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Abstract

X-ray is essential in medical diagnostics for visualizing001
internal body structures, yet its use is strictly regulated due002
to the health risks posed by radiation exposure. To miti-003
gate these risks, recent research has explored generating004
novel views from sparse input to minimize radiation doses,005
employing methods like NeRF and 3D Gaussian Splatting.006
However, these approaches primarily adhere to principles007
for visible light imaging, failing to account for the distinct008
characteristics of X-ray imaging. In this paper, we propose009
a novel 3D representation, named X-Field, specifically de-010
signed to align with the intrinsic characteristics of X-ray011
imaging. In lieu of the continuous, view-dependent repre-012
sentations used in visible light, X-Field models X-ray repre-013
sentation as discrete and view-independent, rooted in the014
physical property of energy absorption rate. To capture015
such property, we employ ellipsoids with uniform energy016
absorption rates, effectively representing complex material017
distributions in internal structures. Our method further em-018
powers a hybrid progressive initialization strategy, leverag-019
ing structural priors from CT imaging, and optimizes via a020
material-based approach that dynamically adjusts to local021
variations in material composition. Experimental results022
demonstrate that X-Field achieves state-of-the-art visual fi-023
delity in reconstructing human organs and other objects,024
highlighting its potential to transform medical imaging by025
enhancing safety and diagnostic precision.026

1. Introduction027

X-rays are indispensable in clinical diagnosis. Conven-028
tional 3D X-ray reconstruction techniques, like Computed029
Tomography (CT) [2, 15, 21, 26], typically require hun-030
dreds of X-ray images to accurately reconstruct anatomical031
structures [9, 28, 49]. However, acquiring such an extensive032
number of images results in prolonged exposure to ionizing033
radiation, which presents substantial health risks to patients.034
To mitigate this, X-ray novel view synthesis has been devel-035
oped [3, 31, 36, 61]. This technique aims to reconstruct the036
3D X-ray volume from only a sparse set of 2D X-ray pro-037

X-Gaussian R2-Gaussian Ours
Figure 1. Visual comparison of novel view synthesis on X-ray im-
ages. Current methods [11, 62] adapt 3D representations designed
for visible light fields, causing needle-like artifacts. Our method,
grounded in the physical properties of X-ray field, delivers accu-
rate reconstructions with fine details and clear material structures.

jections, significantly reducing radiation dose while main- 038
taining high reconstruction quality. 039

Existing sparse reconstruction methods [11, 12, 61, 040
62] primarily uses two types of representations: Neu- 041
ral Radiance Fields (NeRF) [39] and 3D Gaussian Splat- 042
ting (3DGS) [32]. While NeRF-based methods [12, 61] 043
achieve high-quality rendering, their reliance on MLPs to 044
encode the entire X-ray field results in significant inef- 045
ficiencies. Consequently, recent studies have shifted to- 046
wards 3DGS [32] for X-ray field representation. With ex- 047
plicit parametrization and a highly parallelized pipeline, 048
these methods provide faster reconstruction and enable real- 049
time rendering. Building on this foundation, advanced 050
3DGS-based approaches [11, 62] address issues related to 051
grayscale values and integration biases, achieving promis- 052
ing improvements in X-ray reconstruction. 053

Despite notable advancements, current methods primar- 054
ily adapt principles from visible light imaging, which is 055
rooted in natural scene reconstruction, to X-ray imaging. 056
However, crucial distinctions between visible light and X- 057
ray imaging are often overlooked. In visible light imaging, 058
rays interact with surfaces, producing complex patterns of 059
reflection and refraction that result in a dense spatial distri- 060
bution of rays. This distribution can be efficiently modeled 061
as a light field [23, 34, 41], where each point in the field is 062
influenced by omnidirectional light rays, giving it an inher- 063
ently continuous and view-dependent nature. For example, 064
the color of a pixel at a given point within the field depends 065
on the rays directed toward that viewpoint. As the viewing 066
angle shifts, the collection of rays affecting that point also 067
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Figure 2. Comparison of visible light and X-ray fields. (a) In
a visible light field, each pixel’s color is formed by the accumu-
lation of omnidirectional light rays due to multiple reflections and
refractions, resulting in a continuous field. This makes it well-
suited for representation with ellipsoids following a Gaussian dis-
tribution. (b) In the X-ray field, passing through various materials,
X-rays produce a projection without overlapping paths, leading to
a discrete representation. This characteristic can be better captured
using ellipsoids with homogeneous properties.

changes, highlighting the view-dependence of visible light068
fields [1]. Given these characteristics, continuous and view-069
dependent models are suitable for representing visible light070
fields. In line with this, 3DGS [32] employs ellipsoids with071
anisotropic Gaussian distributions to model such fields.072

In X-ray imaging [10], the high penetration ability of073
X-ray beams allows them to traverse deep material layers074
with minimal scattering, effectively creating approximately075
straight-line paths. As a result, for a given viewpoint, the076
intensity of a pixel corresponding to a specific field point077
is largely determined by a single X-ray ray passing through078
that point, which implies a fundamentally discrete field in079
X-ray imaging. Unlike the continuous, view-dependent na-080
ture of the visible light field, the X-ray field is inherently081
discrete and view-independent. Practically, this field cap-082
tures the energy absorption rate at each point [2, 21, 26],083
depending solely on the material present at that location,084
making it independent of the viewing angle. Figure 2 visu-085
ally compares the visible light and X-ray fields, showcasing086
their distinct representations.087

In this paper, we present a novel 3D representation, X-088
Field, specifically designed around the physical properties089
unique to X-ray imaging. To capture the distinct character-090
istics of X-ray fields, we introduce a Physically Grounded091
Ellipsoid Representation, which models material distribu-092
tion and physical attributes within internal structures. This093
ellipsoid-based approach enables an efficient representation094
of spatial structures while accurately modeling material dis-095
tribution. Each point within our model is characterized096
by its energy absorption rate, assuming uniformity across097

each ellipsoid—where all points share the same absorption 098
rate [2, 26]. When a pixel overlaps an ellipsoid, we com- 099
pute the cumulative energy absorption along the X-ray path 100
through the ellipsoid, yielding a more precise cumulative 101
measurement. In overlapping regions, only one ellipsoid 102
contributes to the field due to the discrete nature of X-rays, 103
implemented via a first-pass precedence strategy. To opti- 104
mize ellipsoid density, we introduce Material-Based Opti- 105
mization, which increases ellipsoid density in complex re- 106
gions and along material boundaries. Additionally, we inte- 107
grate Hybrid Progressive Initialization, drawing on struc- 108
tural priors from CT techniques to further enhance the re- 109
construction performance. 110

To validate X-Field, we evaluate its performance on both 111
human organ and object datasets, demonstrating substan- 112
tial improvements over state-of-the-art methods. Even with 113
sparse input views, X-Field consistently achieves robust, 114
high-quality reconstructions using minimal data. Notably, 115
in the human organ dataset with only 10 input views, X- 116
Field attains a 0.45 dB gain in PSNR and a 2.44 reduction in 117
LPIPS compared to the strong baseline R2-Gaussian [62]. 118

2. Related Work 119

2.1. 3D Representation in Medical Imaging 120

Traditional 3D medical imaging relies heavily on voxel- 121
based representations [4, 14, 40], but these approaches 122
become impractical at high resolutions due to excessive 123
computation and storage costs. Later, NeRF-based works 124
[5, 38, 39, 52, 59] used implicit functions to represent color 125
and density fields, achieving high-quality results in novel 126
view synthesis (NVS) tasks. Many works such as [12, 61] 127
have adapted the NeRF rendering pipeline to better fit X- 128
ray reconstruction. However, NeRF-based methods, which 129
use MLPs to store spatial parameters, suffer from signifi- 130
cant redundancy in parameters. Moreover, for those meth- 131
ods, querying MLPs and ray tracing cannot be parallelized, 132
resulting in low training and rendering efficiency. 133

To address these limitations, 3D Gaussian Splatting 134
(3DGS) [32] and its successors [22, 29, 35, 56, 58, 65] in- 135
troduced an explicit representation structure, enabling par- 136
allel rasterization rendering and substantially improving 137
parameter storage and rendering efficiency. Building on 138
these advancements, several works [11, 62] have modified 139
the 3DGS pipeline to render X-ray projections, advancing 140
the reconstruction of X-ray fields. However, these meth- 141
ods are fundamentally tailored to the continuous and view- 142
dependent nature of visible light, and their minor adapta- 143
tions fail to align with the discrete and view-independent 144
characteristics of X-rays. This mismatch often results in re- 145
construction artifacts. In contrast, our approach is explicitly 146
designed for the physical properties of X-ray imaging, en- 147
suring more accurate and artifact-free reconstructions. 148
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2.2. X-ray Imaging and Reconstruction149

X-rays are widely used across various domains due to their150
strong penetrative ability, making them essential tools such151
as in medical diagnosis [15, 16, 19, 26, 27, 45], biology152
[18, 33, 37], industrial inspection [17, 50], and security153
screening [53]. Traditional X-ray imaging [30] generates154
2D projection images by passing X-rays through an object155
and capturing the attenuated radiation on a detector. Due156
to the minimal scattering of X-rays [10], the intensity of a157
pixel is determined by the path of a single X-ray travers-158
ing the object, more precisely by the energy absorption rate159
along this path [2, 21, 26]. This process can be modeled as a160
X-ray field that describes the energy absorption rate at each161
spatial point [2, 21, 26].162

To reconstruct X-ray field for obtaining internal struc-163
tural and material information, there has esisted some tra-164
ditional methods can be divided into two categories: ana-165
lytical methods [21, 60] and optimization-based techniques166
[2, 42, 48]. However, these methods typically require hun-167
dreds of X-ray images, leading to increased radiation expo-168
sure. Recent advances in deep learning [11, 12, 43, 61, 62]169
have enabled 3D X-ray field reconstruction using fewer 2D170
projections. However, existing methods do not fully utilize171
the structural priors from traditional X-ray reconstruction172
[8, 21, 25, 30], leading to challenges in achieving high-173
quality results. In contrast, our approach leverages prior174
knowledge from conventional CT methods to enhance re-175
construction quality.176

3. Background177

3D Gaussian Splatting. 3DGS [32] is a technique for rep-178
resenting and rendering 3D scenes using Gaussian primi-179
tives within a differentiable volume splatting framework.180
This method explicitly parameterizes the Gaussian primi-181
tive with a covariance matrix Σ3D ∈ R3×3 and its center182
position pc ∈ R3. The Gaussian function G3D at a given183
position p is defined as:184

G3D(p) = exp

(
−1

2
(p− pc)

⊤Σ−1
3D (p− pc)

)
. (1)185

To render an image, the 3D Gaussians are transformed into186
camera coordinates using the world-to-camera matrix W187
and then projected onto the image plane via a local affine188
transformation J. This yields the transformed covariance189
matrix: Σ′

3D = JWΣ3DW
⊤J⊤. Discarding the third row190

and column of Σ′
3D, we obtain the corresponding 2D Gaus-191

sian G2D with covariance matrix Σ′
2D. The rendered pixel192

color at position x is then computed by volumetric alpha193
blending across all Gaussians:194

c(x) =

K∑
k=1

ckαkGk2D(x)

k−1∏
j=1

(
1− αjGj2D(x)

)
, (2)195

where K is the number of Gaussian primitives, αk is the 196
opacity value, and ck is the view-dependent color. These 197
attributes are optimized by a photometric loss. 198
X-ray Physical Field. X-ray physical field describes the 199
attenuation properties of a given space, where each po- 200
sition x ∈ R3 is characterized by an attenuation coeffi- 201
cient σ(x) ∈ R+ [6, 26, 30]. From this perspective, X- 202
ray imaging measures the cumulative attenuation of X-rays 203
as they pass through an object. Then, a projection image 204
I ∈ RH×W can be generated by capturing the remaining 205
intensity along each X-ray path after attenuation. Mathe- 206
matically, let r(t) = o + td ∈ R3 denote an X-ray path, 207
with initial intensity I0 and path bounds t0 and tn. The 208
resulting raw pixel value I ′(r) corresponds to the remain- 209
ing intensity after attenuation. This intensity can be derived 210
from the Beer-Lambert law [30], expressed as: 211

I ′(r) = I0 exp

(
−
∫ tn

t0

σ(r(t)) dt

)
. (3) 212

In practice, tomography formulates the raw data in logarith- 213
mic space for computational simplicity: 214

I(r) = log I0 − log I ′(r) =

∫ tn

t0

σ(r(t)) dt. (4) 215

Here, each pixel value I(r) reflects the accumulated atten- 216
uation along the X-ray path. The objective of tomographic 217
reconstruction is to recover the 3D distribution of the attenu- 218
ation coefficient σ(x), producing a discrete volumetric rep- 219
resentation based on projections from multiple angles. This 220
approach facilitates detailed and comprehensive visualiza- 221
tion of an object’s internal structure, which is invaluable for 222
applications in medical diagnosis. 223

4. The Proposed X-Field 224

In this section, we introduce Physically Grounded Ellip- 225
soid Representation in Section 4.1. This includes the for- 226
mulation of Material-Adaptive Ellipsoids, an algorithm for 227
calculating Segment Lengths with Intersections, and Phys- 228
ically Faithful Overlap Filtering to ensure accurate pixel- 229
ellipsoid associations. Additionally, we propose Hybrid 230
Progressive Initialization in Section 4.2 and Material-Based 231
Optimization in Section 4.3. 232

4.1. Physically Grounded Ellipsoid Representation 233

Material-Adaptive Ellipsoids. In Section 3, the attribute 234
of each point x ∈ R3 in the X-ray field is defined as the at- 235
tenuation coefficient σ(x). Therefore, instead of RGB in 236
the case of visible light, we aim to reconstruct an atten- 237
uation coefficient field featured by σ. We use ellipsoids 238
{Ei | i = 0, 1, . . . , n− 1} to model regions in space where 239
the attenuation coefficient is non-negative, where n is the 240
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Figure 3. Overview of the proposed X-Field Pipeline. (a) Hybrid Progressive Initialization. First, we use a small number of X-ray
images as input to obtain a rough X-ray field by Conjugate Gradient Least Squares (CGLS) [8, 25, 30]. Based on the CGLS reconstruction,
we employ Total Variation (TV) regularization [44] to further reduce noise. Finally, a threshold filtering process is used to obtain the
Initialized Ellipsoid Distribution. (b) Physically Grounded Ellipsoid Representation. Adhere to the X-ray imaging principle, we first
transform the ellipsoids from the world coordinate system to the camera coordinate system, and then to the ray space. In ray space,
we establish the association between pixels and ellipsoids, optimized via our designed Physically Faithful Overlap Filtering for precise
binding. Then, we derive an explicit form for segment length calculation and further update these lengths to account for the complex
intersection among ellipsoids. (c) Material-Based Optimization. Beyond geometry, our optimization enables splitting ellipsoids to
capture the material distribution essential for high-quality rendering.

total number of ellipsoids. Note that the interior of each Ei241
is not modeled as Gaussian distributions. Instead, we as-242
sume a homogeneous material structure, where any point x243
inside Ei has the same physical properties. Thus, for any244
x ∈ Ei, we define σ(x) = σi, where σi is the uniform at-245
tenuation coefficient associated with Ei. Suppose that the246
X-ray path r passes through all n ellipsoids, we can derive247
the accumulated attenuation and corresponding pixel value248
using Eq. (4) as follows:249

I(r) =

∫ tn

t0

σ(r(t)) dt

=

∫ t1

t0

σ(r(t)) dt+ · · ·+
∫ tn

tn−1

σ(r(t)) dt

= σ0

∫ t1

t0

dt+ · · ·+ σn−1

∫ tn

tn−1

dt

= σ0l0 + σ1l1 + · · ·+ σn−1ln−1,

(5)250

where li = ti+1 − ti denotes the length of the path seg-251
ment passing through the i-th ellipsoid, and σi is its corre-252
sponding attenuation coefficient. Therefore, to accurately253
measure the accumulated attenuation, it is necessary to ob-254
tain the segment length li for the ray r and each ellipsoid in255
{Ei}. We then derive an explicit form of li, which enables256
precise and efficient calculation.257
Explicit Form of Segment Lengths. We compute the seg-258
ment length li for the i-th ellipsoid Ei along the view di-259
rection d. As shown in Figure 3(b), we first project the260
ellipsoid Ei onto the NDC space along d, resulting in a 2D261
ellipse. Mathematically, the ray path passing through the262

center of this ellipse reaches the maximal segment length: 263

lmax =
2√

d⊤Σ−1
3D d

. (6) 264

Here, Σ3D is the covariance matrix of ellipsoid Ei. Note 265
that d is the directional vector pointing from the center of 266
the ellipse to the center of the ellipsoid. Leveraging this 267
result, for any other point u inside the ellipse, we can cal- 268
culate the corresponding segment length li by: 269

li = lmax ×

√
1−

(
C −B2

A

)
, where (7) 270

271
A = d⊤Σ−1

3D d, B = a⊤Σ−1
3D d, C = a⊤Σ−1

3D a. (8) 272

Here, a = u−pc is the displacement from the center of the 273
ellipsoid pc to the point u inside the ellipse. The detailed 274
derivation of lmax and li is provided in the supplementary 275
materials. Figure 3(b) illustrates the calculated li. 276
Segment Lengths with Intersections. We have derived an 277
explicit form of the segment length for individual ellipsoids. 278
However, when ellipsoids intersect, additional handling is 279
required to account for the overlap between regions. Figure 280
3(b) illustrates such complex situations. When two ellip- 281
soids intersect, we argue that the intersecting region should 282
not be simultaneously attributed to both ellipsoids, given 283
our assumption of material homogeneity within each ellip- 284
soid. Instead, the overlapping region ought to exclusively 285
belong to one of the intersecting ellipsoids. For optimiza- 286
tion simplicity, we adopt a first-pass precedence strategy: 287
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Algorithm 1 Compute Segment Lengths with Intersections

Input: (z0, z1, . . . , zn−1): sorted depths of ellipsoids {Ei}
(l0, l1, . . . , ln−1): segment lengths for individual ellip-
soids without considering intersections

Output: Updated segment lengths l̃0, l̃1, . . . , l̃n−1 and ef-
fective regions

1: for i = 0 to n− 1 do
2: if i == 0 then
3: l̃0 ← l0
4: z ← z0, l← l0
5: else
6: if zi < z + 1

2 l then
7: l̃i ← max(0, (zi +

1
2 li)− (z + 1

2 l))
8: else
9: l̃i ← min(li, (

1
2 li + zi)− (z + 1

2 l))
10: end if
11: if l̃i ̸= 0 then
12: Update the valid region of ellipsoid Ei as [zi +

1
2 li − l̃i, zi +

1
2 li]

13: z ← zi, l← li
14: end if
15: end if
16: end for

Given the ordered set of ellipsoids {Ei | i = 0, 1, . . . , n−1}288
along the ray path r, where the ellipsoid indices are ar-289
ranged by increasing depth. Suppose that two ellipsoids Ei290
and Ei+1 have an intersecting region ei. We assign this291
overlap to Ei as it appears first along the ray, i.e., Ei has a292
smaller depth. Consequently, the effective region of Ei+1293
becomes Ei+1 − ei in this situation.294

The first-pass precedence strategy impacts the compu-295
tation of segment length li, requiring updates to account296
for the adjusted regions. We denote the updated segment297
lengths by l̃i and implement the updating using an efficient298
algorithm, as elaborated in Algorithm 1. Therefore, the final299
accumulated attenuation is then given by:300

I(r) =

n−1∑
i=0

σi l̃i. (9)301

Physically Faithful Overlap Filtering. Before applying302
the established algorithm for segment length calculation,303
we first need to identify which ellipsoids are related to304
each pixel. As illustrated in Figure 4(a), existing meth-305
ods [11, 32, 62] determine the association between ellip-306
soids and pixels by finding the circumscribed circle of the307
projected ellipsoid and subsequently calculating its Axis-308
Aligned Bounding Box (AABB) [51]. Then, if the AABB309
overlaps with a pixel, a relation is assumed. However, we310
observed that many pixels, such as the red ones in Figure 4,311
do not actually overlap with the ellipse but are still mistak-312

(a) Baseline Methods (b) with OBB (c) Our Method

Figure 4. Illustration of Pixel-Ellipsoid Association. (a) The
baseline method based on AABB [32, 51], resulting in incorrect
associations in red pixels. (b) The pixels indicated by OBB [24].
(c) Our Physically Faithful Overlap Filtering, which further
strictly removes redundant pixels to ensure physical faithfulness.

enly considered related, resulting in physically incorrect as- 313
sociations. Therefore, to ensure that each pixel exclusively 314
considers the ellipsoids with actual intersections along the 315
ray, we propose to first determine the Oriented Bounding 316
Box (OBB) [24] and then remove all the redundant regions 317
to resolve the physical unfaithfulness. 318

4.2. Hybrid Progressive Initialization 319

Before training, we initialize the parameters within each 320
ellipsoid Ei. Specifically, the attenuation coefficient σi 321
and the covariance matrix Σ3D are randomly initialized. 322
Moreover, to estimate the initial positions of ellipsoid cen- 323
ters, SfM-based methods [46, 47] and Dust3R-like meth- 324
ods [54, 57, 63] are widely adopted in conventional 3D re- 325
construction. However, these methods face significant chal- 326
lenges in the X-ray physical field. Structure-from-Motion 327
(SfM) identifies which pixels across multiple images be- 328
long to the same 3D spatial point by matching pixel features 329
[46, 47]. However, in X-ray imaging, even if pixels in dif- 330
ferent images correspond to the same spatial position, the 331
variations in ray paths can cause significant differences in 332
the remaining energy intensity, resulting in mismatched fea- 333
tures. Thus, SfM fails to provide reliable initialization in the 334
X-ray context. Similarly, Dust3R-like methods [54, 57, 63] 335
aggregate color point clouds from multiple views to form 336
a more complete point cloud. However, these methods are 337
designed to predict a discrete map of a color field, which 338
is incompatible with the X-ray domain where we need to 339
model an attenuation coefficient field. Consequently, they 340
cannot directly be used to initialize the attenuation map re- 341
quired for our task. 342

To overcome these issues, we introduce Hybrid Pro- 343
gressive Initialization tailored for the X-ray physical field, 344
which is based on traditional CT volume reconstruction. 345
This initialization approach comprises three main steps: 346

(a) CGLS Reconstruction. We begin with the Conjugate 347
Gradient Least Squares (CGLS) method [8, 25, 30] to re- 348
construct the projection data. CGLS is an iterative opti- 349
mization technique designed to minimize reconstruction er- 350
rors, offering robust performance even with sparse or noisy 351
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Figure 5. Illustration of Adaptive Optimization Strategy. (a)
Ground-truth Geometry and Material Distribution, with dif-
ferent colors indicating distinct materials. (b) Geometry-based
optimization [32], which fits the ellipsoids closely to the object
geometry. (c) Our material-based optimization, which further
refines the ellipsoids to capture the material distribution.

data. By iterative refinement, CGLS effectively captures the352
basic structure and shape of the target object.353

(b) TV Regularization. Building on the CGLS reconstruc-354
tion, we apply Total Variation (TV) regularization [44] to355
further suppress noise. TV regularization is effective in356
smoothing out minor fluctuations while preserving edges357
and structural features, resulting in a cleaner image. By re-358
ducing noise and enhancing uniformity in the density distri-359
bution, TV regularization improves the quality of the point360
cloud, aiding subsequent processing steps.361

(c) Threshold Filtering. Following TV regularization, we362
perform threshold filtering on the reconstruction results to363
eliminate low-density noise, where all points below the364
threshold are discarded. This effectively reduces the low-365
intensity noise points scattered around the object, helping to366
exclude background noise and concentrate the point cloud.367

4.3. Material-Based Optimization368

X-Gaussian [11] and R2-Gaussian [62] adopt the optimiza-369
tion strategy of 3DGS [32], which involves splitting and370
cloning Gaussian ellipsoids in regions with poor geome-371
try fitting and pruning in areas with extremely low opacity.372
However, this geometry-based optimization strategy fails373
to accurately model the material distribution. As shown374
in Figure 5(a), consider a ground-truth object composed375
of three distinct materials (represented by different colors).376
While the geometry is successfully learned after applying377
the 3DGS optimization strategy, it only captures two inter-378
mediate material types, failing to accurately represent all379
three materials (as illustrated in Figure 5(b)).380

We hypothesize that this issue stems from the contin-381
uous fluctuation of the ellipsoid’s attenuation coefficient,382
preventing it from achieving convergence. To address this,383
we propose a material-based optimization approach that ac-384
counts for the need to accurately fit different materials in385
the X-ray physical field. As demonstrated in Figure 5(c),386
when the gradient of the attenuation coefficient exceeds a387
predefined threshold, we split the ellipsoid into two smaller388

ones, each scaled down by a factor of 1.6, following empir- 389
ical guidelines established in prior studies [11, 32, 62]. By 390
aligning with the specific physical characteristics of the X- 391
ray imaging field, we achieve a more natural and accurate 392
modeling of material distribution. 393

5. Experiment 394

5.1. Dataset Settings 395

We conduct experiments on on two sets of datasets includ- 396
ing Human Organs [11] (containing five scenes: chest, foot, 397
head, jaw, and pancreas) to test the performance of mod- 398
els in the medical domain, and Daily Objects [11] (includ- 399
ing three scenes: bonsai, teapots, engine) to further evaluate 400
the generalization ability. Following R2-Gaussian [62], we 401
adopt the tomography toolbox TIGRE [7] to capture pro- 402
jections in the range of 0◦ ∼ 180◦ with ponton scatter and 403
electric noise. For highly sparse-view novel view synthe- 404
sis, 5 and 10 views are used for training and 50 samples are 405
used for testing. To further assess model performance and 406
scalability, we generate 50, 25, and 15 views for evaluating 407
the performance under sparse-view synthesis. 408

5.2. Comparison with State-of-the-Art Methods 409

Baselines. We compare X-Field with state-of-the-art 3D X- 410
ray reconstruction methods, including TensoRF [13], NeAT 411
[43], NAF [61], SAX-NeRF [12], X-Gaussian [11], and 412
R2-Gaussian [62]. TensoRF, NeAT, NAF, and SAX-NeRF 413
are NeRF-based methods designed for efficient reconstruc- 414
tion, with SAX-NeRF achieving SOTA performance among 415
them by incorporating a transformer architecture as the 416
model backbone. X-Gaussian and R2-Gaussian are 3DGS- 417
based methods, where X-Gaussian focuses on novel view 418
synthesis, and R2-Gaussian extends this for CT reconstruc- 419
tion by introducing voxelization. We also evaluate tradi- 420
tional methods, including FDK [21] and SART [2], which 421
are commonly used for CT generation. The novel view im- 422
ages are obtained by leveraging TIGRE for rendering. 423
Metrics. We adopt peak signal-to-noise ratio (PSNR) [20] 424
to assess the quality of rendered images, structural simi- 425
larity index measure (SSIM) [55] to measure consistency 426
between predicted images and ground-truths, and Learned 427
Perceptual Image Patch Similarity (LPIPS) [64] to analyze 428
the perceptual quality in high-level feature space. For clar- 429
ity, we report LPIPS as LPIPS* = LPIPS ×103 instead. 430
Discussion on Quantitative Results. We compare X-Field 431
with two traditional methods (FDK, SART), three NeRF- 432
based methods (TensoRF, NeAT, NAF), and three SOTA 433
methods (SAX-NeRF, X-Gaussian, and R2-Gaussian). Ta- 434
ble 1 reports the quantitative results of highly sparse-view 435
(10 views and 5 views) X-Rays reconstruction. Note that we 436
report quantitative results with the mean results of scenes 437
from the same setting, and scene-wise results are presented 438
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Human Organ 10-views [62] Object 10-views [62] Human Organ 5-views [62] Object 5-views [62]
Method PSNR↑ SSIM↑ LPIPS*↓ PSNR↑ SSIM↑ LPIPS*↓ PSNR↑ SSIM↑ LPIPS*↓ PSNR↑ SSIM↑ LPIPS*↓

Traditional Methods
FDK [21] 12.29 0.678 293.4 16.48 0.718 258.3 8.19 0.620 312.8 14.37 0.691 284.1
SART [2] 13.28 0.693 283.2 17.74 0.726 248.9 9.29 0.632 302.6 15.74 0.661 294.2

Deep Learning-based Methods
TensoRF [13] 16.57 0.929 183.8 24.27 0.947 152.3 12.29 0.893 188.0 18.23 0.921 211.6

NeAT [43] 16.27 0.936 184.6 25.19 0.958 154.6 11.02 0.889 189.1 17.35 0.916 210.5
NAF [61] 16.93 0.926 194.7 25.48 0.950 152.2 11.22 0.892 196.3 17.05 0.921 209.1

SAX-NeRF [12] 18.26 0.946 185.7 27.44 0.981 148.2 13.22 0.912 190.4 19.05 0.949 205.3
X-Gaussian [11] 16.92 0.948 129.5 22.95 0.983 78.54 15.19 0.928 177.84 19.46 0.958 107.34

R2-Gaussian [62] 34.64 0.957 86.57 41.24 0.983 40.34 31.18 0.958 108.42 34.78 0.966 82.46
Ours 35.09 0.960 84.13 40.35 0.988 41.21 31.94 0.962 96.24 34.82 0.967 79.15

Table 1. Results of Quantitative Comparison (§ 5.2). We compare our X-Field with: (a) Traditional X-ray reconstruction method:
FDK[21], SART[2]. (b) Deep Learning-based methods: TensoRF [13], NeAT [43], NAF [61], SAX-NeRF [12], X-Gaussian [11], and
R2-Gaussian [62]. We report LPIPS* = LPIPS ×103. We mark out best and second best method for all metrics.

Method PSNR ↑ SSIM ↑ LPIPS* ↓
w/o Material Opt. 34.78 0.941 73.45
w/o Overlap Filter 34.59 0.937 74.32
w/o Intersection 33.84 0.929 76.60
w/o Ray Length 27.48 0.875 87.83
Ours 35.03 0.953 72.12
Table 2. Ablation on the Proposed Components (§ 5.3).

in the supplementary material. X-Field demonstrates supe-439
rior performance in reconstructing X-ray novel views across440
most scenarios, consistently surpassing the state-of-the-art441
R2-Gaussian in all metrics. Under the object reconstruction442
setting, simpler objects and a higher number of views (10443
views) are considered. In this scenario, X-Field achieves su-444
perior SSIM and competitive PSNR and LPIPS scores com-445
pared to R2-Gaussian. This demonstrates its effectiveness446
in relatively straightforward cases.447

Discussion on Qualitative Results. Figure 6 presents vi-448
sual comparisons between X-Field and multiple state-of-449
the-art methods, including SAX-NeRF, X-Gaussian, and450
R2-Gaussian. These highly sparse view settings provide451
limited information, resulting in artifacts of varying sever-452
ity across all methods. SAX-NeRF reconstructs the over-453
all structure but introduces noticeable blurry artifacts, par-454
ticularly in the bonsai scene. X-Gaussian produces line455
and wave-pattern artifacts, which are prominent in the head456
scene. While R2-Gaussian performs better than the other457
baselines, it exhibits flaws in the fine details of the bone458
structure. Take the foot scene for example, R2-Gaussian459
introduces black linear artifacts in the bone region, where460
our method generates smoother textures. In summary, our461
method is able to effectively mitigates blurry, line, and462
wave-pattern artifacts while maintaining smoothness in ho-463
mogeneous areas and on object surfaces.464

5.3. Ablation Study465

To comprehensively assess the performance of X-Field, we466
evaluate the impact of the proposed components, compare467
different initialization strategies, and evaluate X-Field un-468
der various input view settings from 5 to 50 views.469

Initialization PSNR ↑ SSIM ↑ LPIPS* ↓
Random 37.85 0.966 60.02
FDK 37.96 0.967 59.81
Ours 38.67 0.969 59.95

Table 3. Ablation on the Initialization Methods (§ 5.3).

#View PSNR ↑ SSIM ↑ LPIPS* ↓
5 31.61 0.933 92.23
10 35.11 0.959 83.72
15 38.31 0.968 82.91
25 41.71 0.979 75.26
50 42.61 0.993 61.19

Table 4. Ablation on the Number of Input Views (§ 5.3).

Component Analysis. Table 2 evaluates the effects of in- 470
dividual components on reconstruction performance. We 471
observe that Material Optimization and Overlap Filter have 472
limited impact on reconstruction quality, focusing instead 473
on improving rendering efficiency and aligning with X- 474
ray physical properties. Removing the Intersection Mod- 475
ule leads to substantial performance drops, with a PSNR of 476
1.19, and an SSIM of 0.024, underscoring its importance in 477
preserving structural integrity. 478

Ray Length is a fundamental component of our ellipsoid 479
representation, capturing the distance each ray traverses 480
within the ellipsoid. Removing it also severely impacts 481
the model’s ability to render novel views, leading to sig- 482
nificant performance degradation, with a 7.6 drop in PSNR 483
and an 11.71 increase in LPIPS. These results underscore 484
the critical importance of Ray Length in enabling X-Field 485
to achieve accurate and high-quality reconstructions. 486

Initialization Analysis We compare the proposed hybrid 487
initialization with random initialization and FDK [21]. Ta- 488
ble 3 shows that both FDK and our hybrid initialization 489
strategy outperform random initialization. While FDK 490
achieves a slightly lower LPIPS, it also results in lower 491
PSNR and SSIM, likely due to blurrier images reducing 492
high-level feature similarity. In contrast, our method im- 493
proves both PSNR and SSIM, demonstrating its effective- 494
ness in enhancing reconstruction quality. 495
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Figure 6. Qualitative Comparison (§ 5.2). We present visual examples of reconstructed images across four cases trained with 10 views.
Our results demonstrate superior visual quality, richer details, and fewer spatial artifacts. Please ü zoom in for a closer examination.

Input View Number Analysis. To further demonstrate the496
scalability of X-Field, we conduct experiments to assess the497
effect of the input view number on reconstruction perfor-498
mance. As shown in Table 4, with the increase of the input499
view numbers, the performance is consistently enhanced.500
When using 50 views as input, X-Field achieves a perfor-501
mance that is comparable to SOTA works specifically de-502
signed for sparse view X-Ray reconstruction [11, 12]. We503
further show in Figure 7 that, with the increase in the in-504
put view number, the reconstructed X-ray images exhibit505
smoother and clearer bone textures.506

5 views 10 views 15 views

Figure 7. Comparison of Different Input View Numbers (§ 5.3).

6. Conclusion and Discussion507

Conclusion. This paper presents X-Field, a novel physics-508
based 3D representation designed for highly sparse-view X-509
ray reconstruction. We identified and addressed previously510

overlooked differences between mainstream 3D represen- 511
tations and the physical properties of X-ray, which arise 512
from the fundamental distinctions between visible light and 513
X-ray imaging principles. To overcome these limitations, 514
we redesigned the ellipsoid representation to specifically re- 515
solve these conflicts. Moreover, we developed an optimiza- 516
tion strategy based on the X-ray distribution. To further im- 517
prove convergence efficiency, we leveraged traditional med- 518
ical knowledge to inform the initialization process. Our pro- 519
posed X-Field significantly surpasses state-of-the-art meth- 520
ods in terms of reconstruction quality, demonstrating its po- 521
tential for medical applications. More importantly, we pro- 522
vide insights into the design of representations tailored for 523
X-ray imaging, which can also be generalized to other tasks 524
such as reconstruction of translucent objects. 525

Discussion. Our work, X-Field, does not address all chal- 526
lenges in highly sparse-view X-ray reconstruction. Many 527
existing 3D sparse-view reconstruction methods utilize 528
structural priors and spatial information from pre-trained 529
large models, such as depth estimation, video/image diffu- 530
sion, or semantic segmentation models. These priors of- 531
fer valuable constraints and strong guidance, facilitating 532
improved detail recovery and faster convergence. Further- 533
more, traditional medical structure priors, which could help 534
supervise the internal structure of the X-ray field, remain 535
unexplored in our approach. These areas warrant further 536
investigation in future work. 537
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