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Abstract

Self-supervised learning for computer vision has achieved tremendous progress and improved
many downstream vision tasks, such as image classification, semantic segmentation, and ob-
ject detection. Among these, generative self-supervised vision learning approaches such as
MAE and BEiT show promising performance. However, their global reconstruction mech-
anism is computationally demanding, especially for high-resolution images. The computa-
tional cost will extensively increase when it is scaled to a large-scale dataset. To address
this issue, we propose local masked reconstruction (LoMaR), a simple yet effective approach
that reconstructs image patches from small neighboring regions. The strategy can be easily
integrated into any generative self-supervised learning techniques and improves the trade-off
between efficiency and accuracy compared to reconstruction over the entire image. LoMaR
is 2.5× faster than MAE and 5.0× faster than BEiT on 384×384 ImageNet pretraining, and
surpasses them by 0.2% and 0.8% in accuracy, respectively. It is 2.1× faster than MAE on
iNaturalist pretraining and gains 0.2% in accuracy. On MS COCO, LoMaR outperforms
MAE by 0.5 APbox on object detection and 0.5 APmask on instance segmentation. It also
outperforms MAE by 0.2% on semantic segmentation. Our code will be made publicly
available.

1 Introduction

Recently, self-supervised learning Chen et al. (2021); Caron et al. (2021); Bao et al. (2022); He et al. (2021);
Chen et al. (2020a); Bachman et al. (2019); Wu et al. (2018); Oord et al. (2018); Hjelm et al. (2018) has
achieved enormous success in learning representations conducive to downstream applications, such as image
classification and object detection. Among these, several generative methods such as Masked Autoencoder
(MAE) He et al. (2021) and Bidirectional Encoder Representation from Image Transformers (BEiT) Bao
et al. (2022), which reconstruct the input image from a small portion of image patches, have demonstrated
excellent performance.

However, a major bottleneck of MAE and BEiT is their high demand for compute, as they reconstruct
masked image patches from global information and operate on a large number of image patches. For example,
pretraining an MAE-Huge network on ImageNet under 224 × 224 resolution takes 34.5 hours on 128 TPU-v3
GPUs. BEiTBao et al. (2022) training is even slower due to the cost of the discrete variational autoencoder.

High-resolution images further exacerbate this issue, due to the O(n2) time complexity of the Transformer
model on n image patches. For example, pretraining MAE on 384×384 images consumes 4.7 times the
compute time of 224×224 counterpart. However, high-resolution images are essential in many tasks, such
as object detection. Thus, improving the efficiency of pretraining holds the promise to unleash additional
performance gains under pretraining with a much larger dataset or higher-resolution images.

We observe that most reconstruction in MAE relies on local information only. In Fig. 1, we visualize the
attention weights (white indicating high attention) when reconstructing a target image patch . From a
pretrained MAELarge model, we extract the attention weights from the decoder layers 2, 4, 6, and 8. The
model mostly attends to patches close to the target patch, which motivates us to limit the range of attention
used in the reconstruction.
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Figure 1: We visualize the attention patterns employed by MAELarge He et al. (2021) in the reconstruction
of a random target patch, indicated by orange. Patches that are important for prediction are usually close
to the target patch. We selected the images randomly from the ImageNet-1K Deng et al. (2009) Val set.

Hence we propose a new model, dubbed Local Masked Reconstruction or LoMaR. The model restricts
the attention region to a small window, such as 7×7 image patches, which is sufficient for reconstruction.
Similar approaches Child et al. (2019); Sukhbaatar et al. (2019); Zaheer et al. (2020) have been seen in NLP
problems that need to process long sequences. The small windows have also been explored in vision domains
for higher training and inference speed Liu et al. (2021); Yang et al. (2021). But unlike prior work in vision
transformers, which create the shifting windows with fixed coordinates for each image. We instead sample
several windows with random locations, which can better capture the objects in different spatial areas.

In Figure 2, we compare LoMaR and MAE and note two major differences: a) We sample a region with
k×k patches to perform masked reconstruction instead of from the full number of patches. Instead of
reconstructing the masked patches from the 25% visible patches globally located in the image, we find that
it is sufficient to recover the missing information with only some local visual clues. b) We replace the
heavy-weight decoder in MAE with a lightweight MLP head. We feed all image patches directly into the
encoder, including masked and visible patches. In comparison, in MAE, only the visible patches are fed to
the encoder. Experiments show that these architectural changes bring more performance gain to the local
masked reconstruction in small regions.

After conducting extensive experiments, we found that

• LoMaR gains a large efficiency gain than other baselines in pretraining high-resolution images since
its computation cost is invariant to the different image resolutions. However, other approaches
have computational cost quadratic to the image resolution increase, which leads to much expensive
pretraining. e.g., for pretraining on 448×448 images, LoMaR is 3.1× faster than MAE and 5.3 ×
faster than BEiT while achieving higher classification performance.

• LoMaR also has a strong generalization ability on other tasks such as object detection and semantic
segmentation. It outperforms MAE by 0.5 APbox under ViTDet Li et al. (2022) framework for object
detection. Also, it outperforms MAE by 0.2 points under UperNet Xiao et al. (2018) for semantic
segmentation.
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Figure 2: Contrasting the masking and reconstruction strategy between MAE and LoMaR.
During the pretraining, MAE random mask 75% patches as masking and reconstruct them by attending to
the remaining visible patches. For LoMaR, it randomly samples several small regions and masks a random
subset of patches from each region, e.g. 80%. The masked patches will only attend to the visible patches
inside each region for reconstruction. In contrast to MAE, LoMaR usually samples less visible patches per
image.

• LoMaR is efficient and can be easily integrated into any other generative self-supervised learning
approach. Equipping our local masked reconstruction learning mechanism into BEiT can improve
its ImageNet-1K classification performance from 83.2 to 83.4 Top-1 accuracy, costing only 35.8% of
its original pretraining time.

1.1 Related Work

Self-supervised Learning For Images. The past few years have witnessed the boom of self-supervised
learning. Existing techniques can be roughly categorized as discriminative (Becker & Hinton, 1992);Pathak
et al. (2017); Gidaris et al. (2018) and generative. The prominent discriminative approach, instance dis-
crimination, distinguishes different views of the same data instance from other instances Wu et al. (2018);
Oord et al. (2018); He et al. (2020); Chen et al. (2020b); Grill et al. (2020);(Chen & He, 2021). The most
representative works include BYOL Grill et al. (2020) , MOCO Chen et al. (2020d; 2021); He et al. (2020)
and SimCLR Chen et al. (2020b;c). VICRegLBardes et al. (2022) performs the contrasting learning in both
local and global features. Other approaches such as SwAV Caron et al. (2020) and DINO Caron et al.
(2021) heavily rely on multi-crop strategy for instance discrimination. The generative approach includes
autoregressive prediction Han et al. (2019); Chen et al. (2020a) and autoencoders, which we discuss next.

Autoencoders for Representation Learning. An autoencoder, which aims to learn a representation from
which the original input can be reconstructed, has been a popular choice for representation learning since
the dawn of deep learning (Hinton & Salakhutdinov, 2006);Bengio et al. (2006; 2013). The autoencoding
problem is inherently ill-posed due to the existence of a trivial solution: a network entirely composed of
identity mappings. Hence, it is necessary to apply some form of regularization, such as sparsity Ranzato
et al. (2006), input corruption Vincent et al. (2008), probability priors (Kingma & Welling, 2013);Rezende
et al. (2014), or adversarial discriminators Makhzani et al. (2015).

In particular, denoising autoencoder Vincent et al. (2008), which attempts to recover the original input from
a corrupted version, has received significant research attention. Variations include solving jigsaw puzzles
(Noroozi & Favaro, 2016), color restoration Zhang et al. (2016); Larsson et al. (2016), spatial relation recovery
Doersch et al. (2015), inpainting Pathak et al. (2016), and so on. Recently, BEiT Bao et al. (2022) proposes
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to encode image patches as a dictionary using dVAE Ramesh et al. (2021) and predict the encoding of missing
patches. PeCo Dong et al. (2021) further improves BEiT by enforcing perceptual similarity from dVAE. MAE
He et al. (2021) reconstructs directly the missing pixels. CiM Fang et al. (2022) replaces image patches with
plausible alternatives and learns to recover the original and predict which patches are replaced. Data2vec
Baevski et al. (2022) performs self-supervised learning across multi-modalities. MultiMAE Bachmann et al.
(2022) shows that pretraining on multi-modalities can be more training-efficient than on single-modality.

1.2 Approach

LoMaR relies on a stack of Transformer Vaswani et al. (2017) blocks to pretrain a large amount of unlabeled
images by recovering the missing patches from corrupted images similar to MAE He et al. (2021), but
LoMaR differentiates from MAE in several key places. In this section, we first revisit the MAE model and
then describe the differences between LoMaR and MAE.

1.3 Background: Masked Autoencoder

The Masked Autoencoder (MAE) model He et al. (2021), employs an asymmetric encoder-decoder architec-
ture. The encoder takes in a subset of patches from an image and outputs latent representations for the
patches. From those, the decoder reconstructs the missing patches. For an input image with resolution h ×
w, MAE first divides it into a sequence of non-overlapping patches. Then, MAE randomly masks out a large
proportion (e.g., 75%) of image patches, see the upper side of Fig. 2. The positional encodings are added
to each patch to indicate their spatial location. MAE first encodes the remaining patches into the latent
representation space and then feeds the latent representations together with placeholders for the masked
patches into the decoder, which carries out the reconstruction. For each reconstructed image, MAE uses the
mean squared error (MSE) with the original image in the pixel space as the loss function.

ImageNet 1K Inaturalist
Method Resolution Time (h) ↓ Top-1 Acc Speed-up Time (h) ↓ Top-1 Acc Speed-up
BEiT Bao et al. (2022) 384 ∼408 83.7 1.0× ∼93 81.1 1.0×
MAE 384 ∼203 84.3 2× ∼46 81.2 2.0×
LoMaR (ours) 384 ∼81 84.5 5.0× ∼22 81.4 4.2×
BEiT Bao et al. (2022) 448 ∼595 84.1 1.0× ∼121 82.3 1.0×
MAE 448 ∼345 84.5 1.7× ∼70 82.4 1.7×
LoMaR (ours) 448 ∼113 84.7 5.3× ∼32 82.3 3.8×

Table 1: High-resolution image pretraining and classification results on ImageNet-1K dataset Deng et al.
(2009) and Inaturalist Van Horn et al. (2018). The pretraining time are all computed on 4 NVIDIA 80GB
A100 GPUs. We take BEiT Bao et al. (2022) as the comparison baseline when computing the speed-up for
MAE He et al. (2021) and LoMaR. Our LoMaR can always achieve comparable or higher performance with
at least 3.8× speed-up than BEiT and 2.2× speed-up than MAE on both datasets.

1.4 Local Masked Reconstruction (LoMaR)

We describe LoMaR by contrasting it with MAE from the following perspectives.

Local vs. Global Masked Reconstruction. MAE reconstructs each missing patch with patches sampled
from the entire image. However, as indicated by Fig 1, usually only the patches in the proximity of the
target patch contribute significantly to the reconstruction, suggesting that local information is sufficient for
reconstruction. Therefore, we perform the random window masking and reconstruction on patches within a
small region, shown in the bottom side of Fig. 2. Specifically, we perform the random window masking by
sampling several small regions from the image and restrict the masked patches to only attend to its local
surrounding visible patches, as we highlighted. Experiments find that a region size of 7×7 patches leads to
the best trade-off between accuracy and efficiency. On the other hand, similar to convolutional networks
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He et al. (2016);(Simonyan & Zisserman, 2014), LoMaR has the translation invariance property due to the
usage of small windows sampled in random spatial locations each iteration.

From the complexity perspective, the local masking and reconstruction are more computationally efficient
than the global masking and reconstruction of MAE due to fewer tokens for operation. Suppose that each
image can be divided into h × w patches. The time complexity for computing the self-attention is O(h2w2).
The complexity is quadratic to the number of patches and hard to scale up with large hw. However, for our
local masked reconstruction, we sample n windows where each contains m × m patches; Its computational
complexity is O(hw + nm4), which has linear time complexity if we fix m × m as a constant window size.
It can reduce the computational cost significantly if nm4 ≪ h2w2. For example, for a 448x448 image, the
cost of self-attention calculation is reduced from 4482 x 4482 in the case of MAE, to 4x72x72 in the case of
LoMaR when we sample 4 views of 7×7 patches.

Architecture. Instead of the asymmetric encoder-decoder of MAE, LoMaR only applies a simple Trans-
former encoder architecture. We input all the visible and masked patches under a sampled region into the
encoder and reconstruct the masked patches through a simple MLP layer. Although feeding the masked
patches into the encoder can be deemed a less efficient operation than MAE which only inputs masked
patches into the decoder, we find that inputting the masks in the early stages can enhance the visual repre-
sentation and make it more robust to mask reconstruction from the smaller regions. It might be because the
encoder can convert the masked patches back to their original RGB representation after multiple encoder
layers’ interaction with the other visible patches. Those recovered masks in the hidden layers can implicitly
contribute to the image representation. Therefore, LoMaR preserves the mask patches as the encoder input.

Implementation. Given an image, we first divide it into several non-overlapping patches. Each patch
is linearly projected into an embedding. We randomly sample several square-shaped regions consisting of
K × K patches at different spatial locations. We then zero out a fixed percentage of patches within each
region. After that, we feed all the patches, including visible and masked ones, from each region to the
encoder in raster order. We also apply the relative positional encoding Wu et al. (2021) into our model,
which can enable the translation-invariant property for the local masked reconstruction. We convert the
latent representations from the encoder output back to their original feature dimension with a simple MLP
head and then compute the mean squared error with the normalized ground-truth image.

2 Experiments

We examine the performance of LoMaR by pretraining and finetuning on ImageNet-1K Deng et al. (2009)
dataset with the following procedure. First, we perform the self-supervised pretraining on the ImageNet-
1K training dataset without label information. Then, we finetune the pretrained model on ImageNet-1K
with supervision from the labels. During finetuning, we feed all the image patches to the model and take
the average of their features as the final representation for classification. We follow the same experimental
settings as MAE He et al. (2021); detailed hyperparameters can be found in the supplementary material.

2.1 Experiments on High-resolution Images

We evaluate our model, MAE He et al. (2021) and BEiT Bao et al. (2022) on ImageNet Deng et al. (2009)
and Inaturalist Van Horn et al. (2018) datasets. We pretrain and finetune on high-resolution images such
as 384 × 384 and 448 × 448 images. For MAE, we follow their default settings during pretraining; Sample
75% patches as masks. For LoMaR, we set the number of views to 6 and 9 for resolutions of 384 and 448 on
the ImageNet dataset, and sample 8 and 12 views for resolutions of 384 and 448 on the Inaturalist dataset.
We pretrain all the models with 300 epochs and finetune them under the same image resolution.

We summarize the results in Table 1. The results demonstrate that LoMaR outperforms other models
with substantially less pretraining time, which scales linearly with the window numbers. In contrast, the
pretraining time of MAE and BEiT scales quadratically as the resolution increases. As a result, LoMaR is
2.5× faster than MAE (accuracy +0.2%) and 5.0× faster than BEiT (accuracy +0.8%) on 384×384 images,
and for the resolution of 448×448, it is 3.1× faster than MAE (accuracy +0.2%) and 5.3× faster than BEiT
(accuracy +0.6%). On Inaturalist, LoMaR is 2.1× faster than MAE model (accuracy +0.2%) and 4.2×
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Methods Epochs Res Time (h) ↓ Top-1 Acc Speed-up

No Pretraining - 224 - 82.3 -
DINO Caron et al. (2021) 300 224 - 82.8 -
MoCov3 Chen et al. (2021) 600 224 - 83.2 -
BEiT Bao et al. (2022) Ramesh et al. (2021) 300 224 ∼107 82.9 1.0×
MAE He et al. (2021) 400 224 ∼58 83.1 1.8×
LoMaR 300 224 ∼49 83.3 2.2×

LoMaR8×8 400 224 ∼66 84.3 1.6×

Table 2: Image classification results on the ImageNet-1K (IN1K) dataset Deng et al. (2009). All baselines
excluding LoMaR8×8 adopt the ViT B/16 model Dosovitskiy et al. (2020) and are pretrained on 224×224
images. LoMaR8×8 applies ViT B/8 as the backbone. * denotes our reproduced results based on the officially
released code and pretrained models. The pretraining time are all computed on 4 NVIDIA 80GB A100 GPUs.

faster than BEiT (accuracy +0.3%), and it can produce comparable performance with the other baselines
but is 3.8× faster than BEiT and 2.2× faster than MAE.

2.2 Experiments on Low-resolution images

Table 2 summarizes the results of different self-supervised learning approaches. All models are pretrained
self-supervisedly on ImageNet-1K Deng et al. (2009) under the 224×224 resolution and finetuned on labeled
ImageNet-1K. LoMaR reaches the best result of MAE, 83.6%, after only 400 epochs of pretraining. When
pretrained for 1,600 epochs, its performance further improves to 84.1%. When finetuned under the 384×384
resolution, LoMaR reaches an accuracy of 85.4%, 0.6% higher than the best baseline. Overall, LoMaR
outperforms strong baselines with less pretraining time.
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Figure 3: Computational efficiency evaluation:
We compute their ImageNet-1K top-1 accuracy per
pretraining time for low-resolution images 224×224.

Efficiency analysis. We train LoMaR, MAE He
et al. (2021) and BEiT Bao et al. (2022) baselines
with different pretraining epochs [100, 200, 300, 400,
800, 1,600] on 224×224 images. We compare their
pretraining time v.s top-1 accuracy in Fig. 3. We
carefully tuned all models to achieve the best load
balancing between the GPU and the CPU and the
maximal image throughput during training. We do
this by adjusting ghost batch size Hoffer et al. (2017)
while keeping the total batch size constant for all
models. We observe that, compared to baselines,
LoMaR consistently achieves the same or higher ac-
curacy in less pretraining time. Specifically, pre-
training MAE achieves 83.6% accuracy but takes
about 232 hours. LoMaR reaches the same accu-
racy within ∼66 hours of pretraining, which is 3.5×
faster. BEiT requires 285 pretraining hours to get
83.2% accuracy. In contrast, LoMaR obtains a simi-
lar result within ∼49 hours, which translates to 5.8×
time savings.

Pretraining on small patches. We also evaluate our model on smaller patches with 8×8 pixels instead of
the usual 16×16 pixels. We employ ViT B/8 Dosovitskiy et al. (2020) as a backbone in Table 2. We pretrain
LoMaR with 7×7 windows (4 views per image) on 224×224 images for 400 epochs. It is worth noting that
this incurs the same amount of computation time (about 66 hours) as 16×16 patches. The model accuracy
after finetuning reaches to 84.3% top-1 accuracy. However, similar experiments are costly for MAE and
BEiT, as smaller patches substantially increase the number of patches for operation and lead to the high
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Backbone ViTDet*Li et al. (2022) ViTAE Zhang et al. (2022)
APbox APmask APbox APmask

MAE 51.1∗ 45.4∗ 51.6 45.8
LoMaR 51.4 45.7 51.8 46.0
LoMaR384 51.6 45.9 52.0 46.2

Table 3: Object detection and instance segmentation results on MS COCO under two ViT frame-
works. * denotes reproduced results with the code from Zhang et al. (2022). LoMaR384 denotes the model
pretrained on 384×384 images. Other models are pretrained on 224×224 images.

Models Pre-train Data ADE20K
supervised IN1K w/ labels 47.4
BEiT Bao et al. (2022) IN1K+DALLE 47.1
MAE He et al. (2021) IN1K 48.1
LoMaR IN1K 47.8
LoMaR384 IN1K 48.3

Table 4: Semantic segmentation on ADE20K Zhou et al. (2019) (mIoU). All the baselines are
computed under UperNet Xiao et al. (2018) framework. LoMaR384 denotes the results under pretraining
images with the resolution of 384×384. Other baselines are pretrained on 224×224 images.

cost of self-attention. In our experiments, the pretraining of MAE with their official code under smaller
patches crashes due to numerical issues.

2.3 Object Detection and Instance Segmentation.

We finetune our model end-to-end on MS COCO Lin et al. (2014) for the object detection and instance
segmentation tasks. We replace the ViT backbone with our pretrained LoMaR model in the ViTDet Li
et al. (2022) and ViTAE Zhang et al. (2022) frameworks. We report object detection results in APbox and
instance segmentation results in APmask.

We provide the results in Table 3. It shows the consistent improvement of LoMaR on COCO object detection
benchmark. Under ViTDet, LoMaR surpasses MAE by 0.3 APbox and 0.3 APmask. When applying the
LoMaR pretrained for 1,600 epochs under the 384×384 resolution, it further improves to 51.6 APbox and 45.9
APmask. In the ViTAE framework, LoMaR improves over MAE by 0.4 APbox and 0.4 APmask, respectively.

2.4 Semantic Segmentation

We evaluate our model on the semantic segmentation benchmark, ADE20K Zhou et al. (2019), and compare
with the baselines in Table 4. We train the UperNet Xiao et al. (2018) model with our pretrained LoMaR as
initialization. When applying the LoMaR pretrained under images with 384×384 resolution, it consistently
outperforms MAE by 0.2 points. This shows the consistent improvement of our LoMaR over the MAE and
BEiT baselines. Additionaly, it also demonstrates the usefulness of high-resolution image pretraining.

2.5 Integration to BEiT

Method Time(h)↓ Top-1 Acc Speed-up
BEiT ∼285 83.2 1×

BEiT+ window masking ∼102 83.4 2.8×

Table 5: The results of applying our method on BEiT approach.

Our core idea, local masked reconstruc-
tion, can be easily integrated into other
generative self-supervised learning meth-
ods. To examine its effectiveness in a dif-
ferent paradigm, we integrate it to BEiT
Bao et al. (2022). Specifically, we ran-
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domly sample four 7×7 windows and feed them into the BEiT model, and pretrain for 300 epochs, while
retaining all other experimental settings as the original BEiT. Results in Table 5 show that this strategy im-
proves the accuracy from 82.8% to 83.4%, which is higher than the original BEiT and speed up the training
by 2.8×.

2.6 Ablative Experiments
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Figure 4: Comparison between LoMaR simple encoder
and MAE asymmetric encoder-decoder architectures
on our random window masking strategy. The window
sizes vary from 14×14 to 5×5.

We conducted many ablation experiments to explore
properties such as the window size, masking ratio,
and architecture design, and share our findings in
this section. We performed all the ablation experi-
ments under 4 NVIDIA 80GB A100 GPUs with the
same setting for fair comparisons, and all the exper-
iments are obtained by pretraining under 224×224
images.

Architecture. Fig. 4 compares different architec-
tures, including a simple encoder (with both visible
and masked patches as input) and MAE, an asym-
metric encoder-decoder architecture with local win-
dow. Initially, we sample 75% patches as the masks
following the guidance of MAE. We use the absolute
positional encoding (APE) for both architectures by
default. We ablate these two architectures with dif-
ferent masked reconstruction windows, and it shows
that a simple encoder can always outperform the
asymmetric encoder-decoder. Moreover, the perfor-
mance gap is further magnified when we decrease
the window size from 14 to 7, suggesting that a sim-
ple encoder is more robust to smaller window sizes
than MAE-like architecture.

Window Size 5×5 7×7 9×9 11×11 14×14
Views 8 4 3 2 1

Table 6: Window size ablations: The ratio between
window size and number of views per image, as utilized
by LoMaR.

Efficiency vs. window size. We create with mul-
tiple different window sizes such as 5×5, 7×7, 9×9,
11×11 and 14×14. One caveat is that the smaller
window covers much fewer visible patches than the
larger ones, which creates unfair comparisons. To
encourage fairness, we assign different numbers of
views for each window size, as we demonstrated in
Fig. 6, thereby all conditions have similar number
of visible patches in training.

From the results in Fig. 4, we can observe that the performance does not change much, only 83.2 → 83.1,
while decreasing the region size from 14× to 7. However, the total pretraining time decreases from 120 hours
to 66 hours due to the usage of restricted attention region, meaning that pretraining on 7×7 window size
can roughly 2× speed up the pretraining process with very minimal performance change. Therefore, window
size 7×7 can be deemed an optimal trade-off for local masked reconstruction.

RPE vs. APE. Relative positional encoding (RPE) has been widely used in the previous works including
BEiT Bao et al. (2022). We also employ the RPE Wu et al. (2021) in LoMaR. We observe that it can bring
0.4 top-1 accuracy gain from 83.1 to 83.5. Therefore, we set RPE as our default setting for LoMaR in our
future experiments.

Mask ratio. We also explore the best mask ratio under the local masked reconstruction scenario (see
Fig. 5). We train the previous best setting of our LoMaR on different mask ratios, ranging from 30%
to 90%. The results show that too low (30%) or too high (90%) mask ratio are not optimal since they
over-simplify or complicate the training task. We found that the 80% mask ratio can result in the best
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Figure 6: Example results on ImageNet (upper two rows) and COCO (lower two rows) validation images.
We mask 80% patches out and reconstruct them with our pretrained model. For each image reconstruction
figure, we split them into 4 parts: 1) the left-most is the original image. 2) the second-left is the sampled
window (7×7 patches). 3) The second-right is the masked image. 4) The right-most is our reconstructed
image.

performance, differentiating from the 60% mask ratio observed in MAE for best finetuning performance.
With this motivation, we employ the 80% mask ratio in our experiments.

2.7 Visualization of Reconstructed Images
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Figure 5: Mask ratio ablations: It compares the
LoMaR under different mask ratios from 30% to 90%

We qualitatively show the reconstruction perfor-
mance of our pretrained model in Fig. 6. We
randomly sample several images from ImageNet-
1K Deng et al. (2009) and MS COCOLin et al.
(2014). After that, we sample a region contain-
ing 7×7 patches in every image and zero out 80%
patches in the window for reconstruction. It can be
seen that LoMaR is capable of generating plausible
images, which also confirms our initial conjecture
that the missing patches can be recovered from the
local surrounding patches alone.

We show the reconstruction performance under dif-
ferent masking ratios in Fig. 7. For each image,
we sample a window and randomly mask 60%, 70%,
80%, and 90% patches for reconstruction. We found
that LoMaR can plausibly recover the corrupted im-
age in various masking scales; It can still success-
fully reconstruct the images even with only 5 visible

patches as the clues (90% masking). This indicates that LoMaR has learned high-capacity models and can
infer complex reconstructions.

3 Discussion and Limitation

Self-supervised learning (SSL) can benefit from training with massive amount of unlabeled data, which has
brought many promising results Kenton & Toutanova (2019); Radford et al. (2018; 2019); Brown et al.
(2020); He et al. (2021); Bao et al. (2022); Chen et al. (2021). However, their high computational demands
remain a significant concern under large-scale pretraining. In our study, we observe that the local masked
reconstruction (LoMaR) for generative SSL is more efficient than the global version used by the influential
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Original 

Image

Sampled 

Window
Mask 60% Mask 70% Mask 80% Mask 90%

Figure 7: Reconstruction examples of sampled ImageNet (upper two rows) and COCO (lower two rows)
validation images under different masking ratios ranging from 60% to 90%.

works of MAE He et al. (2021) and BEiT Bao et al. (2022). LoMaR demonstrates good generalization in
image classification, instance segmentation and object detection; it can be easily incorporated into both
MAE and BEiT. LoMaR holds the promise to scale up SSL to even bigger datasets and higher resolution
Radford et al. (2021); Sun et al. (2017) as well as more computation-intensive datasets such as videos Miech
et al. (2019).

Another advantage of LoMaR lies in efficiency gain when the number of image patches increases, such as
for the high-resolution images such as 384×384 and 448×448 or even larger. The primary reason is that
LoMaR restricts the self-attention within a small region, and its computational complexity grows linearly
with the number of sampled regions per image. This characteristic enables efficient pretraining under high
image resolution, which would be prohibitively expensive for other SSL methods. It can benefit many vision
tasks such as object detection or instance segmentation, which require dense prediction at the pixel level.

Despite the high pretraininig efficiency gain of LoMaR over other baselines for high-resolution images, one
limitation is that LoMaR underperforms in linear probing (see results in Supplementary), which is mainly
due to two reasons: 1) There is a discrepancy between training and inference. During pretraining, we feed
only a small region of patches, along with masked tokens, to the network. During linear probing, the input
contains all image patches without masked tokens, resulting in a shift of input distribution and damages
linear probing performance. 2) LoMaR applies a much shallower decoder than MAE. A deep decoder
improves linear probing performance because that the last few layers in an autoencoder are specialized
for reconstruction and not very helpful for recognition; MAE removes these layers during linear probing.
However, as shown in Table 2, this limitation can be easily mitigated by fine-tuning the entire model. We
hope the idea of local masked reconstruction idea, as pioneered by LoMaR, can lead to further research on
efficient self-supervised learning.
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