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ABSTRACT

Large Language Model (LLM)-based agents are increasingly applied to tasks re-
quiring structured reasoning, tool use, and environmental adaptation, such as data
manipulation, multistep planning, and computer-use automation. However, despite
their versatility, current training paradigms for model weight optimization methods,
like PPO and GRPO, remain relatively impractical with their high computational
overhead for rollout convergence. In addition, the resulting agent policies are diffi-
cult to interpret, adapt, or incrementally improve. To address this, we investigate
creating and refining structured memory of experiential learning of an agent from
its environment as an alternative route to agent optimization. We introduce BREW
(Bootstrapping expeRientially-learned Environmental knoWledge), a framework
for agent optimization for downstream tasks via KB construction and refinement.
In our formulation, we introduce an effective method for partitioning agent memory
for more efficient retrieval and refinement. BREW uses task graders and behavior
rubrics to learn insights while leveraging state-space search for ensuring robustness
from the noise and non-specificity in natural language. Empirical results on real
world, domain-grounded benchmarks – OSWorld and τ2Bench – show BREW
achieves 10− 20% improvement in task precision, 10− 15% reduction in API/-
tool calls leading to faster execution time, all while maintaining computational
efficiency on par with base models. Unlike prior work where memory is treated as
static context, we establish the KB as a modular and controllable substrate for agent
optimization – an explicit lever for shaping behavior in a transparent, interpretable,
and extensible manner.

1 INTRODUCTION

Large Language Model (LLM) based agents are rapidly being deployed for structured reasoning,
tool use, and autonomous interaction in real-world environments (Li, 2025). From computer-use and
spreadsheet automation to software engineering pipelines, these agents drive tasks such as multi-step
planning, data manipulation, and adaptive workflows (Qin et al., 2025; Jimenez et al., 2024; Yang
et al., 2024; Anthropic, 2024; OpenAI, 2025). For example, a language agent might help automate a
multi-step workflow like collecting data from different sources, cleaning or validating it, and then
uploading it onto a dedicated server, all while adjusting its plan if the format or structure of the data
changes unexpectedly (Yang et al., 2023; Zhou et al., 2024; Shinn et al., 2023; Bajpai et al., 2024).
Yet, despite these successes, top-performing agents generally score underwhelmingly on challenging
real-world benchmarks—well behind human experts (Yao et al., 2024; Barres et al., 2025a; Xie et al.,
2024; Ma et al., 2024). As an example, consider the following scenario:

Case Study on Computer Use Agents

A computer-use agent in an Ubuntu environment tasked with automating software installation
across multiple sessions.
In its first encounter, it struggles through a 47-step process: opening the wrong package
manager, executing redundant dependency checks, and making 23 API calls to complete what
could be a 6-step workflow.
When presented with a similar installation task in the next session, the agent repeats the same
inefficient exploration — as if encountering the problem for the first time.
A human user, by contrast, would likely have a recollection from internalized memory of the
optimal sequence after the first attempt, recognizing the environmental patterns.”
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 “Would the behavior and edits
of the agent remain robust if the
same task were performed on a
slightly different system setup?”

…

{agent-alignment,correctness}

 “Would the behavior and edits
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…
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Figure 1: BREW architecture overview using examples from the OSWorld dataset. Step 1 indicates
the trajectory generation process with agent alignment to human-validated rubrics and correctness
using task-specific grader. Steps 2–4 indicate the Reflector Agent, which learns key concepts and
corresponding insights from trajectories. Step 5 indicates the Integrator Agent, which integrates
knowledge from the Reflector Agent to bootstrap the KB. We introduce Expand-and-Gather MCTS
for finding the best KB configuration by a reward-guided search.

This scenario illustrates a fundamental limitation of current language agents: despite their impressive
capabilities in reasoning and tool use, they lack the ability to accumulate and apply experiential
knowledge across task sessions. Each interaction begins from a blank slate, forcing agents to
repeatedly explore the same action spaces and rediscover the same solutions (Erdogan et al., 2025).
Real-world tasks like long horizon multi-stage automation demand more than just “reactive” (Yao
et al., 2023) tool loops. They require persistent & interpretable learnings from past experiences -
what works, what fails and why.

To close this gap, recent work has explored learning agent behavior using model weight optimiza-
tion (Schulman et al., 2017; Rafailov et al., 2024; Shao et al., 2024), where agents are trained to
maximize success across a wide variety of tool-use episodes. However, while conceptually sound, this
suffers from practical limitations. First, it requires expansive exploration over large rollout spaces to
converge, especially in domains where tasks are diverse, goals are sparsely defined, and intermediate
feedback is noisy or delayed. Second, the resulting policies are often opaque—difficult to interpret,
revise, or debug—limiting their real-world deployability. Finally, these policies are tightly coupled to
the task distributions they were trained on, making it difficult to adapt or incrementally improve them
when downstream requirements shift.

In contrast, others have explored learning of knowledge onto a memory module that remains attached
to an agent. These existing memory-augmented agents can be broadly classified into either ones
which (i) store only transient trajectory contexts that vanish between episodes like Mem0 (Chhikara
et al., 2025; Xu et al., 2025b), or (ii) embed high-level notes directly in the prompt such as MetaRe-
flection (Gupta et al., 2024b) and GEPA(Agrawal et al., 2025). While the latter often do not retain
actionable details for future simple tasks, neither of these approach supports modular updates,
fine-grained retrieval, or transparent inspection of what the agent “knows.” (Xu et al., 2025a).

Leveraging learnings from both camps, we introduce BREW (Bootstrapping experientially-learned
environmental knowledge), a framework that incrementally constructs and refines a knowledge base
(KB) a structured collection of concept-level documents in natural language, directly from an agent’s
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past interactions. This KB then serves as a persistent memory for the agent to retrieve knowledge in
future executions to improve precision and efficiency outcomes. Our key contributions are–

• Novel experience-driven KB construction. We propose a technique for leveraging agent’s past
interaction trajectories to generate uniquely-partitioned concept-level KB documents. This process
is guided by rubrics and task-specific graders which ensures that memories are both semantically
aligned with task objectives and human-interpretable.

• State-space search for memory optimization. We formalize the selection and update of KB entries
as a state search problem and introduce an efficient reward-guided learning scheme, Expand-and-
Gather Monte Carlo Tree Search (EG-MCTS), that learns to prioritize the most impactful memories
for robust, multi-step reasoning.

• State-of-the-art results. On domain-grounded benchmarks including OSWorld and τ2Bench,
BREW achieves significant gains of in the range of 10− 20% towards task precision as well as
10− 15% fewer steps leading to faster execution, while maintaining memory and compute costs
comparable to base LLMs.

2 RELATED WORKS

Agent Learning from Demonstrations Recent work has leveraged LLMs to isolate reusable
skills through interactive decomposition (Hashemzadeh et al., 2024), synthesizing executable do-
main specific functional abstractions (Khan et al., 2025) or by learning in-prompt memory (Gupta
et al., 2024b). These approaches focus on structured skill extraction from LLM-guided interactions,
yet remain reliant on static decomposition or offline synthesis. In contrast, BREW dynamically
constructs and refines an experiential memory learning necessary semantic fragments via rollout
generated insights and structured knowledge-base search (MCTS) to support long-horizon, mem-
ory augmented planning. Besides unlike prompt optimization based techniqes (Agrawal et al.,
2025; Gupta et al., 2024b), BREW represents learning as retrievel agent memory knowledge bases,
providing extensibility to the memory.

Agentic Memory The concept of providing agents with controllable memory has a rich history.
(Littman, 1993). Memory mechanisms are attracting more and more attention lately (Packer et al.,
2024; Wang et al., 2025; Xu et al., 2025a; Chhikara et al., 2025; Xu et al., 2025c; Hu et al., 2025).
These works focus towards storing relevant context in a structured format like graph or a tree so as
to RAG over it. While these techniques work well for sub-domains they are designed for, they fail
to generalize (Hu et al., 2025). In contrast, BREW uses a reward driven state exploration to select
the memory states making it more robust to ambiguous queries and especially useful in multi-turn
settings.

State Based Explorations State-space search has been extensively used for exploration based
learning (Silver et al., 2016; Liu et al., 2025). With he advent of prompt-tuned LLM systems, state
space techniques are being actively explored in the community for text-based optimization (Gupta
et al., 2024a; Wang et al., 2023; Novikov et al., 2025). Notably, our technique builds upon this work
and generalizes it to general purpose Agent Memory Learning.

3 BREW: ARCHITECTURE

This section describes our proposed Bootstrapping expeRientially-learned Environmental knoWledge
technique, BREW, which constructs and iteratively refines a Memory KB using trajectory insights
guided by human-validated general-purpose agent behavior metrics, task-specific evaluation, and
latent insight generation. We decompose the problem of learning the optimal KB by partitioning
memory as local documents associated with semantic concepts, and solve the KB learning problem
by our novel Expand-and-Gather Monte Carlo Tree Search (EG-MCTS) algorithm. Figure 1 provides
an architecture overview of BREW, and Algorithm 1 describes the pseudocode.

3.1 TRAJECTORY GENERATION

Given the training dataset, we generate full-length trajectories, hereby referred to as rollouts, for each
query using an LLM-powered agent conditioned on its associated KB. At initialization, the KB is
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empty, and we generate rollouts with an empty KB. Each rollout is evaluated using a correctness
grader, which assigns a binary success label and an LLM based qualitative assessment against a set
of human-validated general-purpose agent behavior rubrics (Biyani et al., 2024) (Step 1 in Figure 1).

3.2 REFLECTOR AND INTEGRATOR AGENTS

Reflector Agent: ReflAgent takes as input a rollout with its rubric and correctness labels, and
outputs sentence-level insights with mapped concepts:

{concepts, insights} = ReflAgent({rollout, eval}). (1)
Examples of concept–insight pairs appear in Step 2 of Figure 1.

Concept Deduplication: Concept–insight pairs are annotated independently per rollout, often
producing overlapping or paraphrased concepts. We address this via semantic clustering (Steps 3–4,
Figure 1; Algorithm 1, line 3): contextual embeddings for each concept are generated using an LLM,
clustered, and each insight is mapped to its cluster representative. Details appear in Algorithms 2 and
3 in Appendix A.

Integrator Agent: IntegAgent incrementally builds and refines KB documents {d(si)} ∈ D(si)
during environment interaction. Instead of a centralized memory, the KB is partitioned into local
documents, each tied to a meta concept. This design enables (1) efficient, context-specific retrieval;
(2) modular updates with minimal interference; and (3) natural alignment with task semantics, as
deduplicated meta concepts capture meaningful behavioral abstractions. Unlike prior work assuming
flat memory or dialogue histories, this structure is well-suited for long-horizon, procedural tasks
where behaviors cluster around discrete skills.

The KB is dynamically populated: concepts central to the dataset receive more updates, shaping
memory around frequent behaviors. At each state, for meta concept k, IntegAgent updates its
document dk via

dk(si+1)← IntegAgent(k, insightsk, dk(si)). (2)
To reduce LLM variance and improve consistency, we use the Expand-and-Gather MCTS (EG-MCTS)
method (Figure 2).

Formally, the KB at state si is the union of all concept-localized documents:

D(si) =
⋃
k∈K

{dk(si)}, (3)

where K is the set of all meta concepts and dk(si) is the document for concept k at state si.

3.3 EXPAND-AND-GATHER MCTS FOR OPTIMAL KB SEARCH

We start by creating a set of meta-concepts after deduplicating concepts extracted by ReflAgent
using the first set of trajectory rollouts. We freeze this meta-concept set K, and use it to initialize a
KB with an empty document per concept k ∈ K.

We model the problem of finding the optimal KB D∗ as a search problem in the state space of all
possible KBs D. To simplify this state search, we model KB D as a collection of concept level
documents. This modeling allows us to break down the larger search space into a collection of
simpler document level search problems for each concept k to find the optimal document d∗k. We then
construct the optimal KB D∗ by combining all optimal documents d∗k for each concept k as follows:

D∗ =
⋃
∀k

{d∗k} (4)

Notably, even though we are modeling document level search as independent optimization problems,
each document in the KB is not independent of the others. For example, an agent can retrieve any
document in the KB during inference and this retrieval making it hard to assess the impact of changing
a document in isolation. To solve this we propose Expand-and-Gather MCTS (EG-MCTS), which
enables searching these disjoint state spaces concurrently using parallel MCTS explorations that are
synced after each iteration. To achieve this we perform node expansions in the respective search
spaces independently but condition reward calculation and insight generation on a running optimum
KB state. Each iteration of EG-MCTS can be broken down two phases:
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Algorithm 1 BREW: Bootstrapping Experientially-learned Environmental Knowledge
Require: Training samplesQtrain, eval samplesQeval, rubrics, iterations M , candidates per expansion

h
Ensure: Optimized KB D∗

Initialization
1: D0 ← ∅
2: B ← GENERATEINSIGHTS(Qtrain,D0, rubrics)
3: K ← DEDUPLICATECONCEPTS(B) ▷ Initial concept set
4: for each k ∈ K do
5: d0k ← INTEGAGENT(k, Ik,∅)
6: Initialize treek with root node d0k
7: end for
8: Dcurrent ←

⋃
k∈K{d0k} ▷ Initial KB

EG-MCTS Optimization
9: for t = 1 to M do ▷ Parallel expansion across concepts

10: for each k ∈ K do
11: sk ← SELECTBESTNODE(treek) ▷ UCT selection
12: Dbest ←

⋃
k′∈K{dbest

k′ } ▷ Current best docs
13: EXPANDNODE(sk, k, h, Dcurrent, Dbest, treek)
14: end for ▷ Update current best documents
15: for each k ∈ K do
16: dbest

k ← best document in treek
17: end for
18: Dcurrent ←

⋃
k∈K{dbest

k }
19: end for
20: return Dcurrent

Time Complexity: O(|Qtrain| · TLLM +M · |K| · h · Tagent)

Expand Phase: During this stage, for each search tree, we pick the best state s∗ and expand
it concurrently. To perform this expansion the KB D(s∗) is constructed by including the current
document dk(s∗) and the best (oracle) documents {d∗i }i ̸=t for all other positions. Thus, the KB at
iteration t, 0 ≤ t ≤ E is defined as:

Dt = dt ∪ d∗i:i ̸=t (5)

We use this KB D(si) to generate trajectory rollouts which are consumed by the ReflAgent to
generate insights. We then use the IntegAgent to generate various updated variants of d∗k e.g.,
dk(si), ..., dk(sj), where 0 ≤ i ≤ E and 0 ≤ j ≤ E. We then estimate a reward R for each of these
newly generate states and update rewards of parent states using backpropagation.

Gather Phase: During this stage, the current best states from each document’s MCTS tree are
gathered together and distributed to every MCTS tree for reward calculation. This is important to
(i) Estimate rewards for each expanded state, & (ii) Generate new insights for further node expansion.

3.4 REWARD-GUIDED OPTIMIZATION

This section describes BREW’s joint reward and loss optimization for learning an optimal KB.

Reward Objective: Each document state is rewarded based on two complementary criteria: (i) how
well the current document contributes to accurate downstream reasoning, and (ii) how retrievable
it is in the context of a growing KB. Formally, the total reward at time step t is defined as:

Rt = λcorr ·Rcorr
t + λret ·Rret

t (6)

where Rcorr
t is the correctness reward, Rret

t is the retrieval reward, and λcorr, λret ∈ [0, 1] are scalar
weights with λcorr + λret = 1.
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𝐭𝐫𝐞𝐞𝐤

## Search and Open Files  
**Purpose:** Locate and open files 
(documents, images, downloads) for 
further work.

**How-To:**  
- Launch File Manager (Nautilus) via 
launcher, dock, or `Super + E`.  
- Search: Press `Ctrl + F` or use the 
search icon.  
- Enter part or all of the filename 
(wildcards like `*.pdf` work).  
…

## Search and Open Files

**When to use**: To find documents, 
spreadsheets, images, or downloads for 
editing, conversion, or attachment.

### How to Perform
- Open File Manager (Nautilus) via 
launcher or dock  
- Press `Ctrl + F` or click the search 
icon  
- Enter part of the filename, full name, 
or use wildcards (`*.pdf`, ̀ report*`)  
…

𝒅𝒌(𝒔𝒊)

…

## Search and Open Files

**When to use**: To find documents, 
spreadsheets, images, or downloads for 
editing, conversion, or attachment.

### How to Perform
- Open File Manager (Nautilus) via 
launcher or dock  
- Press `Ctrl + F` or click the search 
icon  
- Enter part of the filename, full name, 
or use wildcards (`*.pdf`, ̀ report*`)  
…

𝒅𝒌(𝒔𝒊)

Node expansion at state 𝑠𝑖  for meta-concept 𝑘, 1 ≤ 𝑘 ≤ 𝐾.  

Node
Expansion

𝒅𝒌(𝒔𝒋)

𝒅𝒌(𝒔𝒊+𝟏)

𝐭𝐫𝐞𝐞𝐤

## Search and Open Files

**Quick Reference Table:**

+----------------------+-------------------------------+---------------------------+
| Task  | Shortcut/Action  | Tip  |
+----------------------+-------------------------------+---------------------------+
| Open File Manager  | Launcher, Dock, Super + E  | Pin to dock for speed  |
| Search Files  | Ctrl + F or Search icon  | Use * as wildcard  |
| Open File  | Double-click or Right-click  | "Open With" for choice  |
| Fast Folder Access  | Use sidebar in File Manager  | Add favorites  |
+----------------------+-------------------------------+---------------------------+

𝐸 iterations of MCTS, such that 0 ≤ 𝑖 ≤ 𝐸, 0 ≤ 𝑗 ≤ 𝐸. State 𝑠𝑖 = 𝑐ℎ𝑖𝑙𝑑_𝑜𝑓(𝑠𝑝) and 
𝑠𝑗 = 𝑐ℎ𝑖𝑙𝑑_𝑜𝑓 𝑠𝑝  for meta-concept 𝑘, 1 ≤ 𝑘 ≤ 𝐾.

 

Expand Phase

Gather Phase

Iterations E

Reward Estimation: 
𝑅𝑐𝑜𝑟𝑟 + 𝑅𝑟𝑒𝑡

Expand Phase

…

Current best nodes from each 
MCTS tree are expanded by 

each MCTS node

Figure 2: Illustration of BREW’s KB optimization process using Expand-and-Gather MCTS with
OSWorld examples. In the Expand Phase, for each document k, we sample the best node from
treek using UCT and perfrom node expansion. Node rewards are estimated based on correctness and
retrievability. In the Gather Phase, the current best nodes from each tree are gathered at each node.
The process is repeated for the next iteration of KB refinement.

Correctness Reward: The correctness reward Rcorr
t evaluates the accuracy of the agent’s output

over a held-out query set Q, when reasoning over the current KB Dt. It is defined as:

Rcorr(dt|Dt) =
1

|Q|
∑
q∈Q

Evaltask(q,agent⊕Dt) (7)

where Evaltask is a task-specific evaluation function (e.g., question-answering accuracy, entailment
correctness), and agent⊕Dt denotes the agent acting over the hybrid KB.

Retrieval Reward: The retrieval reward Rret
t measures how effectively the current document dt

can be retrieved from the current KB Dt. For a held-out query set Q, it is computed using the mean
reciprocal rank (MRR):

Rret(dt|Dt) =
1

|Q|
∑
q∈Q

MRRq(dt,Dt) (8)

This encourages documents that are not only helpful in reasoning but also easily retrievable over Dt.

4 EXPERIMENTAL SETUP

Datasets We evaluate BREW on three diverse benchmarks testing different aspects of interactive
agent capabilities: OSWORLD for computer-use automation (Xie et al., 2024), τ2-Bench for tool
use (Barres et al., 2025b), and SPREADSHEETBENCH for data manipulation (Ma et al., 2024).

1. OSWorld: This benchmark tests multimodal agents on real-world computer tasks across 10
applications. We use GTA1-7B, a state-of-the-art computer-use agents with BREW. Tasks are
evaluated using 134 custom scripts that verify final application states.

2. τ2-Bench: This benchmark evaluates conversational agents on multi-turn tool-use scenarios across
Telecom, Retail, and Airline domains. We test o4-mini-based tool-calling agent, constructing
BREW KBs for every domain.

3. SpreadsheetBench: This benchmark evaluates agents on real-world spreadsheet manipulation,
spanning both cell-level and sheet-level tasks. It contains 912 authentic user instructions paired

6
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with 2,729 test cases (3̃ per instruction), sourced from Excel forums and blogs. Spreadsheets
include diverse formats with multi-table sheets (35.7%) and non-standard tables (42.7%). We test
o4-mini using a Python tool-calling agent, and enhance it with by adding an embedding based
Retrieval over the BREW KB generated over a small held-out train set of 30 samples.

Baselines We compare BREW against two widely used experiential memory approaches,
Cognee1 (Markovic et al., 2025) and Agent-Mem (Xu et al., 2025c), both of which serve as es-
tablished baselines for AI memory evaluation. Cognee is an open-source AI memory engine that
employs a graph-plus-vector memory architecture through an Extract–Connect–Learn pipeline, en-
abling agents to construct cross-document and cross-context connections entirely from previously
available trajectories. In contrast, Agent-Mem provides a scalable memory layer for dynamically
extracting and retrieving information from conversational data, with enhanced variants incorporating
graph-based memory representations. While Cognee primarily emphasizes cross-document relational
reasoning, Agent-Mem focuses on scalable personalization for conversational agents.

Other Experimental Configs: For all experiments, we use GPT-4.1-2025-04-14 as the base
LLM with expansion width e = 3, max depth k = 3, and balanced reward weights λcorr = λret =
0.5. During MCTS node selection, we use the UCT (Kocsis and Szepesvári, 2006) for balancing
exploration and exploitation Full experimental details are provided in the Appendix.

5 ANALYSIS & DISCUSSION

In this section, we present findings from our evaluation of BREW. For more details on qualitative
insights and discussion you may refer to the supplementary material.

5.1 VARIATIONS ACROSS STATE SEARCH STRATEGY

BREW performs a search across possible KB states using MCTS. We compare different state search
strategies to determine the relative trade-offs:

1. Iterative Refinement: In this strategy we generate one version of each document to generate an
initial KB, followed by a round of evaluations. We then use the aggregator agent to refine the
documents over the newly learned insights. We repeat this step multiple times up to a maximum
number of refinements. Note that in contrast to MCTS, in this strategy we do not perform node
expansions and rather explore a path in the search tree.

2. Greedy Search: In this strategy we greedily pick the best state during each node expansion and
only explore the sub-tree within it. This is in contrast to MCTS where, we explore different states
using the UCT algorithm that balances exploration and exploitation.

Table 1 presents how MCTS achieves consistent performance gains across all benchmarks. These
represent 1-5% improvements over alternative search strategies across tasks. Iterative refinement’s
poor performance reveals core limitations in the integrator agent feedback incorporation- which can
be attributed to inherent stochasticity in LLMs. This makes state exploration especially important for
textual optimization tasks like ours. We present a detailed analysis on how varying MCTS parameters
result in different final states in appendix.

5.2 TRENDS ACROSS SUB-TASKS

BREW learns recipes from sub-trajectories in OSWorld. Figure 3 shows that BREW (BREW)
improves success rates in 5 out of 10 OSWorld categories, achieving absolute gains of 4–16%
while maintaining performance parity in the remaining categories (Chrome, Gimp, LibreOffice
Calc, LibreOffice Impress, OS). The largest improvements appear in text-processing applications
(LibreOffice Writer: 14% → 24%, Thunderbird: 38% → 54%) and multimedia tools (VLC:
20% → 27%), with moderate gains in multi-application and development environments. Even
in settings with limited improvements in task correctness, BREW consistently reduces execution
length by 14–23 steps, highlighting more efficient planning. This pattern suggests that BREW’s

1github.com/topoteretes/cognee
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Method OSWorld τ2 Bench SpreadsheetBench
GTA1-7B o4-mini o4-mini

Baseline 44.20 56.63 44.30
Cognee 46.70 57.71 42.10
Agent-Mem 43.83 52.69 42.00
BREW -Iterative 46.13 57.34 42.98
BREW -Greedy 45.55 59.14 45.94
BREW -MCTS 47.56 59.14 46.80

Table 1: Comparison of models under different evaluation setups, including Baseline model and
BREW augmented model. We report task success rate for OSWorld, ratio of independent tasks that
succeeded for τ2 Bench, and the 1st test case pass rate for SpreadsheetBench.
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Figure 3: The bar plot represents the category-wise success rate over various tasks in the OSWorld
dataset over the GTA1-agent, whereas the line plot demonstrates the reduction in the number of steps
for the successful cases. Note that even in scenarios where the KB doesn’t help increase the success
rate, it significantly reduces the number of steps needed to succeed.

architectural enhancements are particularly effective for tasks requiring complex sequential reasoning
and inter-application coordination, while preserving baseline robustness in domains constrained by
intrinsic task complexity.

A qualitative analysis of the knowledge bases (KBs) constructed by BREW further supports this
finding. We observe that BREW captures and represents sub-trajectory characteristics in natural
language, including application shortcuts, standard operating procedures, and strategies for localizing
UI elements. Since many UI tasks share common sub-trajectories, this representation facilitates
knowledge transfer across tasks within the same application. Moreover, BREW substantially reduces
reliance on granular UI interactions: while the baseline GTA1 model executes approximately 19,000
clicks and 17,821 keyboard actions, BREW significantly decreases this interaction complexity.

BREW learns aggressive resolution strategies for τ2−Bench To evaluate robustness of BREW,
we analyzed the distribution of failure modes across the τ2–retail dataset, focusing on four key error
categories: Wrong Argument, Wrong Info, Wrong Decision, and Partially Resolve. Figure 4 presents
a comparative chart for the baseline, BREW, Cognee and Agent-Mem.

Overall, BREW demonstrated consistent improvements across most error types compared to the
baseline and competing approaches. Specifically, BREW showed a notable reduction in “Wrong

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Argument” and “Wrong Decision” errors, indicating that it was better at capturing logical de-
pendencies in retail dialogues and making accurate decisions. Interestingly, Partially Resolve errors
were slightly higher for BREW than for Cognee, likely because BREW attempted more aggressive
resolution strategies that occasionally failed to fully satisfy user queries. Cognee appears to capture
richer factual details given its relatively lower Wrong Info errors, whereas Agent-Mem excels in
tracking conversation state and decision accuracy, as reflected in its reduced Wrong Decision failures.

BREW learns domain specific strategies for SpreadSheetBench BREW shows consistent
improvements over the Baseline for SpreadSheetbench, powered by domain specific insights learnt in
the KB. Specifically, we observed that most improvements came with a more precise placement of
formulas, in 90% of the cases brew showed improvements over the baseline, the difference was the
correct placement of code. This is followed by double checking the results before submitting at 85%,
and using the filter formula correctly at 65% of the cases.

Improvements in Task Efficiency We observe that overall, BREW enables agents to come to a
correct response in fewer steps compared to baseline.

OSworld. Figure 3 demonstrates that BREW enables GTA1 to complete tasks more efficiently.
Compared to the baseline GTA1 model’s average of ∼75 steps, the BREW-augmented model
completes tasks 14% faster with an average of∼64 steps. Analyzing performance by outcome reveals
that while step counts remain unchanged for failed cases, successful completions show a substantial
39% (rel.) reduction in execution steps, indicating improved planning efficiency for achievable tasks.

Wrong argument

Wrong info

Wrong decision

Partially resolve

Baseline
BREW

Cognee
AgentMem

Figure 4: Distribution of errors in τ2 Bench Retail

τ2Bench. Similarly, BREW reduces average
conversation turns from 29.47 to 28.43 (-3.5%),
while maintaining consistent step reductions
across categories. Step reductions average 1.7
steps for Retail and Telecom, but 3.1 steps for
Airline, indicating greater efficiency gains in
complex domains. Qualitative analysis sec-
onds these numbers showing how knowledge
base integration enables more direct task com-
pletion paths and improved planning quality,
though multi-turn interactions remain necessary
for complex sub-tasks.

SpreadsheetBench. While we observe a slight
increase in the number of turns across the entire
benchmark suite (4.5→ 5.4) in the case of the
baseline versus BREW, an interesting pattern
emerges in more than 82% of the cases the base-
line and the BREW appended agent performs
similarly with similar turn consumption. BREW leads to an improvement in 12% of the cases where
the KB is able to address gaps in the baseline technique to enable the agent to go exploring further
leading to positive outcomes with an average of 1 step increase in the interactions.

6 CONCLUSIONS

In this work, we explored an alternative approach to agent optimization by focusing on experiential
knowledge retention rather than direct model fine-tuning. We introduced BREW, a framework that
aims to construct and refine a structured, interpretable knowledge base from past agent interactions.
By decomposing agent memory into concept-level documents and applying a state-search optimiza-
tion strategy, BREW provides a modular and transparent substrate for memory formation. Our
evaluations across OSWorld and τ2Bench benchmarks suggest that such structured memory can
support measurable improvements in task success and efficiency, while maintaining manageable
computational costs. Although the observed gains are promising, we recognize that BREW’s effec-
tiveness is influenced by the quality and coverage of its training data. Future work could explore
more adaptive and domain-general memory refinement techniques, as well as tighter integrations with
ongoing agent planning. Ultimately, we hope this study encourages further investigation into more
interpretable, memory-driven approaches to language agent development—especially in real-world
environments where long-term consistency and adaptability are essential.
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A APPENDIX

A.1 DETAILS OF THE BREWALGORITHM

We provide pseudocode for the core components of BREW, aligning with the stages introduced in
Section 3. Each algorithm plays a distinct role in constructing, organizing, or refining the knowledge
base over iterative interactions. GENERATEINSIGHTS (Alg. 2) produces concept-aligned insights from
annotated rollouts using ReflAgent. DEDUPLICATECONCEPTS (Alg. 3) clusters semantically
overlapping concepts into a compact meta-concept set. INTEGAGENT incrementally builds and
updates per-concept documents using newly generated insights. Finally, EXPANDNODE (Alg. 4)
performs MCTS-guided expansions to explore improved document variants, while EVALUATE (Alg. 5)
scores candidate KB states using correctness and retrieval-based rewards.

We specify the IntegAgent prompt below:

BREW Integrator Prompt

# Enhanced Documentation Editor Prompt

You are a meticulous documentation-level editor specializing in
comprehensive technical reference materials. You will be given a
list of topic nodes, each containing structured information that
must be preserved and enhanced with maximum detail retention.

## Input Structure Analysis
Each node contains:
- **Title**: The primary topic identifier
- **Context**: Background information and conceptual foundation
- **How to Use**: Step-by-step instructions, commands, flags,

parameters, and implementation details
- **When to Use**: Specific scenarios, conditions, and decision

criteria
- **Best Practices**: Expert recommendations, optimization techniques,

and common pitfalls to avoid

## Detailed Processing Requirements

### 1. Information Preservation (Zero Loss Policy)
- **Preserve every technical detail**: All command-line flags,

parameter values, configuration options, file paths, URLs, version
numbers, and exact syntax

- **Maintain all examples**: Keep every code snippet, sample input/
output, file names, directory structures, and command sequences
exactly as provided

- **Retain contextual nuances**: Preserve qualifying language like "
typically," "usually," "in most cases," "when available," and
conditional statements

- **Keep quantitative data**: Preserve all numbers, measurements,
timeframes, limits, thresholds, and statistical information

- **Maintain cross-references**: Keep all mentions of related tools,
dependencies, prerequisites, and interconnected concepts

### 2. Enhanced Detail Extraction
- **Expand abbreviations**: When encountering shortened forms, expand

them naturally while preserving the original
- **Surface implicit knowledge**: Make obvious assumptions explicit (e

.g., "this requires root permissions," "assumes default
configuration")

- **Clarify relationships**: Explicitly describe how different
components, options, or steps relate to each other

- **Highlight edge cases**: Emphasize special conditions, exceptions,
or unusual scenarios mentioned in the source

- **Elaborate on consequences**: When the source mentions outcomes,
expand on both success and failure scenarios
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### 3. Prose Transformation Guidelines
- **Bullet integration**: Transform each bullet point into 1-3

complete sentences that naturally flow together
- **Technical precision**: Use precise technical vocabulary while

maintaining readability
- **Logical flow**: Organize information within each section to follow

a logical sequence (setup →execution →verification)
- **Contextual embedding**: Weave code snippets and technical terms

seamlessly into narrative sentences
- **Comprehensive coverage**: Ensure every sub-bullet, nested item,

and parenthetical note becomes part of the prose

### 4. Structural Requirements
- **Heading hierarchy**: Use ‘# Title‘ for each node’s main heading
- **Section order**: Maintain Context →How to Use →When to Use →Best

Practices sequence
- **Paragraph organization**: Create substantial paragraphs (3-6

sentences) rather than brief statements
- **Transition quality**: Craft smooth bridges between sections and

between different nodes
- **Code formatting**: Preserve all inline code with backticks and

maintain proper formatting for code blocks

### 5. Quality Assurance Checklist
Before finalizing, verify:
- [ ] Every piece of source information appears in the output
- [ ] All technical specifications, parameters, and examples are

intact
- [ ] Code snippets maintain their exact syntax and formatting
- [ ] Prose flows naturally without choppy or fragmented sentences
- [ ] Each section provides comprehensive coverage of its topic area
- [ ] Cross-references and dependencies are clearly explained
- [ ] No section labels or formatting artifacts remain in the prose

## Output Specifications
Generate a single, cohesive markdown document that reads as

authoritative technical documentation. The result should be
comprehensive enough that a reader could successfully implement
the described tools or techniques using only the information
provided, without referring back to the original nodes.

---

**Input Nodes:**
<NODES>
{node_list}
</NODES>

---

Now, produce the aggregated markdown reference sheet with maximum
detail preservation and enhanced clarity.
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Algorithm 2 GenerateInsights: Extract behavioral insights from trajectories
Require: Queries Q, KB D, rubrics
Ensure: Concept-insight pairs B

1: B ← ∅
2: for each query q ∈ Q do
3: τ ← LLM(q,D) ▷ Generate trajectory
4: label← GRADE(τ ) ▷ Success/failure
5: (c, i)← REFLAGENT(τ, rubrics, label)
6: B ← B ∪ {(c, i, q)} ▷ Store with source query
7: end for
8: return B

Algorithm 3 DeduplicateConcepts: Cluster similar concepts and map queries
Require: Concept-insight-query triples B
Ensure: Meta-concepts K with mapped queries and insights

1: Extract all concepts from B
2: Embed and cluster concepts by similarity
3: K ← cluster representatives
4: for each k ∈ K do
5: Qtrain

k ← {training queries that contributed insights to k}
6: Qeval

k ← {held-out queries relevant to k}
7: Ik ← {all insights mapped to concept k}
8: end for
9: return K with associated queries and insights

Algorithm 4 ExpandNode: Generate and evaluate new document variants
Require: Node s, concept k, candidates h, current KB Dcurrent, best docs Dbest, tree
Ensure: Updated tree with new evaluated nodes

1: ▷ Generate new insights from concept-relevant queries
2: Bnew ← ∅
3: for query q ∈ Qtrain

k do
4: τ ← LLM(q,Dcurrent)
5: (c, i)← ANNOTATE(τ, rubrics, ·)
6: if c maps to k then
7: Bnew ← Bnew ∪ {i}
8: end if
9: end for

10: ▷ Generate and evaluate candidate documents
11: for j = 1 to h do
12: dk,j ← INTEGAGENT(k, Ik ∪ Bnew, d

s
k)

13: ▷ Evaluate using hybrid KB with best docs from other concepts
14: Dhybrid ← {dk,j} ∪ {dk′ ∈ Dbest : k

′ ̸= k}
15: Rk,j ← EVALUATE(dk,j ,Dhybrid,Qeval

k )
16: ▷ Add to tree and backpropagate
17: Add (dk,j , Rk,j) as child of s in tree
18: Backpropagate Rk,j from new node to root
19: end for
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Algorithm 5 Evaluate: Score document using held-out queries
Require: Document dk, hybrid KB Dhybrid, eval queries Qeval

k
Ensure: Reward score R

1: Rcorr ← 0
2: Rret ← 0
3: for each q ∈ Qeval

k do
4: Rcorr ← Rcorr+ EVAL(q, agent⊕Dhybrid)
5: Rret ← Rret+ MRR(dk, q,Dhybrid)
6: end for
7: Rcorr ← Rcorr

|Qeval
k |

8: Rret ← Rret

|Qeval
k |

9: return λcorr ·Rcorr + λret ·Rret

A.2 BREW CONFIGURATIONS

Base LLM Configuration For all BREWalgorithm steps, we use the OpenAI GPT-4.1-2025-
04-14 model as the underlying language model. To balance exploration and stability, we set the
temperature to 0.7 for the IntegAgent component to encourage diversity in sampled completions,
while all other calls use a temperature of 0.1 for deterministic behavior. The search process employs
an expansion width of e = 3, a maximum search depth of k = 3, and a maximum of n = 10
iterations. Reward signals are weighted equally across correctness and retrieval relevance, with
λcorr = λret = 0.5.

A.3 BASELINE METHODS

We compare BREWagainst two common reasoning baselines. Step-Back Prompting encourages
backward reasoning by guiding the model to work from the final task objective back to the initial
actions. In-Context Learning augments the input prompt with successful trajectories from related
tasks, enabling the model to benefit from relevant prior examples without additional fine-tuning.

A.4 BENCHMARK SPECIFICATIONS

A.4.1 OSWORLD: COMPUTER-USE AUTOMATION

Dataset Overview OSWorld (Xie et al., 2024) comprises 369 real-world computer-use tasks
spanning 10 distinct applications. The benchmark is divided into train and test sets, with the
distribution of tasks across domains shown in Table 2.

Agent Specifications The UI-Tars-7B variant is a 7B-parameter multimodal transformer fine-tuned
for graphical user interface understanding. It operates over an action space of PyAutoGUI commands
(e.g., click, type, and key presses). The agent integrates a retrieval module that queries a task-relevant
knowledge base using the user-provided description, with the top three retrieved items added to the
system prompt. Inputs to the model consist of a screenshot of the active UI paired with the natural
language task description.

The GTA1-7B configuration adopts a two-agent architecture, consisting of a planner and a grounding
module. The planner (GTA-1-7B) generates the high-level action sequence, while the grounding
module (OpenAI O3) verifies and refines each action before execution. Knowledge retrieval is
incorporated differently for each component: the planner performs a single retrieval at the start
of execution, which is persisted in its prompt, whereas the grounding module performs dynamic
retrievals at each verification step.

Evaluation Protocol Evaluation uses 134 task-specific scripts designed for automated verification.
Success criteria include file state checks (e.g., validating .xlsx or .docx outputs), UI element
validation to confirm correct interaction, and process completion checks to ensure that the intended
automation sequence was executed successfully.
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A.4.2 τ2-BENCH: INTERACTIVE TOOL USAGE

Dataset Overview τ2-Bench (Barres et al., 2025b) extends τ -Bench by introducing bidirectional
tool-calling capabilities. The dataset covers multiple service-oriented domains, with domain-level
task distributions summarized in Table 3.

Domain Characteristics The benchmark spans several domains with distinct task characteristics.
The Telecom domain focuses on connectivity troubleshooting, plan modifications, and service
activation workflows. The Retail domain includes order processing, return handling, and inventory
queries. The Airline domain emphasizes booking modifications and policy-compliant rescheduling
scenarios.

Interaction Settings Two interaction modes are defined. In Easy mode, a human proxy (imple-
mented via GPT-4.1) provides detailed guidance to the agent. The knowledge base is built exclusively
from Easy mode trajectories, ensuring high-quality demonstrations for learning. In Hard mode,
human intervention is minimized. The knowledge base combines both Easy and Hard trajectories,
testing the agent’s robustness to underspecified or noisy instructions.

Evaluation Criteria Task success is measured using domain-specific verification procedures. These
include database state checks to validate final outcomes, status checks for confirming service or
connection state, natural language verification to ensure correct confirmation statements appear in
dialogue, and action matching to confirm that all required steps are completed. Each domain uses a
tailored subset of these checks (e.g., Telecom relies primarily on status checks).

Domain Test Train
Calc 45 2
Chrome 44 2
Writer 21 2
Gimp 24 2
Impress 45 2
Os 22 2
Thunderbird 13 2
Multi-apps 99 2
VLC 15 2
VSCode 21 2

Total 349 20

Table 2: Test and Train samples across different domains in OSWorld.

Domain Test Train
Telecom 105 7
Retail 105 7
Airline 44 6

Total 254 20

Table 3: Task-wise breakdown for τ2-Bench with assumed 2-shot training samples per domain.

Domain Characteristics

• Telecom: Connectivity issues, plan management, service activation
• Retail: Order processing, returns, inventory queries
• Airline: Booking modifications, policy-compliant rescheduling

Evaluation Criteria Task success determined by:

• Database Checks: Final state verification
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• Status Checks: Service/connection state validation

• NL Checks: Confirmation statements in dialogue

• Action Matching: Required action sequence completion

Note: Each domain uses specific check combinations (e.g., Telecom uses only status checks).

A.4.3 SPREADSHEETBENCH: REAL-WORLD SPREADSHEET MANIPULATION

Dataset Overview SpreadsheetBench (Ma et al., 2024) consists of 912 instructions collected from
four major Excel forums and blogs. Each instruction is paired with spreadsheets reflecting authentic,
complex user scenarios, often containing multiple tables and non-standard relational structures.
The dataset totals 2,729 test cases, averaging three per instruction. A breakdown of cell-level and
sheet-level manipulations is shown in Table 4.

Task Settings The benchmark defines two dimensions of evaluation:

• Granularity: Instructions involve either cell-level manipulations (specific ranges such as
D2:D6) or sheet-level manipulations (entire tables or multi-sheet updates).

• Evaluation: Performance is measured using an Online Judge (OJ)-style protocol. The soft
setting (IOI-style) awards partial credit when only some test cases are solved, while the hard
setting (ICPC-style) requires solutions to succeed on all test cases.

Agent Configuration We evaluate
texttto4-mini using a function-calling agent connected to a single Python execution tool. The
agent translates natural language instructions into Python code for spreadsheet manipulation (e.g.,
modifying cells, applying formulas, restructuring tables). After each tool call, all formulas in the
spreadsheet are recalculated to ensure consistency before proceeding to the next step. This setup
provides a controlled environment to assess reasoning, code generation, and execution robustness
across diverse spreadsheet tasks.

Granularity Instructions Test Cases
Cell-Level 329 986
Sheet-Level 583 1,743

Total 912 2,729

Table 4: Cell-level vs. sheet-level distribution in SpreadsheetBench.

A.5 KB CONSTRUCTION AND RETRIEVAL DETAILS

Training Data Collection

• OSWorld: 20 successful trajectories (2 per application domain) and 10 for evals.

• τ2-Bench: 20 trajectories balanced across domains and difficulty settings and 10 for evals.

• SpreadsheetBench: Uniformly sample 30 trajectories for training and 10 for evaluation.

All numbers are reported on the remaining train set.

Retrieval Strategy

• Query Formation: For each task we take in the seed Natural Language query as the retrieval
query.

• Retrieval Count: We take top-3 documents for all the retrieval steps

• Integration Point: For SPREADSHEET ENCH and OSWorld we insert retrievals in the
system prompt augmentation. For τ2-bench we add perfrom retrieval after each user
interaction.
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Baseline max_width=3, max_depth=3 max_width=3, max_depth=10 max_width=10, max_depth=3
OSworld 44.20 47.56 43.83 49.32

Table 5: OSworld difference in MCTS parameters

B QUALITATIVE ANALYSIS

Exploration on MCTS parameters WE evaluate OSworld on two different MCTS parameters.

• Increased Depth: To increase the depth we keep maximum width of the tree as 3 and depth as
10 with max number of iterations as 25. We observe that the Knowledge base over optimizes
on the train set leading to a poorer performance on test set.

• Increased Width: For increased width we reverse the parameters where depth is 3 and
maximum width is 10 with max iterations 25. We observe many different styles of KBs are
generated storing very similar information, these different styles lead to a varied performance
on both eval and test set notifying the importance of state search.

We report the numbers on table ??

C EXEMPLAR KNOWLEDGE BASES

C.1 KNOWLEDGE BASE LEARNED FOR OSWORLD

We showcase a small part of knowledge base learned thought BREW . This demonstrate 3 major
parts on which each document is aggregated. These parts discuss when to use a piece of information,
why to use the information, how to use the information/tool.

## Search and Open Files

**When to use**: Locating documents, spreadsheets, images, or
downloads for editing, conversion, or attachment.

### How to Perform
- Open **File Manager (Nautilus)** from launcher or system dock
- Press ‘Ctrl + F‘ or click the search icon
- Enter part of filename, full name, or wildcard (‘*.pdf‘, ‘report*‘)
- Use right-click →**Open With** to choose the desired application
- Use the sidebar to navigate to **Downloads**, **Documents**, or

custom folders

### Additional Actions
- Right-click →**Properties** to check modification date or file type
- Sort results by Date, Type, or Name from the top-right dropdown
- Use ‘F2‘ to rename files inline

### Example
- Task: "Edit the file titled ‘sales_report_march.ods‘"
- Search for ‘sales‘ in File Manager
- Confirm ‘.ods‘ type and open with LibreOffice Calc

...

## Insert Images

**When to use**: Adding visual elements to documents, presentations,
emails, or templates.

### How to Perform
- Navigate to **Insert →Image →From File** (in Writer, Impress,

Thunderbird)
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- Select an image file (‘.png‘, ‘.jpg‘, ‘.svg‘) from the file dialog
- Use drag handles to resize; right-click →**Wrap** or **Alignment**

for layout

### Additional Actions
- In GIMP: **File →Open as Layers** to insert image as a new layer
- Use drag-and-drop from file manager into open document windows
- Use **Format →Image** to apply borders, shadows, or color

corrections (in Writer/Impress)

### Example
- Task: "Insert the logo.png image into the title slide"
- Open ‘.odp‘ file in Impress →Go to Slide 1 →Insert →Image →

Select ‘logo.png‘

...

## Export as PDF

**When to use**: Required submission format

### How to Perform
- Go to **File →Export As PDF**
- Choose output folder (usually **Documents** or **Downloads**)
- Click **Save**, then confirm the exported file opens correctly

### Additional Actions
- In GIMP or Impress: choose **File →Export As**, then select ‘.pdf‘

from format list
- Use **Save As** to preserve both editable and exported versions

separately

### Example
- Task: "Export the flyer.xcf as a PDF"
- Open in GIMP →File →Export As →Rename to ‘flyer.pdf‘ →Click

Export

C.2 BREW KNOWLEDGE BASE FOR τ2-BENCH

BREW enable use to learn relevant information for tau bench for across the domains in a single
knowledge base. This knowledge base is helpful to use relevant actions from the action pool.

### Additional Actions

* Inform the user:
- Refunds via gift card = immediate.
- Refunds via other methods = -57 business days.

### Example

* Task: "Cancel a T-shirt order placed yesterday"
* Validate: Status is ‘pending‘
* Reason: "no longer needed"
* Confirm
* Execute tool call

# Exchange Delivered Order

**When to use**:
User wants to swap delivered items for a different variant (e.g., size

or color).
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**Why to use it**:
To fix sizing or option errors without needing a new purchase.

### How to Perform
- Authenticate user
- Confirm order status is ‘delivered‘
- Get full list of exchange items
> "Please ensure all items for exchange are listed. This step ’cant be

repeated."
- Ask for refund/payment method
- Confirm:
> "’Youre exchanging item X for same product, different option.

Proceed?"
- On confirmation:
‘‘‘python
request_exchange(order_id="45678", item_exchanges=[...],

payment_method="paypal")
‘‘‘

### Additional Actions

* Mention: An email will be sent with return instructions
* Validate that the new variant is from the same product

### Example

* Task: "Exchange red shirt for blue in Order #45678"
* Confirm all exchange items
* Confirm payment method for difference
* Execute tool call

### Example

* Task: "Show me my last 2 orders"
* Authenticate
* Retrieve and present info

# Deny Unsupported Request

**When to use**:
User asks for an unsupported action (e.g., cancel processed order,

exchange to different product type, help another user).

**Why to use it**:
To stay compliant with platform policy.

### How to Perform
- Politely reject:
> "’Im sorry, but I ’cant process that request. ’Its outside the

allowed scope."

### Example

* Task: "Cancel a processed order"
* Respond with denial message

# Transfer to Human Agent

**When to use**:
User needs help outside the ’assistants permitted capabilities.

**Why to use it**:
To ensure user gets the right help from trained staff.

### How to Perform

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

- Make tool call:
‘‘‘python
transfer_to_human_agents()
‘‘‘

- Then inform user:
> "YOU ARE BEING TRANSFERRED TO A HUMAN AGENT. PLEASE HOLD ON."

### Example

* Task: "Delete a task"
* Deny deletion
* Transfer to human

C.3 BREW KNOWLEDGE BASE FOR SPREADSHEETBENCH

Header Extraction
1. Detecting Header Rows
Overview:
To accurately identify header rows, scan the initial region of your

dataset. This process is crucial for mapping column information
for further processing.

Approaches:
- Heuristic Checks:
- Look for rows where all cells are strings (e.g., "Name", "Date", "

Region", "Amount").
- Identify rows with distinctive formatting such as bold text or

background color.
- Example:
| Name | Date | Region | Amount | |--

-----|-----------|-----------|--------| | John | 2024-01-01| North
| 100 |

- Pattern Recognition:
- Use regex to match typical header patterns, such as column names

starting with uppercase letters.
- Score candidate rows based on the likelihood of being headers.
- Multi-Table Sheets:
- Detect gaps, empty rows, or separators indicating a new table.
- Assign a Table ID to each detected table for later reference.

Edge Cases:
- Merge multi-row headers (e.g., "Sales" over "2024", "2025" becomes "

Sales 2024", "Sales 2025").
- Fill in missing headers by inferring from context.

2. Assigning and Validating Headers
Overview:
Once headers are detected, assign them programmatically and ensure

they match expected schema and data types.

Implementation:
- Column Naming:
- Set names in code, e.g., df.columns = ["Name", "Date", "Region", "

Amount"].
- Schema Mapping:
- Map headers to a standardized schema, using external files or user

prompts.
- Example:
- Raw header: "Amt"; Mapped header: "Amount"
- Quality Checks:
- Detect duplicate or empty headers ("Date", "Date" becomes "Date_1",

"Date_2").
- Validate each column’s expected data type.
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3. Automation and Usability Enhancements
Overview:
Enhance usability and automation to streamline header extraction and

user interaction.

Features:
- Freeze Panes:
- Automatically freeze header rows in Excel for easier navigation.
- Highlighting:
- Use colored formatting to visually distinguish headers.
- Example:
- Yellow fill for header row.
- Documentation:
- Log extraction logic and confidence scores for each detected header.
- Integration:
- Build header extraction into ETL pipelines and record process

metadata.

Block Detection
1. Identifying Block Boundaries
Overview:
Block detection segments data into logical units or tables.

Methods:
- Boundary Detection:
- Find empty rows, repeated labels, or formatting changes.
- Example:
| Name | Amount | |------|--------| | John | 100 | | | | <-- Empty row

indicates new block | Name | Amount | | Alice| 200 |
- Machine Learning:
- Train classifiers to detect block boundaries based on cell patterns.

Advanced:
- Detect nested blocks or hierarchies using indentation or merged

cells.
- Identify summary blocks with keywords like "Total" or "Summary".

2. Processing and Tracking Blocks
Overview:
Once blocks are detected, assign IDs and enable block-level analysis.

Actions:
- Block ID:
- Assign unique IDs (e.g., Block_001, Block_002).
- Analysis:
- Perform group-by or aggregation within each block.
- Example:
- Sum "Amount" for Block_001: 100 + 150 = 250

3. Additional Block Actions
Overview:
Enable modular analysis and reporting at the block level.

Features:
- Summary Rows:
- Add computed totals/averages for each block.
- Export/Save:
- Save blocks as separate files or sheets.
- Example:
- Export Block_001 to "block1.csv"

Search for Values or Patterns
1. Search Execution Methods
Overview:
Efficiently locate specific values or patterns in your data.
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Techniques:
- Manual Tools:
- Use Ctrl + F in Excel for quick lookups.
- Programmatic Search:
- Scan all cells using loops or vectorized code.
- Example:
- Find all instances of "North" in the "Region" column.
- Pattern Matching:
- Support exact, wildcard (*Total*), and regex (\d{4}-\d{2}-\d{2} for

dates).

2. Recording and Highlighting Results
Overview:
Log and visualize search matches for user review.

Actions:
- Logging:
- Record coordinates (e.g., Sheet1, Row 3, Col "Region").
- Highlighting:
- Apply conditional formatting to search hits.

3. Advanced Search Scenarios
Overview:
Handle complex or large-scale search requirements.

Scenarios:
- Merged Cells:
- Search within merged cells or across multiple sheets.
- Export:
- Export found results for further analysis.
- Example:
- Export all rows containing "John" to "john_results.csv"

Writeback Results
1. Output Placement
Overview:
Choose where and how to insert results.

Options:
- Target Columns:
- Select existing or blank columns for output.
- Appending:
- Add new columns for flags, counts, or statuses.
- Example:
- Add "Approved_Flag" column next to "Status".

2. Writing and Styling Results
Overview:
Automate and style the output for visibility.

Methods:
- Formulas/Code:
- Use code (e.g., ws.cell(row, col).value = result) to insert results.
- Styling:
- Bold, borders, or colors for output cells.
- Example:
- Green fill for "Success", red for "Error".

3. Audit and Protection
Overview:
Maintain the integrity and traceability of results.

Measures:
- Lock Columns:
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- Prevent edits to output columns.
- Timestamps/User Info:
- Add audit trail for writebacks.
- Example:
- "2024-06-01, User: admin"

Difference in State
1. Sheet Comparison
Overview:
Identify changes between input and output sheets.

Process:
- Load Sheets:
- Read both sheets into memory.
- Compare Cells:
- Detect differences by position and value.

2. Recording and Reporting Differences
Overview:
Log and report all detected changes.

Actions:
- Log Mismatches:
- Record cell coordinates and values.
- Example:
- Cell B3: "North" →"South"
- Export Diff Report:
- List all detected differences for review.

3. Visualization and Automation
Overview:
Make changes visible and automate validation.

Features:
- Highlight Changes:
- Color code changed cells.
- Automate Checks:
- Integrate diff comparisons into test scripts.

Column Selection
1. Selection Criteria
Overview:
Choose relevant columns for analysis.

Methods:
- Labels/Indices:
- Select by name or position.
- Dynamic Rules:
- E.g., all numeric columns.
- Assign Roles:
- Example: "ID", "Date", "Metric"

2. Preparation and Validation
Overview:
Prepare columns for consistent use.

Actions:
- Rename/Relabel:
- Standardize column names.
- Validate Types:
- Ensure columns are of expected type.
- Example:
- "Date" column as datetime.

3. Reusability
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Overview:
Save and reuse column selections.

Features:
- Presets:
- Save selection profiles.
- Downstream Use:
- Use validated columns in subsequent processes.

Filter Rows
1. Filtering Methods
Overview:
Refine your dataset with filters.

Techniques:
- Spreadsheet Tools:
- Use built-in filters.
- Code Logic:
- Filter with code (e.g., df[df[’Status’] == ’Approved’]).
- Multiple Criteria:
- Combine conditions (AND/OR).
- Example:
- Status = "Approved" AND Amount > 100

2. Helper Columns and Complex Filters
Overview:
Simplify filtering using helper columns.

Actions:
- Helper Columns:
- Compute intermediate flags.
- Document Logic:
- Record filtering rules for audit.

3. Post-Filter Actions
Overview:
Visualize and export filtered data.

Features:
- Highlighting:
- Grey-out filtered-out rows.
- Export:
- Save the filtered dataset.

Merge Tables
1. Key-Based Merging
Overview:
Combine tables using shared keys.

Techniques:
- Join Operations:
- Use VLOOKUP, JOIN, or code merges.
- Example:
- Merge "Customer_ID" from two tables.
- Align Data:
- Match on columns like "ID", "Name".

2. Stack-Based Merging
Overview:
Append tables when keys ’arent needed.

Methods:
- Vertical Append:
- Combine rows from similar tables.
- Deduplicate:
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- Remove duplicate records.

3. Tracking and Audit
Overview:
Track source and unmatched records.

Actions:
- Source Column:
- Add "Source" to indicate origin.
- Highlight Unmatched:
- Mark or export mismatched rows.

Pivot or Unpivot
1. Pivoting Data
Overview:
Summarize data using pivots.

Methods:
- PivotTables:
- Group by row/column dimensions.
- Example:
- Sum "Amount" by "Region".
- Aggregation:
- Choose SUM, AVG, COUNT, etc.

2. Unpivoting (Melting) Data
Overview:
Reshape data from wide to long format.

Techniques:
- Melt Operations:
- Convert columns into rows.
- Example:
-
| Year | Sales_2019 | Sales_2020 | |------|------------|------------|
→
| Year | Sales_Year | Value |
- Flexible Restructuring:
- Selectively unpivot non-ID columns.

3. Post-Pivot Actions
Overview:
Prepare pivoted data for export.

Features:
- Flatten Pivot Table:
- Convert back to flat for further analysis.
- Reorder/Rename:
- Clarify pivoted fields.

Map with Lookup Tables
1. Mapping Techniques
Overview:
Standardize data using lookups.

Methods:
- Functions:
- Use VLOOKUP, merge with dictionaries.
- Code-to-Label:
- Example:
- Code "N" →Label "North"

2. Application and Fallbacks
Overview:
Apply lookups and handle missing values.
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Actions:
- Apply Mappings:
- Across selected columns.
- Handle Missings:
- Use defaults for missing codes.

3. Audit and Display
Overview:
Ensure mapping transparency.

Features:
- Cache Mappings:
- Store for repeated use.
- Display Codes/Labels:
- Show both for clarity.

Fill Missing Data
1. Choosing Fill Methods
Overview:
Impute missing data appropriately.

Techniques:
- Forward/Backward Fill:
- Fill gaps with prior/next value.
- Default Values:
- Use fixed placeholder (e.g., 0, "Unknown").
- Contextual Example:
- Dates: Fill missing month with last known month.

2. Application and Auditing
Overview:
Apply fills and flag for review.

Actions:
- Targeted Filling:
- Apply to specific columns/rows.
- Flag Filled Cells:
- Highlight for later review.

3. Documentation
Overview:
Keep fill logic transparent.

Features:
- Record Logic:
- Document assumptions and methods.
- Audit Trail:
- Track all changes.

Flag Rows or Cells
1. Defining Flag Rules
Overview:
Establish criteria for flagging.

Examples:
- Simple Rule:
- Flag where Amount < 0
- Complex Rule:
- Flag where Status = "Pending" and Amount > 1000

2. Applying Flags
Overview:
Insert flags and summarize.
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Actions:
- Flag Column:
- Add "Flag" column with "Yes"/"No".
- Export Flagged Rows:
- Save for further inspection.

3. Advanced Flagging
Overview:
Use multiple criteria and document.

Features:
- Multi-Criteria:
- Combine several rules for granular checks.
- Notes:
- Document flagging rationale.

Sort Data
1. Setting Sort Criteria
Overview:
Organize data for analysis.

Options:
- Sort Columns:
- By value, ascending/descending.
- Multi-Level:
- E.g., sort by "Region", then by "Amount".

2. Applying Sorts
Overview:
Implement sorting programmatically or manually.

Methods:
- Spreadsheet Tools:
- Built-in sort features.
- Code:
- E.g., df.sort_values([’Region’, ’Amount’])

3. Post-Sort Actions
Overview:
Finalize sorted data.

Actions:
- Renumber Rows:
- Update indices.
- Highlight Extremes:
- Mark top/bottom values.

Validate Data
1. Validation Checks
Overview:
Ensure data meets required standards.

Checks:
- Type:
- Ensure numeric columns contain numbers.
- Range:
- E.g., "Amount" > 0.
- Pattern:
- Date columns match YYYY-MM-DD.
- Business Rule Example:
- "Start Date" < "End Date"

2. Marking and Reporting
Overview:
Visualize and report errors.
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Actions:
- Highlight Invalids:
- Color-code errors.
- Export Summary:
- Table of error counts and locations.

3. Integration in Workflow
Overview:
Make validation a routine part of processing.

Features:
- Pre-Processing Step:
- Validate before analysis.
- Automation:
- Integrate into data pipelines.

Split Sheets or Data
1. Defining Split Rules
Overview:
Segment data for modular analysis.

Methods:
- By Category:
- E.g., split by "Region".
- By Date Range:
- E.g., split by year.

2. Exporting Segments
Overview:
Save segments for separate use.

Actions:
- Export Files:
- "North_Region.csv", "South_Region.csv"
- Consistent Formatting:
- Ensure identical columns and styling.

3. Automation and Documentation
Overview:
Automate splitting and track provenance.

Features:
- Automation:
- Use scripts/macros for repeated splits.
- Documentation:
- Record rules and export logs.

D QUALITATIVE ANALYSIS OF BREW-GENERATED KNOWLEDGE BASES

This section presents a comprehensive qualitative analysis of knowledge bases generated through
the BREW technique applied to two distinct agent training environments: OSWorld and τ2Bench
described in the section before. The analysis examines knowledge representation patterns, procedural
sophistication, and domain-specific learning characteristics extracted from CUA agent behaviors,
providing insights into the effectiveness and scope of knowledge distillation techniques across diverse
task environments.
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D.1 CROSS-DOMAIN KNOWLEDGE BASE ANALYSIS

D.1.1 BASE STRUCTURE & ORGANIZATION

Schema Consistency and Evolution: Both knowledge bases demonstrate consistent structural
schemas, though adapted to their respective domains. The OSWorld KB employs a four-part
schema (contextual triggers, procedural steps, extended capabilities, concrete instantiation), while the
τ2Bench KB extends this to a five-part structure, adding explicit purpose rationale (“Why to use it”).
This evolution suggests that BREW adapts its extraction patterns to domain-specific requirements—
conversational commerce demands explicit justification for actions due to customer interaction
contexts.

Taxonomic Organization Principles: The OSWorld KB reveals a capability-based taxonomy
organized around computational tasks: file operations, document processing, inter-application work-
flows, and data visualization. Each category represents a distinct computational domain with specific
tool requirements and interaction patterns. In contrast, the τ2Bench KB employs a lifecycle-based
taxonomy structured around transactional states: order creation, modification, fulfillment, and
post-delivery operations. This organizational difference reflects fundamental domain characteristics—
desktop automation focuses on tool orchestration, while conversational commerce centers on process
management.

Hierarchical Task Decomposition: Both KBs demonstrate sophisticated hierarchical reasoning, but
through different decomposition strategies. OSWorld exhibits technical decomposition, breaking
complex operations like “Create Charts from Data” into constituent technical steps (data selection,
chart insertion, customization, formatting). τ2Bench shows process decomposition, structuring
operations like order modification into authentication, validation, confirmation, and execution phases.
This suggests BREW successfully identifies domain-appropriate decomposition strategies rather than
applying uniform patterns.

Knowledge Boundary Definition: Both KBs explicitly encode operational boundaries, but through
contrasting mechanisms. OSWorld boundaries are capability-constrained—determined by available
applications and system resources. τ2Bench boundaries are policy-constrained—explicitly defined
through “Deny Unsupported Request” patterns and escalation protocols. This difference highlights
how knowledge extraction adapts to domain-specific constraint types.

D.1.2 PROCEDURAL KNOWLEDGE GROUNDING

Context-Dependent Action Selection: Both domains demonstrate sophisticated context awareness,
but grounded in different environmental factors. OSWorld exhibits application-context sensitivity,
where identical operations (e.g., image insertion) require different procedures across LibreOffice
Writer, Impress, GIMP, and Thunderbird. The agent learned application-specific affordances and
interaction patterns rather than generic command sequences. τ2Bench demonstrates state-context
sensitivity, where available actions depend on order status (pending vs. delivered), payment methods,
and authentication levels. This reveals learned understanding of business process constraints and
temporal operation windows.

Error Prevention and Validation Workflows: Both KBs incorporate sophisticated error prevention
mechanisms, but grounded in domain-specific failure modes. OSWorld emphasizes technical valida-
tion: file integrity checks (“confirm the exported file opens correctly”), application state verification,
and multi-step confirmation for irreversible operations. τ2Bench emphasizes transactional valida-
tion: authentication cascades, confirmation dialogues with standardized templates, and explicit user
consent protocols. The emergence of defensive programming practices across both domains suggests
these represent fundamental principles of reliable agent behavior.

State-Dependent Decision Logic: The procedural knowledge in both domains demonstrates sophisti-
cated state machine reasoning. OSWorld exhibits application state awareness—understanding when
applications are ready for input, when files are loaded, and when operations can be safely executed.
Window management and application switching reveal learned understanding of desktop metaphors
and resource constraints. τ2Bench demonstrates business process state awareness—finite state
machine reasoning where order lifecycle states determine available operations. The agent learned
that pending orders enable modification while delivered orders unlock return workflows, indicating
internalized understanding of business logic constraints.
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Security and Authentication Grounding: While OSWorld operates in a trusted desktop environment
with minimal explicit security concerns, τ2Bench reveals pervasive authentication-first paradigms.
Nearly every transactional operation begins with identity verification through email, name, and zip
code combinations. The KB demonstrates graduated security reasoning: information retrieval
requires basic authentication while financial transactions trigger rigorous verification protocols. This
contrast highlights how procedural knowledge adapts to domain-specific security requirements.

Cross-Application vs. Cross-Process Orchestration: OSWorld demonstrates technical orches-
tration—coordinating multiple applications (Chrome, LibreOffice suite, File Manager, GIMP) to
accomplish complex workflows. The “Navigate Between Applications” section reveals learned be-
haviors for window management, application switching, and resource coordination. τ2Bench exhibits
process orchestration—coordinating authentication, validation, confirmation, and execution phases
across different operational contexts. Both forms of orchestration require sophisticated temporal
reasoning and constraint management, but applied to different environmental complexity types.

Failure Mode Internalization: Both KBs reveal learned understanding of domain-specific failure
modes. OSWorld incorporates file validation, application crash recovery suggestions, and verification
steps for critical operations. τ2Bench includes explicit escalation protocols (“Transfer to Human
Agent”), policy compliance mechanisms, and irreversibility warnings for financial operations. The
consistent emergence of failure-aware procedures suggests that agents successfully internalize risk
assessment and mitigation strategies during training.

Domain-Specific Communication Patterns: The procedural knowledge reveals distinct communica-
tion paradigms appropriate to each domain. OSWorld procedures are task-oriented with minimal
user interaction—focusing on efficient command execution and verification. τ2Bench procedures are
dialogue-oriented with standardized customer interaction templates, confirmation protocols, and
expectation management communications. This adaptation demonstrates that BREW extracts not just
procedural logic but domain-appropriate interaction modalities.

The cross-domain analysis reveals that BREW successfully extracts procedural knowledge that is both
structurally consistent (following learnable organizational patterns) and contextually grounded
(adapted to domain-specific constraints, failure modes, and interaction requirements). This dual capa-
bility suggests significant potential for knowledge transfer across related domains while maintaining
appropriate domain-specific adaptations.
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