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Abstract

Formal verification of neural networks is essential before their deployment in safety-critical
applications. However, existing methods for formally verifying neural networks are not yet
scalable enough to handle practical problems under strict time constraints. We address this
challenge by introducing a fully automatic and sound reduction of neural networks using
reachability analysis. The soundness ensures that the verification of the reduced network
entails the verification of the original network. Our sound reduction approach is applicable
to neural networks with any type of element-wise activation function, such as ReLU, sigmoid,
and tanh. The network reduction is computed on the fly while simultaneously verifying the
original network and its specification. All parameters are automatically tuned to minimize
the network size without compromising verifiability. We further show the applicability of our
approach to convolutional neural networks by explicitly exploiting similar neighboring pixels.
Our evaluation shows that our approach reduces large neural networks to a fraction of the
original number of neurons and thus shortens the verification time to a similar degree.

1 Introduction

Neural networks achieve impressive results in a variety of fields, including natural language processing (Nassif
et al., 2019), computer vision (Li et al., 2022), and medical imaging (Karimi & Salcudean, 2019). In recent
years, neural networks have been deployed in safety-critical environments, such as human-robot interac-
tion (Mukherjee et al., 2022) and autonomous driving (Zablocki et al., 2022). As real-life applications are
inherently exposed to noise, such as measurement inaccuracies and external disturbances, the deployment of
neural networks in safety-critical environments is limited due to their sensitivity to adversarial attacks (Good-
fellow et al., 2015): Even small perturbations of the input to a neural network, which are often barely
noticeable to the human eye, can lead to unexpected outputs, e.g., a different predicted classification of an
image or a controller returning an unsafe action. Thus, the formal verification of neural networks has gained
importance in recent years (Brix et al., 2024; Lopez et al., 2024), where approaches rigorously prove that the
output of neural networks meets given specifications.

1.1 Related Work

State of the art. Formally verifying neural networks is computationally expensive, e.g., verifying a
neural network with ReLU activations is NP-hard (Katz et al., 2017). Thus, instead of applying complete
algorithms (Huang et al., 2017; Katz et al., 2017), recent developments are made towards incomplete
algorithms, where the neural networks are abstracted to enclose the exact behavior of the network. These
approaches often formulate the formal verification of neural networks as an optimization problem (Katz et al.,
2017; Zhang et al., 2018; Katz et al., 2019; Müller et al., 2022) or use reachability analysis (Singh et al., 2018a;
Bogomolov et al., 2019; Bak, 2021; Lopez et al., 2023b; Kochdumper et al., 2023; Ladner & Althoff, 2023).
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Optimization-based verifiers reason about neural networks by introducing relaxed, linear constraints for
the activation functions and solving these relaxed problems using linear programming, satisfiability modulo
theories (SMT) solvers (Katz et al., 2017; Zhang et al., 2018; Katz et al., 2019; Müller et al., 2022), or symbolic
interval propagation (Henriksen & Lomuscio, 2020; Singh et al., 2019; Brix & Noll, 2020). Branch-and-bound
strategies (Bunel et al., 2020) can be beneficial by splitting the problem at the neuron level (Botoeva et al.,
2020; Singh et al., 2018b), e.g., by splitting ReLU neurons into their linear parts. In general, algorithms that
split the problem lead to an exponential time complexity (Katz et al., 2017), so that current state-of-the-art
tools (Brix et al., 2024) use more advanced strategies (Wang et al., 2021; Ferrari et al., 2022; Shi et al., 2023).

Verifiers using reachability analysis propagate sets through the neural network and verify a given specification
using the computed output set. Simple representatives of this approach use pure interval arithmetic (Pulina
& Tacchella, 2010) or convex set representations such as zonotopes (Gehr et al., 2018; Singh et al., 2018a).
As with optimization-based verifiers, splitting the set can improve the results (Xiang et al., 2018; Kopetzki &
Günnemann, 2021). Non-convex set representations are used to tightly enclose the output due to the inherent
nonlinearity of neural networks, including Taylor models (Ivanov et al., 2021; Bogomolov et al., 2019; Huang
et al., 2022), star sets (Bak, 2021; Lopez et al., 2023b), and polynomial zonotopes (Kochdumper et al., 2023;
Ladner & Althoff, 2023). However, the scalability to state-of-the-art networks remains a major challenge for
optimization-based approaches and approaches based on reachability analysis (Brix et al., 2024).

Challenges. Safety-critical environments are often time-critical, e.g., verifying a controller of an autonomous
car (Lopez et al., 2024), or require verifying many instances, e.g., in video verification and in formal explainable
artificial intelligence (Bassan & Katz, 2023). Thus, each verification query should be solved quickly to reduce
the overall verification time. However, many state-of-the-art verifiers focus on very challenging queries, with
large timeouts per query. For example, the allowed time to verify a single query in the last VNN-COMP (Brix
et al., 2024) range up to 20 minutes, which is not feasible in time-critical scenarios.

Sound neural network reduction. One promising research direction to tackle this issue is sound neural
network reduction (Boudardara et al., 2023c): Sound neural network reduction reduces the number of neurons
and provides formal bounds for the maximum error due to this reduction. Then, we can reason about the
original network by verifying the reduced network, which usually requires less computation time. This research
direction is closely related to neural network compression (Zhangheng et al., 2022; Deng et al., 2020), where the
main goal is to reduce memory usage and computation time, e.g., for deployment in embedded systems (Deng
et al., 2020). This can be done as neural networks are typically over-parametrized (Neyshabur et al., 2018).
Examples of compression techniques are quantization (Cheng et al., 2017) and pruning (Gonzalez-Carabarin
et al., 2024). However, the lack of formal error bounds prevents applying these techniques to the formal
verification of neural networks.

Several approaches to soundly reduce neural networks with formal error bounds emerged in recent years: An
early approach categorizes neurons based on analytic properties and merges neurons of the same category
afterward (Elboher et al., 2020). Similarly, networks can be reduced using approximative bisimulations (Prab-
hakar, 2022). These works are extended using interval neural networks (Prabhakar & Afzal, 2019; Sotoudeh
& Thakur, 2020; Boudardara et al., 2022; 2023a;b), where the weights of a neural network are replaced with
intervals during the sound reduction. It is worth mentioning that the reduced network can be re-enlarged using
residual reasoning (Elboher et al., 2022). For ReLU networks, it is also possible to merge neurons that are
entirely in the nonpositive or nonnegative region, respectively, without inducing outer approximations (Zhong
et al., 2023). Network reductions can also be achieved by clustering similar neurons for inputs of a given
dataset (Ashok et al., 2020); however, 80−90% of the neurons remain when formal error bounds are demanded.
Convolutional neural networks with max-pooling layers can be reduced by pruning branches leading up to
pooling neuron and providing respective error bounds (Ostrovsky et al., 2022). Most approaches only consider
relatively small networks with ReLU neurons, while some approaches also consider sound network reduction
for specific other activation functions such as tanh (Boudardara et al., 2023c).

1.2 Contributions

To summarize, our main contributions are as follows:
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• We present a novel, fully automatic approach to soundly reduce large neural networks by merging
similar neurons for a given specification.

• The reduced network is constructed on the fly, and the verification of the reduced network entails the
verification of the original network.

• As opposed to related work, our approach is applicable to all neural networks with element-wise
activation functions, including ReLU, sigmoid, and tanh.

• The networks considered in the evaluation have up to an order of magnitude more neurons in a
single layer than previous sound network reduction approaches considered in total, demonstrating
the scalability of our approach.

We demonstrate our approach using reachability analysis with zonotopes (Girard, 2005; Singh et al., 2018a).
The extension to other set-based verification tools is straightforward. The resulting reduced network can also
be exported and verified using optimization-based verification tools (Sec. 1.1).

The remainder of this work is structured as follows: Sec. 2 introduces the notation and background for this
work. Then, we present our novel, fully automatic, sound network reduction approach in Test. 3. In Test. 4,
we discuss applications of our approach, including the reduction of large convolutional neural networks and
how the reduced network can be reused for changed specifications. Finally, we evaluate our approach in
Test. 5 and conclude in Test. 6.

2 Preliminaries

2.1 Notation

We denote scalars and vectors by lower-case letters, matrices by upper-case letters, and sets by calligraphic
letters. The i-th element of a vector v ∈ Rn is written as v(i), and the element in the i-th row and j-th
column of a matrix A ∈ Rn×m is written as A(i,j). The i-th row and j-th column are written as A(i,·) and
A(·,j), respectively. The concatenation of two matrices A and B is denoted by [A B]. We write R+ to refer
to all positive real numbers. For n ∈ N, we denote the identity matrix by In, and we use the notation
[n] = {1, . . . , n}. Let C ⊆ [n], then A(C,·) extracts all rows i ∈ C in lexicographic order. We denote the
cardinality of a discrete set C by |C|. Let S ⊂ Rn be a continuous set, then S(i) is its projection on the i-th
dimension. The symbols 0 and 1 refer to matrices with all zeros and ones of proper dimensions, respectively.
The set-based evaluation of a function f : Rn → Rm is written as f(S) = {f(x) | x ∈ S}. Given two sets
S1,S2, then the Minkowski sum is denoted by S1 ⊕ S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2}. If either summand of
the Minkowski sum is given as a vector, it is implicitly converted to a singleton. The Cartesian product is
written as S1 × S2 = {

[
sT

1 sT
2

]T | s1 ∈ S1, s2 ∈ S2}. An interval with bounds l, u ∈ Rn, where l ≤ u holds
element-wise, is denoted by [l, u]. Unless otherwise stated, all continuous sets in this paper are represented as
zonotopes except for the exact sets denoted by □∗ and intervals denoted by I□.

2.2 Neural Networks

We introduce feed-forward neural networks (Bishop & Nasrabadi, 2006, Sec. 5.1) in their standard form here
and discuss the sound reduction of convolutional neural networks in Sec. 4.1.
Definition 1 (Feed-Forward Neural Networks (Bishop & Nasrabadi, 2006, Sec. 5.1)). Given κ alternating
linear and nonlinear layers and let x ∈ Rn0 be the input and y ∈ Rnκ be the output of a neural network, we
can formulate a neural network Φ: Rn0 → Rnκ with y = Φ(x) as follows:

h0 = x, hk = Lk(hk−1), y = hκ, k ∈ [κ],

where Lk : Rnk−1 → Rnk computes the operation of layer k. Let Wk ∈ Rnk×nk−1 , bk ∈ Rnk , and ϕk(·) be the
respective continuous activation function (e.g., sigmoid and ReLU), which is applied element-wise, then

Lk(hk−1) =
{

Wkhk−1 + bk if layer k is linear,
ϕk(hk−1) otherwise.
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Please note that some works formulate the layers of a neural network as Lk(hk−1) = ϕk(Wkhk−1 + bk), i.e.,
having the linear part and the nonlinear part within one layer. We opted to separate them into individual
layers as the enclosure is handled differently (Prop. 3), however, the architecture is the same. Thus, we
always have linear and nonlinear layers in alternating fashion.

The last linear and last nonlinear layers are called output layers, all other layers are called hidden layers. If
all hidden layers output the same number of neurons, we write 6× 200 to refer to a network with 6 linear
and 6 nonlinear hidden layers with 200 neurons each.

2.3 Set-Based Computing

We use reachability analysis to verify neural networks: Let X ⊂ Rn0 be the input set of a neural network Φ.
Then, the exact output set Y∗ = Φ(X ) is computed by

H∗
0 = X , H∗

k = Lk(H∗
k−1), Y∗ = H∗

κ, k ∈ [κ]. (1)

Usually, X is constructed by perturbing each dimension of an input x ∈ Rn0 up to a maximal perturbation
radius ϵ ∈ R+. Unfortunately, it is computationally infeasible to obtain these exact sets in general as the
problem is NP-hard for networks with ReLU activations (Katz et al., 2017). For that reason, verification
tools usually compute an outer approximation Y ⊇ Y∗ using a specific set representation. Our reduction
approach works for any set representation that can be enclosed by an interval and that is closed under the
Minkowski addition of intervals. We use zonotopes as an example to demonstrate our approach:
Definition 2 (Zonotope (Girard, 2005, Def. 1)). Given a center vector c ∈ Rn and a generator matrix
G ∈ Rn×q, a zonotope is defined as

Z = ⟨c, G⟩Z =



c +

q∑

j=1
βjG(·,j)

∣∣∣∣∣∣
βj ∈ [−1, 1]



 .

For zonotopes, the input set is given by X = ⟨x, ϵIn0⟩Z and the required operations are computed as follows:
Proposition 1 (Interval Enclosure (Althoff, 2010, Prop. 2.2)). Given a zonotope Z = ⟨c, G⟩Z , the enclosing
interval [l, u] = interval (Z) ⊇ Z is given by

l = c−∆g, u = c + ∆g, with ∆g =
q∑

j=1
|G(·,j)|.

Proposition 2 (Interval Addition (Althoff, 2010, Eq. 2.1)). Given a zonotope Z = ⟨c, G⟩Z ⊂ Rn and an
interval I = [l, u] ⊂ Rn,

Z ⊕ I = ⟨c + cI , [G Diag (u− cI)]⟩Z ,

where cI = l+u
2 and Diag (·) returns a diagonal matrix.

2.4 Neural Network Verification

As we use zonotopes as an example to verify neural networks, we briefly introduce the main steps to propagate
a zonotope through a neural network. These might differ if another verification engine is used. Since the
propagation in (1) cannot be computed exactly in general, we enclose the output of each layer:
Proposition 3 (Image Enclosure (Singh et al., 2018a, Sec. 3)). Let Hk−1 ⊇ H∗

k−1 be an input set to layer k,
then

Hk = enclose (Lk,Hk−1) ⊇ H∗
k

computes an outer-approximative output set.

While zonotopes can be propagated through linear layers exactly (Girard, 2005), the propagation through
nonlinear layers has to be outer-approximative to ensure soundness. The main steps to enclose the output of

4



Published in Transactions on Machine Learning Research (06/2025)

Input

O
ut

pu
t

(a) Steps 1 & 2

Input

O
ut

pu
t

(b) Steps 3 & 4

Input

O
ut

pu
t

(c) Steps 5 & 6

ϕ(x) Set Bounds Polynomial Approximation error

Figure 1: Main steps of enclosing a nonlinear layer. Step 1: Neuron-wise sigmoid function. Step 2: Find
input bounds. Step 3: Approximate with linear function. Step 4: Determine approximation error. Step 5:
Apply linear transformation on input. Step 6: Enclose using approximation error.

nonlinear layers are illustrated in Fig. 1: For each nonlinear layer, we iterate over all neurons i in the current
layer by projecting the input set Hk−1 onto its i-th dimension (Step 1) and determining the input bounds
using Prop. 1 (Step 2). We then find an approximating linear function within the input bounds (Bishop &
Nasrabadi, 2006, Sec. 3) (Step 3). Crucially, soundness is ensured by bounding the approximation error
(Step 4). Finally, we apply the linear transformation on Hk−1(i) to approximate the nonlinear layer (Step 5)
and enclose the activation function using the approximation error (Step 6; Prop. 2). Thus, by propagating a
given input set X through all layers of a neural network and enclosing their output sets using Prop. 3, we can
enclose the exact output set of the entire network by Y = Hκ ⊇ Y∗ = Φ(X ).

2.5 Problem Statement

Given an input set X ⊂ Rn0 , a neural network Φ, and an unsafe set S ⊂ Rnκ , we want to automatically
construct a sound reduced network Φ̂, for which the verification entails the verification of the original network
for the given X and S:

Φ̂(X ) ∩ S = ∅ =⇒ Φ(X ) ∩ S = ∅.

This formulation covers all specifications from the VNN competition (Bak et al., 2021; Brix et al., 2023), and
more complex specifications can also be formulated as reachability problems (Lopez et al., 2023a; Wright &
Stark, 2020). Further, we want the construction and verification of Φ̂ to be faster than verifying Φ directly.
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Figure 2: Sigmoid activations of a 6 × 200 neural
network with an image input from the MNIST digit
dataset. For a specific input x, many neurons output
values close to the saturation values 0 and 1.

3 Fully Automatic and Sound
Neural Network Reduction

Our sound neural network reduction is based on the
observation that many neurons in a layer k behave
similarly for a specific input x ∈ Rn0 , e.g., many
sigmoid neurons are fully saturated and thus output
a value near 0 or 1 as shown in Fig. 2. Neuron
saturation (Rakitianskaia & Engelbrecht, 2015) and
neural activation patterns (Bäuerle et al., 2022) have
been observed in the literature, however, to the best
of our knowledge, they have not been exploited for
the verification of neural networks. Please note that
our approach is not restricted to the saturation values
of an activation function.
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Figure 3: Reduction example on a sigmoid neural network using a single merge bucket Bk,y,δ with y = 1 and
δ = 0.01: The shown bounds of each neuron cover the uncertainty after the sigmoid activation function is
applied. All neurons within Bk,y,δ are replaced by a new neuron with constant output 2y + 3y = 5. Then, we
bound the approximation error to obtain an outer approximation using Prop. 4.

3.1 Neuron Merging

Subsequently, we explain how similar neurons can
help to construct a reduced network Φ̂, where the verification of Φ̂ entails the verification of the original
network Φ. We gather the neurons with similar values using merge buckets:
Definition 3 (Merge Buckets). Given output bounds Ik ⊇ H∗

k of a nonlinear layer k ∈ [κ] with nk neurons,
an output y ∈ R, and a tolerance δ ∈ R+, then a merge bucket is defined as

Bk,y,δ =
{

i ∈ [nk]
∣∣ Ik(i) ⊆ [y − δ, y + δ]

}
.

Conceptually, we replace all neurons in a merge bucket Bk,y,δ by a single neuron with constant output y and
adjust the weight matrices of the linear layers k− 1 and k + 1 such that the reduced network Φ̂ approximates
the behavior of the original network Φ. Finally, we add an approximation error I ′

k+1 ⊂ Rnk+1 to the output
of the linear layer k + 1 to obtain a sound outer approximation (Fig. 3). To simplify the notation, we adapt
Def. 1 for linear layers slightly to also include the approximation error:

L̂k(hk−1)=
{

Wkhk−1+bk ⊕ I ′
k if layer k is linear,

ϕk(hk−1) otherwise, (2)

where I ′
k is initialized with [0, 0] ⊂ Rnk . With that, we can formally introduce how we merge neurons within

the neural network:
Proposition 4 (Neuron Merging). Given a nonlinear hidden layer k ∈ [κ] of a network Φ, output bounds
Ik ⊇ H∗

k ⊂ Rnk , a merge bucket B ⊆ [nk], and the indices of the remaining neurons B = [nk]\B, we construct
a sound reduced network Φ̂, where we adjust the nonlinear layer k to only process the remaining neurons, and
in the adjacent linear layers, we remove the merged neurons and bound the approximation error:

Layer k − 1: Ŵk−1 = Wk−1(B,·), b̂k−1 = bk−1(B), Î ′
k−1 = I ′

k−1(B),

and layer k + 1: Ŵk+1 = Wk+1(·,B), b̂k+1 = bk+1, Î ′
k+1 = Wk+1(·,B)Ik(B).

Proof. The proof can be found in Appendix A.

Fig. 3 illustrates the neuron merging for a toy neural network with sigmoid activation. Please note that
we display the bounds for each neuron as intervals; however, the underlying verification engine might use a
different set representation, e.g., zonotopes.

By iteratively applying Prop. 4, our approach can be naturally extended to multiple disjoint merge buckets:

Bk,δ = {Bk,y1,δ, Bk,y2,δ, . . .} . (3)
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The merging with multiple disjoint merge buckets can be done in parallel as the required adaptations of the
adjacent linear layers do not interfere with each other. The overall approximation error is then given by the
Minkowski sum of the individual approximation errors (Prop. 4):

Î ′
k+1

(3)=
⊕

B∈B
Î ′

k+1,B
(Prop. 4)=

⊕

B∈B
Wk+1(·,B)Ik(B)

(disjoint B)= Wk+1(·,
⋃

B∈B
B)Ik(

⋃
B∈B

B). (4)

3.2 Initialization of Merge Buckets

We define two different methods to initialize merge buckets:

Static buckets The merge buckets are determined by the asymptotic values of the respective activation
function ϕk of a nonlinear layer k:

Bk,δ =




{Bk,0,δ, Bk,1,δ} if ϕk = sigmoid,
{Bk,−1,δ, Bk,1,δ} if ϕk = tanh,
{Bk,0,δ} if ϕk = ReLU.

(5)

For ReLU layers, setting δ = 0 and using static merge buckets results in no approximation error similar to
the approach in (Zhong et al., 2023), as only neurons with entirely negative input for the given input set X
are removed.

Dynamic buckets The merge buckets are dynamically initialized using the center of the bounds Ik =
[lk, uk] ⊂ Rnk of each neuron:

Bk,δ =
{
Bk,c(i),δ

∣∣ c = lk+uk

2 , i ∈ [nk]
}

, (6)

where we ensure that the buckets are disjoint and are only used if they contain multiple neurons. Please note
that the buckets could also be created using clustering algorithms (Ashok et al., 2020); however, we choose
the center of each neuron directly to obtain a linear computational overhead. The computational overhead of
clustering algorithms might be negligible for other underlying verification engines than the zonotope approach
considered in this work.

3.3 Automatic Determination of Bucket Tolerances

The bucket tolerance δ ∈ R+ influences how many neurons are merged, where a larger value results in more
aggressive neuron merging and thus a larger outer approximation. However, determining a good value for δ is
tedious as it is not immediately clear how much the network is reduced for any given value for δ. Thus, we
automatically determine δ given a desired remaining number of neurons in Alg. 1 using binary search. We
denote the ratio of remaining neurons compared to the original network with the reduction rate ρ ∈ [0, 1]. To
verify a given specification, we initially choose a very small ρ and iteratively increase it if the reduction is too
outer-approximative. This realizes us to verify many specifications using a heavily reduced network (Test. 5),
and thus to a similar degree, the verification time is reduced. Once ρ = 1 is reached, the original network is
used and no reduction is applied.
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Algorithm 1 Automatic Determination of Bucket Tolerance
Require: Bounds Ik = [lk, uk], reduction rate ρ

1: δmin ← 0, δmax ← max(uk)−min(lk)
2: do ▷ 1) Find upper bound for bucket tolerance
3: δmax ← 10 ∗ δmax
4: Initialize merge buckets Bk,δmax ▷ Sec. 3.2
5: n̂k ← nk −

∑
B∈Bk,δmax

|B| ▷ Remaining neurons
6: while n̂k/nk > ρ
7: do ▷ 2) Binary search
8: δ ← (δmin + δmax)/2
9: Initialize merge buckets Bk,δ ▷ Sec. 3.2

10: n̂k ← nk −
∑

B∈Bk,δ
|B| ▷ Remaining neurons

11: if n̂k < ρnk then
12: δmax ← δ ▷ Too many neurons merged
13: else
14: δmin ← δ ▷ Too few neurons merged
15: end if
16: while n̂k/nk ̸≈ ρ
17: return Bk,δ

3.4 On-the-fly Neural Network Reduction

Please note that we require output bounds Ik of the next nonlinear layer k to merge neurons with similar
values using Prop. 4. However, computing them requires the construction of high-dimensional zonotopes
via the linear layer k − 1 and the propagation of the zonotopes through the nonlinear layer k, where we
have to compute the image enclosure for all neurons (Prop. 3) – which is what should be avoided. Thus,
we deploy a one-step look-ahead algorithm (Alg. 2) using interval arithmetic (Jaulin et al., 2001) to avoid
these expensive computations and reduce the network on the fly. As the look-ahead is just a single step, the
computed bounds are tight and do not contribute to the wrapping effect.

Algorithm 2 On-the-fly Neural Network Reduction
Require: Input X , neural network layers Lk, k ∈ [κ], reduction rate ρ

1: H0 ← X , L̂1 ← L1
2: for k = 2, 4, . . . , κ do
3: if k < κ then ▷ 1) Look ahead
4: Ik−2 ← interval (Hk−2) ▷ Prop. 1
5: Ik ← Lk(L̂k−1(Ik−2))
6: Determine merge buckets Bk,δ ▷ Sec. 3.3
7: L̂k−1, L̂k, L̂k+1 ← Merge ▷ Prop. 4
8: end if
9: ▷ 2) Verify reduced network

10: Hk−1 ← enclose(L̂k−1,Hk−2) ▷ Prop. 3
11: Hk ← enclose(L̂k,Hk−1)
12: end for
13: return Y ← Hκ

We summarize Alg. 2 subsequently: Instead of propagating the zonotope Hk−2 itself forward, we just
propagate interval bounds of Hk−2 to the next nonlinear layer k (Alg. 2-5). Although intervals are not closed
under the linear map, the output bounds of the linear layer k − 1 are tight, and the propagation through
the nonlinear layer k does not induce additional outer approximations. This realizes a tight computation of
the output bounds Ik with negligible computational overhead; a discussion on the overhead can be found in
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Appendix A. After Ik is obtained, the merge buckets are determined (Alg. 2), and the network is reduced
by merging the respective neurons (Alg. 2). Finally, we propagate the zonotope Hk−2 through the reduced
layers. Thus, we never construct a high-dimensional zonotope during the verification. Note that the number
of input and output neurons remains unchanged.
Theorem 1 (Sound Neural Network Reduction). Given an input set X , a neural network Φ, and a reduction
rate ρ, Alg. 2 constructs a reduced network Φ̂ρ satisfying the problem statement in Sec. 2.5.

Proof. The proof can be found in Appendix A.

4 Applications

In this section, we discuss additional applications of our novel neural network reduction approach.

4.1 Reduction of Convolutional Neural Networks and Sound Image Compression

Convolutional neural networks are obtaining state-of-the-art results for image classification tasks (Li et al.,
2022). However, neural networks for image classification are typically very large and thus particularly hard to
verify. We show in this section that our novel neural network reduction approach can be naturally extended
to convolutional networks. Let us start by introducing the main layer within a convolutional network:
Definition 4 (Convolutional Layer (Bishop & Nasrabadi, 2006, Sec. 5.5.6)). Given an input I ∈ RcI ×hI ×wI

and a kernel K ∈ RcO×cI ×hK×wK , a convolutional layer computes the output O ∈ RcO×hO×wO for k ∈ [cO],
i ∈ [hO], j ∈ [wO] as follows:

O(k,i,j) =
cI∑

l=1

hK∑

m=1

wK∑

n=1
K(k,l,m,n)I(l,i+m,j+n),

where hO = hI − (hK − 1), wO = wI − (wK − 1) and cI , cO are the number of input and output channels,
respectively.

y2 →

y1 →

Original Compressed

Figure 4: Visualization of CIFAR-10 images: Original images (left)
and corresponding compressed images (right), where we set all
neurons within the same merge bucket Bk,yi,δ ∈ B to value yi

to extract the compressed image without added approximation
error. Verifying the compressed image with formal error bounds
drastically reduces the number of neurons of hidden layers.

Convolutional layers can be viewed as
linear layers as defined in Def. 1 with
shared weights (Bishop & Nasrabadi,
2006, Sec. 5.5.6). The exact construc-
tion of such a linear layer is given in Ap-
pendix A. Thus, our approach is also di-
rectly applicable for convolutional layers.
An analogous conversion can be done for
other typical layers within a convolutional
network, such as subsampling and average
pooling layers (Bishop & Nasrabadi, 2006,
Sec. 5.5.6).

One important property of convolutional
networks is the preservation of neighbor-
hood: As the same kernel is applied to
the entire input, pixels of the output have
similar values if the respective pixels in
the input have similar values. Neighbor-
ing pixels having similar values are typical
in the field of image classification because
many images contain large areas or ob-
jects with a similar color. For example,
the sky has similar shades of blue, and traffic signs typically have only one background color and one
foreground color. To the best of our knowledge, our approach is the first to explicitly exploit this property of
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convolutional networks for sound neural network reduction. Intuitively, an uncertain image is compressed
into superpixels with formal error bounds. Let us demonstrate this by an example: CIFAR-10 images require
32× 32× 3 = 3072 input neurons to the network. However, many of these pixels have very similar values
(Fig. 4). Thus, using our approach with dynamic merge buckets (Sec. 3.2), we can compress an image with
formal error bounds as follows:
Corollary 1 (Sound Compression). Given an uncertain image X ⊂ RcI ×hI ×wI

+ and a reduction rate ρ ∈ [0, 1],
we can construct a neural network Φ̂ρ that compresses this image with formal error bounds as follows: Let
K ∈ RcI ×cI ×1×1 be a kernel of a convolutional layer, where

K(k,l,1,1) =
{

1 for k = l,
0 otherwise,

k, l ∈ [cI ], (7)

and Φ be a neural network with two convolutional layers with kernel K and one ReLU activation. The reduced
network Φ̂ρ, obtained by applying Thm. 1 using X , ρ, and dynamic merge buckets compresses the input X
with sound error bounds according to ρ.

Proof. The proof can be found in Appendix A.

In the truck example in Fig. 4, for a perturbation radius ϵ = 0.01 and a reduction rate ρ = 0, all 3072 neurons
of the hidden layer of the compression network Φ̂ρ are dynamically merged using 21 merge buckets. Thus,
the image is compressed into a 21-dimensional space in the hidden layer of Φ̂ρ and then re-enlarged to 3072
neurons in the output layer with added approximation error. Please note that usually, the image is not
re-enlarged and the compressed image is passed to the actual network (see below), where we again merge
similar neurons using our approach – we just do this here for illustration purposes (Fig. 4): Due to the three
color channels, the original truck image has 983 unique colors, which get compressed into 178 unique colors
with formal error bounds. Similarly, the original horse image has 891 unique colors, which get compressed
into 142 unique colors, again using 21 dynamic merge buckets.

In larger convolutional networks, a similar compression happens in each hidden layer; however, these are
usually not as easy to grasp visually due to the increased number of channels in hidden layers. Note that
we can prepend the layers of the compression network defined in Cor. 1 to any network as a preprocessing
step to reduce the input dimension. The required steps for this preprocessing are provided in Alg. 3: We
first construct the compression network as in Cor. 1. As we only compute the layers of the reduced network
in Alg. 3, we only require the input set represented as an interval IX , which is usually the case for many
benchmarks (Brix et al., 2024). Thus, we can construct a new low-dimensional input H−2 represented by
the used set representation according to the remaining neurons. Thus, we are not required to initialize the
high-dimensional input set using a more complex set representation, which usually speeds up the computation.
In our case using zonotopes, this preprocessing step results in much fewer generators (Prop. 2) and thus speeds
up the computation. The output set is computed in Alg. 3 by propagating the set through all remaining layers
and reducing them on the fly (Alg. 2). Due to the on-the-fly reduction, the more complex set representation
is kept in a low-dimensional space as by the time it arrives at a given layer, this layer is already reduced
(Thm. 1). This becomes increasingly beneficial with the complexity of the set representation used to verify
the network. Note that Alg. 3 works on any neural network, but is especially beneficial for convolutional
networks because neighboring pixels often have similar values.

Algorithm 3 Sound Compression Preprocessing
Require: Input IX , neural network Φorg, reduction rate ρ

1: L−2, L−1, L0 ← Construct Φpre ▷ Cor. 1
2: L̂−2, L̂−1, L̂0 ← Reduce using IX , ρ ▷ Thm. 1
3: H−2 ← zonotope(L̂−2(IX )) ▷ Prop. 2
4: Φ′

org(·)← Φorg(L̂0(L̂−1(·)))) ▷ Prepend layers
5: Y ← Execute Alg. 2 using H−2, Φ′

org, ρ ▷ Thm. 1
6: return Y

10
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4.2 Reusing Reduced Networks

In general, our approach requires the computation of a new reduced neural network for different input sets.
In this section, we highlight several applications where the reduced networks can be reused nevertheless:

4.2.1 Branch-and-bound

Current state-of-the-art tools, e.g., all top-ranked tools of the last VNN competition (Brix et al., 2023), verify
a neural network by applying various branch-and-bound algorithms in the verification. Branch-and-bound
algorithms (Bunel et al., 2020) partition the verification problem into multiple simpler subproblems, solve
them individually, and aggregate the results to reason about the overall problem (Sec. 1.1). Our novel
reduction approach is orthogonal to these branch-and-bound algorithms and thus can be combined with them.
Since the reduced network does not depend on using a specific set representation, we can reuse the reduced
network on all subsets of the input set:
Corollary 2 (Reusing Reduced Network on Subsets). Given a neural network Φ, an input set X , and a
reduction rate ρ, then a reduced network Φ̂ρ according to Thm. 1 can be reused for all X ′ ⊆ X .

Proof. The proof can be found in Appendix A.

4.2.2 Export of reduced network

As the reduced network can be reused as described above, we provide an interface to export a reduced
network for later usage, e.g., to verify the reduced network using another verification tool. Please note that a
reduced network is of the form given in (2), having the approximation error added to the output of linear
layers. As these approximation errors can be seen as additional inputs to the network, most verifiers can
verify networks of this form, including optimization-based verifiers. In contrast, related work using interval
neural networks (Prabhakar & Afzal, 2019; Sotoudeh & Thakur, 2020; Boudardara et al., 2022; 2023a;b) have
intervals on the weight matrices of the network, which is much harder to integrate into existing verifiers.

4.2.3 Closed-loop verification

0 1 2 3 4 5

0

1

2

Time

A
lti

tu
de

Goal set
Reachable set
Simulations

Figure 5: Quadrotor example (Lopez et al., 2024,
Fig. 15): As the reachable set stays within a given
goal set, a reduced network can be reused as long as
the reachable set stays within the goal set.

In closed-loop scenarios, a neural network is used as
a controller in a dynamic system, which is updated
every ∆t. While branch-and-bound strategies work
well in open-loop verification, other techniques are
more common in closed-loop scenarios (Lopez et al.,
2024). The issue with branch-and-bound strategies
is that each subset has to be propagated according
to a differential equation until the next network eval-
uation (every ∆t), where each subset might again
get splitted. Therefore, many techniques use more
sophisticated set representation (Kochdumper et al.,
2023; Bogomolov et al., 2019; Lopez et al., 2023b)
and improve the abstraction by enclosing nonlinear
functions with higher-order polynomials (Ladner &
Althoff, 2023).

One frequent goal in closed-loop verification is to
show the stability of a given dynamic system over a specified time horizon. For example, the QUAD
benchmark in the last ARCH competition (Lopez et al., 2023a) requires showing the stability of a neural-
network-controlled quadrotor at a given altitude (Fig. 5). We can infer from the simulations that the state of
the system barely changes over the last second. Thus, we can slightly enlarge the current reachable set at
t = 4s and use it to reduce the size of the network. This reduced network can then be reused in subsequent
evaluations if the reachable set stays within the set used to reduce the network controller (Cor. 2).
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Figure 6: Comparison of our approach with varying reduction rates ρ to CORA and α, β-CROWN: (a)
ERAN 6× 200 sigmoid network on MNIST with varying reduction rates, (b) Marabou large convolutional
network on CIFAR-10 using our fully automatic verification approach. Be aware of the log scale.

5 Evaluation

We implemented our approach in the MATLAB toolbox CORA (Althoff, 2015; Singh et al., 2018a) and
evaluate it using several benchmarks and neural network variants from the VNN competition (Bak et al.,
2021). The main results are presented in this section. All evaluation details, additional experiments, and
ablation studies are given in Appendix B.

Main results. Our goal is to verify given queries very quickly to make formal verification tools applicable
in time-critical scenarios, e.g., video streaming, where fast verification results are demanded. However, even
for relatively small networks, the verification times for non-trivial queries can be comparatively long. For
example, on the ERAN 6× 200 sigmoid network classifying MNIST images, verification takes on average
1.5s per instance using the state-of-the-art tool α, β-CROWN (Xu et al., 2020; Zhang et al., 2018; Wang
et al., 2021) to obtain initial bounds using a GPU, which might not always be available in embedded systems.
Without a GPU, this can take significantly longer (4.5s in this case). With our novel network reduction, we
can verify most instances with only ρ = 10% of the neurons (Fig. 6a), such that the overall verification time –
including reducing the network – is reduced to just 200ms on a CPU (−96% verification time).

For instances that cannot be verified with so few neurons, the reduction rate ρ is iteratively increased until the
instance is verified or the original network (ρ = 1) is reached. We show this iterative process on the CIFAR-10
dataset in Fig. 6b using the large convolutional neural network taken from the Marabou benchmark. Initially,
most instances can be verified very quickly using a small reduction rate ρ. For these instances, the verification
time is substantially faster than α, β-CROWN (−60% verification time). If an instance cannot be verified
at this abstraction level, ρ is iteratively increased, which results in slightly longer verification times. Such
a jump in verification time is clearly visible after ∼ 40 instances. Overall, our fully automatic reduction
approach is still 30% faster (Fig. 6). Please visit Sec. B.2 for an ablation study on this topic.

To obtain a better understanding on which neurons are merged throughout the verification process, we show
in Fig. 7 the average remaining number of neurons of different network architectures while still verifying
the images. The experiments show that large reduction rates are possible without sacrificing verifiability,
especially for convolutional neural networks and including various activation functions.

This is in stark contrast to related work, where usually much smaller networks with only ReLU activation are
analyzed. For example, 80− 90% of the neurons of the ERAN networks remain in related work once formal
guarantees are demanded (Ashok et al., 2020, Fig. 2 & Tab. 2), whereas we reduce it to just ∼ 30% for the
ERAN networks (Fig. 7a) and 10− 15% for the Marabou networks (Fig. 7b). Additionally, our approach can
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Figure 7: Average number of remaining neurons of networks taken from the (a) ERAN and (b) Marabou, (c)
ERAN CNN variants, and (d) Cifar2020 benchmarks.

handle networks with any type of element-wise activation function (Fig. 7c)1, and can handle much larger
networks (Fig. 7d, shown with different perturbation radii ϵ). Specifically, the network from the Cifar2020
benchmark has more neurons in a single layer than related work consider in total (Boudardara et al., 2023c).

Additional experiments. In Appendix B, we analyze each component of our approach in an ablation
study and conduct additional experiments, including on sound image compression preprocessing, non-image
inputs, and closed-loop verification.

6 Conclusion

We present a fully automatic and sound reduction approach to verify neural networks. Our approach
considers the given specification during the reduction, which enables larger reductions than related work
without compromising verifiability. All parameters of our approach are automatically tuned to minimize
verification time, which greatly improves the usability of our approach. Additionally, while related work
mostly consider networks with ReLU activations, our approach is agnostic towards the type of activation
function as the reduction is realized using the respective output bounds. This simple yet effective approach is
demonstrated in an extensive evaluation and ablation studies, where the verification time is reduced by up to
96%. These results are achieved on networks much larger than previously considered in sound neural network
reduction. Moreover, we show how our reduced network can be reused despite its restriction on the input set
during branch-and-bound algorithms and closed-loop verification. We hope this research advances the safe
deployment of neural networks in safety- and time-critical environments.

1 ERAN network variants taken from the ERAN website: https://github.com/eth-sri/eran
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Appendix
A Proofs

In this section, we give the missing proof of the main body of the paper:
Proposition 4 (Neuron Merging). Given a nonlinear hidden layer k ∈ [κ] of a network Φ, output bounds
Ik ⊇ H∗

k ⊂ Rnk , a merge bucket B ⊆ [nk], and the indices of the remaining neurons B = [nk]\B, we construct
a sound reduced network Φ̂, where we adjust the nonlinear layer k to only process the remaining neurons, and
in the adjacent linear layers, we remove the merged neurons and bound the approximation error:

Layer k − 1: Ŵk−1 = Wk−1(B,·), b̂k−1 = bk−1(B), Î ′
k−1 = I ′

k−1(B),

and layer k + 1: Ŵk+1 = Wk+1(·,B), b̂k+1 = bk+1, Î ′
k+1 = Wk+1(·,B)Ik(B).

Proof. Soundness. We show that the output Ĥk+1 of layer k + 1 of the reduced network Φ̂ is an outer
approximation of the exact set H∗

k+1:

H∗
k+1 =(1)

Lk+1
(
Lk

(
Lk−1(H∗

k−2)
)) (2)= Lk+1

(
Lk

(
Wk−1(H∗

k−2) + bk−1 ⊕ I ′
k−1

))
.

Without loss of generality, we relabel the neurons such that B := [|B|] and partition the neurons of layer k
using the Cartesian product:

H∗
k+1 = Lk+1

(
Lk

(
(Wk−1(B,·)H∗

k−2 + bk−1(B) ⊕ I ′
k−1(B))× (Wk−1(B,·)H∗

k−2 + bk−1(B) ⊕ I ′
k−1(B))

))

Rewriting the merged neurons (first term) using (1) and the remaining neurons (second term) using L̂k−1, L̂k

as defined in Prop. 4 results in:

H∗
k+1 = Lk+1

(
Lk

(
H∗

k−1(B) ⊕ I ′
k−1(B)

)
× L̂k

(
L̂k−1(H∗

k−2)
))

.

We then enclose all merged neurons by the given interval bounds:

H∗
k+1 ⊆

(Def. 3)
Lk+1

(
Ik(B) × L̂k

(
L̂k−1(H∗

k−2)
))

=: H′
k+1,

and propagate them forward to the next nonlinear layer k + 1. This operation implicitly propagates the new
constant neuron forward to the bias of the layer k+1 as well without inducing additional outer approximations.
Thus, using the identity W (Ĩ1 × Ĩ2) = W(·,B)Ĩ1 ⊕W(·,B)Ĩ2, we obtain:

H′
k+1 =(Def. 1)

Wk+1

(
Ik(B) × L̂k

(
L̂k−1(H∗

k−2)
))

+ bk+1

=
(

Wk+1(·,B)Ik(B) ⊕Wk+1(·,B)L̂k

(
L̂k−1(H∗

k−2)
))

+ bk+1.

Finally, rearranging the terms obtains L̂k+1 as defined in Prop. 4:

H′
k+1 = (Wk+1(·,B)L̂k

(
L̂k−1(H∗

k−2)
)

+ bk+1 ⊕ Wk+1(·,B)Ik(B)

= L̂k+1

(
L̂k

(
L̂k−1(H∗

k−2)
))

,

which we can enclose using the underlying verification engine:

H′
k+1 ⊆

(Prop. 3)
Ĥk+1.

Hence, H∗
k+1 ⊆ H′

k+1 ⊆ Ĥk+1.
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Overhead complexity of Alg. 2. To analyze the complexity of the overhead due to bound propagation
in Alg. 2 (Alg. 2 to 2), let us introduce some notations: Given two functions f, g, we use the notation
f(x) ∈ O(g(x)) ⇐⇒ lim supx→∞

|f(x)|
|g(x)| < ∞, and f(x) ∈ Ω(g(x)) ⇐⇒ lim supx→∞

|f(x)|
|g(x)| > 0. Then, the

computation of bounds using intervals through both layers (Alg. 2) can be done in O(nk−1nk−2). In contrast,
propagating the zonotope Hk−2 ⊂ Rnk−2 through the next linear layer k − 1 is in Ω(nk−1n2

k−2) as Hk−2 has
at least nk−2 generators, with additional computations necessary to enclose the nonlinear layer k (Prop. 3).
As O(nk−1nk−2) ∩ Ω(nk−1n2

k−2) = ∅, the computational overhead for the bound propagation is negligible.
This becomes even more favorable with more complex set representations being used as they usually do not
have a better computational complexity than zonotopes on the relevant operations.
Theorem 1 (Sound Neural Network Reduction). Given an input set X , a neural network Φ, and a reduction
rate ρ, Alg. 2 constructs a reduced network Φ̂ρ satisfying the problem statement in Sec. 2.5.

Proof. For the main condition in the problem statement (Sec. 2.5)

Φ̂ρ(X ) ∩ S = ∅ =⇒ Φ(X ) ∩ S = ∅

to hold, we require that Φ̂ρ(X ) ⊇ Φ(X ) holds. This is the case as each step in Alg. 2 is outer-approximative.
In particular, as Prop. 4 holds, the computed error bounds ensure that the output of the original network
is contained in the output of the reduced network. Please note that the subset relation holds for the exact
evaluation of the respective sets, but might not hold if Prop. 3 is applied to compute the output set as a
different abstraction might be used.

Transformation of convolutional layers to linear layers. Convolutional layers can be transformed to
regular linear layers as defined in Def. 1 by viewing them as linear layers with shared weights (Bishop &
Nasrabadi, 2006, Sec. 5.5.6). Let us briefly restate the definition of a convolutional layer for convenience:
Definition 4 (Convolutional Layer (Bishop & Nasrabadi, 2006, Sec. 5.5.6)). Given an input I ∈ RcI ×hI ×wI

and a kernel K ∈ RcO×cI ×hK×wK , a convolutional layer computes the output O ∈ RcO×hO×wO for k ∈ [cO],
i ∈ [hO], j ∈ [wO] as follows:

O(k,i,j) =
cI∑

l=1

hK∑

m=1

wK∑

n=1
K(k,l,m,n)I(l,i+m,j+n),

where hO = hI − (hK − 1), wO = wI − (wK − 1) and cI , cO are the number of input and output channels,
respectively.

The same operation as in Def. 4 can be computed by flattening the input image I into a vector:

I⃗ =
[
I1 . . . IcI

]T
,

with Il =
[
I(l,1,·) . . . I(l,hI ,·)

]
, l ∈ [cI ],

(8)

and correctly populating each row of the weight matrix WK ∈ R(cO·hO·wO)×(cI ·hI ·wI ) with the kernel K:

WK =




K(1,1,1,1) K(1,1,1,2) . . . 0

0 K(1,1,1,1)
. . . 0

... . . . ...
0 · · · · · · K(cO,cI ,hK ,wK)




. (9)

Please note that WK is very sparse. If the convolutional layer has a bias, the construction of the resulting
bias vector is analogous.
Corollary 1 (Sound Compression). Given an uncertain image X ⊂ RcI ×hI ×wI

+ and a reduction rate ρ ∈ [0, 1],
we can construct a neural network Φ̂ρ that compresses this image with formal error bounds as follows: Let
K ∈ RcI ×cI ×1×1 be a kernel of a convolutional layer, where

K(k,l,1,1) =
{

1 for k = l,
0 otherwise,

k, l ∈ [cI ], (7)
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Table 1: Network sizes and activation functions. Most networks are taken from VNN-COMP benchmarks
(Brix et al., 2024)) and the others are variants from them provided by the team proposing the respective
benchmark.

Dataset Benchmark Activation Description

MNIST

ERAN

ReLU Fully-connected with 6× 100 neurons
ReLU/Sigmoid Fully-connected with 6× 200 neurons

ReLU Fully-connected with 6× 500 neurons
ReLU/Sigmoid/Tanh CNN with 2 convolutions and 2 linear layers

Sigmoid Fully-connected with 6× 200 neurons

MNISTFC
ReLU Fully-connected with 2× 256 neurons
ReLU Fully-connected with 4× 256 neurons
ReLU Fully-connected with 6× 256 neurons

CIFAR-10
Marabou

ReLU Large CNN with 2 convolutions and 2 linear layers
ReLU Medium CNN with 2 convolutions and 2 linear layers
ReLU Small CNN with 2 convolutions and 2 linear layers

Cifar2020 ReLU CNN with 4 convolutions and 3 linear layers
ACAS-XU ReLU Fully-connected with 7× 50 neurons

QUAD Sigmoid Fully-connected with 3× 64 neurons

and Φ be a neural network with two convolutional layers with kernel K and one ReLU activation. The reduced
network Φ̂ρ, obtained by applying Thm. 1 using X , ρ, and dynamic merge buckets compresses the input X
with sound error bounds according to ρ.

Proof. The original network Φ computes the identity by construction. The image is compressed in the hidden
layer of Φ̂ρ (Thm. 1). The computed bounds ensure X ⊆ Φ̂ρ(X ).

Corollary 2 (Reusing Reduced Network on Subsets). Given a neural network Φ, an input set X , and a
reduction rate ρ, then a reduced network Φ̂ρ according to Thm. 1 can be reused for all X ′ ⊆ X .

Proof. The proof follows from the construction of Φ̂ρ using Thm. 1.

B Additional Experiments and Ablation Studies

B.1 Evaluation Details

All computations were performed on an Intel® Core™ Gen. 11 i7-11800H CPU @2.30GHz with 64GB memory
if not stated otherwise. The GPU results for α, β-CROWN were computed on the same device using a
NVIDIA GeForce RTX 3080 laptop GPU. Details about the individual network can be found in Tab. 1.
For all image datasets, we sample 100 correctly classified images from the test set and average the results.
The perturbation radius ϵ ∈ R+ is always stated with respect to the normalized images X ⊂ [0, 1]n0 . If not
otherwise stated, feed-forward neural networks are reduced using static merge buckets and convolutional
neural networks using dynamic merge buckets (Sec. 3.2).

Figures showing remaining number of neurons: For all figures showing the remaining number neurons
while still verifying the given specification, our reduction results are illustrated by the mean remaining input
neurons per nonlinear layer at even k ∈ [κ]. The number of input and output neurons of the entire network
are displayed at k = 1 and k = κ + 1, respectively. We do not show the number of input neurons of a linear
layer k + 1, as it has the same number of input neurons as the preceding nonlinear layer k. The number of
neurons of the original network is shown in the same color with reduced opacity. Additionally, we show error
bars indicating one standard deviation from the mean reduction per layer.
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Figure 8: The relative verification time of the reduced network primarily depends on the reduction rate ρ:
ERAN sigmoid network (left) and ERAN CNN (right).
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Figure 9: Fully automatic network reduction: Comparison of outer-approximative bounds of the prediction
for an MNIST image with ϵ = 0.01 using the ERAN sigmoid network for different reduction rates ρ.

B.2 Ablation Study

In this section, we revisit all components and parameters to analyze their impact on the overall result.

B.2.1 Varying the Reduction Rate ρ

Let us first analyze the effect of the reduction rate ρ on the overall verification process. We exemplarily
show the relative verification time of two networks in Fig. 8, where the shown times are normalized by the
time to verify a single query using the original networks (0.97s the for ERAN sigmoid network and 3.76s
ERAN convolutional neural network). Please note that the times for ρ < 1 also include the time to reduce
the network as the networks are reduced on-the-fly (Alg. 2). Thus, Fig. 8 shows that whenever the networks
are reduced to a certain reduction rate ρ, the overall verification time is reduced to a similar degree.

For a challenging MNIST image with label 6, Fig. 9 shows the computed outer-approximative output bounds
using the ERAN sigmoid network for different ρ. The bounds quickly converge with increasing ρ, and the
image can be verified with ρ ≥ 30% in this example.

B.2.2 Varying the Bucket Tolerance δ

Please note that our approach automatically tunes all internal parameters for any user-defined reduction
rate ρ. In particular, the bucket tolerance δ is chosen accordingly such that the desired amount of neurons are
merged (Alg. 1). To obtain a better understanding on this internal parameter, we vary the bucket tolerance δ
for different perturbation radii ϵ, where a larger value for δ results in a more aggressive merging, and show
the corresponding reduction rate ρ and number of verified instances in Tab. 2. The effects heavily depend on
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Table 2: ERAN benchmark: Change of verification rate (VR) and reduction rate ρ with varying perturbation
radius ϵ and bucket tolerance δ.

Network 6× 200 Sigmoid ReLU
ϵ δ ρ VR [%] ρ VR [%]

0.0050 0.1000 0.2392 69.00 0.5496 76.00
0.0050 0.0100 0.3700 99.00 0.5500 100.00
0.0050 0.0050 0.4242 100.00 0.5573 100.00
0.0050 0.0010 0.5146 100.00 0.5607 100.00
0.0050 0.0001 0.6380 100.00 0.5618 100.00
0.0020 0.1000 0.1640 94.00 0.3602 95.00
0.0020 0.0100 0.3028 99.00 0.3556 100.00
0.0020 0.0050 0.3455 100.00 0.3549 100.00
0.0020 0.0010 0.4705 100.00 0.3479 100.00
0.0020 0.0001 0.6004 100.00 0.3494 100.00
0.0010 0.1000 0.1318 98.00 0.3143 92.00
0.0010 0.0100 0.2782 100.00 0.2846 100.00
0.0010 0.0050 0.3336 100.00 0.2931 100.00
0.0010 0.0010 0.4507 100.00 0.2909 100.00
0.0010 0.0001 0.5882 100.00 0.2882 100.00
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Figure 10: Reduction results with varying network sizes: (a) ERAN network variants and (b) MNISTFC
networks.

the specifications and networks, such that the size of the resulting reduced network is not immediately clear.
Fortunately, a user only has to specify the reduction rate ρ and this internal parameter is tuned automatically.

B.2.3 Varying the Network Size

Let us also analyze our approach with varying network sizes. In particular, we vary (i) the number of
hidden neurons and (ii) the number of layers on an otherwise identical network architecture. For the first
experiment, we take network variants from the ERAN benchmark2, and show the result in Fig. 10a: Despite
the different number of hidden neurons in the original network, the number of remaining neurons in the
verified reduced network are not proportional to the respective original network. We assume that this is due
to the typical over-parametrization of networks (Neyshabur et al., 2018), with larger networks having a larger
over-parametrization, and our reduction approach extracts the relevant subnetwork. A similar observation

2 ERAN network variants taken from the ERAN website: https://github.com/eth-sri/eran
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Figure 11: Convolutional neural networks require dynamic merge buckets to exploit similar neighboring
pixels.

Table 3: Average reduction rates for large perturbation radii on the CORA benchmark. Entries marked with
a hyphen (−) indicate combinations where not enough verifiable images were found for a meaningful average.

Dataset Training ϵ = 0.01 ϵ = 0.02 ϵ = 0.05 ϵ = 0.1
MNIST Standard (Bishop & Nasrabadi, 2006) 0.3338 - - -
MNIST Trades (Zhang et al., 2019) 0.2760 0.3666 - -
MNIST Set (Koller et al., 2024) 0.1821 0.1879 0.2467 0.3556

can be made with increasing number of layers (Fig. 10b), where the networks are taken from the MNISTFC
benchmark.

B.2.4 Static vs. Dynamic Merge Buckets

Let us also analyze the types of merge buckets (Sec. 3.2). While saturated neurons are common in fully-
connected networks (Fig. 2), these might not occur in convolutional neural networks. We show this in Fig. 11
on a convolutional neural network taken from the ERAN benchmark, where large reductions are only possible
when dynamic merge buckets are used using a fixed bucket tolerance δ.

B.2.5 Large Perturbation Radii ϵ

In this study, we analyze the impact of large perturbation radii on the network reduction while still verifying
the specification. Please note that networks are generally not robust against large perturbation radii. In
VNN-COMP (Brix et al., 2024), typical perturbation radii for standard neural networks are around ϵ = 0.01
with respect to the normalized images X ⊂ [0, 1]n0 . However, counterexamples can easily be extracted for
larger radii and thus the specification is falsified. Of course, such networks can also not be verified using our
approach. However, there is some literature on robustifying the networks (e.g., through adversarial training)
and VNN-COMP also has a benchmark CORA featuring such networks, which can be used to demonstrate
our approach on larger perturbation radii. We present the reduction results on those networks in Tab. 3.

B.3 Additional Experiments

B.3.1 Sound Image Compressing as Preprocessing Step

Fig. 12 shows how the sound compression preprocessing of the input image (Alg. 3) can further reduce the
overall network size (ERAN CNN with sigmoid activation). The prepended layers shown at −1 and 0 only
have very few remaining neurons, where we only show the number of neurons corresponding to the dimension
of the constructed zonotope. Thus, the average total verification time is reduced from 4.59s to 0.78s as the
initial reduction (Alg. 3, Alg. 3) is computationally cheap and the representation of the involved sets is much
smaller, i.e., the zonotopes have fewer generators, compared to verifying the original network. Our evaluation
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Figure 12: ERAN CNN with sigmoid activation: Input compression (Alg. 3) versus normal reduction (Alg. 2).

Table 4: Average network reduction and verification time of a property of the ACAS Xu benchmark.
Neural Network Number of Neurons Verification Time

Original Network 100.00 % 7.38s
Reduced Network 61.33 % 4.21s

shows that, on average, only 28 input neurons remain compared to the 784 input neurons of the original
image (Fig. 12).

B.3.2 Reusing a Reduced Network

Finally, we give two examples where the reduced network was reused despite its input set restriction (Cor. 2).

ACAS Xu benchmark We demonstrate the applicability of our approach on non-image data using the
ACAS Xu benchmark (Bak et al., 2021). The benchmark consists of multiple networks and properties used
to verify turn advisories to an aircraft to avoid collisions. The networks have 6× 50 hidden layers with 5
input and 5 output neurons. As this benchmark is particularly hard to verify, we apply a branch-and-bound
strategy by recursively splitting the input set along the most sensitive dimension. Using Cor. 2, we can reduce
the network once on the original input set and reuse the reduced network to verify all subsets. The reduced
network has on average only ρ = 60% of the neurons of the original network (Tab. 4, averaged over 10 runs).
While Boudardara et al. (2023b) state that they can reduce the ACAS Xu networks down to a total number
of 10 neurons, the obtained output sets are very conservative with a radius up to 1017 (Boudardara et al.,
2023b, Fig. 14-16), which makes it impossible to verify the given specification.

Closed-loop verification Finally, let us revisit the quadrotor example from Sec. 4.2 to show the applicability
of our approach in closed-loop systems: We enlarge the current reachable set at t = 4s by a factor of 1.5 to
compute the reduced network controller. This enlargement is necessary as the reachable set still oscillates
around its equilibrium. The reduced network can then be reused in 60% of the remaining network evaluations.
Whenever the current reachable set leaves the enlarged set used to reduce the network, the verification
algorithm falls back to the original network until the reduced network can be used again. In the quadrotor
example, the reduced network was always used again after one time step. Fig. 13 shows the relevant part of
Fig. 5 and includes the reachable set computed with the reduced network, where both reachable sets remain
within the desired goal region, and the reachable set computed with the reduced network is insignificantly
larger.
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Figure 13: Quadrotor example: We can reuse a reduced network Φ̂ once the system starts to converge to the
desired altitude. The resulting reachable set is insignificantly larger.
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