
Under review as a conference paper at ICLR 2023

SEMI-SUPERVISED CONSISTENCY REGULARIZATION

FOR ACCURATE CELL TYPE FRACTION AND GENE EX-
PRESSION ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Cell deconvolution is the estimation of cell type fractions and cell type-specific
gene expression from mixed data with unknown composition. In biomedical re-
search, cell deconvolution, which is a source separation task, is used to obtain
mechanistic and diagnostic insights into human diseases. An unmet challenge
in cell deconvolution, however, is the scarcity of realistic training data and the
strong domain shift observed in synthetic training data that is used in contempo-
rary methods. Here, we hypothesize that simultaneous consistency regularization
of the target and training domains will improve deconvolution performance. By
adding this biologically motivated consistency loss to two novel deep learning-
based deconvolution algorithms, we achieve state-of-the-art performance on both
cell fraction and gene expression estimation. Our method, DISSECT, outperforms
competing algorithms across several gene expression datasets and can be easily
adapted to deconvolve other biomedical data types, as exemplified by our spatial
expression deconvolution experiments.

1 INTRODUCTION

A prominent approach to study tissue-specific gene expression changes in human development and
disease is RNA sequencing (bulk RNA-seq). Tissues, however, usually consist of multiple cell types
in different quantities, with different gene expression programs. As a consequence, bulk RNA-seq
from tissues measures average gene expression across the constituent cells, disregarding cell type-
specific changes. The quantification of the cellular composition and cell type-specific expression that
underlies bulk RNA-seq data is therefore of pivotal importance to understand disease mechanisms
and to identify potential therapeutic interventions (Li & Wang, 2021).

A recent technological advancement, single-cell RNA-seq, allows for the investigation of gene ex-
pression in single cells for thousands of individual cells of a given tissue sample in a single ex-
periment. While it provides unprecedented insights into single cell biology, it suffers from severe
technical limitations, most notably gene expression ’dropouts’ (Lähnemann et al., 2020). In addition,
the technology is still very costly, which largely prohibits its application in clinical and diagnostic
settings. Bulk RNA-seq, on the other hand, can be performed for a fraction of the cost and is widely
used in clinical oncology and drug discovery (Zhou et al., 2019; Roberts et al., 2014).

To computationally infer cell fraction and cell type-specific gene expression information from bulk
RNA-seq data, recent computational methods utilize single cell sequencing data to create simulated
references with known fraction and expression information for training (Avila Cobos et al., 2020;
Menden et al., 2020; Newman et al., 2019; Wang et al., 2019). While this approach achieves good
deconvolution results, its performance suffers from the strong domain gap between single-cell RNA-
seq training (reference) data and the bulk RNA-seq target data. Among many possible sources of
variation, two most obvious are the presence of batch effects which refers to technological differ-
ences between two sequencing experiments and gene expression differences of biological nature. In
the next section we formally define the task of cell deconvolution, and present our hypothesis that
semi-supervised consistency regularization minimizes the bulk RNA-seq deconvolution error while
learning from single cell RNA-seq data.
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2 CELL DECONVOLUTION

Given an m× n gene expression matrix B consisting of m bulk gene expression vectors measuring
n genes, the goal of deconvlution is to find a m × c matrix X of cell type fractions, where c is the
number of cell types present in bulk samples such that,

B = XS, (1)

where fractions and gene expression satisfy non-negativity 0 ≤ Xik, and 0 ≤ Skj , ∀i ∈ [1,m], ∀j ∈

[1, n] and ∀k ∈ [1, c] and sum-to-1 criterion i.e.
c
∑

k=1

Xik = 1, ∀i ∈ [1,m]. Here, S is known as the

signature matrix and is unobserved. Each row Sk· is a gene expression profile (or signature) of
cell type k. To utilize a reference based framework, S can be replaced with Sref derived from a
single-cell experiment.

The problem of reference-based cell deconvolution can alternatively be formulated as a learning
problem, where a function f such that f(B) = X is learnt. Since only B is available and X is
generally unknown, simulations from single-cell reference can be used to learn f . Clearly, from the
above formulation of the cell deconvolution task, it is reasonable to assume linearity of deconvo-
lution, i.e., each bulk mixture is a linear combination of expression vectors of cells spanned with
corresponding cell type fractions. Thus, as defined in (Menden et al., 2020), multiple single cells
can be combined in random proportions to generate training examples B

sim and X
sim, where each

row of Bsim is defined as,

B
sim
i· =

c
∑

k=1

αk,i
∑

l=1

e
k
l ,

where e
k
l is expression vector of cell l belonging to cell type k, and αk,i is the number of cells

belonging to cell type k sampled to construct Bsim
i· . Correspondingly, each element of Xsim is pro-

portion of a cell type k in that sample i and is defined as,

X
sim
ik =

αk,i

c
∑

k=1

αk,i

, and

In this case, since each simulated sample has a distinct signature (i.e. gene expression profile), S is
a three dimensional matrix with each element Skji denoting gene expression of gene j in cell type
k for sample i. It is computed as following,

S
sim
k·i =

αk,i
∑

l=1

e
k
l

αk,i

.

The predictor f , learned from a simulated dataset, can then be applied to B to estimate X. Note that,
the genes expressed may differ between vectors el and B and as such before learning function f ,
each e

k

l
is subsetted to include genes common with B. This is the reason why this learning problem

is transductive and a separate model needs to be reconstructed for each B.

2.1 EXPLOITING LINEARITY OF DECONVOLUTION

2.1.1 ASSUMPTION

From Section 2, it is evident that the relationship between B and S is linear. However, S is unob-
served and learning is done using simulations. To address the inherent domain shift, we hypothesize
that a consistency based regularization penalizing non-linearity of mixtures of real and simulated
samples would result in a mapping f that is closer to true f . We define it in Section 2.1.2.
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2.1.2 CONSISTENCY REGULARIZATION

Consider B represents gene expression matrices of real (i.e. test) bulk RNA-seq that we want to
deconvolve and and B

sim represents gene expression matrix of simulated bulk samples. The number
of rows (representing samples) in these two matrices may differ. To simplify the notation, we use
the same index i for real bulk samples, simulations (sim) and their mixtures (mix, defined further).
Given a true bulk RNA-seq Bi·, and a simulated sample with paired proportions (Bsim

i· ,Xsim
i· ) defined

over common gene-set, we can generate a mixture B
mix
i· such that

B
mix
i· = βBi· + (1− β)Bsim

i· , (2)

Which gives us relation

X
mix
i· S

mix
·i· = βXi·S·i· + (1− β)Xsim

i· S
sim
·i· . (3)

Cell types are characterized by a few marker genes that are invariant across cell states and even across
tissues (Domı́nguez Conde et al., 2022). A network that accurately predicts cell type fractions based
on gene expression of simulated (or real) bulks would thus have to learn them. Thus, to estimate cell
type fractions, we assume that the expression of these marker genes should be identical in signatures

Smix
·i· , S

·i· and Ssim
·i· . Hence,

X
mix
i· = βXi· + (1− β)Xsim

i· , (4)

where β ∈ [0, 1]. Equation 4 enables the use of consistency regularization without having to ex-
plicitly estimate signatures. In an iterative learning process Xi· can be replaced with predictions
of the algorithm from the previous iteration. Naturally, it is also possible to only mix real samples
with each other, however, the number of samples available from true bulk RNA-seq is considerably
lesser (usually ranging from a couple to less than thousand) than the amount single-cells present in
a single-cell experiment (usually in thousands). The equation 4 allows to generate pseudo ground
truth proportions for mixtures Bmix

i· at the each step of learning cell type fractions, while Equation 3
allows to generate pseudo ground truth signatures at each step of learning gene expression profiles.
We define the network architecture and loss functions in 2.2.

2.2 NETWORK ARCHITECTURE AND LEARNING PARADIGM

We approach the two tasks, estimation of cell type fractions and estimation of gene expression
profiles per cell type as two different tasks because of their differing assumptions. For estimation
of cell type fractions, we assume that signatures are identical for each sample, both simulated and
bulk, while to estimate gene expression, we relax this condition use full consistency regularization
(Equation 3).

2.2.1 ESTIMATION OF CELL TYPE FRACTIONS

The underlying algorithm of the first part of our deconvolution method is an average ensemble of
multilayered perceptrons (MLPs). Each MLP consists of the same architecture initialized with dif-
ferent weights. This is done to reduce the variance by averaging different runs (Ju et al., 2018). Each
MLP has an architecture: Input (# genes) - ReLU6 (512) - ReLU6 (256) - ReLU6 (128) - ReLU6
(64) - Linear (# cell types) - Softmax. ReLU6 (Output of ReLU activation clipped by a maximum
value of 6) (Hannun et al., 2014; Sandler et al., 2018) was chosen out of tested activations over
grid search on [Linear, ReLU, ReLU6, Swish (Ramachandran et al., 2017)] The final application of
Softmax activation allows to achieve non-negativity and sum to 1 criteria of deconvolution. we train
the network with batch size 64 to minimize the loss function defined below with an Adam Optimizer
with initial learning rate of 1e− 5.

Ltotal(X
sim
i· , f(Bsim

i· ),Xmix
i· , f(Bmix

i· )) = LKLdivergence(X
sim
i· , f(Bsim

i· )) + λ1 ∗ Lcons(X
mix
i· , f(Bmix

i· )),
(5)

where LKLdivergence(·, ·) is the Kullback-Leibler divergence and Lcons(·, ·) is the consistency loss
defined as:
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Figure 1: A. Illustration of simulation using reference single-cell data. The figure shows the simu-
lation of one sample which consists of cell type fractions, simulated gene expression and cell type
specific gene expression profiles (i.e. signature matrix). B. Detailed overview of an MLP used to
estimate cell type fractions, and C. Overview of an autoencoder used to estimate cell type specific
gene expression profiles.

Lcons(X
mix
i· , f(Bmix

i· )) = ||Xmix
i· − f(Bmix

i· )||2
2
, and

X
mix
i· = βf(Bi·) + (1− β)Xsim

i· .

To generate mixtures, for each batch, we sample β and uniformly at random for Equation 4. The
interval [0.1, 0.9] was chosen for the uniform distribution to allow for at least some real and some
simulated gene expression in the mixture. This loss is similar to the semi-supervised framework
proposed in MixMatch (Berthelot et al., 2019). MixMatch uses unlabelled samples to MixUp and
match sample predictions and generalizes semi-supervised framework, while the loss defined in
Equation 5 addresses the limited samples available from true bulk RNA-seq, unavailability of sample
fractions and is derived from the definition of task itself. In essence, Equation 5 integrates domain
knowledge into the objective.

To avoid a scenario where the network doesn’t learn and outputs predictions such that f(Bmix
i· ) =

f(Bsim
i· ) = f(Bi·), which is a solution to Equation 4, we first let the model learn purely from sim-

ulated examples. This allows the model to learn meaningful expression profiles to achieve accurate
results on simulated examples. We selected λ1 based on a grid search over constant and step-wise
functions. We adopt a step-wise function for λ1, given as:

λ1 =







0 if step ≤ 2000,

15 elif 2000 ≤ step ≤ 4000,

10 else.

We train the network for a predefined number of steps as opposed to epochs, since it is possible to
generate infinitely many simulated samples without increasing the intrinsic dimensionality of the
data. In our experiments, we set their number to 5000 as found optimal in Menden et al. (2020).

2.2.2 ESTIMATION OF PER SAMPLE CELL TYPE SPECIFIC GENE EXPRESSION PROFILES

Estimation of cell type fractions from bulk RNA-seq requires an assumption that signatures of cell
types are shared across single cell and bulk RNA-seq. However, cell type gene expression profiles
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(at least for genes that are not invariant across tissue states) may differ between samples. Previously,
works such as CSx (Newman et al., 2019) and TAPE (Chen et al., 2021) have explored utilizing
cell type fractions to estimate gene expression per sample. Here, we make use of a β-variational
autoencoder with standard normal distribution as prior to estimate average gene expression of the
different cell types from bulk RNA-seq expression levels. To jointly train the network on all cell
types, we condition the decoder (at its input layer) with cell type labels. This allows for training a
single model to estimate gene expression of each cell type for a sample. To make use of bulk RNA
seq during the training, we regularize the reconstruction loss with a consistency loss defined over per
cell type signature. Denoting f as before and g(·, k) as the output of the autoencoder with condition
k (corresponding to cell type label) on the decoder input, this consistency loss is defined as:

LVAE
cons(f, g,B

mix
i· ,Bi·,X

sim
i· , Ssim

ki·) = ||f(Bmix
i· )kg(B

mix
i· , k)−βf(Bi·)kg(Bi·, k)+(1−β)Xsim

i· Ssim
ki· ||

2

2
,

where B
mix
i is given by Equation 2, f(Bmix

i· )k is the estimated proportion of cell type k in sample i.

In implementation, we replace f(Bmix
i· )k with βf(Bi·)k + (1 − β)Xsim

i· . Thus, this loss forces the

learned signature for cell type k, g(Bmix
i· , k), to be closer to signatures for both real and simulated

bulk samples. This loss function makes the assumption that mixing two bulk samples is similar
to mixing individual cell type specific signatures that constitute those bulks. We added this loss
function with a regularization parameter λ2 (with default value 0.1) to the loss of the standard β-
variational autoencoder (the weight on the KL divergence, denoted as βVAE, is set to 0.1 by default).
The total loss function sums up to:

LVAE
total (f, g,B

sim
i· ,Bmix

i· ,Bi·,X
sim
i· , Ssim

ki·) = ||Ssim
ki· − g(Bsim

i· , k)||2
2

+ λ2L
VAE
cons(f, g,B

mix
i· ,Bi·,X

sim
i· , Ssim

ki·)

+ βV AELKLdivergence(N (µ, σ),N (0, 1)),

where N (0, 1) is standard normal distribution, µ and σ are the empirical mean and standard devia-
tion estimated from the output of the encoder. Both the encoder and decoder consist of two hidden
layers. We train the network to minimize the loss function with an Adam optimizer with initial
learning rate of 1e − 4. By default, the network is trained with a batch size of 32 for 10000 × c
number of steps. The architecture of the network is summarized in Figure 1.

3 RELATED WORK AND COMPETING ALGORITHMS

Several methods for cell deconvolution have been developed. Avila Cobos et al. (2020) and Jin
& Liu (2021) provided a benchmark and review of state of the art cell deconvolution algorithms.
Here, we focus on MuSiC, CSx, Scaden and TAPE although here are several additional methods
such as DWLS (Tsoucas et al., 2019) and Bisque (Jew et al., 2020) etc., because both MuSiC and
CSx are single cell reference based methods that have performed well on simulation studies in
aforementioned benchmarking studies. Scaden and TAPE are selected as both are deep learning
based deconvolution approaches. We briefly detail these approaches below. Out of these methods,
CSx and TAPE can also estimate per sample cell type-specific gene expression signatures.

MuSiC (Wang et al., 2019) uses weighted non-negative least squares. MuSiC maintains cross-cell
and cross-sample consistencies by appropriately weighting genes based on their informativity dur-
ing an iterative procedure. MuSiC is provided as an R package. Deconvolution using MuSiC was
performed according to the authors recommendations. Since MuSiC is a method that utilizes multi-
subject scRNA-seq datasets, when available, we used cells from multiple subjects in deconvolution
with MuSiC. CibersortX (CSx) (Newman et al., 2019) is a deconvolution method that addresses
domain gap problems with scRNA-seq and bulk samples by aiming to correct batch effects. It uses
scRNA-seq to generate a cell type specific signature matrix and uses ν-support vector regression as
the underlying algorithm. CSx comprises two modes, S- and B-modes, to address the domain gap.
S-mode is used when deconvolving with a signature matrix constructed using a scRNA-seq dataset,
while B-mode is used when deconvolving with a signature matrix constructed using purified sam-
ples. We followed the documentation provided by the authors to run CSx and used the S-mode. CSx
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can also predict gene expression signatures for each sample for which it uses a Non-negative matrix
factorization based iterative algorithm. Scaden (Menden et al., 2020) is an average ensemble of three
deep neural networks with different architectures that was developed for cell fraction deconvolution.
Each network is trained only on simulated pseudo bulk data generated from an scRNA-seq reference
similar to described above. Scaden is provided as a Python package. We used the official Scaden
package with the instructions provided by the authors to train the networks. TAPE (Chen et al.,
2021) is a fully-connected autoencoder where the bottleneck consists of cell type fractions. The
architecture of the encoder is similar to the archictecture of Scaden but with CeLU activations. The
decoder consists of linear activations and outputs gene expression of the input vector. The adaptive
mode of TAPE aims at optimizing the network for bulk samples, while the overall mode trains for
fractions with an added loss function that reconstructs input bulk expression from fractions. Since
TAPE-A reconstructs gene expression from fractions (bottleneck), the signature matrix is visible in
the (linear) decoder. To estimate gene expression signatures for each bulk sample, decoder weights
are optimized per-sample using an iterative optimization strategy. Network weights are changed
during the two modes, we compare with both and refer to TAPE in overall mode as TAPE-O and in
adaptive mode as TAPE-A. Linear MLPs: The solution to the deconvolution problem could be, in
principle, a linear function. For this reason we also compared to an MLP ensemble that is based on
the architecture in Section 2.2, but in which we replaced all non-linear activations with an identity
function and removed the consistency loss.

4 EXPERIMENTS AND RESULTS

4.1 DATASETS

We evaluated the algorithms on six datasets consisting of peripheral blood mononuclear cells
(PBMCs) and corresponding ground-truth cell type fractions experimentally quantified using flow
cytometry. Details of these datasets are given in Table 1.

Table 1: Real bulk datasets with known ground truth cell fraction information for the evaluation of
deconvolution performance.

Dataset name # samples # genes Original Source Type
SDY67 12 11328 Zimmermann et al. (2016) RNA-seq
Monaco bulk 12 17487 Monaco et al. (2019) RNA-seq
Monaco microarray 164 38593 Monaco et al. (2019) Microarray
GSE65133 20 11328 Newman et al. (2015) Microarray
GSE107572 9 19423 Finotello et al. (2019) RNA-seq
GSE120502 250 20343 Harrison et al. (2019) RNA-seq

To deconvolve these datasets, we used the PBMC8k (Table 2) as a reference single-cell dataset from
a healthy donor for all methods considered here. To maintain same genes between the single-cell
data and bulk RNA-seq, we subset both datasets over common gene-set. Number of common genes
between PBMC8k and each of the bulk samples are as follows: SDY67: 10717, Monaco bulk: 13122,
Monaco microarray: 13467, GSE65133: 10717, GSE107572: , GSE120502: 13699.

To deconvolve with deep learning based methods (Scaden, TAPE-O, TAPE-A, Linear MLPs and
DISSECT), we use this single-cell data from healthy donors to create simulated bulk data with
known fractions as described in section 2. The non-deep learning methods (MuSiC and CibersortX)
do not require simulations and as such single-cell data is used without simulations. For the esti-
mation of cell type specific gene expression per sample, we utilized simulations in the absence of
corresponding ground truth in the real bulk RNA-seq. For this, in addition to PBMC8k, we consid-
ered three other reference datasets, namely PBMC6k, donorA and donorC (Table 2). The results are
given in Section 4.3.

Since the number of cell types is unknown apriori in a bulk RNA-seq dataset that we want to decon-
volve, we create an ”unknown” cell type label in the reference dataset by merging cells not belonging
to any of the cell types present in corresponding tissue (Menden et al., 2020; Chen et al., 2021). This
unknown cluster allows comparison of fractions measured at relative scale. PBMCs consist of five
main cell types namely CD4 T cells, CD8 T cells, NK cells, Monocytes and B cells (Bittersohl &
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Table 2: Single-cell data used for the creation of simulated reference data for supervised training.
We manually annotated cells with these five cell types based on expression of cell type marker genes.
QC refers to Quality Control step (Appendix C.3) performed to filter out poor quality cells and genes
that are expressed in too few cells.

Dataset name # cells # genes (Pre-QC) # genes (Post-QC) Title in 10X Genomics1

PBMC8k 8381 32738 14343 8k PBMCs from a Healthy Donor
PBMC6k 5419 33694 18340 6k PBMCs from a Healthy Donor
DonorA 2900 32738 13067 Frozen PBMCs (Donor A)
DonorC 9519 32738 15275 Frozen PBMCs (Donor C)

Steimer, 2016). Thereby, we end up with six cell types (including unknown cell type). Similarly,
for the bulk RNA-seq datasets (Table 1), we grouped the ground truth cell type proportions not be-
longing to these five cell types in a single label “Unknown” following the methodology in Menden
et al. (2020).

To preprocess single-cell datasets, we utilized the procedure described in Appendix C which in-
cludes quality control (QC) and simulations. A detailed information on on the parameters used for
simulations are provided in Appendix C.2.

For the Monaco bulk dataset (Table 1), more granular level fractions of cell type subsets are quan-
tified using flow cytometry. We utilized this information to evaluate methods on discerning closely
related or scarce cell type subsets. Since it is notoriously hard to identify cell types at such granu-
larity in PBMC single-cell datasets from healthy donors, we considered 9852 RNA-seq samples of
purified cells from Ota et al. (2021) as references. Purified RNA-seq samples are average profiles for
thousands of cells of the same cell type. To match cell types between the purified reference and flow
cytometry from Monaco bulk, we harmonize cell type labels. Resulting ground truth and reference
had 18 cell subsets defined are given in Appendix D.

4.2 EVALUATION METRICS

We used Pearson correlation and root mean squared error (RMSE) for the evaluation of deconvolu-
tion results. Since some cell types are much more abundant than others, it is important to consider
the overall and per cell type average correlation and RMSE (see Apppendix B).

4.3 RESULTS

In this section, we present results on experiments detailed in Section 4.1. Additional experiments
and results on datasets without corresponding flow cytometry fractions are presented in Appendix E.
There we utilize validated biological hypotheses to evaluate DISSECT against competing methods.

4.3.1 ESTIMATION OF CELLTYPE FRACTIONS

To evaluate deconvolution performance, we deconvolved each of the datasets in Table 1 using the
PBMC8k reference dataset (Table 2). For MuSiC, we also evaluate using all 10x PBMC datasets
listed in Table 2 as well as blood data from Immune Cell Atlas (ICA) (Appendix table 7) since
MuSiC can take advantage of multi-sample reference (3). Tables 3 and 4 demonstrate that DISSECT
shows significantly improved correlations in 9 out of 12 comparisons and the lowest RMSE in 11
out of 12 comparisons, across 6 different datasets.

Next, we evaluated the cell fraction deconvolution performance on the Monaco bulk (Section 4.1)
dataset that contains several closely related and rare cell types and constitutes a relatively harder task.
With a correlation of 0.6, DISSECT’s average performance is 14 percentage points better than the
second best performance by Scaden (Appendix Table 8). For 8 out of 18 cell types it reaches the best
correlation, while Scaden performs best for 3 out of 18 cell types. With an RMSE of 0.03, Scaden’s
performance is 1 percentage point better than DISSECT (Appendix Table 9). In summary, DISSECT
displays the best correlation and a highly competitive RMSE in the cell fraction deconvolution task.

1https://support.10xgenomics.com/single-cell-gene-expression/datasets

7

https://support.10xgenomics.com/single-cell-gene-expression/datasets


Under review as a conference paper at ICLR 2023

Table 3: Average (overall) Pearson correlation between estimations and flow cytometry cell type
fractions computed over all cell types.

Dataset MuSiC MuSiC
(All)

MuSiC
(ICA)

CSx Scaden TAPE-
O

TAPE-
A

Linear
MLPs

DISSECT

SDY67 nan (-
0.301)

0.39 (-
0.201)

0.557
(0.23)

0.59
(0.52)

0.507
(0.419)

0.53
(0.465)

0.513
(0.152)

0.51
(0.739)

0.631
(0.789)

Monaco
bulk

nan
(0.006)

0.534
(-0.4)

0.684
(0.475)

0.429
(0.634)

0.685
(0.649)

0.695
(0.569)

0.664
(0.662)

0.534
(0.73)

0.727
(0.783)

Monaco
Microarray

nan
(-0.16)

nan (-
0.418)

0.592
(-0.41)

0.66
(0.398)

0.791
(0.189)

0.71
(0.317)

nan
(0.03)

0.71
(0.233)

0.786
(0.799)

GSE65133 nan (-
0.245)

nan (-
0.3)

0.554
(−0.17)

0.642
(0.686)

0.771
(0.413)

0.729
(0.413)

0.719
(0.252)

0.77
(0.421)

0.821
(0.918)

GSE107572 nan
(0.155)

0.65
(0.24)

0.542
(0.76)

0.669
(0.527)

0.627
(0.723)

0.615
(0.658)

0.012
(0.617)

0.486
(0.71)

0.705
(0.79)

GSE120502 0.103 (-
0.302)

0.451
(0.718)

0.567
(0.77)

0.529
(0.776)

0.688
(0.718)

0.692
(0.883)

0.632
(0.779)

0.63
(0.379)

0.662
(0.864)

Table 4: Average (overall) RMSE between estimations and flow cytometry cell type fractions com-
puted over all cell types.

Dataset MuSiC MuSiC
(All)

MuSiC
(ICA)

CSx Scaden TAPE-
O

TAPE-
A

Linear
MLPs

DISSECT

SDY67 0.3
(0.348)

0.201
(0.226)

0.173
(0.21)

0.147
(0.15)

0.134
(0.13)

0.11
(0.10)

0.136
(0.12)

0.13
(0.128)

0.089
(0.10)

Monaco
bulk

0.247
(0.256)

0.185
(0.194)

0.113
(0.132)

0.125
(0.094)

0.081
(0.07)

0.086
(0.097)

0.065
(0.068)

0.08
(0.077)

0.06
(0.069)

Monaco
Microarray

0.27
(0.296)

0.292
(0.304)

0.21
(0.23)

0.151
(0.134)

0.139
(0.162)

0.15
(0.15)

0.17
(0.183)

0.285
(0.307)

0.07
(0.069)

GSE65133 0.308
(0.381)

0.283
(0.292)

0.2
(0.212)

0.11
(0.121)

0.13
(0.149)

0.122
(0.119)

0.14
(0.136)

0.21
(0.253)

0.06
(0.058)

GSE107572 0.245
(0.267)

0.167
(0.196)

0.099
(0.109)

0.12
(0.137)

0.105
(0.128)

0.086
(0.099)

0.116
(0.128)

0.11
(0.11)

0.068
(0.076)

GSE120502 0.358
(0.458)

0.162
(0.172)

0.101
(0.105)

0.12
(0.12)

0.104
(0.121)

0.087
(0.093)

0.093
(0.102)

0.143
(0.15)

0.086
(0.087)

Finally, we performed an ablation study that validates our hypothesis that the consistency loss is
primarily responsible for DISSECT’s improved deconvolution performance (Appendix Table 18).
We also evaluated the output of DISSECT at the end of simulation-phase only. These results are
provided in Appendix Tables 17 (Correlation) and 18 (RMSE) where simulation-based phase lags
behind the full consistency-regularized training.

4.3.2 ESTIMATION OF CELL TYPE-SPECIFIC GENE EXPRESSION

Next, we evaluated the performance of DISSECT’s cell type-specific gene expression inference on
simulated bulk RNA-seq data. We used simulated data as we could not obtain bulk RNA-seq and
corresponding cell type-specific expression information. To maintain a domain shift between the
training and test datasets, simulated data for training and testing were created using different single-
cell datasets. Here, we compare our approach with the only two state-of-the-art methods that can
infer cell type-specific gene expression per sample, TAPE and CSx (Section 3). We simulated bulk
samples from one of the four reference single-cell PBMC datasets listed in Table 2, and created
training simulations from the remaining three. To assess the performances, we computed sample-
(Table 13) and gene-wise (Table 6) Pearson correlations. DISSECT displays the best sample- and
gene-wise correlations in 3 out of 4 experiments, each, taking first place in overall cell type-specific
gene expression deconvolution performance.

8
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Table 5: Pearson correlation between ground truth and estimated gene expression profiles on simu-
lated datasets averaged over samples. The column Dataset indicates the single-cell dataset used to
create simulations for the test set.

Dataset CSx TAPE-A DISSECT
PBMC6k 0.71 ± 0.12 0.83 ± 0.09 0.82 ± 0.08
PBMC8k 0.82 ± 0.13 0.79 ± 0.09 0.84 ± 0.11
DonorA 0.78 ± 0.12 0.85 ± 0.11 0.89 ± 0.10
DonorC 0.75 ± 0.09 0.81 ± 0.12 0.83 ± 0.08

Table 6: Pearson correlation between ground truth and estimated gene expression profiles on simu-
lated datasets averaged over estimated genes.

Dataset CSx TAPE-A DISSECT
PBMC6k 0.37 ± 0.22 0.42 ± 0.14 0.46 ± 0.15
PBMC8k 0.36 ± 0.25 0.51 ± 0.12 0.48 ± 0.14
DonorA 0.42 ± 0.21 0.48 ± 0.20 0.48 ± 0.18
DonorC 0.46 ± 0.18 0.45 ± 0.11 0.49 ± 0.12

5 DISCUSSION

We detailed how the use of a linear consistency is suitable for the task of deconvolution, especially
in the absence of real ground truth training information, as is often the case in biomedical settings.
Our approach relies on the supervised learning on simulated data and an unsupervised domain adap-
tation to the target data of interest. This semi-supervised learning approach results in state-of-the-art
deconvolution performance, for both cell fraction and gene expression estimation. While we only
focused on MLPs for estimation of cell type fractions and autoencoders for gene expression esti-
mation in this work, we surmise that consistency regularization might improve other deconvolution
algorithms as well. We envision further work in this area.

The task of deconvolution plays an important role in spatial transcriptomics (ST) and cell-free DNA
methylation (cfDNA). Recently, several algorithms have been developed for ST (Li et al., 2022)
and cfDNA deconvolution (Jeong et al., 2022). We surmise that consistency regularization might
also improve ST and cfDNA deconvolution by adjusting DISSECT’s simulation procedure to mimic
ST or cfDNA. We provide two proof-of-concept ST deconvolution results using consistency reg-
ularization in Appendix F. Similar arguments can be made for the deconvolution of several other
biomedical data types, such as epigenetic, proteomic, and metabolomic data, for instance.

6 LIMITATIONS

While DISSECT displays favorable deconvolution performance compared to other methods, the
results are far from perfect. Especially for hard deconvolution tasks, such as samples with many
similar cell types and very scarce cell populations, an increase in deconvolution performance is
warranted. Future research into semi-supervised and contrastive algorithms as well as data aug-
mentation and integration techniques should further enhance DISSECT’s performance. As stated in
Section 4.3.2 we had to rely on the simulation based experiment to evaluate gene expression estima-
tions. Nevertheless, we still explored how well DISSECT can estimate gene expression using an ST
dataset (Appendix H). Further evaluations with quality ground truths will be beneficial.

7 CODE AND DATA AVAILABILITY

All considered datasets are publicly available from respective sources. Code is available anony-
mously at https://anonymous.4open.science/r/DISSECT-F0C4.

9
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Francisco Avila Cobos, José Alquicira-Hernandez, Joseph E Powell, Pieter Mestdagh, and Katleen
De Preter. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nature
communications, 11(1):1–14, 2020.

Maayan Baron, Adrian Veres, Samuel L Wolock, Aubrey L Faust, Renaud Gaujoux, Amedeo Vetere,
Jennifer Hyoje Ryu, Bridget K Wagner, Shai S Shen-Orr, Allon M Klein, et al. A single-cell tran-
scriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure.
Cell systems, 3(4):346–360, 2016.

Pazit Beckerman, Jing Bi-Karchin, Ae Seo Deok Park, Chengxiang Qiu, Patrick D Dummer, Irfana
Soomro, Carine M Boustany-Kari, Steven S Pullen, Jeffrey H Miner, Chien-An A Hu, et al.
Transgenic expression of human apol1 risk variants in podocytes induces kidney disease in mice.
Nature medicine, 23(4):429–438, 2017.

David A Bennett, Aron S Buchman, Patricia A Boyle, Lisa L Barnes, Robert S Wilson, and Julie A
Schneider. Religious orders study and rush memory and aging project. Journal of Alzheimer’s
disease, 64(s1):S161–S189, 2018.

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A
Raffel. Mixmatch: A holistic approach to semi-supervised learning. Advances in neural informa-
tion processing systems, 32, 2019.

Heike Bittersohl and Werner Steimer. Intracellular concentrations of immunosuppressants. In Per-
sonalized immunosuppression in transplantation, pp. 199–226. Elsevier, 2016.
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Segerstolpe, Domenic Abbondanza, Stephen J Fleming, Ayshwarya Subramanian, Daniel T Mon-
toro, et al. Covid-19 tissue atlases reveal sars-cov-2 pathology and cellular targets. Nature, 595
(7865):107–113, 2021.

C Domı́nguez Conde, C Xu, LB Jarvis, DB Rainbow, SB Wells, T Gomes, SK Howlett, O Suchanek,
K Polanski, HW King, et al. Cross-tissue immune cell analysis reveals tissue-specific features in
humans. Science, 376(6594):eabl5197, 2022.

Meichen Dong, Aatish Thennavan, Eugene Urrutia, Yun Li, Charles M Perou, Fei Zou, and Yuchao
Jiang. Scdc: bulk gene expression deconvolution by multiple single-cell rna sequencing refer-
ences. Briefings in bioinformatics, 22(1):416–427, 2021.

10

https://portal.brain-map.org/atlases-and-data/rnaseq
https://portal.brain-map.org/atlases-and-data/rnaseq


Under review as a conference paper at ICLR 2023

João Fadista, Petter Vikman, Emilia Ottosson Laakso, Inês Guerra Mollet, Jonathan Lou Esguerra,
Jalal Taneera, Petter Storm, Peter Osmark, Claes Ladenvall, Rashmi B Prasad, et al. Global
genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing
glucose metabolism. Proceedings of the National Academy of Sciences, 111(38):13924–13929,
2014.

Francesca Finotello, Clemens Mayer, Christina Plattner, Gerhard Laschober, Dietmar Rieder, Hubert
Hackl, Anne Krogsdam, Zuzana Loncova, Wilfried Posch, Doris Wilflingseder, et al. Molecular
and pharmacological modulators of the tumor immune contexture revealed by deconvolution of
rna-seq data. Genome medicine, 11(1):1–20, 2019.

Oscar Franzén, Li-Ming Gan, and Johan LM Björkegren. Panglaodb: a web server for exploration
of mouse and human single-cell rna sequencing data. Database, 2019, 2019.

Hongjun Fu, Andrea Possenti, Rosie Freer, Yoshikazu Nakano, Nancy C Hernandez Villegas, Maop-
ing Tang, Paula VM Cauhy, Benjamin A Lassus, Shuo Chen, Stephanie L Fowler, et al. A tau
homeostasis signature is linked with the cellular and regional vulnerability of excitatory neurons
to tau pathology. Nature neuroscience, 22(1):47–56, 2019.

Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger,
Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. Deep speech: Scaling up end-to-end
speech recognition. arXiv preprint arXiv:1412.5567, 2014.

Genelle F Harrison, Joaquin Sanz, Jonathan Boulais, Michael J Mina, Jean-Christophe Grenier,
Yumei Leng, Anne Dumaine, Vania Yotova, Christina M Bergey, Samuel L Nsobya, et al. Natural
selection contributed to immunological differences between hunter-gatherers and agriculturalists.
Nature ecology & evolution, 3(8):1253–1264, 2019.

Jean-Claude Henquin and Jacques Rahier. Pancreatic alpha cell mass in european subjects with type
2 diabetes. Diabetologia, 54(7):1720–1725, 2011.

John V Hindle. Ageing, neurodegeneration and parkinson’s disease. Age and ageing, 39(2):156–
161, 2010.

Rebecca D Hodge, Trygve E Bakken, Jeremy A Miller, Kimberly A Smith, Eliza R Barkan, Lucas T
Graybuck, Jennie L Close, Brian Long, Nelson Johansen, Osnat Penn, et al. Conserved cell types
with divergent features in human versus mouse cortex. Nature, 573(7772):61–68, 2019.

Yunhee Jeong, Lisa Barros de Andrade e Sousa, Dominik Thalmeier, Reka Toth, Marlene
Ganslmeier, Kersten Breuer, Christoph Plass, and Pavlo Lutsik. Systematic evaluation of cell-type
deconvolution pipelines for sequencing-based bulk dna methylomes. Briefings in bioinformatics,
23(4):bbac248, 2022.

Brandon Jew, Marcus Alvarez, Elior Rahmani, Zong Miao, Arthur Ko, Kristina M Garske, Jae Hoon
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A

Table 7: Details on Blood single-cell data from Immune Cell Atlas (Domı́nguez Conde et al. (2022))
used as a multi-sample reference scRNA-seq for MuSiC. Cell types that were present in less than 5
samples were dropped. The same cell types were selected as in scRNA-seq datasets listed in Table
2: Bcells, CD4Tcells, CD8Tcells, Monocytes and NK. The rest of the cell types were merged to
form the unknown cluster (Section 4.1).

Donor name # cells Post-QC number of genes
621B 103 23658
637C 760 23658
A35 1368 23658
A36 3124 23658
D496 9065 23658
D503 12208 23658

Table 8: Pearson correlation between estimates from different methods and flow cytometry for gran-
ular cell type fractions in Monaco bulk.

Celltype MuSiC CSx Scaden TAPE-O TAPE-A Linear MLPs DISSECT
B Ex nan 0.43 0.18 0.22 0.030 0.10 0.32
B NSM nan -0.08 0.12 0.10 -0.15 -0.22 0.09
B Naive nan 0.95 0.87 0.8 0.43 0.71 0.96
B SM 0.85 nan 0.57 0.45 0.15 0.26 0.63
Monocytes C 0.30 0.29 0.63 0.57 0.52 0.11 0.62
Monocytes I 0.41 0.36 0.90 0.87 0.81 0.54 0.93
Monocytes NC 0.25 0.09 0.31 0.35 0.48 0.19 0.66
NK 0.80 0.82 0.58 0.59 0.65 0.49 0.82
Neutrophils LD 0.2 nan 0.89 0.48 0.57 0.03 0.56
Plasmablasts 0.62 0.85 0.86 0.65 0.66 0.42 0.92
CD4 T Naive 0.66 0.47 0.68 0.70 0.34 0.14 0.76
CD4 T Memory 0.47 -0.15 0.27 0.27 0.12 0.08 0.24
CD8 T Naive 0.52 0.7 0.36 0.38 0.32 0.27 0.49
CD8 T CM nan -0.65 0.19 0.13 0.21 0.01 0.12
CD8 T EM nan nan 0.02 0.47 0.45 0.11 0.62
CD8 T TE 0.25 0.9 0.28 0.35 0.36 0.35 0.86
mDC nan 0.46 0.47 0.39 0.40 0.05 0.68
pDC 0.55 0.57 0.19 0.42 0.31 0.3 0.55

Average 0.49 2 0.40 2 0.46 0.45 0.37 0.22 0.60

B NOTE ON AVERAGE AND OVERALL CORRELATIONS FOR PERFORMANCE

EVALUATION.

Overall metrics can be deceiving when the model performs comparatively very well or very poor on
a largely abundant cell type as illustrated by results in Figures 2 and 3. Overall metrics are provided
for completeness as it has been extensively used in evaluation of other deconvolution works and
benchmarks (Avila Cobos et al., 2020; Newman et al., 2019; Wang et al., 2019; Chen et al., 2021).

C QUALITY CONTROL AND PREPROCESSING

C.1 QUALITY CONTROL:

Before simulating from reference datasets, we remove cells with less than 200 expressed genes
and genes which are expressed in less than 3 cells. Further, we also remove cells expressing more
than 4% mitochondrial genes. Thereafter, before each deconvolution, we subset reference and bulk

2Calculated over real values.
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Table 9: RMSE between estimates from different methods and flow cytometry for granular cell type
fractions in Monaco bulk.

Celltype MuSiC CSx Scaden TAPE-O TAPE-A Linear MLPs DISSECT
B Ex 0.01 0.05 0.04 0.04 0.01 0.02 0.02
B NSM 0.02 0.01 0.02 0.03 0.05 0.04 0.02
B Naive 0.01 0.03 0.03 0.03 0.04 0.06 0.03
B SM 0.05 0.01 0.01 0.02 0.02 0.03 0.01
Monocytes C 0.05 0.02 0.04 0.02 0.02 0.06 0.06
Monocytes I 0.12 0.15 0.03 0.06 0.10 0.12 0.04
Monocytes NC 0.20 0.09 0.02 0.07 0.05 0.10 0.02
NK 0.05 0.08 0.08 0.11 0.11 0.05 0.08
Neutrophils LD 0.02 0.03 0.01 0.01 0.01 0.01 0.02
Plasmablasts 0.01 0.01 0.02 0.01 0.04 0.01 0.04
CD4 T Naive 0.02 0.03 0.05 0.05 0.02 0.02 0.05
CD4 T Memory 0.10 0.07 0.03 0.12 0.15 0.21 0.03
CD8 T Naive 0.21 0.07 0.04 0.05 0.05 0.01 0.04
CD8 T CM 0.01 0.08 0.02 0.05 0.12 0.01 0.03
CD8 T EM 0.02 0.01 0.02 0.02 0.01 0.03 0.02
CD8 T TE 0.01 0.07 0.09 0.08 0.11 0.16 0.08
mDC 0.01 0.04 0.04 0.08 0.09 0.03 0.03
pDC 0.02 0.00 0.02 0.01 0.01 0.01 0.02
Average 0.06 0.05 0.03 0.05 0.06 0.05 0.04

Figure 2: Correlations between
Ground truth fractions from
Monaco Microarray (Table 1) and
the estimations using Scaden.

Figure 3: Correlations between
the ground truth fractions from
GSE120502 (Table 1) and the esti-
mations using TAPE-O.

datasets to include only the common genes between the two. This quality control step was identical
for all methods.

C.2 SIMULATIONS

For deep learning methods, we sampled αk,i uniformly to simulate based on procedure described

in Section 2 with
c
∑

k=1

αk,i = 100, ∀i if the dataset is single-cell. For experiments on granular level

cell types where simulations are done from purified cell samples, we modify simulation procedure

to reflect this. In this case, a simulated sample is given by B
sim
i· =

c
∑

k=1

X
sim
ik b

k

l
, where b

k

l
is the

expression vector of purified sample l belonging to cell type k. All other notations are same as in
Section 2.

For all experiments, we simulated total 1000× c simulations where c is number of cell types in the
reference dataset.
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C.3 PREPROCESSING:

Estimation of cell type fractions:

Scaden, TAPE, Linear MLPs and DISSECT: Before passing simulated and real bulk samples
to the network, we normalize samples to sum to a million counts (CPM: Counts per million) and
log scale them with base 2 after adding 1. CPM normalization was performed to maintain total
mRNA expressed per gene to be out of a fixed total gene expression, and CPM is widely used in
computational genomics. During training, for each batch, we normalize each sample by MinMax
scaling. These are standard preprocessing steps (Menden et al., 2020).

For MuSiC and CibersortX (under S-mode), data was supplied on a linear scale as suggested in
their respective publications and no change was made to the default normalization methods of both
(Wang et al., 2019; Newman et al., 2019).

Estimation of per sample cell type specific gene expression profiles: To estimate cell type specific
gene expression profiles, we need to maintain relationship between gene expression of individual cell
types and simulated bulks, which would be lost if we perform CPM normalization of both simulated
samples and corresponding cell type specific gene expression profiles. Hence, instead of performing
CPM normalization of simulated bulks, we normalize each test bulk sample to sum to the mean of
sums of simulated samples. Further, for estimating cell type specific gene expression, we want to
maintain gene level information across samples. To achieve this, instead of normalizing each sample
using MinMax scaling, we perform MinMax scaling globally over all samples.

For TAPE, since the signature matrix is observed in decoder (Section 3), preprocessing step is similar
to the preprocessing done in estimating cell type fractions. For CibersortX, data was supplied on a
linear scale under S-mode (Newman et al., 2019).

D CELL SUBSETS FOR ESTIMATIONS OF GRANULAR SUBSETS ON MONACO

BULK.

B cells (4 subsets): B Naive (Naive B cells), B Ex (Exhausted B cells), B NSM (Non-switched
memory B cells), B SM (Switched memory B cells)

CD4 T cells (2 subsets): CD4 T Naive (Naive CD4 T cells), CD4 T Memory (Memory CD4 T
cells),

CD8 T cells (4 subsets): T CD8 Naive (Naive CD8 T cells), CD8 T CM (Central Memory CD8
T cells), CD8 T TE (Terminally effector CD8 T cells), and CD8 T EM (Effector Memory CD8 T
cells),

Monocytes (3 subsets): Monocytes C (Classical monocytes), Monocyte NC (Non classical mono-
cytes) and Monocytes I (Intermediate monocytes),

Dendritic cells (2 subsets): mDC (myeloid dendritic cells), pDCs (Plasmacytoid dendritic cells)

Plasmablasts

Neutrophils LD (Low density neutrophils)

NK cells.

E FURTHER EVALUATION OF DECONVOLUTION PERFORMANCE USING

DIVERSE TISSUE DATASETS.

To assess the performance of DISSECT and other algorithms on further bulk RNA-seq datasets, we
consider additional experiments. In Section E.1, we consider paired scRNA-seq and bulk RNA-seq
data. In Section E.2, we looked at the performance of the methods to recover established biological
findings and in Section E.3, we assessed how the performance changes when the reference scRNA-
seq dataset is swapped with another reference.

16



Under review as a conference paper at ICLR 2023

Table 10: Harmonization of cell subset labels between Monaco bulk and reference from Ota et al.
(2021)

.
Cell subset Subset(s) in flow cytometry of Monaco bulk Merged subset(s) in Ota et al. (2021)
B Ex B Ex DN B
B NSM B NSM USM B
B Naive B Naive Naive B
B SM B SM SM B
Monocytes C Monocytes C CL Mono
Monocytes I Monocytes I Int Mono
Monocytes NC Monocytes NC NC Mono
NK NK NK
Neutrophils LD Neutrophils LD LDG
Plasmablasts Plasmablasts Plasmablast
CD4 T Naive T CD4 Naive Naive CD4
CD4 T Memory Th1, Th2,Th17,Th1/Th17, Tregs Th1, Th2, Th17, Tfh, Fe II eTreg
CD8 T Naive T CD8 Naive Naive CD8
CD8 T CM T CD8 CM CM CD8
CD8 T EM T CD8 EM EM CD8
CD8 T TE T CD8 TE TEMRA CD8, Mem CD8
mDC mDCs mDC
pDC pDCs pDC

E.1 PAIRED SCRNA-SEQ AND BULK RNA-SEQ

To evaluate deconvolution methods on further bulk RNA-seq datasets, we obtained paired scRNA-
seq and bulk RNA-seq from two tissues: mammary gland and lung. The details of these datasets are
provided in Table 11. The ground truth for bulk RNA-seq was generated using the fractions of cell
types as observed in the scRNA-seq.

The Tables 12 and 13 present the results on these two tissues. For the mammary gland dataset, the
results are calculated per sample and averaged since the dataset contains only two samples as done
in the original publication of data.

Table 11: Details on paired single-cell and bulk RNA-seq datasets considered. Cell type labels were
used as provided in the corresponding sources.

Dataset name # Post-QC cells # samples (bulk) Original Source
Mammary gland 3991 2 Dong et al. (2021)
Lung 93246 17 Delorey et al. (2021)

Table 12: Average Pearson correlation and RMSE between ground truth and estimated cell type
fractions on the Lung dataset over all cell types.

Dataset MuSiC CSx Scaden TAPE-
O

TAPE-
A

Linear
MLPs

DISSECT

r 0.51 0.56 0.55 0.53 0.54 0.48 0.56
rmse 0.09 0.07 0.07 0.08 0.08 0.12 0.06

E.2 RELATIONSHIP BETWEEN CELL TYPE FRACTIONS AND BIOLOGICAL PHENOTYPES

In this section, we rely on the established biological findings to evaluate deconvolution methods. For
this purpose we considered diverse set of tissues: brain, kidney and pancreas. Table 14 lists these
datasets and corresponding hypothesis based on literature. The single cell datasets corresponding to
these tissues are presented in 15.

Here we are interested in investigating if the deconvolution methods are faithful to the established
biological findings (Presented and discussed further in this Section). We are also interested in how

17



Under review as a conference paper at ICLR 2023

Table 13: Average Pearson correlation and RMSE between ground truth and estimated cell type
fractions on the Mammary gland dataset over samples.

Dataset MuSiC CSx Scaden TAPE-
O

TAPE-
A

Linear
MLPs

DISSECT

r 0.85 0.87 0.77 0.84 0.81 0.74 0.91
rmse 0.09 0.07 0.1 0.09 0.1 0.1 0.06

Table 14: Details on bulk RNA-seq datasets used to evaluate deconvolution methods on biological
phenotypes. Biological hypotheses based on literature serve as proxy ground truths.

Tissue Dataset # samples Biological hypothesis based on lit-
erature

original
Source

Pancreas GSE50244 89 (77 with
information
on hemoglo-
bic 1C levels)

Fraction of beta cells are negatively
associated with severity of type 2
diabetes indicated by hemoglobin
A1c (hba1C) level (Alejandro et al.,
2015; Saisho, 2015; Wang et al.,
2013).

Fadista et al.
(2014)

Kidney GSE81492 10 Tubule cells diminish with chronic
kidney disease (CKD) (Venkatacha-
lam et al., 2015; Liu et al., 2018;
Malhotra et al., 2019).

Beckerman
et al. (2017)

Brain ROSMAP 508 (463
with cor-
responding
annotation of
Braak stages)

1. Neurodegeneration with ad-
vanced Braak stage (Streit et al.,
2009; Hindle, 2010; Fu et al.,
2019), and 2. Approximately 70-
30 ratio of excitatory and inhibitory
neurons (Contreras, 2004; Chen &
Dzakpasu, 2010).

Bennett et al.
(2018)

methods behave when different single-cell reference datasets are used (Presented and discussed in
Section E.3).

Deconvolution of ROSMAP with reference scRNA-seq from Allen Brain Atlas:

ROSMAP cohort consists of samples from healthy individuals and patients with Alzheimer’s disease
(AD). Here, we consider two biological ground truths: first is the neurodegeneration, or the loss of
neurons with increasing Braak Stages (Braak et al., 2003) (Table 14), and the second is the ratio
of excitatory neurons to inhibitory neurons. We deconvolved the ROSMAP using reference from
Allen Brain Atlas. The results are presented in Figure 8. Nearly all methods capture a negative
association between the median fractions of excitatory neurons and Braak stages. Scaden, TAPE-O,
DISSECT maintain a higher proportion of excitatory neurons compared to inhibitory neurons. How-
ever, DISSECT estimates show the excitatory-inhibitory neurons ratio to be almost 70-30. TAPE-A
and MuSiC on the other hand show opposite of what is expected.

Deconvolution of GSE50244 with reference scRNA-seq from Segerstolpe:

GSE50244 is a bulk RNAseq dataset from pancreas and consists of samples from healthy and T2D
(Type 2 diabetes) individuals. Here our biological ground truth is the negative association between
beta cell proportions and the level of hemoglobin A1c (hba1C) (Table 14). We performed the de-
convolution using Segerstolpe. We restricted dataset to contain alpha, beta, gamma, delta, acinar
and ductal cell types following the methodology in Wang et al. (2019). The results are presented in
Figure 4. W note that all deconvolution methods successfully reveal the significant association be-
tween beta cell proportions and hba1c level, however since the extent of the association is unknown,
further quantification would be speculative.

Deconvolution of GSE81492 with reference scRNA-seq from Park:
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Table 15: Details on single-cell datasets used to deconvolve corresponding tissue samples.

Tissue Dataset name # cells Original Source
Pancreas Baron 8569 Baron et al. (2016)
Pancreas Segerstolpe 3514 Segerstolpe et al. (2016)
Pancreas Xin 1492 Xin et al. (2016)
Kidney Park 43745 Park et al. (2018)
Kidney Miao 16887 Miao et al. (2021)
Brain Allen Brain Atlas 49418 bra.

Figure 4: A: Distribution of relative fractions of alpha, beta, gamma, delta, acinar and ductal cells
estimated on 77 bulk RNA-seq samples from GSE52044 using Seger single-cell reference dataset.
B: Relationship between Hemoglobin A1C (hba1c) levels and estimated fractions of beta cells in
77 bulk RNA-seq samples from GSE52044 using Seger. Corresponding Method for each plot is
indicated in the title. Pearson correlation of the relationship and associated p-value is indicated in
the plot. p-value shown is obtained for beta cells from a multiple linear regression model considering
age, sex and bod mass index (BMI) as covariates, i.e. model hb1ac ∼ Constant + fractions of beta
cells + Age + Sex + BMI.

GSE81492 is a dataset consisting of APOL1 mutant mice (a Chronic Kidney, CKD, disease mouse
model) (Table 14). Here the biological ground truth is the decrease in tubule cells - Proximal tubule
(PT) cells ductal convoluted tubule (DCT) cells in CKD samples compared to the healthy state.
We deconvolved the aforementioned dataset using single cell reference dataset Park. We present
the results per method per reference in Figure 5. All methods reveal loss of proximal tubule (PT)
cells in APOL1 mice, while showing higher proportion of immune cells (B lymph, Fib, Maco and
NK cells) in APOL1. However, DCT cells (Ductal convoluted tubule) cells which are also known
to diminish in the APOL1 mice, MuSiC shows an increase. This is also observed in Wang et al.
(2019). However, other methods were successful in revealing loss of DCTs in APOL1.

E.3 RELATIONSHIP BETWEEN CELL TYPE FRACTIONS AND BIOLOGICAL PHENOTYPES USING

MULTIPLE REFERENCE SCRNA-SEQ

Deconvolution of GSE50244 with reference scRNA-seq from Segerstolpe, Baron and Xin:

For GSE50244, we performed deconvolution using three reference single-cell datasets. These ref-
erences differ in technologies with which the cells were sequenced. These technologies are Baron:
inDrop, Segerstolpe: Smart-seq2, and Xin: SMARTer. Further, these reference datasets contain
cells belonging to different states. We used cells belonging to only healthy individuals in Baron
and Segerstolpe while both healthy and T2D individuals are used in Xin. Further, since our goal
is to compare the divergence in performance when the reference single-cell dataset is changed, we
subsetted all three single-cell datasets to contain same cell types. Figure 6 shows the distribution of
alpha, beta, gamma and delta cells for each deconvolution method. There is a lack of concordance
between three distributions of cell types across all methods. Beta and alpha cells are generally the

19



Under review as a conference paper at ICLR 2023

two most abundant of these four cell types in pancreatic islets (Henquin & Rahier, 2011). This is
correctly observed with estimations from the considered deep learning based methods. However, for
Scaden, the relative proportions of alpha and beta cells are inverted between Baron and Xin. While
for DISSECT, they are predicted almost at the same level for the three datasets, which more varying
beta cell fractions when Baron is the reference. TAPE-O also achieves this trend, however, TAPE-O
incorrectly predicts Delta cells as being at the same level as alpha cells for reference Baron. Linear
MLPs show the most variance and predict almost 80% alpha cells for Segerstolpe and Xin. Fur-
ther, with Linear MLPs, the least abundant gamma and delta cells are predicted to be negative for
almost all samples. Next, we looked at the association between beta cell fractions and T2D severity
(Table 14). Across all three datasets, DISSECT estimations are significantly negatively correlated
with hb1ac. As in other experiments, we observe a wide discrepancy between TAPE-O and TAPE-A
results.

Deconvolution of GSE81492 with reference scRNA-seq from Park and Miao:

We deconvolved GSE81492 using two single cell reference datasets Park and Miao. Here, we sub-
setted these two reference datasets to contain same cell types. We present the results per method per
reference in Figure 9. To enable comparisons, same y-axes were used for both single-cell datasets.
Both of these datasets come from same technologies (10x Genomics). Despite this, almost all meth-
ods show variation in their estimates when changing the reference, wit DISSECT showing the least
variance and giving similar associations between cell type fractions and tissue state.

These experiments show that while deconvolution methods in general follow biology but the results
differ across the single-cell reference used. DISSECT, however, shows more robustness compared
to other methods in this regard.

F APPLICATION TO SPATIAL TRANSCRIPTOMICS

Here we illustrate applicability of DISSECT on spatial transcriptomics (ST). We focused on two
publicly available tissue slides (Mouse brain and human lymph node) on which ST has been per-
formed.

In brain, cortical neuronal layers are structured spatially. To verify whether DISSECT estimates may
be valid in ST, we deconvolved a sagittal mouse brain slice available as part of Seurat 3. As reference,
we used a mouse brain single-cell dataset from Allen Brain Institute consisting of approximately
14000 cells sequenced using Smart-seqv2 protocol (Tasic et al., 2016). We adjusted simulation
procedure to mimic ST datasets. 10x Visium (one of the technologies to generate ST samples)
consists of around 10 cells per spot 4 5.To reflect this, we simulated between 5-12 cells to generate

one spot (i.e.
c
∑

k=1

αki ∼ [5, 12]). Since ST is much sparser, to generate one spot, we kept between

2-6 cell types. Figure 10 shows fractions of cell types overlaid on the hematoxylin and eosin (H&E)
stained images of tissue slide, and Figure 11 shows jointly cortical neuronal proportions which
shows a spatially structured arrangement of neurons.

To evaluate how DISSECT behaves on ST deconvolution on granular level subsets, we deconvolved
a human lymph node slide using corresponding integrated single-cell datasets on which granular
level cell types are annotated. Both of these datasets are obtained from (Kleshchevnikov et al.,
2022). Remarkably, DISSECT is able to identify spatial patterns of cell type fractions, along with
correctly predicting co-localization of cycling B cells and germinal center B cells. This is illustrated
in Figures 13 and 14. Several germinal center zones are correspondigly visible in h&E stained image
(Figure 13).

These results demonstrate the usability of DISSECT on spatial deconvolution and warrant evaluation
of consistency loss further in data modalities other than bulk RNA-seq.

3https://satijalab.org/seurat/articles/spatial_vignette.html
4Each spot is a location which is sequenced in tissue slide. Thus, each spot is analogous to a bulk RNA-seq,

albeit much sparser due to less number of cells per spot.
5https://kb.10xgenomics.com/hc/en-us/articles/360035487952-How-many-cel

ls-are-captured-in-a-single-spot-
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G ABLATION

Table 16: Average performance over five random experiments for SDY67 (Table 1.) Each column
indicates the additional part.

Metric Linear MLP Activations KL Divergence KL Divergence + Consistency
r 0.51 ± 0.018 0.55 ± 0.016 0.54 ± 0.006 0.63 ± 0.005
rmse 0.13 ± 0.008 0.13 ± 0.006 0.11 ± 0.004 0.09 ± 0.002

Table 17: Average Pearson correlation between estimations and flow cytometry cell type fractions
for the only after simulation phase (Step 2000, λ = 0) in comparison to the full training.

Dataset Simulation-phase only DISSECT
SDY67 0.359 0.631
Monaco bulk 0.698 0.727
Monaco microarray 0.682 0.786
GSE65133 0.66 0.821
GSE107572 0.53 0.705
GSE120502 0.64 0.662

Table 18: Average RMSE between estimations and flow cytometry cell type fractions for the only
after simulation phase (Step 2000, λ = 0) in comparison to the full training.

Dataset Simulation-phase only DISSECT
SDY67 0.226 0.089
Monaco bulk 0.081 0.06
Monaco microarray 0.139 0.07
GSE65133 0.14 0.06
GSE107572 0.131 0.068
GSE120502 0.09 0.086

H ESTIMATING CELL TYPE SPECIFIC GENE EXPRESSION ON A BRAIN ST

SLIDE

To evaluate DISSECT on the estimation of cell type specific gene expression, we utilize simulations
from PBMC scRNA-seq datasets (Table 2). This is due to the unavailability of bulk RNA-seq from
paired tissue and cell populations. However, to investigate further how DISSECT performs in prac-
tice, we investigated quallity of gene expression estimation for brain ST using scRNA-seq data from
Allen Brain Atlas. Details of both datasets are provided in Section F. In this experiment, we were
interested in answering two questions: 1. Does DISSECT estimates of gene expression reflect what
is observed for that cell type in the literature? 2. Can DISSECT identify heterogeneity of the same
cell type across samples (in this case spots) without having to pre-annotate cell type subsets? To
accomplish answering of the second question, we merged excitatory neuronal subsets together and
labeled them as “exc neurons”. This allows us to test whether we observe heterogeneity in excita-
tory neurons after estimation or not. This resulted in 17 final cell types. We also filtered our cells
where the proportion of corresponding cell type is less than 1/(no. of cell types). This is reasonable
as 10x Visium spots contain between 1-10 cells.

The first question relates to accuracy of the predicted signature, and the second question is about
whether the biological reality of the sample at hand is preserved. To evaluate our results, we first
computed PCA and UMAP embeddings of the predicted cell type specific gene expression and
identified disjoint cell type clusters (Figure 15). Second, we tested for differential expression (DE)
of genes for each cell type. Top 5 DE genes for each cell type are visualized over the ST slide
(Figure 16). To verify whether the DE genes make sense in the broader context of the literature, we
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performed gene set enrichment using Enrichr 6 with gene sets available from PanglaoDB Franzén
et al. (2019), a curated database of single-cells from different tissues. The results are presented
in Figures 17 and 18. Correct gene sets are enriched for each predicted signature (e.g. Astrocyte
for cluster “Astro”, Neurons or interneurons for neuronal subsets such as Lamp5, exc neurons etc.,
Microglia and Macrophage for “Macrophage”, Oligodendrocytes for the cluster “Oligo”). Next, we
focused on the excitatory neurons. Figure 19 shows the expression of expected positive and negative
marker genes (taken from the Allen Brain Atlas) over the ST slide. We observe that excitatory
neurons do express positive markers but not the negative ones. This positively supports the first of
our aforementioned questions.

To investigate whether we observe spatial heterogeneity in the predicted gene expression of excita-
tory neurons, we performed unsupervised clustering using louvain clustering with default resolution
of 1. Figure 20 shows the louvain clusters over UMAP and over the ST slide. We observe that clus-
ters have spatial variability and may be linked with the location. To verify this further, we looked at
some genes, Cux2, Rorb and Fezf2, which are used in creating a neuronal taxonomy and in situ val-
idation of excitatory cell types (Hodge et al. (2019), Tasic et al. (2016)). We observe the expression
of these genes at the correct spatial locations (Cux2, Rorb and Fezf2 in this order with increased
depth). Further, since these are only three genes and taken from the literature, we wanted to look
into what the genes differentially expressed amongst these 9 clusters indicate. To this end, we per-
formed DE analysis and used Allen Brain Atlas Up gene sets that are included in Enrichr 6. Here
we couldn’t use PanglaoDB as it does not provide detailed taxonomy gene sets of neurons. Figure
21 presents the results of the gene set enrichment. In total, six of the clusters resulted in DE gene
sets with default settings (p adjusted value cutoff of 0.01 and absolute log2 fold change cutoff of 1).
We identify that each cluster is associated with certain brain regions. This positively supports our
second question regarding identification of heterogeneity within a cell type label.

6https://maayanlab.cloud/Enrichr/
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Figure 5: Estimated fractions of different cell types in 10 bulk RNA-seq samples from GSE81492
(Ctrl: Control mice, n=6 and APOL1: Apolipoprotein L1 transgenic mice, n=4) mice using single-
cell reference dataset Park. Corresponding Methods are indicated in the title. Each row corresponds
to a cell type. DCT: Distal convoluted tubule, Endo: Endothelial cells, LOH: Loope of Henle,
Macro: Macrophages, Neutro: Neutrophils, PT: Proximal Tubule, Podo: Podocytes, CD-PC: col-
lecting duct principal cell; CD-IC: collecting duct intercalated cell.
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Figure 10: Fractions of all cell types shown on H&E image. Each dot corresponds to a spot se-
quenced in the tissue slice.
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Figure 11: Cortical neurons overlaid on H&E image. The legend shows fractions.
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Figure 12: Estimated fractions of 34 granular level cell types overlaid on H&E image of a lymph
node tissue slice.
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Figure 13: H&E image of lymph
node tissue slice.

Figure 14: Fractions of Cycling and light
zone (LZ) and dark zone (DZ) Germinal
center B cells expected to be present in
germinal centers.
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Figure 15: A PCA and UMAP embeddings of estimated gene expression profiles. B: PCA and
UMAP embeddings computed on neuronal clusters. C: Clustered matrix showing Pearson correla-
tion between each pair of cell types.
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Figure 16: Scaled expression of top five DE genes for cell types shown over the H&E tissue slide.
Rows indicate cell types.
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Figure 17: Plots showing gene set enrichment results of each cell type. For each cell type, the DE
genes were selected with adjusted value cutoff of 0.01 and absoluted log2 fold change cutoff of 1.
PanglaoDB Augmented 2021 gene sets were used as background.
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Figure 18: Continued from Figure 17.
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Figure 19: Evaluation of known positive and negative marker genes for excitatory neurons. The
negative marker genes are the genes highly expressed on other cell types compared to excitatory
neurons. Sox10, Olig1: Oligodendrocytes, Sst: Sst neurons, Gfap: Astrocytes, Ctss: Microglia,
Gad1, Gad2: Inhibitory neurons, Cldn5: Endothelial cells.
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Figure 20: Top: (From left to right) Louvain clustering on estimated gene expression on excitatory
neurons. log2 gene expression of Cux2, Rorb and Fezf2. Bottom left: Louvain clusters identified
on estimated excitatory neurons visualized on top of H&E slide and Bottom right: Expressions of
Cux2, Rorb and Fezf2 in excitatory neurons jointly visualized over H&E slide.
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Figure 21: Gene set enrichment of DE genes computed for each louvain cluster on excitatory neu-
rons. Enrichr was used to perform gene set enrichment of each DE gene set with Allen Brain Atlas
Up gene sets as background. The x-axis indicated −log10 adjusted p-value. A higher value indicates
greater significance. The y-axis lists the enriched gene sets ordered by decreasing significance.
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