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LEARNING MEMORY MECHANISMS FOR
DECISION MAKING THROUGH DEMONSTRATION
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ABSTRACT
In Partially Observable Markov Decision Processes, integrating an agent’s history
into memory poses a significant challenge for decision-making. Traditional imita-
tion learning, relying on observation-action pairs for expert demonstrations, fails
to capture the expert’s memory mechanisms used in decision-making. To capture
memory processes as demonstrations, we introduce the concept of memory depen-
dency pairs (p, q) indicating that events at time p are recalled for decision-making
at time q. We introduce AttentionTuner to leverage memory dependency pairs
in Transformers and find significant improvements across several tasks compared
to standard Transformers when evaluated on Memory Gym and the Long-term
Memory Benchmark.

1 INTRODUCTION

Partially Observable Markov Decision Processes (POMDPs) offer a framework for modeling decision-
making in environments where the agent’s information is incomplete, a common situation in real-
world scenarios such as a robot operating based on limited camera observations. Making effective
decisions under such conditions necessitates incorporating the agent’s history, which can be encoded
through memory mechanisms like Recurrent Neural Networks (RNNs) Hausknecht & Stone (2017);
Karkus et al. (2017) or self-attention architectures such as Transformers Esslinger et al. (2022).
However, it’s not always straightforward for a fully automated system to identify which points in
history are crucial to remember for a particular decision. On the other hand, when humans learn, we
are often taught not just the actions we need to take at the moment, but also which past events and
memories should be recalled. For instance, a survival instructor might instruct students to recollect
previously observed landmarks for navigating back to base camp or a coach could ask an athlete to
recall a past encounter with an opponent when making their next move. With this motivation in mind,
this study concentrates on learning memory mechanisms essential for decision-making in POMDP
tasks via expert demonstrations, also known as imitation learning. Standard imitation learning
methods, which involve experts providing observation-action pairs, are insufficient in POMDP tasks
as they do not capture the memory processes experts employ during decision-making. To capture
memory mechanisms through demonstration, we introduce the use of memory dependency pairs
(p, q), where p < q, indicating that the observation at time p ought to be recalled for decision-making
at time q. These memory dependency pairs can be integrated into the widely-used Transformers
Vaswani et al. (2023) by applying a loss to the self-attention matrix to reinforce attention between
tokens representing times p and q (Figure 1). The main contributions of this paper are as follows:

• We introduce memory dependency pairs to incorporate memory mechanisms into demonstrations
for imitation learning in POMDPs and to improve long-term credit assignment

• We introduce AttentionTuner, a novel method for leveraging memory dependency pairs in self-
attention architectures, and benchmark it against vanilla Transformers on Memory Gym Pleines et al.
(2024) and LTMB (Long-term Memory Benchmark). Empirical analyses show that AttentionTuner
significantly improves success rates on four tasks and aids the optimizer in consistently navigating
the loss landscape towards solutions with better generalizability compared to those found by
optimizing the vanilla Transformer. Ablations reveal that these improvements in learning can be
attained with as few as 0.1% of demonstrations annotated.

2 BACKGROUND

This section defines the notation and framework for imitation learning in partially observable environ-
ments and provides a concise overview of Transformer architectures. This notation will be used to
define AttentionTuner in Section 3.
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Figure 1: The red arrows indicate episodic memory dependencies labeled by an expert. The correct
action to take in o2 depends on o0 and the correct action to take in o3 depends on o1. These memory
dependency pairs are used to create the expert self-attention matrix E ∈ {0, 1}n×n where n is the
length of the sequence and Eij = 1 only if the expert has indicated that observation oj should be
recalled from memory at observation oi, and Eij = 0 otherwise. A binary cross entropy loss is taken
between E and the learner’s self-attention matrix σ(QK⊤) to form the memory loss L(σ(QK⊤), E)
that encourages the learner to learn the expert’s memory mechanism. The memory loss is scaled by λ
to match the magnitude of LIL and then added to form the final loss used during training.

2.1 IMITATION LEARNING IN PARTIALLY OBSERVABLE ENVIRONMENTS

Imitation learning algorithms aim to learn a policy πθ parameterized by θ by imitating a set of expert
demonstrations D = {τi}i=1...M . Each demonstration trajectory τi is a sequence of observation-
action pairs (oj , aj), j = 1 . . . |τi|, where |τi| denotes the trajectory length. These trajectories are
generated from a Partially Observable Markov Decision Process (POMDP), which is characterized
by the tuple ⟨S,O,A, T,O, ρ0⟩. Here, S represents the state space, O the observation space, A the
action space, T : S ×A× S → [0, 1] the transition dynamics, O : S ×O → [0, 1] the observation
function, and ρ0 the initial state distribution. In this study, we focus on behavioral cloning, where the
objective is to minimize the negative log-likelihood loss function for a discrete action space:

LIL(θ) = −E(o,y)∼D

[ A∑
a

1y=a log(π(a | o))
]

(1)

2.2 TRANSFORMERS FOR DECISION MAKING
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Figure 2: Architecture of the causal Transformer for sequential decision making modeling used in all
AttentionTuner and vanilla Transformer experiments.

Transformers are a neural network architecture designed to process sequential data Vaswani et al.
(2023). In the context of decision-making, trajectories can be modeled using the Transformer
architecture, as illustrated in Figure 2. This approach is analogous to the methods used in Decision
Transformers Chen et al. (2021) and Trajectory Transformers Janner et al. (2021). We represent
a trajectory as τ = (o1, a1, o2, a2, . . . , oT , aT ) where oi and ai denote the observation and action,
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respectively, at timestep i. The Transformer predicts the action at for each observation ot as detailed
in Figure 2. These predictions are then utilized to compute the imitation learning training loss, as
described in Equation 1. Although Transformers excel in numerous domains, they encounter specific
challenges in POMDP memory tasks. These challenges lead to the difficult and unstable optimization
of the behavioral cloning objective (Equation 1), an issue further explored in Section 4.2.

3 METHOD

We propose a novel approach to imitation learning by introducing memory dependency pairs within
trajectories to address memory utilizations in decision-making. For each trajectory τi ∈ D, we define
Mi = {(pj , qj)}j=1...|Mi| as the set of memory dependency pairs, where each pair (p, q) indicates
that observation op was recalled during the decision-making process for aq. If the decision-making
process for aq depends on multiple past observations op1

, . . . , opn
, then we can represent these

dependencies with the pairs (p1, q), . . . , (pn, q). We extend the definition of an expert demonstration
trajectory, initially described in Section 2.1, to τi =

(
{(oj , aj)}j=1...|τ |,Mi

)
, incorporating both

observation-action pairs and memory dependencies. While in practice, a human would typically
annotate memory dependency pairs (as shown in Appendix N), in the experiments reported in this
paper, we instead use a computer program to automate the annotation of memory dependency pairs.

While in principle, memory dependency pairs could be used to enhance any memory-based learning
architecture, in this paper we introduce AttentionTuner, which specifically leverages them to
enhance Transformer-based architectures. For each trajectory τi, with length n = |τi|, AttentionTuner
constructs an expert self-attention matrix E ∈ {0, 1}n×n, detailed in Figure 1, where Eij = 1
if (j, i) ∈ Mi and 0 otherwise. To encourage the Transformer to mimic the expert’s memory
mechanism, AttentionTuner applies a binary cross-entropy loss between the expert matrix E and the
learner’s self-attention matrix A = σ(QK⊤) ∈ [0, 1]n×n. The memory loss equation is L (A,E) =
− 1

n2

∑n
i=1

∑n
j=1[Eij log(Aij) + (1− Eij) log(1− Aij)]. In AttentionTuner, this memory loss is

applied to a single attention head within the first Transformer layer (Figure 6). The first layer is
chosen because it is closest to the raw observation embeddings, making the application of memory
dependency pairs more meaningful. Applying the loss to a single head allows other heads to learn
additional memory mechanisms not captured byMi. Alternative applications of this memory loss
are explored in Appendix E.

The memory loss is then scaled using a hyperparameter λ and combined with the imitation learning
loss LIL (defined in Equation 1) to form the final training loss L = LIL + λL(A,E). We set λ = 10
based on robust performance observed across various benchmark tasks, effectively balancing the
magnitude of the memory loss L(A,E) with the imitation learning loss LIL. Comprehensive details
of the model architecture, including the CNN and MLP embedders and the causal Transformer,
are provided in Appendix D. Pseudocode for training AttentionTuner is provided in Appendix C
Algorithm 1. The pseudocode for training vanilla Transformers is identical if the memory loss
Lmemory is removed by setting λ = 0.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluated AttentionTuner on the Memory Gym benchmark Pleines et al. (2023) and our newly
introduced Long-term Memory Benchmark (LTMB), each featuring three procedurally generated
POMDP tasks as illustrated in Figure 3. These tasks are specifically designed to necessitate and
assess the use of memory mechanisms in agents. Four of the six tasks require memory dependencies
on several past observations at a single timestep (shown in Appendix P Figure 9).

Baselines Due to the lack of a good dense reward function in our benchmark environments and in
most real world decision making tasks, we do not directly compare our method against methods that
learn memory mechanisms through reinforcement learning, as they are expected to perform poorly
on these tasks. We believe AttentionTuner focuses on a new problem setting, and we are not aware
of other methods for learning memory mechanisms through demonstrations. For this reason, we
compare our method against a vanilla Transformer as a baseline.
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LTMB	Hallway LTMB	Ordering LTMB	Counting

MemGym	Mortar	Mayhem MemGym	Mystery	Path MemGym	Searing	Spotlights

Enter the hallway that features an identical
object to the one found in the start room.

Memorize the sequence of the first 18 colored objects 
presented. When given a choice between two objects, 

select the one that appeared earlier in the sequence.

Pass through the green (red) door if the number of 
previously seen items matching the color of the 

object in the room is even (odd).

Remember the sequence of actions shown initially 
and replicate them accurately.

Navigate along an unseen path; straying off it 
resets your position to the beginning. 

Gather the coin and reach the door without being 
caught by spotlights, noting the agent becomes 

invisible after the episode starts.

Figure 3: Overview of LTMB and MemGym tasks. Detailed task descriptions are available in
Appendix F.

4.2 RESULTS AND ANALYSIS

MORTAR MYSTERY SEARING
METHODS MAYHEM PATH SPOTLIGHTS HALLWAY ORDERING COUNTING

VANILLA TRANSFORMER 20.8± 42.2 97.3± 0.7 62.2± 5.5 53.2± 28.3 59.4± 22.9 6.0± 0.7
ATTENTIONTUNER (OURS) 99.8 ± 0.4 98.7 ± 0.4 64.2 ± 3.4 99.9 ± 0.1 99.9 ± 0.3 6.5 ± 0.4

Table 1: Average success rates and 90% confidence intervals for two different methods—Vanilla
Transformer and AttentionTuner (our approach)—across various tasks in the Memory Gym and
Long-term Memory Benchmark.
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Figure 4: Median learning curves with interquartile range for Memory Gym and LTMB tasks are
presented. The top row displays the training loss while the bottom row shows the test accuracy on
action prediction (not success rate).

AttentionTuner achieves significantly better success rates. In Table 1, performance of Attention-
Tuner is compared with the vanilla Transformer on Memory Gym and LTMB tasks. We performed a
Welch t-test (results in Appendix J Table 5) with a significance threshold of α = 0.05 and found that
AttentionTuner achieves significantly better success rates on Mortar Mayhem, Mystery Path, Hallway,
and Ordering. The high variability observed in the vanilla Transformer’s performance on Mortar
Mayhem, Hallway, and Ordering tasks can be attributed to some runs achieving nearly perfect success
rates, while others fall close to zero. This discrepancy is explained in the learning curves presented
in Figure 4, indicating challenges in optimizing the behavioral cloning objective (Equation 1) for
POMDP memory tasks with a large Transformer model. These challenges result in convergence to
suboptimal local optima, as evidenced by flat segments in the training loss curves.

AttentionTuner aids the optimizer in navigating the loss landscape. A local optimum is apparent
in the Hallway and Counting tasks, while less pronounced in Mystery Path and Searing Spotlights
(Figure 4). Notably, Mortar Mayhem and Ordering present two local optima, posing additional
challenges for the optimizer. A unique observation in the Ordering task is that AttentionTuner
encounters a single local optimum, in contrast to the vanilla Transformer, which faces two. The
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intricacies of task design that lead to the formation of multiple or difficult-to-escape local optima are
not fully understood, highlighting an area for future research. The interquartile ranges in Figure 4
suggest that AttentionTuner aids the optimizer in more efficiently and consistently escaping local
optima, and potentially encountering fewer of them. For instance, in the Mortar Mayhem task,
AttentionTuner enabled the optimizer to surpass both local optima in under 50 epochs with minimal
variability across training seeds. In contrast, only a single training run of the vanilla Transformer
overcame both local optima and did so with∼ 400 more training epochs. A similar pattern emerges in
the Mystery Path, Hallway, Ordering, and Counting tasks where AttentionTuner consistently escapes
from the local optima while the vanilla Transformer only escapes some of the time or escapes up to
200 epochs later than AttentionTuner (Figure 4). AttentionTuner’s enhanced capability in traversing
the loss landscape underscores its efficacy in facilitating long-term credit assignment and the learning
of memory mechanisms.

4.3 ABLATIONS
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Figure 5: Ablation Results

Imperfect Expert Annotations. Collecting comprehensive expert memory annotations for every
demonstration trajectory in long complex decision-making tasks may not always be feasible. To
explore the impact of this constraint, we conducted experiments varying the proportion of trajectories
that included memory annotations, as detailed in Figure 5a. During training, the memory loss was
only used on trajectories that included memory annotations. Trajectories without memory annotations
were trained using only the imitation learning loss (Equation 1). The findings, presented in Figure 5a,
reveal that having memory annotations for merely 10% of the trajectories achieves comparable results
to having annotations for all trajectories. Performance degradation for AttentionTuner becomes
noticeable when the proportion of annotated demonstration trajectories falls below 10%. Nonetheless,
even with as few as 1% of trajectories annotated, AttentionTuner manages to achieve a relatively
high average success rate. Moreover, having even just 0.1% of trajectories annotated still enables
AttentionTuner to outperform the vanilla Transformer. Furthermore, human annotated trajectories
could include errors. We found that AttentionTuner is robust against small perturbations of the
memory dependency pair endpoints (Appendix M).

Value of Memory Dependency Pairs Compared to Additional Demonstrations. Figure 5b shows
that it can take anywhere from 2 to 4 times more demonstrations to train a vanilla Transformer to
achieve the same success rate as AttentionTuner. In our experiments, we found that it takes 2 to 3
times longer for a human to annotate memory dependency pairs than to just collect a demonstration
(Appendix N). Considering that only 5-10% of the demonstrations need to be annotated (Section 4.3),
we find that memory dependency pair annotations on a single demonstration is equivalent to providing
40 additional demonstrations on both the Mortar Mayhem and Hallway tasks. Annotating memory
dependency pairs instead of collecting additional demonstrations results in a human labor time
savings factor of 16 on Mortar Mayhem and 14 on Hallway. Appendix O details how these numbers
are computed, though it is important to note that exact time savings can vary widely based on the task
and the quality of the human annotator.
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A RELATED WORK

This section surveys the literature on memory types, integration of human feedback in decision-
making algorithms, challenges in long-term credit assignment, and the development of memory
mechanisms in learning models.

A.1 TYPES OF MEMORY

Endel Tulving’s 1972 research distinguishes between episodic memory, which stores information
about specific events and their context, and semantic memory, a structured knowledge base for
language and symbols Tulving (1972; 1983; 1985). Long-term memory preserves a wide array of
information, from skills to life events, over lengthy durations. In contrast, short-term or working
memory, crucial for tasks like language comprehension and problem-solving, holds information
briefly and allows for its manipulation, such as in mental arithmetic Baddeley (1992); Cowan
(2008). While other dichotomies exist in the study of memory, such as declarative versus procedural
Humphreys et al. (1989); Ten Berge & Van Hezewijk (1999); Ullman (2004), and active versus
inactive Lewis (1979), this work is primarily concerned with long-term episodic memory.

A.2 HUMAN FEEDBACK IN DECISION MAKING

Human feedback can be integrated into learning agents through various modalities. In reinforcement
learning, scalar rewards may be assigned to individual states Knox & Stone (2009); Sutton & Barto
(2018); Warnell et al. (2018) or preferences may be expressed between trajectory pairs, either online
or offline Wilson et al. (2012); Akrour et al. (2012); Wirth et al. (2016); Sadigh et al. (2017); Lee et al.
(2021); Stiennon et al. (2022); Christiano et al. (2023). In imitation learning, agents can learn from
observation-action pairs, provided by humans in both online and offline contexts Ross et al. (2011);
Zhang & Cho (2017); Saunders et al. (2017); Torabi et al. (2018). Additional feedback mechanisms
include gaze tracking Chen et al. (2019); Saran et al. (2020), binary corrective signals Celemin & del
Solar (2019), and human-provided trajectory outlines Gu et al. (2023). To the best of our knowledge,
memory dependency pairs are the first modality through which humans can articulate their memory
processes for decision-making.

A.3 LONG-TERM CREDIT ASSIGNMENT

The Long-Term Credit Assignment Problem highlights the difficulty of training agents to attribute
consequences of actions over extended time frames Sutton (1984); Bengio & Frasconi (1993); Bengio
et al. (1994). Humans can base decisions on events from years or even decades past. However, agents
today struggle with credit assignment over even short horizons. This challenge primarily arises from
vanishing or exploding gradients during backpropagation through time or the memory mechanism’s
inability to retain relevant information amidst noise Bengio & Frasconi (1993). Proposed solutions
include adding skip connections to reduce backpropagation distances Ke et al. (2018); Hung et al.
(2019) and using self-attention in transformers Vaswani et al. (2023), which allows direct gradient
flow between relevant timesteps. However, self-attention has been shown to not improve long-term
credit assignment nor fully exploit all available information in its context Liu et al. (2023); Ni et al.
(2023). In this work, memory dependency pairs are shown to assist self-attention in long-term credit
assignment.

A.4 LEARNING MEMORY MECHANISMS

RNNs were initially augmented with memory by incorporating hidden states and gating mechanisms,
such as in Long Short-Term Memory (LSTM) networks Hochreiter & Schmidhuber (1997); Cho
et al. (2014); Burtsev et al. (2021). Other approaches include integrating RNNs with differentiable
memory that is key-addressable Graves et al. (2014); Weston et al. (2015); Graves et al. (2016);
Wayne et al. (2018). Some researchers have also experimented with augmenting RNNs with stack-like
memory modules Joulin & Mikolov (2015). Furthermore, combining LSTMs for short-term working
memory with key-addressable memory for long-term episodic memory has been explored Fortunato
et al. (2020). Another significant development is the integration of Transformers with differentiable
memory that can be either key or content addressable Kang et al. (2023); Bessonov et al. (2023).
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Allen et al. (2024) uses the difference in temporal difference and Monte Carlo value estimates to
detect partial observability and improve memory retention for RNNs. Our work is the first to explore
learning memory mechanisms through expert demonstrations.

B LIMITATIONS

This study introduces memory dependency pairs to enhance long-term credit assignment in POMDP
tasks necessitating complex memory mechanisms. We proposed AttentionTuner, a method designed
for self-attention architectures to effectively leverage memory dependency pairs. Empirical evaluation
on Memory Gym and LTMB benchmarks demonstrate that AttentionTuner effectively mitigates
the local optima challenges in memory tasks, either by accelerating escape from such optima or
by circumventing them entirely (Figure 4). This optimization improvement significantly increases
success metrics across various tasks compared to vanilla Transformers (Table 1). Notably, these
learning benefits are achievable with minimal annotation, requiring as few as 0.1% of training
trajectories to be annotated. This level of efficiency makes AttentionTuner a practical tool for
real-world applications where learning complex memory mechanisms poses significant challenges.

Our approach primarily aims to enhance long-term episodic memory, thriving particularly when the
expert attention matrix E exhibits sparsity. However, it encounters limitations in scenarios involving
short-term or semantic memory, a challenge exemplified by the performance in the Searing Spotlights
task (Table 1). To mitigate this limitation, incorporating a short-term memory mechanism, like frame
stacking, could be an effective strategy to complement AttentionTuner’s long-term episodic memory.

The practicality of pinpointing precise timesteps for memory dependency pairs becomes cumber-
some with longer episode horizons. To address this issue, a plausible direction could involve the
summarization of token sequences into more generalized and abstract representations such as done
in HCAM Lampinen et al. (2021). These summary “token chunks” would allow for annotators to
connect two events with natural language or approximate timesteps instead of having to connect two
exact timesteps.

Another constraint stems from the Transformer model’s mechanism of incorporating all preceding
observations into its context, posing scalability challenges for tasks with extended horizons. Exploring
hierarchical attention mechanisms or adopting a key-value cache system Wu et al. (2022) presents
promising avenues. Memory dependency pairs could serve as valuable assets in these contexts,
guiding the prioritization and retention of pivotal events within each hierarchical layer or assisting in
the optimization of key-value cache retrieval and management strategies.

While the focus of this work has been on integrating memory dependency pairs within the Transformer
architecture, memory dependency pairs are applicable to a variety of neural architectures. For instance,
in RNNs, a reconstruction loss on hidden states could promote memory retention, while in key-
addressable, differentiable memory systems, a loss could encourage accurate key additions and
queries. State space models can be viewed as minimizing an online learning objective Liu et al.
(2024), and therefore memory dependency pairs can be used to emphasize which tokens the model
should prioritize for retention (like a re-weighted regret). These ideas are left as an exciting frontier
for future research endeavors.
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C PSEUDOCODE

Algorithm 1 AttentionTuner

Require: Expert demonstrations D = {τi}i=1...M , each τi =
(
{(oj , aj)}j=1...|τ |,Mi

)
Require: Hyperparameter for memory loss scaling λ
Require: Learning rate η
Require: Transformer model with CNN and MLP embedders, parameterized by θ

1: for all epochs do
2: for all τi ∈ D do
3: Extract observation-action pairs and memory dependency pairs: {(oj , aj)},Mi

4: oemb ← CNN({oj})
5: aemb ← MLP({aj})
6: input seq← PositionalEncoding(oemb, aemb)
7: {âj}, A ← Transformer(input seq) {A is the self-attention matrix σ(QK⊤) of the first

attention head in the first Transformer layer}
8: Initialize E ← {0}|τi|×|τi|

9: for all (p, q) ∈Mi do
10: E[q][p] = 1
11: end for
12: Lmemory ← BinaryCrossEntropy(A,E)
13: LIL ← NegativeLogLikelihood({âj}, {aj})
14: L ← LIL + λ · Lmemory

15: θ ← θ − η∇θL
16: end for
17: end for

D NEURAL NETWORK ARCHITECTURES

Only the observation and action embedders differ in architecture between the two benchmarks. For
both benchmarks, 4 Transformer layers were used with 2 self-attention heads per layer. Additionally,
dmodel = 512 for all experiments.
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D.1 CAUSAL TRANSFORMER
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Figure 6: Causal Transformer architecture with 4 layers and 2 self-attention heads per layer as used in
all experiments. The memory loss was applied to a single self-attention head in the first Transformer
layer.

D.2 MEMORY GYM

1 T r a n s f o r m e r (
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2 ( image embedding ) : ImageEmbedding (
3 ( cnn ) : S e q u e n t i a l (
4 ( 0 ) : Conv2d ( 3 , 32 , k e r n e l s i z e = (8 , 8 ) , s t r i d e = (4 , 4 ) )
5 ( 1 ) : ReLU ( )
6 ( 2 ) : Conv2d ( 3 2 , 64 , k e r n e l s i z e = (4 , 4 ) , s t r i d e = (2 , 2 ) )
7 ( 3 ) : ReLU ( )
8 ( 4 ) : Conv2d ( 6 4 , 64 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) )
9 ( 5 ) : ReLU ( )

10 )
11 ( f c ) : S e q u e n t i a l (
12 ( 0 ) : L i n e a r ( i n f e a t u r e s =3136 , o u t f e a t u r e s =512 , b i a s =True )
13 ( 1 ) : Tanh ( )
14 )
15 )
16 ( a c t i o n e m b e d d i n g ) : Act ionEmbedding (
17 ( mlp ) : S e q u e n t i a l (
18 ( 0 ) : L i n e a r ( i n f e a t u r e s =4 , o u t f e a t u r e s =512 , b i a s =True )
19 ( 1 ) : Tanh ( )
20 )
21 )
22 ( p o s i t i o n a l e n c o d i n g ) : P o s i t i o n a l E m b e d d i n g ( )
23 ( embedding LN ) : LayerNorm ( ( 5 1 2 , ) , eps =1e −05 , e l e m e n t w i s e a f f i n e =True )
24 ( d r o p o u t ) : Dropout ( p = 0 . 1 , i n p l a c e = F a l s e )
25 ( t r a n s f o r m e r l a y e r s ) : Modu leL i s t (
26 (0 −3) : 4 x T r a n s f o r m e r L a y e r (
27 ( s e l f a t t e n t i o n ) : M u l t i h e a d A t t e n t i o n (
28 ( o u t p r o j ) : N o n D y n a m i c a l l y Q u a n t i z a b l e L i n e a r ( i n f e a t u r e s =512 ,

o u t f e a t u r e s =512 , b i a s =True )
29 )
30 ( norm1 ) : LayerNorm ( ( 5 1 2 , ) , eps =1e −05 , e l e m e n t w i s e a f f i n e =True )
31 ( f e e d f o r w a r d ) : S e q u e n t i a l (
32 ( 0 ) : L i n e a r ( i n f e a t u r e s =512 , o u t f e a t u r e s =2048 , b i a s =True )
33 ( 1 ) : ReLU ( )
34 ( 2 ) : L i n e a r ( i n f e a t u r e s =2048 , o u t f e a t u r e s =512 , b i a s =True )
35 ( 3 ) : Dropout ( p = 0 . 1 , i n p l a c e = F a l s e )
36 )
37 ( norm2 ) : LayerNorm ( ( 5 1 2 , ) , eps =1e −05 , e l e m e n t w i s e a f f i n e =True )
38 )
39 )
40 ( o u t p u t ) : L i n e a r ( i n f e a t u r e s =512 , o u t f e a t u r e s =4 , b i a s =True )
41 )

D.3 LTMB

1 T r a n s f o r m e r (
2 ( image embedding ) : ImageEmbedding (
3 ( cnn ) : S e q u e n t i a l (
4 ( 0 ) : Conv2d ( 2 0 , 40 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 ,

1 ) )
5 ( 1 ) : ReLU ( )
6 ( 2 ) : Conv2d ( 4 0 , 80 , k e r n e l s i z e = (3 , 3 ) , s t r i d e = (1 , 1 ) , padd ing = (1 ,

1 ) )
7 ( 3 ) : ReLU ( )
8 )
9 ( f c ) : S e q u e n t i a l (

10 ( 0 ) : L i n e a r ( i n f e a t u r e s =3920 , o u t f e a t u r e s =512 , b i a s =True )
11 ( 1 ) : Tanh ( )
12 )
13 )
14 ( a c t i o n e m b e d d i n g ) : Act ionEmbedding (
15 ( mlp ) : S e q u e n t i a l (
16 ( 0 ) : L i n e a r ( i n f e a t u r e s =7 , o u t f e a t u r e s =512 , b i a s =True )
17 ( 1 ) : Tanh ( )
18 )
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19 )
20 ( p o s i t i o n a l e n c o d i n g ) : P o s i t i o n a l E m b e d d i n g ( )
21 ( embedding LN ) : LayerNorm ( ( 5 1 2 , ) , eps =1e −05 , e l e m e n t w i s e a f f i n e =True )
22 ( d r o p o u t ) : Dropout ( p = 0 . 1 , i n p l a c e = F a l s e )
23 ( t r a n s f o r m e r l a y e r s ) : Modu leL i s t (
24 (0 −3) : 4 x T r a n s f o r m e r L a y e r (
25 ( s e l f a t t e n t i o n ) : M u l t i h e a d A t t e n t i o n (
26 ( o u t p r o j ) : N o n D y n a m i c a l l y Q u a n t i z a b l e L i n e a r ( i n f e a t u r e s =512 ,

o u t f e a t u r e s =512 , b i a s =True )
27 )
28 ( norm1 ) : LayerNorm ( ( 5 1 2 , ) , eps =1e −05 , e l e m e n t w i s e a f f i n e =True )
29 ( f e e d f o r w a r d ) : S e q u e n t i a l (
30 ( 0 ) : L i n e a r ( i n f e a t u r e s =512 , o u t f e a t u r e s =2048 , b i a s =True )
31 ( 1 ) : ReLU ( )
32 ( 2 ) : L i n e a r ( i n f e a t u r e s =2048 , o u t f e a t u r e s =512 , b i a s =True )
33 ( 3 ) : Dropout ( p = 0 . 1 , i n p l a c e = F a l s e )
34 )
35 ( norm2 ) : LayerNorm ( ( 5 1 2 , ) , eps =1e −05 , e l e m e n t w i s e a f f i n e =True )
36 )
37 )
38 ( o u t p u t ) : L i n e a r ( i n f e a t u r e s =512 , o u t f e a t u r e s =7 , b i a s =True )
39 )

E APPLICATION OF THE MEMORY LOSS IN TRANSFORMERS

NO LAYER FIRST LAYER MIDDLE LAYER LAST LAYER FIRST LAYER MIDDLE LAYER LAST LAYER
TASKS NO HEADS ALL HEADS ALL HEADS ALL HEADS SINGLE HEADS SINGLE HEADS SINGLE HEADS

MORTAR MAYHEM 20.8± 42.2 100 ± 0.1 99.7± 0.6 99.9± 0.1 99.8± 0.4 100± 0.1 39.9± 52.1
HALLWAY 42± 50.5 99.9± 0.2 100 ± 0 89.4± 22.5 99.9± 0.1 99.8± 0.3 99.12± 1.7

Table 2: Success rate and 90% confidence interval achieved on memory loss ablations

The memory loss in has to be applied to a self-attention head in the Transformer. We posited in
Section 3 that applying the memory loss to the first Transformer layer would make the memory
dependency pairs more meaningful as the self-attention mechanism attends over the raw observa-
tion embeddings. This hypothesis is supported by the results in Table 2, which demonstrate that
implementations applying the memory loss to the first layer consistently yield near-perfect success
rates, surpassing other configurations. While we also speculated that dedicating memory loss to
a single attention head would permit the remaining heads to engage in other memory processes,
this distinction was not markedly evident in our results. The probable explanation is that memory
dependency pairs in these relatively simple tasks sufficiently encapsulate all necessary memory
functions, diminishing the benefit of isolating the memory loss to a single head. Attempting to
distribute memory dependency pairs among various heads (Appendix P Figure 10), especially in the
context of Searing Spotlights with its large amount of memory dependency pairs, did not yield a
notable improvement in performance.

F ENVIRONMENT DESCRIPTIONS

F.1 MEMORY GYM

Memory Gym features three tasks—Mortar Mayhem, Mystery Path, and Searing Spotlights—set
within a 7 × 7 gridworld. Agents receive 84 × 84 RGB image observations of the gridworld. For
Mortar Mayhem and Mystery Path, the discrete action space includes: move forward, turn
left, turn right, and nop. Searing Spotlights employs a multi-discrete action space, allowing
movement in cardinal or ordinal directions plus a nop option.

Mortar Mayhem In this task, the agent memorizes and later executes a sequence of commands,
indicated by arrows. An expert would annotate memory dependency pairs (p, q), with op representing
the observation displaying the command and oq the observation of its execution.
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Mystery Path Agents navigate a gridworld with an invisible path, restarting from the beginning if
they deviate. To progress, they must remember their path to the deviation point. An expert would
annotate memory dependency pairs (p, q) where op is a cell adjacent to the cell at oq .

Searing Spotlights Agents aim to reach a door in a 2D plane after collecting a key, initially
visible but obscured after 6 timesteps by dimming lights. The agent has to make it to the key and
door while avoiding “searing spotlights”. An expert would annotate memory dependency pairs
(0, q), (1, q), . . . , (q − 1, q) as agents must recall their starting position and all previous actions to
deduce their current location.

F.2 LONG-TERM MEMORY BENCHMARK

The Long-term Memory Benchmark (LTMB) comprises three tasks: Hallway, Ordering, and Counting,
set in the Minigrid environment Chevalier-Boisvert et al. (2023). Agents navigate a gridworld,
receiving standard Minigrid 7× 7× 3 state-based observations. The discrete action space includes
move forward, turn left, turn right, and nop.

Hallway Agents identify and enter a hallway with an object matching one in the start room. The
agent’s view is limited to the 7×7 grid ahead. The expert annotates (1, q) where timestep 1 represents
the initial object observation.

Ordering Agents memorize the sequence of the first 18 colored objects encountered. When
choosing between two objects, the agent selects the one appearing earlier in the sequence. An expert
would annotate memory dependency pairs (p, q), connecting the first observation op of an object to
the query observation oq .

Counting In this task, agents traverse gallery rooms, memorizing six objects each, and query rooms,
deciding which door to pass based on the parity of a query object’s previous appearances. Passing
through the wrong door ends the episode. An expert would annotate (p, q) where op is a gallery room
containing the query object and oq is the query room.

G ENVIRONMENT SETTINGS

Memory dependency pairs are annotated for every expert trajectory collected. In practice, memory
dependency pairs would need to be annotated by the human demonstrator, for example via a graphical
user interface of some sort. While it remains to be verified that this process can be made relatively
seemless for human experts, for the purposes of this paper, we sidestep this human-computer interac-
tion issue by simulating both the expert demonstrations and the annotation of memory dependency
pairs.

G.1 MORTAR MAYHEM

Discrete action movements were used with a command count of 10. Settings were default, except
where noted. A total of 4,000 expert trajectories were collected, each with 118 timesteps.

G.2 MYSTERY PATH

The origin and goal were not shown, with other settings at default. Training involved 4,000 expert
trajectories, averaging 43 timesteps, and reaching up to 128 timesteps.

G.3 SEARING SPOTLIGHTS

The agent was visible for 6 timesteps before the lights dimmed completely. A single coin was used to
unlock the exit. Other settings were left at the default. A single coin unlocked the exit, and other
settings remained default. Training included 40,000 expert trajectories, averaging 30 timesteps, with
a maximum of 75.
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G.4 HALLWAY

The environment length was set to 30. A total of 5,000 expert trajectories were collected, averaging
67 timesteps, and maxing at 145 timesteps.

G.5 ORDERING

The environment length was set to 50. A total of 5,000 expert trajectories were collected, each with a
length of 68 timesteps.

G.6 COUNTING

The environment length was 20, with test room frequency at 30% and empty tile frequency at 10%.
A total of 10,000 expert trajectories were collected, averaging 97 timesteps, with a maximum of 140.

H TRAINING HYPERPARAMETERS

The following hyperparameters were shared by both AttentionTuner and the vanilla Transformer
across all experiments:

Hyperparameter Value Brief Description
batch size 64 number of samples in each training iteration
learning rate 10−4 learning rate for gradient descent
optimization algorithm Adam optimization algorithm used
β1 0.9 exponential decay rate for first moment estimates in Adam
β2 0.999 exponential decay rate for second moment estimates in Adam
epsilon 10−8 small constant for numerical stability
weight decay 0 weight regularization
λ 10 memory loss multiplier defined in Section 3 (only for AttentionTuner)

Table 3: Hyperparameters used in experiments along with their brief descriptions

Only the number of training epochs differed between methods and tasks.

Task AttentionTuner Vanilla Transformer
Mortar Mayhem 300 600
Mystery Path 300 300
Searing Spotlights 120 120
Hallway 300 600
Ordering 300 600
Counting 600 600

Table 4: Number of training epochs used for each task

All experiments in Table 2 (Section E) used 300 training epochs. All experiments in Figure 5a
(Section 4.3) used 300 training epochs expect for vanilla Transformer runs (0%) and Mortar Mayhem
0.1% and 1% which used 600 epochs.

I RANDOM SEEDS

All experiments were run with random seeds 1 through 5 except for the following:

• 10 random seeds were used for vanilla Transformer on LTMB’s Hallway task in Table 1.
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• 15 random seeds were used for vanilla Transformer on LTMB’s Ordering task in Table 1.

More training runs were used for these experiments due to their high variability.

J WELCH T-TEST FOR STATISTICAL SIGNIFICANCE

We applied the Welch t-test to assess the statistical significance of the performance differences
between AttentionTuner and the vanilla Transformer, as reported in Table 1.

Task p-value
Mortar Mayhem 0.016
Mystery Path 0.012
Searing Spotlights 0.546
Hallway 0.014
Ordering 0.008
Counting 0.261

Table 5: Welch t-test p-values for Performance Comparison Across Tasks

K AVERAGE LEARNING CURVES WITH 90% CONFIDENCE INTERVALS

0 100 200 300 400 500 600

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Lo
ss

Mortar Mayhem
Vanilla Transformer
AttentionTuner

0 50 100 150 200 250 300
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175
Mystery Path

0 20 40 60 80 100 120
0.000

0.002

0.004

0.006

0.008

Searing Spotlights

0 100 200 300 400 500 600

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Hallway

0 100 200 300 400 500 600

0.000

0.002

0.004

0.006

0.008

Ordering

0 100 200 300 400 500 600

0.000

0.002

0.004

0.006

0.008

0.010

Counting

0 100 200 300 400 500 600
Epoch

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

0 50 100 150 200 250 300
Epoch

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 20 40 60 80 100 120
Epoch

0.90

0.92

0.94

0.96

0.98

0 100 200 300 400 500 600
Epoch

0.975

0.980

0.985

0.990

0.995

1.000

0 100 200 300 400 500 600
Epoch

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 100 200 300 400 500 600
Epoch

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Figure 7: Mean learning curves with 90% confidence intervals for Memory Gym tasks.

L MISSING ANNOTATIONS ABLATION DATA

Table 6: Missing Annotations Ablations

TASKS 0% 0.1% 1% 5% 10% 90% 100%

MORTAR MAYHEM 20.8± 42.2 23± 41.2 80.3± 41.3 93.4± 11.1 100± 0 100± 0 99.8± 0.4
HALLWAY 42± 50.5 79.7± 40 96.7± 6.8 99.9± 0.2 99.8± 0.5 100± 0 99.9± 0.1

The table presents the success rates and their corresponding 90% confidence intervals for tasks under
different levels of missing annotations. The percentages indicate the proportion of demonstration
trajectories with fully annotated memory dependency pairs. Figure 5a illustrates these results in a bar
plot.
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M IMPRECISE ANNOTATIONS ABLATIONS DATA

Table 7: Partially Imprecise Annotations Ablations

TASKS 0 1 2 5 10 20

MORTAR MAYHEM 99.8± 0.4 99.22± 0.7 99.7± 0.5 100± 0.1 79.3± 38.2 21.2± 42
HALLWAY 99.9± 0.1 99.9± 0.1 82± 38.5 81.7± 38.8 88.4± 23.7 56.7± 45.6

The table presents success rates and their corresponding 90% confidence intervals for tasks with
varying levels of imprecise annotations. For each memory association pair (p, q), the recalled timestep
p is perturbed by a delta ∆ drawn from a normal distribution N (0, σ). The top row indicates the
standard deviation σ.

Table 8: Imprecise Annotations Ablations

TASKS 0 0.5 0.75 1 1.5 2

MORTAR MAYHEM 99.8± 0.4 100± 0 99.4± 1 100± 0 57.5± 50.2 20± 42.6
HALLWAY 99.9± 0.1 100± 0 75.9± 36.4 20.3± 24.2 24.5± 36 3.5± 2.6

The table presents success rates and their corresponding 90% confidence intervals for tasks with
varying levels of imprecise annotations. For each memory association pair (p, q), the recalled
timestep p and the timestep of recall q are both perturbed by deltas ∆p and ∆q drawn from a normal
distribution N (0, σ). The top row indicates the standard deviation σ.

N ANNOTATING MEMORY DEPENDENCY PAIRS

Figure 8: Graphical User Interface used to collect memory dependency pairs.

Task Demonstration Collection Time Annotation Time
Mortar Mayhem 8 min 20 sec 21 min 6 sec
Hallway 2 min 9 sec 5 min 59 sec

Table 9: The time it took to collect and annotate 10 demonstrations is recorded.
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Figure 8 shows the graphical user interface used to annotate demonstrations with memory dependency
pairs. A single demonstration is loaded onto the GUI at a time. To annotate a memory dependency
pair (p, q), the annotator clicks on frame p and then clicks on frame q. Table 9 compares the time it
takes for humans to collect demonstrations versus annotating them.

O COMPUTING THE VALUE OF MEMORY DEPENDENCY PAIRS

O.1 MORTAR MAYHEM

There are 4000 demonstrations in the standard Mortar Mayhem training dataset (Appendix G). Only
400 of these demonstrations have to be annotated to achieve a 100% success rate (Figure 5a). It takes
the vanilla Transformer 16,000 demonstrations to achieve a 100% success rate (Figure 5b). This
means that each memory dependency pair annotation is worth 16000

400 = 40 additional demonstrations.
According to Table 9, annotating a single demonstration takes 1266

10 = 126.6 seconds while collecting
40 additional demonstration takes 500

10 ∗ 40 = 2000 seconds. This results in a human labor time
savings factor of 2000

126.6 = 15.7977883 ≈ 16.

O.2 HALLWAY

There are 5000 demonstrations in the standard Hallway training dataset (Appendix G). Only 250
of these demonstrations have to be annotated to achieve a 100% success rate (Figure 5a). It takes
the vanilla Transformer 10,000 demonstrations to achieve a 100% success rate (Figure 5b). This
means that each memory dependency pair annotation is worth 10000

250 = 40 additional demonstrations.
According to Table 9, annotating a single demonstration takes 359

10 = 35.9 seconds while collecting
40 additional demonstrations takes 129

10 ∗ 40 = 516 seconds. This results in a human labor time
savings factor of 516

35.9 = 14.3732591 ≈ 14.

20



New Frontiers in Associative Memory workshop at ICLR 2025

P EXPERT TRUTH ATTENTION HEATMAPS

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

12
0

12
6

13
2

13
8

14
4

15
0

15
6

16
2

16
8

17
4

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

Key

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235

Qu
er

y

Mortar Mayhem

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

16
1

16
8

17
5

18
2

18
9

19
6

20
3

21
0

21
7

22
4

23
1

23
8

24
5

25
2

25
9

26
6

27
3

28
0

28
7

Key

0
7

14
21
28
35
42
49
56
63
70
77
84
91
98

105
112
119
126
133
140
147
154
161
168
175
182
189
196
203
210
217
224
231
238
245
252
259
266
273
280
287

Qu
er

y

Hallway

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

12
0

12
6

13
2

13
8

14
4

15
0

15
6

16
2

16
8

17
4

18
0

18
6

19
2

19
8

20
4

21
0

21
6

22
2

22
8

23
4

24
0

24
6

25
2

Key

0
6

12
18
24
30
36
42
48
54
60
66
72
78
84
90
96

102
108
114
120
126
132
138
144
150
156
162
168
174
180
186
192
198
204
210
216
222
228
234
240
246
252

Qu
er

y

Mystery Path

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 10
2

10
5

10
8

11
1

11
4

11
7

12
0

12
3

12
6

12
9

13
2

13
5

Key

0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48
51
54
57
60
63
66
69
72
75
78
81
84
87
90
93
96
99

102
105
108
111
114
117
120
123
126
129
132
135

Qu
er

y

Ordering

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

10
4

10
8

11
2

11
6

12
0

12
4

12
8

13
2

13
6

14
0

14
4

14
8

Key

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

100
104
108
112
116
120
124
128
132
136
140
144
148

Qu
er

y

Searing Spotlights

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

16
1

16
8

17
5

18
2

18
9

19
6

20
3

21
0

21
7

22
4

23
1

23
8

24
5

25
2

25
9

26
6

27
3

Key

0
6

12
18
24
30
36
42
48
54
60
66
72
78
84
90
96

102
108
114
120
126
132
138
144
150
156
162
168
174
180
186
192
198
204
210
216
222
228
234
240
246
252
258
264
270
276

Qu
er

y

Counting

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: Sample expert attention heatmaps for E
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Figure 10: Sample expert attention heatmaps for split memory loss on Searing Spotlights. Notably,
this experiment uniquely employs 4 self-attention heads, diverging from the typical configuration of
2 self-attention heads used in all other experiments.

Q LEARNED HEATMAPS

Figures 11 and 12 illustrate all self-attention heads in the Transformer as learned by AttentionTuner
and the vanilla Transformer after training on Mortar Mayhem. Figure 11 demonstrates that, with
the application of memory loss to the initial head of the first layer, the correct memory mechanism
was effectively acquired. Conversely, Figure 12 indicates that in the absence of memory loss, solely
employing the behavioral cloning objective did not facilitate the acquisition of the precise memory
mechanism. However, a partially accurate memory mechanism is observable in the first head of the
second layer.
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Figure 11: AttentionTuner’s learned self-attention heatmap for all attention heads on Mortar Mayhem.
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Figure 12: Vanilla Transformer’s learned self-attention heatmap for all attention heads on Mortar
Mayhem.

R COMPUTATIONAL RESOURCES

All experiments were conducted on Nvidia A40 and A100 GPUs with 40 or 80 GB of memory.
The computational node featured two Intel Xeon Gold 6342 2.80GHz CPUs with 500 GB RAM.
Experiment durations varied between 1 and 4.5 hours.
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