR-10 in App. E.

4 RELATED WORK

Noise injection during training as a method of enhancing robustness has been proposed in various
configurations in the literature. These include adding noises to input data (Hendrycks et al., 2019;
Gao et al., 2020; Liu et al., 2021), activations, outputs, weights, gradients (Holmström & Koistinen,
1992; Reed & Marks, 1999; Neelakantan et al., 2015; You et al., 2019) and more. Most studies keep
the amount of injected noise fixed, while we allow the network to reduce its effect during training.

Our study expands upon these works, consolidating empirical evidence with analytical insights.
Our main contributions are twofold: We provide analytic expressions for the implicit regularization
terms generated within our scheme, as well as estimating their effects during training. When applied
to specific architectures, this allows us to predict when NINR is expected to be most effective.
Additionally, we probe a novel phase of learning, starting with a large amount of noise injection
and leading to a greater improvement in robustness against input corruption. Works by Rakin et al.
(2018) and Xiao et al. (2021) follow similar reasoning, though both are limited, by construction, to a
small amount of noise injection, and are more empirically driven. Rakin et al. (2018) and Rusak et al.
(2020) also feature complex custom update steps which are less adaptable to other architectures.

5 CONCLUSIONS

In this paper, we motivated Noise Injection Node Regularization as a task-agnostic method to im-
prove stability of models against perturbations to input data. Our method is simply implementable
in any open source automatic differentiation system.

While we restricted this initial study to a single Noise Injection Node added to various layers, with
a fixed scale of noise injection during training, this restriction can be relaxed, leading to potential
improvements to NINR. For instance, changing the amount of injected noise during training, similar
to learning rate scheduling, could aid in convergence speed while still obtaining the advantages of a
large amount of noise injection.

9

Published as a conference paper at ICLR 2023

6 ACKNOWLEDGEMENTS

We thank Yasaman Bahri, Kyle Cranmer, Guy Gur-Ari, and Sho Yaida for useful discussions and
comments. NL would like to thank the Milner Foundation for the award of a Milner Fellowship.
MF is supported by the DOE under grant DE-SC0010008 and the NSF under grant PHY1316222.
MF would like to thank Tel Aviv University, the Aspen Center for Physics (supported by the U.S.
National Science Foundation grant PHY-1607611), and the Galileo Galilei Institute for their hospi-
tality while this work was in progress. The work of TV is supported by the Israel Science Foundation
(grant No. 1862/21), by the Binational Science Foundation (grant No. 2020220) and by the Euro-
pean Research Council (ERC) under the EU Horizon 2020 Programme (ERC-CoG-2015 - Proposal
n. 682676 LDMThExp).

REPRODUCIBILITY STATEMENT

In Sec. 2, we state our theoretical results, ensuring that we state our assumptions and the limitations
of the approximations we make at every step. In several instances, we rely on proofs given in other
works, as well as supplement our analyses in App. C; The models and tools used for analysis in
our experiments are provided in the following anonymous link: https://anonymous.4open.
science/r/NoiseInjectionNodeCode-2A68, while explicit details regarding our experi-
mental setup as well as a complete description of the data processing steps for the datasets we used,
are given in Sec. 3 and App. A.

REFERENCES

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical Gauss–Newton optimisation for
deep learning, 2017. URL https://arxiv.org/abs/1706.03662.

Subrahmanyan Chandrasekhar. Hydrodynamic and hydromagnetic stability. Clarendon Press, Ox-
ford, 1961.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

Philip G. Drazin and William H. Reid. Hydrodynamic stability. Cambridge University Press, Cam-
bridge, 2nd edition, 2004.

Xiang Gao, Ripon K. Saha, Mukul R. Prasad, and Abhik Roychoudhury. Fuzz testing based data
augmentation to improve robustness of deep neural networks. In 2020 IEEE/ACM 42nd Interna-
tional Conference on Software Engineering (ICSE), pp. 1147–1158, 2020.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples, 2014. URL https://arxiv.org/abs/1412.6572.

Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty.
arXiv e-prints, art. arXiv:1912.02781, December 2019.

Geoffrey Hinton, 2012. URL http://www.cs.toronto.edu/˜tijmen/csc321/
slides/lecture_slides_lec6.pdf.

Geoffrey E. Hinton. Learning translation invariant recognition in a massively parallel networks.
In J. W. de Bakker, A. J. Nijman, and P. C. Treleaven (eds.), PARLE Parallel Architectures and
Languages Europe, pp. 1–13, Berlin, Heidelberg, 1987. Springer Berlin Heidelberg. ISBN 978-
3-540-47144-8.

Judy Hoffman, Daniel A. Roberts, and Sho Yaida. Robust learning with Jacobian regularization,
2019.

Lasse Holmström and Petri Koistinen. Using additive noise in back-propagation training. IEEE
Transactions on Neural Networks, 3(1):24–38, 1992. doi: 10.1109/72.105415.

10

https://anonymous.4open.science/r/NoiseInjectionNodeCode-2A68
https://anonymous.4open.science/r/NoiseInjectionNodeCode-2A68
https://arxiv.org/abs/1706.03662
https://arxiv.org/abs/1412.6572
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Published as a conference paper at ICLR 2023

J. J. Hull. A database for handwritten text recognition research. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 16(5):550–554, 1994. doi: 10.1109/34.291440.

James H. Jeans and George H. Darwin. I. The stability of a spherical nebula. Philosophical
Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical
or Physical Character, 199(312-320):1–53, 1902. doi: 10.1098/rsta.1902.0012. URL https:
//royalsocietypublishing.org/doi/abs/10.1098/rsta.1902.0012.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL
https://arxiv.org/abs/1412.6980.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 (canadian institute for advanced
research). online: http://www.cs.toronto.edu/kriz/cifar.html, 55(5), 2014.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. In J. Moody,
S. Hanson, and R.P. Lippmann (eds.), Advances in Neural Information Processing Systems, vol-
ume 4. Morgan-Kaufmann, 1991. URL https://proceedings.neurips.cc/paper/
1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf.

Jan Kukačka, Vladimir Golkov, and Daniel Cremers. Regularization for deep learning: A taxonomy,
2018. URL https://openreview.net/forum?id=SkHkeixAW.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world,
2016. URL https://arxiv.org/abs/1607.02533.

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.
726791.

Noam Levi, Itay Bloch, Marat Freytsis, and Tomer Volansky. Noise injection as a probe of deep
learning dynamics, 2022. URL https://arxiv.org/abs/2210.13599.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large
learning rate phase of deep learning: the catapult mechanism. arXiv preprint arXiv:2003.02218,
2020.

Aishan Liu, Xianglong Liu, Hang Yu, Chongzhi Zhang, Qiang Liu, and Dacheng Tao. Training
robust deep neural networks via adversarial noise propagation. IEEE Transactions on Image
Processing, 30:5769–5781, 2021. doi: 10.1109/TIP.2021.3082317.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks, 2017. URL https://arxiv.
org/abs/1706.06083.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature, 2015. URL https://arxiv.org/abs/1503.05671.

Norman Mu and Justin Gilmer. MNIST-C: A robustness benchmark for computer vision. CoRR,
abs/1906.02337, 2019. URL http://arxiv.org/abs/1906.02337.

Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, and
James Martens. Adding gradient noise improves learning for very deep networks. arXiv e-prints,
art. arXiv:1511.06807, November 2015.

Eugene N. Parker. Dynamical instability in an anisotropic ionized gas of low density. Phys. Rev.,
109:1874–1876, Mar 1958. doi: 10.1103/PhysRev.109.1874. URL https://link.aps.
org/doi/10.1103/PhysRev.109.1874.

Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Parametric noise injection: Trainable randomness
to improve deep neural network robustness against adversarial attack, 2018. URL https://
arxiv.org/abs/1811.09310.

Russell Reed and Robert J. Marks, II. Neural smithing: supervised learning in feedforward artificial
neural networks. MIT Press, 1999.

11

https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1902.0012
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1902.0012
https://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://proceedings.neurips.cc/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://openreview.net/forum?id=SkHkeixAW
https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/2210.13599
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1503.05671
http://arxiv.org/abs/1906.02337
https://link.aps.org/doi/10.1103/PhysRev.109.1874
https://link.aps.org/doi/10.1103/PhysRev.109.1874
https://arxiv.org/abs/1811.09310
https://arxiv.org/abs/1811.09310

Published as a conference paper at ICLR 2023

Evgenia Rusak, Lukas Schott, Roland S. Zimmermann, Julian Bitterwolf, Oliver Bringmann,
Matthias Bethge, and Wieland Brendel. Increasing the robustness of dnns against image cor-
ruptions by playing the game of noise. CoRR, abs/2001.06057, 2020. URL https://arxiv.
org/abs/2001.06057.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv e-prints, art. arXiv:1409.1556, September 2014.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Steven H. Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,
and engineering. CRC press, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, D. Erhan, Ian J. Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. CoRR, abs/1312.6199, 2014.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms, 2017.

Li Xiao, Zeliang Zhang, and Yijie Peng. Noise optimization for artificial neural networks. arXiv
e-prints, art. arXiv:2102.04450, February 2021.

Zhonghui You, Jinmian Ye, Kunming Li, Zenglin Xu, and Ping Wang. Adversarial noise layer:
Regularize neural network by adding noise. In 2019 IEEE International Conference on Image
Processing (ICIP), pp. 909–913, 2019. doi: 10.1109/ICIP.2019.8803055.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. CoRR, abs/1611.03530, 2016. URL http:
//arxiv.org/abs/1611.03530.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger B. Grosse. Three mechanisms of weight
decay regularization. CoRR, abs/1810.12281, 2018. URL http://arxiv.org/abs/1810.
12281.

Alice Zheng, Michael Jordan, Ben Liblit, and Alex Aiken. Statistical debugging of sampled pro-
grams. In S. Thrun, L. Saul, and B. Schölkopf (eds.), Advances in Neural Information Process-
ing Systems, volume 16. MIT Press, 2003. URL https://proceedings.neurips.cc/
paper/2003/file/0a65e195cb51418279b6fa8d96847a60-Paper.pdf.

Liu Ziyin, Kangqiao Liu, Takashi Mori, and Masahito Ueda. Strength of minibatch noise in SGD. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=uorVGbWV5sw.

12

https://arxiv.org/abs/2001.06057
https://arxiv.org/abs/2001.06057
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1810.12281
http://arxiv.org/abs/1810.12281
https://proceedings.neurips.cc/paper/2003/file/0a65e195cb51418279b6fa8d96847a60-Paper.pdf
https://proceedings.neurips.cc/paper/2003/file/0a65e195cb51418279b6fa8d96847a60-Paper.pdf
https://openreview.net/forum?id=uorVGbWV5sw
https://openreview.net/forum?id=uorVGbWV5sw

Published as a conference paper at ICLR 2023

A NETWORK ARCHITECTURE DETAILS

Here we describe the experimental settings specific to each of the figures in the paper. All the models
have been trained with cross-entropy loss unless otherwise specified.

Fig. 2(a). Fully connected, three hidden layers with width d1,2,3 = 1024, weight initialization
W (ℓ) ∼ N (0, 1/dℓ), b = 0. ReLU activation, trained using SGD (no momentum) on FMNIST, with
a learning rate of η = 0.05 and batch size |B| = 128.

Fig. 2(b). CNN composed of 2 convolutional blocks, followed by a dense ReLU layer with width
d3 = 2048 and a dense connection to the prediction layer, weight initialization W (ℓ) ∼ N (0, 1/dℓ),
b = 0. Each convolutional block is taken as Conv2D(2,2) → ELU → Batch-Norm →
MaxPool(2,2), trained using SGD (no momentum) on FMNIST, with a learning rate of η = 0.05
and |B| = 128.

Fig. 3. Fully connected, one hidden layer with d1 = 1024, weight initialization W (ℓ) ∼ N (0, 1/dℓ),
b = 0. ReLU activation, trained using SGD (no momentum) on FMNIST. with learning rate η =
0.01 and |B| = 1000. From left to right, the injected noise is σ2

ϵ = {0, 0.1 ·din/η, din/η, 1.8 ·din/η},
corresponding to the decoupled, decay, catapult, and divergent phases, respectively. Here, din = 785
is the dimension of the input data including a single NIN.

B ADDITIONAL THEORETICAL DETAILS

B.1 DERIVATION OF THE NOISE TRANSLATED LOSS FUNCTION

Here we provide additional details on the theoretical analysis of the noise translated loss function,
leading to Eq. (1). The introduction of a NIN at a specific layer ℓNI translates the preactivation as
z(ℓNI) +WNIϵ. A single sample loss function describing the translated preactivation can be written
as

L(θ,WNI;x, ϵ,y) = L(θ; z(ℓNI) +WNIϵ,y). (8)
Using the definition of the translation operator

f(x+ a) = ea∇f(x), (9)
we explicitly compute the batch averaged loss function

L(θ,WNI) =
1

|B|
∑

{x,ϵ,y}∈B

L(θ,WNI;x, ϵ,y) =
1

|B|
∑

{x,ϵ,y}∈B

eϵW
T
NI∇z(ℓNI)L(θ;x,y)

= L(θ) +
1

|B|
∑

{x,ϵ,y}
∈B

∞∑
k=1

1

k!
(ϵWT

NI · ∇z(ℓNI))
kL(θ;x, ϵ,y).

Expanding in powers of ϵWNI, we obtain an infinite series given by

L(θ,WNI) = L(θ) +
1

|B|
∑

{x,ϵ,y}∈B

∞∑
k=1

1

k!
(ϵWT

NI · ∇z(ℓNI))
kL(θ;x, ϵ,y), (10)

where we identify the k ≥ 1 terms in the expansion with the implicit regularization terms defined
in Eq. (3).

B.2 NIN AT ALL LAYERS

Here we extend our theoretical derivations from the case of a NIN connected to a single layer, to a
single NIN connected to all layers (the full-NINR case).

Similar to Eq. (1), we may write down the loss using the translation operator,

L(θ,WNI) =
1

|B|
∑

{x,y,ϵ}∈B

(
NL−1∏
ℓ=0

eϵ(W
(ℓ)
NI)T∇

z(ℓ)

)
L(θ;x,y), (11)

where as one may expect, we now have NL vectors W
(0)
NI , ...,W

(NL−1)
NI , of respective dimensions

R1×d1 , ...,R1×dNL . Focusing once more on the leading terms in ϵ, we can see that the first order

13

Published as a conference paper at ICLR 2023

regularization term is simply

R1 =

NL−1∑
ℓ=0

(
W

(ℓ)
NI

)T
· ⟨ϵgℓ⟩, (12)

which is the sum of the regularization terms at each layer. The second order regularization is slightly
more complex, and may be written as

R2 =
1

2

NL−1∑
ℓ1=0

NL−1∑
ℓ2=0

(W
(ℓ1)
NI)T ⟨ϵ2Hℓ1ℓ2⟩W

(ℓ2)
NI , (13)

with Hℓ1ℓ2 ≡ ∇z(ℓ1)∇T
z(ℓ2)L(θ,x,y).

According to Botev et al. (2017); Martens & Grosse (2015), the terms which mix different layers in
the Hessian are expected to be small, thus leading us to a sum over the single-layer R2s of the each
ℓ. Therefore, we may use the same arguments used in the main text to estimate the scaling of the
two terms with σϵ and |B|. Much like the single-layer case, we therefore expect R1 ∝ σϵ/

√
|B| and

R2 ∝ σ2
ϵ .

Demonstrating the emergence of the phases discussed in the main text (i.e. the decay phase, the
catapult phase, etc.) on a deep linear network for this full-NINR case is beyond the scope of this
work. However, we do note that empirically they are found to be present much like in the single-
layer NIN case.

C NINR IN A LINEAR TOY MODEL

Figure 5: Illustration of the univariate linear DNN with a single input scalar, noise node, and one hidden layer.

In order to elucidate the interpretation of noise injection nodes as an emergent regularization scheme,
combined with a form of constrained random walk, we employ an (over)simplified univariate linear
model which captures the main features present in realistic networks. Consider a linear network (i.e.,
linear activation functions), with a single hidden layer and no biases (b = 0), aiming to perform a
linear regression task. The data consists of a set of training samples

{
(xa, ya) ∈ R2

}m
a=1

, taken
by drawing the inputs from a normal distribution of xa ∈ X ∼ N (0, σ2

x), where σx > 0. The
corresponding outputs are then given by a linear transformation ya = M · xa with M ∈ R.

The noise node is added at the input, and its weight is wNI, with the input’s data weight being w(0).
The hidden layer is directly connected to the output, and has a single weight associated with it, w(1),
as illustrated in Fig. 5. We use Mean Squared Error (MSE) loss, and for simplicity take a full-batch
gradient descent, and thus our loss function is

LMSE =
1

2|B|
∑
a∈B

(
w(1)(w(0) · xa + wNIϵa)− ya

)2
. (14)

Performing an explicit averaging, we can further simplify to

LMSE ≃ 1

2

[
2w(1)wNI

(
w(1)w(0) −M

)
σxσϵ

Φ√
|B|

+ (w(1)w(0) −M)2σ2
x + (w(1))2w2

NIσ
2
ϵ

]
,

(15)

14

Published as a conference paper at ICLR 2023

where Φ is a random variable with zero mean and unit variance8. From Eq. (15), we can easily see
that the optimal solution is achieved for the weights w(1)

∗ w
(0)
∗ = M , wNI,∗ = 0. We can clearly read

R1,2 off Eq. (4) by separating them from the unperturbed loss function
LMSE(wNI,θ) ≃ LMSE(θ) +R1(wNI,θ) +R2(wNI,θ), (16)

while Rk vanish for k > 2. The various terms in Eq. (16) are given by

LMSE(θ) =
1

2
(w(1)w(0) −M)2σ2

x,

R1(wNI,θ) = wNI⟨ϵgℓNI
⟩ = wNIw

(1)
(
w(1)w(0) −M

) σxσϵΦ√
|B|

,

R2(wNI,θ) =
1

2
σ2
ϵw

2
NIHℓNI =

1

2
(w(1))2w2

NIσ
2
ϵ ,

(17)

where we have identified the local gradient term which generates a constrained random walk for
wNI, which decreases as the network approaches its data driven minimum. We also note that in the
limit of an infinite batch size |B| → ∞ it vanishes, leaving only an effective regularization term
for the hidden layer weight, namely L2 = λ(w(1))2 where the Lagrange multiplier λ = 1

2w
2
NIσ

2
ϵ

decreases with time as the noise weight wNI is pushed to 0.

We may glean further insights from this linear example by studying its training dynamics for small
and large noise variances. Assuming full batch gradient descent in the infinite sample limit, we
neglect the local gradient contribution and focus on the coupled equations for the hidden layer weight
and the noise weight, given respectively by

w
(1)
t+1 = w

(1)
t (1− ησ2

ϵw
2
NI,t)− η(w

(1)
t w

(0)
t −M)w

(0)
t σ2

x,

wNI,t+1 = wNI,t(1− ησ2
ϵ (w

(1)
t)2)

(18)

Assuming M ̸= 0, without the loss of generality, we may set M = 1 as the equations remain
invariant under reparameterization9. In the limit of σ2

ϵ ≪ 1/ηw2
NI,0, the equations decouple, with

the data weight following the standard GD equation without noise, i.e., w(1)
t+1 = w

(1)
t −η(w

(1)
t w

(0)
t −

1)w
(0)
t σ2

x, while the noise weight decays exponentially as long as 0 < |w(1)
t | and (w

(1)
0)2 > ησ2

ϵ /2.
Clearly, the smaller σϵ is, the smaller the regularizing effect of the noise on the local Hessian, given
by the square of the hidden layer weights in this simple model.

We expect that in this regime, the limit of continuous time GD should reproduce the correct dynamics
as ησ2

ϵ → 0, yielding a differential equation for the noise weight
ẇNI(t) = −σ2

ϵ (w
(1)(t))2wNI(t), (19)

where ẋ = dx/dt is the continuous time derivative. The noise weight can therefore only decay.

Conversely, taking the large noise variance limit we find that the dynamics are ignorant of the origi-
nal learning objective, as the resulting equations become simply coupled

w
(1)
t+1 = w

(1)
t (1− ησ2

ϵw
2
NI,t),

wNI,t+1 = wNI,t

(
1− ησ2

ϵ (w
(1)
t)2

)
.

(20)

These equations describe a NN, trained using completely random data with no labels or learning
objective, with an effective loss given by the last term in Eq. (15). In this case, we expect the
continuous time limit to fail as a complete description of the possible dynamics, as ησ2

ϵ may be
large. We may demonstrate this failure by taking the continuous time limit, obtaining

ẇNI(t) = −σ2
ϵ (w

(1)(t))2wNI(t), ẇ(1)(t) = −σ2
ϵ (wNI(t))

2w(1)(t), (21)
implying both weights decrease in magnitude. This means the network, even for arbitrarily large
σϵ will not diverge. However, this is clearly not the case for the discrete Eq. (20), which may
become stiff for sufficiently large noise variance. This numerical artifact entirely changes the weight
behavior, opening up the possibility for the system to either diverge, or catapult, as discussed in
Levi et al. (2022). To summarize, this simple example provides a useful test case for our main
analytical derivations appearing in the main text, displaying all the expected features of NINR in a
fully calculable setting.

8Additional O(σ2
ϵ/

√
|B|) corrections coming from stochastic variations in the σ2

ϵ term emerge from batch-
averaging but are neglected.

9Taking w(1) → Mw(1), wNI → MwNI and σϵ → σϵ/M leaves the equations invariant.

15

Published as a conference paper at ICLR 2023

D ADDITIONAL EXPERIMENTS

Throughout this section, we train the FC and the CNN using the same specifications as given
in Fig. 2, unless otherwise specified. Training is performed for the minimum between 500 epochs,
and the time it takes the network to reach 98% training accuracy. This is done with the goal of
demonstrating that NINR using a large amount of noise injection requires a longer period of train-
ing, otherwise suffering from degraded generalization performance, as discussed in the main text.

D.1 ADVERSARIAL ATTACKS

In addition to input perturbations caused by deployment issues, natural degradation, and unexpected
noise sources, targeted perturbations, meant to maximally impair the performance of a network
while changing the data as little as possible, form a conceptually different concern. Quantifying
what corresponds to a minimal distortion of the data is a domain-specific and somewhat subjective
task. Nevertheless, standard approaches exist. One of the simplest known implementations for
an adversarial attack is the white-box untargeted Fast Gradient Sign Method (FGSM) (Goodfellow
et al., 2014), which transforms inputs according to

x → x+ δFGSM × sign(∇xL(θ;x,y)), (22)
where δFGSM is a small positive parameter that controls the size of the perturbation. We also con-
sider the Projected Gradient Descent (PGD) attack (Kurakin et al., 2016; Madry et al., 2017), which
iterates the FGSM attack k times, compounding its effect.

Figure 6: Robustness against adversarial attacks. Left: FC network, Right: CNN (detailed specifications
are in App. A). This key result illustrates that NINR significantly increases the robustness of generic model
architectures trained on the FMNIST dataset. Shades indicate 2 standard deviations estimated over 10 distinct
runs.

In Fig. 6 we compare the performance of standard regularization schemes with NINR against FGSM
and PGD type adversarial attacks. We find that NINR displays superior performance over L2 and
un-regularized nets. For FGSM attacks dropout performs best among the options tested, while for
PGD attacks NINR outperforms.

These preliminary results suggest potential improvement against certain types of adversarial attacks
when NINR is used. Further analysis is required to determine whether combining NINR with other
regularization schemes, or changing the noise distribution during training could potentially produce
a more successful scheme.

D.2 DIFFERENT NOISE DISTRIBUTIONS

Here, we examine the effects of sampling the NINs from different noise distributions on the perfor-
mance of NINR. For each different noise distribution, we repeat the tests used to produce Fig. 2,
demonstrating robustness against corrupted inputs. We compare results using a uniform distribution
ϵ ∼ U(−σϵ, σϵ) and an asymmetric (double Gaussian peaked at ±σϵ) distribution, for fcNINR and
cNINR using DNNs trained on the FMNIST dataset.

In Fig. 7, we see that varying the noise distribution has a minimal effect on NINR as a regularization
scheme, aside from the asymmetric distribution for the catapult phase. We attribute this behavior to
an extreme choice of noise injection scale, where a much longer training time is required to obtain
good performance for NINR.

16

Published as a conference paper at ICLR 2023

Figure 7: Robustness against random input perturbations for FC (top row) and convolutional (bottom row)
networks using NINR training with different noise distributions (detailed specifications are in App. A). Left:
Asymmetric double gaussian distribution peaked at ±σϵ , Right: Uniform distribution ϵ ∼ U(−σϵ, σϵ) . The
fully-connected and CNN NINR noise magnitudes are those of Fig. 2. Shades indicate 2 standard deviations
estimated over 5 distinct runs.

D.3 DIFFERENT OPTIMIZERS

Here, we examine the effects of changing the optimization algorithm, beyond SGD, on the perfor-
mance of NINR. For each different optimizer, we repeat the tests used to produce Fig. 2, demon-
strating robustness against corrupted inputs. We compare results using RMSprop (Hinton, 2012)
and Adam (Kingma & Ba, 2014), for fcNINR and cNINR using DNNs trained on the FMNIST
dataset. Here, we use different parameters for the different architectures and optimizers. Namely,
RMSprop - ρ = 0.9, ϵ = 10−7 and η = 0.0001 for FC and η = 0.001 for CNN. Adam -
β1 = 0.9, β2 = 0.999, ϵ = 10−7 and η = 0.01 for both FC and CNN, with noise injection
magnitudes given in App. D.3.

Figure 8: Robustness against random input perturbations for FCs (top row) and CNNs (bottom row) us-
ing NINR training under different optimization schemes (detailed specifications are in App. A). Left: Adam,
trained with η = 0.01 for both FC and CNN, Right: RMSprop, trained with η = 0.0001 for FC and η = 0.001
for CNN. The fully-connected and CNN NINR noise magnitudes are those of App. D.3. Shades indicate 2 stan-
dard deviations estimated over 5 distinct runs.

17

Published as a conference paper at ICLR 2023

Table 3: Amount of noise injection (σϵ) for the different architectures using RMSprop and Adam

RMSprop
in-NINR - decay (catapult) full-NINR - decay (catapult)

FC 1158.2 (5179.9) 366.3 (1158.2)

CNN 19.6 (619.1) 6.19 (437.8)

Adam
in-NINR - decay (catapult) full-NINR - decay (catapult)

FC 115.8 (518) 36.6 (115.8)

CNN 6.2 (195.8) 1.95 (138.4)

E RESULTS FOR CIFAR-10

Here, we implement cNINR, working with a CNN based on VGG style blocks described in Si-
monyan & Zisserman (2014). The CIFAR-10 dataset consists of color images of objects divided
into 10 categories, with 32 × 32 pixels in 3 color channels, each pixel intensity in the range [0, 1],
partitioned into 50 000 training and 10 000 test samples, which are then preprocessed similarly to
the FMNIST dataset.

The network used to test NINR performance is constructed by connecting the following blocks10:

• Conv2D(32,3,3) → ReLU → Batch Norm → Conv2D(32,3,3) → ReLU →
Batch Norm → MaxPool(2,2) → Dropout(pdrop = 0.2).

• Conv2D(64,3,3) → ReLU → Batch Norm → Conv2D(64,3,3) → ReLU →
Batch Norm → MaxPool(2,2) → Dropout(pdrop = 0.3).

• Conv2D(128,3,3) → ReLU → Batch Norm → Conv2D(128,3,3) → ReLU →
Batch Norm → MaxPool(2,2) → Dropout(pdrop = 0.4).

• Dense ReLU Layer(500) → Linear Layer(10).

Optimization is done using SGD without momentum with the learning rate fixed to η = 0.05 and
mini-batch size B = 128. Each training run is performed for 500 SGD training epochs in total, or
until 98% training accuracy has been achieved.

We provide preliminary results for robustness against input-data corruption in Fig. 9. In contrast to
the previous sections, the CNN used to train on CIFAR-10 contains Dropout and L2 as part of its
architecture, making comparison between NINR and the two redundant. Therefore, we show results
for the same network with and without NINR, as well as CDT with different input corruption scales.
The success of NINR is retained for in-NINR in the decay phase, while the catapult phase requires
longer than 500 epochs to obtain similar generalization properties.

Baseline

In-NNR-Decay

In-NNR-Catapult

CDT-0.2

CDT-0.4

CDT-0.6

0.0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

σnoise

T
es

t
A

cc
ur

ac
y

CIFAR10

Figure 9: Robustness against random input perturbations for the network described in App. E using NINR
training on CIFAR10. Here, we use the in-NINR CNN implementation, taking σϵ = 17.5 in the decay phase
and σϵ = 55.4 in the catapult phase.

10Each convolutional layer admits L2 weight decay regularization (λWD = 10−4).

18

Published as a conference paper at ICLR 2023

F RESULTS FOR MNIST-C

Here, we show some additional results for the same architectures and NINR parameters used
in Sec. 3, trained on the MNIST data-set and tested on several classes of images from MNIST-
C. The MNIST-C dataset (Mu & Gilmer, 2019) consists of 15 types of corruption applied to the
MNIST test set, for benchmarking out-of-distribution robustness in computer vision. For testing
purposes, the data is preprocessed similarly to the FMNIST dataset.

Table 4: Domain shift performance on the MNIST-C test data, for networks trained on the MNIST dataset.
Comparison is made between L2, Dropout, in-NINR, full-NINR and CDT. For CDT, two values (σnoise =
0.2, 0.4) for the amount of corruption are considered. The fully-connected and CNN NINR noise parameters
are those used in Fig. 2. The NINR implementations improve performance for data transformations which are
most closely related to gaussian noise injection, as can be expected.

Fog transformation

None L2 Dropout
in-NINR
(Decay)

in-NINR
(Catapult)

full-NINR
(Decay)

full-NINR
(Catapult)

CDT
(0.2)

CDT
(0.4)

FC(%) 53.2 52.3 61.9 59.4 63.8 57.2 62.8 52.9 57.3

CNN(%) 71.8 67.3 - 61.8 62.5 62.9 57.8 57.8 62.7

Brightness transformation

None L2 Dropout
in-NINR
(Decay)

in-NINR
(Catapult)

full-NINR
(Decay)

full-NINR
(Catapult)

CDT
(0.2)

CDT
(0.4)

FC(%) 97.7 97.6 98.4 98.0 97.4 97.9 98.1 97.7 97.2

CNN(%) 98.9 98.7 - 98.7 98.8 98.8 98.6 98.1 97.5

Glass Blur transformation

None L2 Dropout
in-NINR
(Decay)

in-NINR
(Catapult)

full-NINR
(Decay)

full-NINR
(Catapult)

CDT
(0.2)

CDT
(0.4)

FC(%) 93.7 93.2 96.0 94.7 93.4 94.4 94.3 94.6 94.3

CNN(%) 65.1 54.6 - 60.2 95.2 61.3 95.6 80.6 90.2

Impulse Noise transformation

None L2 Dropout
in-NINR
(Decay)

in-NINR
(Catapult)

full-NINR
(Decay)

full-NINR
(Catapult)

CDT
(0.2)

CDT
(0.4)

FC(%) 84.3 84.3 94.6 93.6 94.1 89.7 96.1 86.7 89.7

CNN(%) 51.1 28.8 - 62.8 97.8 57.1 96.5 75.3 86.8

The results shown in Table 4 indicate improved performance when the type of image corruption ap-
plied to the MNIST images most closely resembles the injected noise. It can therefore be intuitively
understood why the most dramatic performance enhancement is found for the Impulse Noise corrup-
tion transformation, while other corruption transformation may not benefit much from NINR. We
stress that NINR can be readily modified to deal with different types of corruption by changing the

19

Published as a conference paper at ICLR 2023

noise injection distribution, as well as incorporated with other regularization methods to compound
their robustness enhancing effects.

G CONSTANT NOISE INJECTION

Here, we reproduce the results shown in Fig. 2, including an additional curve representing a con-
stant input noise injection. We implement this experiment by applying dNINR at the input layer
(connecting to the first hidden layer) using the large NIN variance value used for the the ”catapult”
phase, but keeping the NIWs static, fixed to their initialization values.

Baseline

In-NNR-Decay

In-NNR-Catapult

Full-NNR-Decay

Full-NNR-Catapult

L2

Dropout

CDT-0.4

Constant Input Noise

0.0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

σnoise

T
es

t
A

cc
ur

ac
y

Fully Connected DNN

Figure 10: Robustness against random input perturbations with the same parameters used in Fig. 2. The ad-
ditional orange curve represents In-NINR with σϵ = 231.6 but with fixed NIW values, which is essentially
constant noise injection to the pre-activation at the first hidden layer.

20

	Introduction
	Noise Injection Nodes Regularization
	Emergent Regularization Terms
	Evolution of Noise Injection Weights

	Experiments
	Realizations in Different Architectures
	Robustness against Distributional Shifts
	Input Corruption
	Domain Shift
	Generalization to Test Data

	Related Work
	Conclusions
	Acknowledgements
	Network architecture details
	Additional Theoretical Details
	Derivation of the Noise Translated Loss Function
	NIN at all layers

	NINR in a Linear Toy Model
	Additional experiments
	Adversarial attacks
	Different noise distributions
	Different optimizers

	Results for CIFAR-10
	Results for MNIST-C
	Constant Noise Injection

