
Published as a conference paper at ICLR 2023

COMPOSING ENSEMBLES OF PRE-TRAINED MODELS
VIA ITERATIVE CONSENSUS

Shuang Li ∗ †

†MIT CSAIL
lishuang@mit.edu

Yilun Du†

MIT CSAIL
yilundu@mit.edu

Joshua B. Tenenbaum
MIT CSAIL, BCS, CBMM
jbt@mit.edu

Antonio Torralba
MIT CSAIL
torralba@mit.edu

Igor Mordatch
Google Brain
imordatch@google.com

ABSTRACT

Large pre-trained models exhibit distinct and complementary capabilities depen-
dent on the data they are trained on. Language models such as GPT-3 are capable
of textual reasoning but cannot understand visual information, while vision models
such as DALL-E can generate photorealistic photos but fail to understand com-
plex language descriptions. In this work, we propose a unified framework for
composing ensembles of different pre-trained models – combining the strengths
of each individual model to solve various multimodal problems in a zero-shot
manner. We use pre-trained models as “generators” or “scorers” and compose
them via closed-loop iterative consensus optimization. The generator constructs
proposals and the scorers iteratively provide feedback to refine the generated result.
Such closed-loop communication enables models to correct errors caused by other
models, significantly boosting performance on downstream tasks, e.g. improving
accuracy on grade school math problems by 7.5%, without requiring any model
finetuning. We demonstrate that consensus achieved by an ensemble of scorers
outperforms the feedback of a single scorer, by leveraging the strengths of each
expert model. Results show that the proposed method can be used as a general
purpose framework for a wide range of zero-shot multimodal tasks, such as im-
age generation, video question answering, mathematical reasoning, and robotic
manipulation.

1 INTRODUCTION

Large pre-trained models have shown remarkable zero-shot generalization abilities, ranging from
zero-shot image generation and natural language processing to machine reasoning and action planning.
Such models are trained on large datasets scoured from the internet, often consisting of billions of
datapoints. Individual pre-trained models capture different aspects of knowledge on the internet, with
language models (LMs) capturing textual information in news, articles, and Wikipedia pages, and
visual-language models (VLMs) modeling the alignments between visual and textual information.
While it is desirable to have a single sizable pre-trained model capturing all possible modalities of
data on the internet, such a comprehensive model is challenging to obtain and maintain, requiring
intensive memory, an enormous amount of energy, months of training time, and millions of dollars.
A more scalable alternative approach is to compose different pre-trained models together, leveraging
the knowledge from different expert models to solve complex multimodal tasks.

Building a unified framework for composing multiple models is challenging. Prior works (Alayrac
et al., 2022; Zeng et al., 2022) have explored composing pre-trained models in two main ways:
(jointly) finetuning models on large datasets, or using common interfaces such as language to combine

∗Correspondence to: Shuang Li <lishuang@mit.edu>.
†indicates equal contribution. Shuang Li did all the experiments on image generation, video question

answering, and mathematical reasoning. Yilun Du did all the experiments on robot manipulation.

1

Published as a conference paper at ICLR 2023

Generator(G) Scorers(E)

Iterative Consensus

Video Question Answering

Q: How to make the food step by step?
A: Put water in the pot, …, add sausage, add
seasoning on top of the pizza …
Q: What food is being made? A: Make pizza

Grade School Math

Q: A robe takes 2 bolts of blue fiber and
half that much white fiber. How many
bolts in total does it take? A: 3
Q: Claire makes a 3 egg omelet every
morning for breakfast. How many dozens
of eggs will she eat in 4 weeks? A: 7

Image Generation Robot Manipulation

G: Language models
E: CLIP models

G: Language models
E: QA classifiers

G: Diffusion models
E: CLIP models, …,

Image classifiers

G: World models
E: Image
segmentation models

Orange mug to the right of orange bowl; …;
Orange mug on top of orange bowlGrasshopperA red car in

front of a tree
Hamster

Figure 1: The proposed framework that composes a “generator” and an ensemble of “scorers” through iterative
consensus enables zero-shot generalization across a variety of multimodal tasks.

different models. However, these works have several key limitations: First, simply combining models
does not fully utilize each pre-trained model as there is no closed-loop feedback between models.
Cascading models, such as Socratic models (Zeng et al., 2022), allows one-way communication
but prevents information processed by later models from propagating back to earlier models to
correct errors. Secondly, common interfaces are limited to particular types of models. Language is
used as the intermediate connection in Socratic models (Zeng et al., 2022), but a language interface
is insufficient to solve many real-world tasks, such as continuous robot control, which requires
continuous representations. In addition, Socratic models require pre-designed language templates
for the communication between models, which limits scalability. Thirdly, jointly finetuning multiple
models (Alayrac et al., 2022) requires careful optimization to ensure that the model behaviors remain
stable. Such models also require intensive memory and large datasets and can only be used for
solving specific tasks.

To resolve these difficulties, we propose a unified framework to compose models in a zero-shot
manner1 without any training/finetuning. Our framework employs a single model as a generator
and an ensemble of scorers. The generator iteratively generates proposals, and each scorer provides
a feedback score indicating their agreement. The generator refines its outputs until all the scorers
achieve a final consensus. This iterative closed-loop communication between the generator and scorers
enables models to correct the errors caused by other models, substantially boosting performance.

The ensemble of scorers is inspired by the idea of “wisdom of the crowds”. Each scorer provides
complementary feedback to the generator, compensating for the potential weaknesses of other scorers.
A Vision-Language scorer, for example, may correct the biases of a language model. We notice that
different pre-trained model instances from the same family have diversity of outputs, which leads to
more robust scorers. We demonstrate that guiding the generator with such an ensemble of scorers
significantly outperforms a generator guided by a single scorer.

To summarize, our work has three main contributions.

• First, we propose a unified framework for composing pre-trained models across a variety of
tasks, such as image generation, video question answering, mathematical reasoning, and robot
manipulation.

• Second, we illustrate how the proposed framework can effectively solve zero-shot multimodal
tasks without any training/finetuning. The closed-loop communication between the generator and
scorers allows the models to interact with each other to improve performance iteratively.

• Finally, we illustrate how our framework enables the use of ensembles of different pre-trained
models as scorers, significantly improving the zero-shot results by leveraging the strengths of
multiple expert models.

These observations point to the effectiveness of the proposed method as a general purpose framework
for composing pre-trained models for solving various zero-shot multimodal tasks.

1By zero-shot, we mean the composed models are never trained together on the evaluation task.

2

Published as a conference paper at ICLR 2023

2 RELATED WORK

Large pre-trained models have shown great success across a variety of domains, such as language
generation/translation, image generation, and decision-making.

Language models. Large language models, such as ELMo (Peters et al., 2018), BERT (Devlin et al.,
2018), and GPT-2 (Radford et al., 2019), are able to achieve state-of-the-art performance on many
standard NLP benchmarks. More recent works, such as GPT-3 (Brown et al., 2020), PALM (Chowd-
hery et al., 2022), and Chinchilla (Hoffmann et al., 2022) further enable few-shot learning from
textual prompts. Vision-language models. Large pre-trained vision-language generative models,
such as DALL-E 2 (Ramesh et al., 2022), Parti (Yu et al., 2022), and Imagen (Saharia et al., 2022),
can generate high-resolution images given natural language descriptions. Large pre-trained vision-
language discriminative models, such as CLIP (Radford et al., 2021), convert images and languages
into the same feature space, achieving remarkable zero-shot generalization ability on downstream
tasks. Decision-making models. Large pre-trained models have been widely applied to solve
decision-making tasks, such as learning general purpose policies (Reed et al., 2022; Li et al., 2022;
Shridhar et al., 2022), making planners (Huang et al., 2022; Ahn et al., 2022), and learning world
models (Ebert et al., 2018). However, due to the large variability in decision-making tasks, no existing
pre-trained models can be readily applied across different tasks.

Composing pre-trained models. Composing large pre-trained models has been widely studied
recently. The predominant way to compose pre-trained models is to (joint) finetune them on new
tasks (Li et al., 2019; Wang et al., 2021; Alayrac et al., 2022; Mokady et al., 2021), but such
approaches are computationally expensive. Alternative approaches compose models through a
common interface such as language(Tewel et al., 2021; Zeng et al., 2022). Other works compose
pre-trained models by composing learned probability distributions of the data, such as energy-based
models (Liu et al., 2022; 2021; Du et al., 2020), which can be applied to generate images or to
refine structural prediction (Belanger et al., 2017). In this paper, we propose a general framework to
compose pre-trained models across a variety of domains without any training or finetuning.

3 METHOD

Given a set of large pre-trained models, we aim to utilize the expert knowledge from different models
to solve zero-shot multimodal tasks. We separate pre-trained models into two categories – generators
(G) such as GPT (Brown et al., 2020; Radford et al., 2019) and Diffusion models (Ho et al., 2020)
that can generate candidate solutions, and scorers (E) such as CLIP (Radford et al., 2021) and
classifiers that output a scalar score to evaluate each generated solution. We propose PIC (composing
ensembles of Pre-trained models via Iterative Consensus), a framework which composes ensembles
of pre-trained models for multimodal tasks. The core idea of PIC is to generate solutions through
iterative optimization, where we leverage the knowledge from different models to jointly construct a
consensus solution. In PIC, a generator G iteratively and sequentially generate candidate solutions,
each of which is refined based on the feedback from a set of scorers. In particular, we seek to obtain
a solution x∗ such that

x∗ = argmin
x∼G

∑

n

En(x), (1)

where {En} is the set of scorers. At each iteration, we refine the solutions to have a lower score
than the previous iterations. This procedure, described in Equation (1), converges to a solution that
minimizes the energy across multiple pre-trained models, which maximizes the agreement between
the generator and scorers. In contrast to Socratic Models where different pre-trained models are called
sequentially, the closed-loop iterative refinement through which we obtain x∗ enables the generator
and scorers to communicate with each other to reach a consensus on the final solution.

Below, we illustrate how PIC can be broadly applied across tasks in image generation, video question
answering, grade school math, and robot manipulation. To optimize Equation (1), we consider two
different optimization procedures – either a continuous approach that leverages the gradients of each
scorer En(x) or a discrete approach that directly samples possible solutions.

3.1 APPLICATIONS TO ZERO-SHOT TASKS

Image generation. We first apply the proposed framework to image generation to generate im-
ages conditioned on a text description or a class label. We use the reverse diffusion process of

3

Published as a conference paper at ICLR 2023

Figure 2: The proposed unified framework and examples on three representative tasks. (a) Overview of
the proposed unified framework. Dashed lines are omitted for certain tasks. (b) Image generation. A pre-trained
diffusion model is used as the generator, and multiple scorers, such as CLIP and image classifiers, are used to
provide feedback to the generator. (c) Video question answering. GPT-2 is used as the generator, and a set of
CLIP models are used as scorers. (d) Robot manipulation. MPC+World model is used as the generator, and a
pre-trained image segmentation model is used to compute the scores from multiple camera views to select the
best action. Orange lines represent the components used to refine the generated result.

GLIDE (Nichol et al., 2021), a text-guided diffusion model, as the generator to generate image
proposals. At each step of the diffusion process (corresponding to a step of the iterative refinement),
we use the gradient from an ensemble of scorers, such as CLIP (Radford et al., 2021), to guide and
update the generated proposals. We iteratively repeat this procedure until the final step.

As shown in Fig. 2 (b), the image xk generated at iteration k is first sent to the diffusion model to
generate an image proposal x̂k+1. Each scorer outputs a score to evaluate whether the generated
image matches the given text input. For example, CLIP computes the cosine similarity between the
image and text features as the score. The scores generated by different scorers are summed, and their
gradient with respect to xk is used to compute the next reverse prediction xk+1:

xk+1 ← x̂k+1 + λ∇xk

N∑

n=1

En
θ

(
xk, c

)
, (2)

where N is the number of scorers and c is the text label. We denote the reverse process prediction as
xk+1 instead of xk−1 (used by most diffusion models) to keep the consistent notation across tasks.

Video question answering (VQA). Caption generation for a single video frame is shown in Fig. 2
(c). We use GPT-2 as the generator and multiple different CLIP models, trained with different
configurations, as the scorers. Given a video frame I , we generate a sequence of words to describe it.
To integrate feedback from scorers to the generator, similar to (Tewel et al., 2021), we define a context
cache Ct (a set of embedding functions in GPT-2) that stores the context information generated so
far, which is updated iteratively based on the feedback from scorers. The prediction of the next word
from the generator G is given by xt+1 = G(xt, Ct). To update Ct, we first use G to generate a
set of candidate words X̂t+1 = {x̂t+1}, and then use the feature distance (after softmax) between
each sentence (the concatenation of previous words and each new word {x1, x2, · · · , x̂t+1}, where
x̂t+1 ∈ X̂t+1) and the video frame as the probability of them matching. The CLIP score is the
cross-entropy loss LCLIP between this new probability distribution and the original distribution of the

4

Published as a conference paper at ICLR 2023

next word obtained from the generator G. The gradient of the summed score (multiple CLIP models)
is then propagated to G to update Ct:

Ck+1
t ← Ck

t + λ∇Ck
t

N∑

n=1

LCLIP(E
n
θ (x1, x2, · · · , x̂t+1, I)), (3)

where k is the step of iterative refinement. After several iterations, the updated Ct is used to generate
the next token xt+1 = G(xt, Ct). We repeat this process until we generate the entire caption. We
cascade the captions of multiple video frames and questions about this video to prompt GPT-3 for
video question answering (See Appendix B.2).

Grade school math. We further apply PIC to solve grade school math problems. We use GPT-2 as
the generator and treat the grade school math problem as a text generation problem. The scorer, a
pre-trained question-solution classifier, provides the generator feedback to guide the next token’s
generation xt+1. We follow the approach used in VQA to iteratively optimize the generations based on
the feedback from scorers. Our generator G first generates a set of candidate words X̂t+1 = {x̂t+1},
and then the classifier predicts the probability of each solution (the concatenation of previous words
and each new word {x1, x2, · · · , x̂t+1}, where x̂t+1 ∈ X̂t+1) matching the given question. The
classifier score is the cross-entropy loss between this new probability distribution and the original
distribution of the next word obtained from the generator G. The gradient of the classifier score is
used to update Ct through iterative refinement, same as Eq. (3). The updated Ct is used to predict the
next word xt+1 = G(xt, Ct). We repeat this process until we generate the complete solution.

Robot manipulation. Finally, we illustrate how PIC can be applied to manipulate objects in the robot
environment to conform to a set of object relations such as “red bowl on top of blue mug” shown in
Fig. 2 (d). We use the combination of Model Predictive Control (MPC) (Williams et al., 2015) and
the World Model as the generator. At each time step, we first use MPC to sample a set of possible
actions and then render the state images (after executing an action) from multiple camera views using
the world model. For each action, the scorer computes a summed score across all camera views as
its final score, which is used to select the best action to execute. Thus, in this domain, the ensemble
consists of scorers based on different views of the scene.

For the generator, we assume that there is a pre-trained model, i.e. world model, that can accurately
render and simulate the dynamic changes in the robot world. Since such a large pre-trained model
does not directly exist, we approximate it using an environment simulator combined with MPC as the
generator. For the scorer, we use the pre-trained ViLD (Gu et al., 2021) to generate segmentation
maps for images captured by different camera views n, and the corresponding text label for each
segment, which are used to obtain object relations. We compare the generated object relations and
the relations specified by the text description to obtain the score, i.e. score equals 0 if they match;
otherwise, 1 (here the score means the distance) (see Appendix B.4 for details). To obtain a final world
state xT that satisfies the specified relations, and the action sequence {a1, · · · , aT } that manipulates
the objects into the final state xT , the generator iteratively samples possible actions âkt+1 and gets
feedback from scorers. The best action is selected as:

at+1 = argmin
âk
t+1

N∑

n=1

En
θ (xt, â

k
t+1). (4)

Each scorer, En
θ , outputs a score for the resultant state obtained when a candidate action âkt+1 is

applied to the current world state xt. We execute at+1 in the environment and get a new state xt+1.
We repeat this process until the task is accomplished or we are at the final step T .

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing pre-trained models on four representative tasks,
including image generation, video question answering, grade school math, and robot manipulation.

Image generation. We first show that composing the pre-trained image generator and scorer models
such as CLIP enables effective zero-shot image generation. We evaluate the image generation results
on ImageNet (Deng et al., 2009) with the image resolution of 64 × 64. The class labels are used
as the text input to guide image generation. Each method generates 50 images for each class. We
evaluate the image generation quality using Inception Score (IS) (Salimans et al., 2016), Fréchet

5

Published as a conference paper at ICLR 2023

Table 1: Image generation results on ImageNet. Our PIC can compose the pre-trained generator (G) and
scorers (E) through iterative optimization. Composing multiple scorers further boosts performance.

Method Name Generator Scorer IS ↑ FID ↓ KID ↓
PIC (G+E1) GLIDE CLIP 25.017 30.462 6.174
PIC (G+E2) GLIDE CLS 22.077 30.871 7.952
PIC (G+E3) GLIDE CLS-FREE 25.926 29.219 5.325

PIC (G+E1+E2+E3) GLIDE CLIP + CLS + CLS-FREE 34.952 29.184 3.766

Table 2: Video question answering results on ActivityNet-QA. JustAsk (FT) is finetuned on ActivityNet-
QA, thus achieving the best results. For zero-shot VQA, our method (PIC) significantly outperforms JustAsk
(Pretrain), one of the best VQA methods. Using multiple scorers further improves the performance.

Method Name Zero-Shot Generator Scorer Accuracy ↑ Vocab ↑
JustAsk (FT) No - - 64.667 160

JustAsk (Pretrain) Yes - - 50.671 210
PIC (G+E1) Yes GPT-2 CLIP-32 58.389 267
PIC (G+E1+E2+E3) Yes GPT-2 CLIP-32 + CLIP-14 + CLIP-multilingual 61.168 304

Inception Distance (FID) (Heusel et al., 2017), and Kernel Inception Distance (KID) (Bińkowski
et al., 2018). IS measures the distribution of generated images. Higher values mean the models can
generate more distinct images. FID considers the distributions of both generated images and real
images. Lower scores represent that the generated images are closer to the real images. KID is similar
to FID, measuring the similarity between two data distributions, but is in the kernel space.

Video question answering. We evaluate methods for solving VQA tasks on ActivityNet-QA (Yu
et al., 2019). Our method generates free-form language answers instead of selecting an answer from
a pre-defined answer set (Yang et al., 2021; Lei et al., 2022). To evaluate such free-form VQA, we
ask workers from Amazon Mechanical Turk to measure whether the generated answer matches the
given question and video (See Appendix C for IRB approval and experimental details). For fair
comparisons, all the approaches answer the same 300 video questions, and each answer is evaluated
by three different workers. The accuracy rate and vocabulary size are reported. An answer is correct
if at least two workers believe it is correct. The accuracy rate is the percentage of correctly answered
questions over all the questions. To evaluate the diversity of generated answers, we also report the
vocabulary size (i.e. the number of words) of answers generated by each method.

Grade school math. GSM8K (Cobbe et al., 2021) is a dataset for grade school math problems. Each
problem consists of a question, intermediate analyses, and a final solution. We evaluate approaches
to solving problems on the 1K test set. We use beam search to generate candidate solutions. The
accuracy of beam size 1 and beam size 5 are reported. For beam size of 1, we mark the result as
correct if it matches the final solution. For beam size of 5, we mark the result as correct if any of the
five generated results matches the solution.

Robot manipulation. We next evaluate how pre-trained models may be used to manipulate objects in
Ravens (Zeng et al., 2020). In Ravens, the action space of robot is to drop an object at a 2D location
on the table. The goal is to obtain a scene configuration that satisfies the object relations specified by
a textual description or a real-world image, such as “blue mug to the left of purple bowl”. The task is
successful if the object relations in the final state satisfy all the relations specified by the input text or
image. We report the success rate of tasks with two and three specified object relations.

5 EXPERIMENTS

We compare the proposed method with baselines on the above four zero-shot tasks.

5.1 IMAGE GENERATION

We evaluate the zero-shot conditional image generation on ImageNet in Table 1. We first show
results of composing a single generator (G) and a single scorer (E). We compose GLIDE (Nichol
et al., 2021) with three different types of scorers, respectively. E1 is CLIP (Radford et al., 2021) that
computes the cosine similarity between the image and text features as the score, E2 is the image
classifier (CLS) (Dhariwal & Nichol, 2021) that predicts the probability of the image matching the
text label as the score, and E3 is the classifier-free guidance (CLS-FREE) (Ho & Salimans, 2022)

6

Published as a conference paper at ICLR 2023

Q: is the person in blue
a man or a woman?

A: woman A: woman A: yesA: no

Q: what happened
before the pole vault?

A: the person
in the video is
stretching

A: the athlete
is running

A: magnesia
powder

A: audience
cheered

PIC
(G+E1)

PIC
(G+E1+E2+E3)

JustAsk (FT)
(not zero-shot)

JustAsk
(Pretrain)

Q: what kind of trousers
does the woman wearing
yellow clothes look like?

A: short A: short A: shortA: tight
trousers

Q: how many people are
there in the video?

A: 1 A: 4 A: 2A: no

Q: what happened to
the person in the hat
before the engine?

A: put on
the helmet

A: turn on
the engine

A: speechA: someone
passed
through

Q: what is the person
with hat doing?

A: using a
pickup

A: cutting
grass

A: weedA: nursing
bicycle

One video
frame

Figure 3: Video question answering example results. Our approach successfully identifies gender and
clothing, but its failure to count objects is a reflection of GPT-2 and CLIP’s inability to count.

which can be treated as an implicit classifier that directly provides pixel-wise gradient feedback to the
generated image (Appendix B.1). We then compose the generator with all scorers, i.e. G+E1+E2+E3.
Composing the generator and a single scorer allows zero-shot image generation. Composing multiple
scorers significantly outperforms a single scorer. We note that the generator is not trained on
ImageNet; thus the results in Table 1 cannot be directly compared with methods trained on ImageNet.

5.2 VIDEO QUESTION ANSWERING

Quantitative results. We compare PIC with one of the state-of-the-art VQA approaches, i.e.
JustAsk (Yang et al., 2021), on ActivityNet-QA (Yu et al., 2019). In Table 2, JustAsk (FT) is
finetuned on ActivityNet-QA, thus achieving the best results. We then compare PIC with JustAsk
(Pretrain) for zero-shot VQA. The generator of our method, GPT-2 (medium size), is trained on
Webtext (Radford et al., 2019) using the Huggingface library (Wolf et al., 2019). Our scorers are
CLIP models (Radford et al., 2021; Reimers & Gurevych, 2019) trained on different datasets or
using different configurations. PIC (G+E1) outperforms JustAsk (Pretrain) by %7.72. Composing
more scorers further improves the accuracy by %2.78. In addition, the vocabulary size of answers
generated by our method is larger than other approaches, indicating that our method can answer
questions using richer language and more diverse phrasing. Note that our method solves a “more
challenging” problem than JustAsk (Pretrain) and JustAsk (FT). Our method generates open-language
answers while JustAsk (Pretrain) and JustAsk (FT) select an answer from a pre-defined answer set.
Generating free-form responses requires both semantic and grammatical correctness. PIC performs
well on both these dimensions while also using a richer vocabulary.

Qualitative results. In Fig. 3, we show answers generated by different approaches given a video
(only showing a single video frame) and questions. Our approach successfully identifies gender and
clothing, but none of the approaches know how to count numbers.

5.3 GRADE SCHOOL MATH

Table 3: Grade school math results on GSM8K. Our
method (PIC) that composes GPT-2 and a pre-trained
question-solution classifier significantly outperforms the base-
lines, including GPT-FT that is finetuned on GSM8K.

Method Name Generator Scorer BS=1 ↑ BS=5 ↑
GPT-Pretrain GPT-2 (Pretrain) - 1.744 12.206
GPT-FT GPT-2 (FT) - 3.487 18.271

PIC (G+E) GPT-2 (Pretrain) CLS 16.831 20.773

Quantitative results. In Table 3, we com-
pare PIC with two baselines, i.e. GPT-
Pretrain and GPT-FT, for solving math
problems on GSM8K (Cobbe et al., 2021).
GPT-Pretrain uses the pre-trained GPT-2
(medium size GPT-2 trained on Webtext
using Huggingface) to generate numeric
strings. GPT-FT is based on GPT-Pretrain
and then finetuned on GSM8K. Our method
uses the same GPT-2 (Pretrain) as the generator and a question-solution classifier (CLS) as the scorer.
The classifier is trained on GSM8K to distinguish whether a solution is correct for a given question.
We surprisingly find that PIC achieves significantly better performance than GPT-FT (%13.344 higher
on beam size 1), even though the generator has never seen the math problems before. The classifier

7

Published as a conference paper at ICLR 2023

Final scene Input object relations

blue mug to the
left of cyan mug

blue bowl on top
of cyan mug

cyan bowl to the
right of blue bowl

green bowl to the
right of cyan mug

orange mug to the
left of green bowl

brown mug to the
right of orange mug

Final scene Input object relations Final scene Input object relations

cyan bowl to the
right of cyan mug

green bowl on top
of cyan mug

orange mug to the
right of green bowl

Figure 4: Robot manipulation example results. The robot manipulates objects to achieve certain object
relations that are specified by textual descriptions (first row) or real-world images (second row).

only provides feedback to the generator, but through iterative refinement, combining a generator and
a scorer without joint training is more effective than directly finetuning GPT-2 on GSM8K (we find
the overfitting problem when finetuning GPT-2 on GSM8K).

5.4 ROBOT MANIPULATION

Table 4: Robot manipulation results on Ravens.
PIC can manipulate objects to achieve object relations
specified by textual descriptions (Text) or real-world
images (Image). Using scorers of multiple camera
views substantially improves the success rate.

Method Name 2 Relations 3 Relations
Text ↑ Image ↑ Text ↑ Image ↑

PIC (G+E1) 35.0 27.5 50.0 45.0
PIC (G+

∑5
n=1 En) 67.5 52.6 75.0 65.3

Quantitative results. We evaluate the proposed
method of manipulating objects to achieve object
relations specified by the textual descriptions (Text)
or real-world images (Image). In Table 4, we find
that using scorers of multiple camera views sub-
stantially improves the accuracy on both settings.

Qualitative results. Figure 4 shows the example
results of the proposed method manipulating ob-
jects to accomplish the given task. Our method
enables zero-shot robot manipulation on objects
with different sizes, colors, and shapes given either the language goal or image goal.

6 ANALYSIS

PIC exhibits effective zero-shot generalization ability on a variety of tasks. To further understand
the source of such generalization, we investigate two key components in PIC, i.e. the composition of
multiple scorers (consensus optimization) (Section 6.1) and the iterative refinement (Section 6.2).

6.1 EFFECT OF CONSENSUS OPTIMIZATION

We have shown that composing multiple scorers contributes to zero-shot generalization. We further
explore the influence of gradually adding each new scorer on the zeros-shot performance.

Image generation. In Table 5, we first show results of composing GLIDE and the CLIP scorer. We
then gradually add a new scorer, the image classifier or classifier-free guidance, each time. Finally, we
report the results of composing the generator and all scorers. The performance improves every time
we add a new scorer, indicating that composing multiple scorers improves zero-shot performance.

Table 5: Effect of composing multiple scorers. Image generation results on ImageNet. Gradually adding new
scorers keeps improving the performance.

Method Name Generator Scorer IS ↑ FID ↓ KID ↓
PIC (G+E1) GLIDE CLIP 25.017 30.462 6.174
PIC (G+E1+E2) GLIDE CLIP + CLS 30.438 29.543 5.435
PIC (G+E1+E3) GLIDE CLIP + CLS-FREE 30.500 29.726 4.304
PIC (G+E1+E2+E3) GLIDE CLIP + CLS + CLS-FREE 34.952 29.184 3.766

8

Published as a conference paper at ICLR 2023

Table 6: Effect of iterative refinement. Grade school math results on GSM8K. PIC with iterative refinement
outperforms baselines where the scorer only provides feedback to the generator at the end stage. BS is the beam
search size.

Method Name Generator Scorer Interaction BS=1 ↑
GPT-Pretrain+E GPT-2 (Medium) (Pretrain) CLS t = T 9.704
GPT-FT+E GPT-2 (Medium) (FT) CLS t = T 14.481

PIC (G+E) GPT-2 (Medium) (Pretrain) CLS t = {1, · · · , T} 17.210

Robot manipulation. In Table 7, we analyze the effect of composing multiple scores on robot
manipulation. The goal is specified by textual descriptions. Composing scores from multiple views,
PIC (G+

∑3
n=1 En) and PIC (G+

∑5
n=1 En), leads to higher accuracy.

6.2 EFFECT OF ITERATIVE REFINEMENT

Next, we explore the influence of iterative refinement on zero-shot generalization, i.e. the feedback
loop between the generator and scorers. We compare PIC with baselines that compose the generator
and scorers, but with the scorers only providing feedback to the generator at the end.

Grade school math. In Table 6, the baselines, GPT-Pretrain+E and GPT-FT+E, generate five proposal
solutions of a given math problem. Then the scorer, i.e. the same question-solution classifier used in
PIC, selects the best solution based on its score. PIC iteratively refines the generated answer while
the baselines refine the entirely generated solutions in the end. PIC and GPT-Pretrain+E use the
same generator and scorer, but PIC outperforms GPT-Pretrain+E by %7.507. PIC still achieves better
performance than GPT-FT+E, which uses a stronger generator (finetuned on the GSM8K dataset).

Table 7: Effect of composing multiple scorers and itera-
tive refinement on robot manipulation. Both components are
important for zero-shot generalization.

Method Name Interaction 2 Relations 3 Relations

PIC (G+E1) t = {1, · · · , T} 35.0 50.0
PIC (G+

∑3
n=1 En) t = {1, · · · , T} 57.5 63.3

PIC (G+
∑5

n=1 En) t = {1, · · · , T} 67.5 75.0

No-IR (G+
∑5

n=1 En) t = T 30.0 46.6

Robot manipulation. In Table 7, the
baseline, No-IR (G+

∑5
n=1 En), first

samples 100 trajectories without using
the feedback from scorers. Then the scor-
ers select the best trajectories based on
the summed score. The generator and
scorers of this baseline are the same as
our method, i.e. PIC (G+

∑5
n=1 En), but

our method outperforms the baseline by
%37.5 on the “2 Relations” setting, indi-
cating the effectiveness of iterative refinement in the proposed framework.

Together, these results show that the composition of multiple scorers and iterative refinement are both
important for zero-shot generalization. These results point to the potential broader applicability of
the proposed method as a general purpose framework for zero-shot multimodal tasks.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a unified framework for composing ensembles of pre-trained models through
iterative consensus without any training or finetuning. Our framework consists of a generator and an
ensemble of scorers. The scorers provide feedback to the generator to iteratively improve its generated
results. We show the proposed method allows effective zero-shot generalization on four representative
tasks, i.e. image generation, video question answering, grade school math, and robot manipulation,
and even outperforms methods that directly finetune models on certain tasks. We further analyze the
source of such zero-shot generalization by exploring the effect of the composition of multiple scorers
and the iterative refinement, and find that both are important for zero-shot generalization.

As our method does not need any training or finetuning, one drawback is that its performance
depends on the pre-trained models. Training large models are complementary to the framework and
methods we proposed and may be directly applied. We hope to explore these directions for zero-shot
generalization in future work. In addition, our framework enables the composition of separately
trained models and boosts performance by leveraging the knowledge from multiple expert models.
The scorers can be learned at different times on different data in an incremental-learning manner,
enabling the combination of incrementally learned knowledge. Our framework thus paves the way
for many potential applications in lifelong learning / continual learning settings.

9

Published as a conference paper at ICLR 2023

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. arXiv preprint arXiv:2204.14198, 2022.

David Belanger, Bishan Yang, and Andrew McCallum. End-to-end learning for structured prediction
energy networks. In International Conference on Machine Learning, pp. 429–439. PMLR, 2017.

Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans. arXiv preprint arXiv:1801.01401, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021.

Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation with energy based models.
Advances in Neural Information Processing Systems, 33:6637–6647, 2020.

Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual
foresight: Model-based deep reinforcement learning for vision-based robotic control. arXiv
preprint arXiv:1812.00568, 2018.

Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vision
and language knowledge distillation. arXiv preprint arXiv:2104.13921, 2021.

Louay Hazami, Rayhane Mama, and Ragavan Thurairatnam. Efficient-vdvae: Less is more. arXiv
preprint arXiv:2203.13751, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

10

Published as a conference paper at ICLR 2023

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022.

Jie Lei, Tamara L Berg, and Mohit Bansal. Revealing single frame bias for video-and-language
learning. arXiv preprint arXiv:2206.03428, 2022.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A simple
and performant baseline for vision and language. arXiv preprint arXiv:1908.03557, 2019.

Shuang Li, Xavier Puig, Yilun Du, Clinton Wang, Ekin Akyurek, Antonio Torralba, Jacob Andreas,
and Igor Mordatch. Pre-trained language models for interactive decision-making. arXiv preprint
arXiv:2202.01771, 2022.

Nan Liu, Shuang Li, Yilun Du, Josh Tenenbaum, and Antonio Torralba. Learning to compose visual
relations. Advances in Neural Information Processing Systems, 34:23166–23178, 2021.

Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
generation with composable diffusion models. arXiv preprint arXiv:2206.01714, 2022.

Ron Mokady, Amir Hertz, and Amit H Bermano. Clipcap: Clip prefix for image captioning. arXiv
preprint arXiv:2111.09734, 2021.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pp. 2227–2237. Association for Computational
Linguistics, June 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pp.
8748–8763. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist
agent. arXiv preprint arXiv:2205.06175, 2022.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019. URL http://arxiv.org/abs/1908.
10084.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2021.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.
Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

11

http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084

Published as a conference paper at ICLR 2023

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic
manipulation. In Conference on Robot Learning, pp. 894–906. PMLR, 2022.

Yoad Tewel, Yoav Shalev, Idan Schwartz, and Lior Wolf. Zero-shot image-to-text generation for
visual-semantic arithmetic. arXiv preprint arXiv:2111.14447, 2021.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia Tsvetkov, and Yuan Cao. Simvlm: Simple
visual language model pretraining with weak supervision. arXiv preprint arXiv:2108.10904, 2021.

Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predictive path integral control
using covariance variable importance sampling. arXiv preprint arXiv:1509.01149, 2015.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, and Cordelia Schmid. Just ask: Learning to
answer questions from millions of narrated videos. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1686–1697, 2021.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2022.

Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yueting Zhuang, and Dacheng Tao. Activitynet-qa:
A dataset for understanding complex web videos via question answering. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pp. 9127–9134, 2019.

Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian, Travis
Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, et al. Transporter networks: Rearranging
the visual world for robotic manipulation. arXiv preprint arXiv:2010.14406, 2020.

Andy Zeng, Adrian Wong, Stefan Welker, Krzysztof Choromanski, Federico Tombari, Aveek Puro-
hit, Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vincent Vanhoucke, et al. Socratic models:
Composing zero-shot multimodal reasoning with language. arXiv preprint arXiv:2204.00598,
2022.

12

Published as a conference paper at ICLR 2023

Appendix
In this appendix, we first show additional results in Appendix A. We then show experimental details
of each task in Appendix B. The ethics statement of the Amazon Mechanical Turk experiment for
video question answering is in Appendix C.

A ADDITIONAL RESULTS

A.1 IMAGE GENERATION RESULTS

We show more images generation results using different scorer models in Fig. A1. We find that most
of the time, the proposed framework, either using a single scorer model or composing multiple scorer
models, work well as shown in the first four examples in the left column of Fig. A1. In some hard
cases, some scorer models might fail (the rest examples in Fig. A1). However, there is no discernible
trend on which scorer is better on what tasks. The results of composing multiple scorer models are
significantly better than using a single one, as different scorer models capture different aspects of the
information. For example, in the fifth example in the left column of Fig. A1, PIC with classifier-free
guidance (CLS-FREE) and PIC with a pre-trained classifier (CLS) cannot generate an image with
“tench”, but PIC with the pre-trained CLIP (CLIP) can generate the correct result and the composed
model (CLS-FREE + CLS + CLIP) also works. This is why we consider composing multiple scorers:
to leverage the strength of each expert model and improve the worst case.

CLS-FREE CLS CLIP
CLS-FREE +
CLS + CLIP

Tench

Goldfish

Tiger
shark

Hen

Diamondback

Sulphur-
crested

cockatoo

jacamar

Carousel

Parachute

CLS-FREE CLS CLIP
CLS-FREE +
CLS + CLIP

Beaver

Figure A1: Qualitative results. Image generation results using different scorer models. Composing multiple
scorers (CLS-FREE + CLS + CLIP) achieves the best performances.

A.2 IMAGE GENERATION WITH DIFFERENT GENERATOR

Our framework can be applied to other generators as well. For example, we changed the generator,
GLIDE, to Stable Diffusion (Rombach et al., 2021). The results of composing Stable Diffusion and
classifier-free guidance (CLS-FREE) is shown in Table A1. Using a more powerful pre-trained model
can further boost the performance.

A.3 GRADE SCHOOL MATH QUALITATIVE RESULTS

Example results of different methods are shown in Fig. A2. Our method can solve math problems
involving addition, subtraction, multiplication, and division, even for solutions with three-digit
numbers. In contrast, GPT-FT often fails to understand math problems.

13

Published as a conference paper at ICLR 2023

Table A1: Our framework can be applied to other generators as well. In the image generation task, we use
a new generator, Stable-Diffusion (Rombach et al., 2021). Using a more powerful pre-trained model can further
boost the performance. Image generation results on ImageNet are reported.

Method Name Generator Scorer IS ↑ FID ↓ KID ↓
PIC (G+E) GLIDE CLS-FREE 25.926 29.219 5.325
PIC (G+E) Stable-Diffusion CLS-FREE 31.689 29.546 6.562

Q: In a dance class of 20 students, 20% enrolled in contemporary dance, 25% of
the remaining enrolled in jazz dance, and the rest enrolled in hip-hop dance.
What percentage of the entire students enrolled in hip-hop dance?

A: 25%60

GPT
Pretrain

GPT
FT

PIC
(G+E)

A: 20

Ground
Truth

A: 60

Q: Melanie is a door-to-door saleswoman. She sold a third of her vacuum cleaners
at the green house, 2 more to the red house, and half of what was left at the
orange house. If Melanie has 5 vacuum cleaners left, how many did she start with?

A: 518 A: 15 A: 18

Q: A fog bank rolls in from the ocean to cover a city. It takes 10 minutes to cover every
3 miles of the city. If the city is 42 miles across from the oceanfront to the opposite
inland edge, how many minutes will it take for the fog bank to cover the whole city?

A: 10140 A: 10 A: 140

Grade school
math questions

Figure A2: Grade school math example results. Our method can solve math problems involving addition,
subtraction, multiplication, and division.

A.4 COMPOSING SCORER MODELS

The key idea of our method is to compose ensembles of pre-trained models, and the way to combine
them can be variant. We add two additional experiments in this appendix: (1) using the best scorer
(scorer that provides the highest score) and (2) using the weighted scores and add them together. Our
method composes pre-trained models without training or finetuning, thus we did not learn separated
weights for different models. But instead we add an experiment that uses the scorers (after softmax)
of each scorer model as their weights and then composes the scorers using the weighted summed
score. We compare these two baselines with our method that uses the summation of all scores. As
shown in Table A2, using a summed score generates the best results.

Table A2: Different ways to compose scorer models. Composing scorers using their summed score generates
the best results. Image generation results on ImageNet are reported.

Method Name Generator Scorer IS ↑ FID ↓ KID ↓
PIC (G+E1) GLIDE CLIP 25.017 30.462 6.174
PIC (G+E2) GLIDE CLS 22.077 30.871 7.952

PIC (G+E1+E2) Sum GLIDE CLIP + CLS 30.438 29.543 5.435
PIC (G+E1+E2) Max GLIDE CLIP + CLS 24.782 30.657 6.040
PIC (G+E1+E2) Weighted GLIDE CLIP + CLS 24.728 30.669 6.420

A.5 ADDITIONAL BASELINE COMPARISONS

Image Generation. In Table A3, we compare our approach with a generative model specifically
trained on ImageNet, Efficient-VDVAE (Hazami et al., 2022). Efficient-VDVAE is an unconditional
hierarchical VAE model. As illustrated in Table A3, despite Efficient-VDVAE is explicitly trained on
ImageNet, it is much worse than our approach.

Robot Manipulation. We compare our robot manipulation method with the robot manipulation
model, CLIPort (Shridhar et al., 2022), used in the Socratic Models paper (Zeng et al., 2022). In
Socratic models, the evaluation of robot manipulation consists of two steps: 1) a GPT model translates
a text goal into a set of subgoals and 2) a CLIPort model executes each subgoal. In contrast, in our
robot manipulation task, 1) a vision-language model is used to translate an image goal into a set
of subgoals and 2) an iterative MPC procedure is used to execute each given subgoal. Thus a fair
comparison is to compare the iterative MPC procedure used in our approach and the CLIPort model
used in Socratic models. We thus compare our method to the multilingual CLIPort model on the
performance of executing a single relation subgoal. CLIPort model obtains a success rate of 22.6% in
this setting, while our approach obtains a success rate of 76.3%.

14

Published as a conference paper at ICLR 2023

Table A3: Comparison of our method and additional baselines. Image generation results on ImageNet are
reported. Our method outperforms the baseline.

Method Name Generator Scorer IS ↑ FID ↓ KID ↓
PIC (G+E1) GLIDE CLIP 25.017 30.462 6.174
PIC (G+E1+E2) GLIDE CLIP + CLS 30.438 29.543 5.435
PIC (G+E1+E3) GLIDE CLIP + CLS-FREE 30.500 29.726 4.304
PIC (G+E1+E2+E3) GLIDE CLIP + CLS + CLS-FREE 34.952 29.184 3.766

Efficient-VDVAE (Hazami et al., 2022) - - 6.566 143.642 23.007

B EXPERIMENTAL DETAILS

In this section, we provide more experimental details of each task. We use TITAN RTX 24GB GPUs
for all the experiments.

B.1 IMAGE GENERATION

We use the reverse diffusion process of GLIDE, a text-guided diffusion model, as the generator
to generate image proposals. At each step of the diffusion process (corresponding to a step of the
iterative refinement), we use the gradient from an ensemble of scorers to guide and update the
generated proposals. We iteratively repeat this procedure until the final step.

As shown in Fig. A3, the image xk generated at iteration k is first sent to the diffusion model to
generate an image proposal x̂k+1. The scorers provide feedback to refine the generated result. The
CLIP model computes the cosine similarity between the image and text features as the score (we
used the pre-trained CLIP model from (Ho & Salimans, 2022).). The image classifier (Dhariwal &
Nichol, 2021) predicts the probability of the image matching the text label as the score. The scores
generated by different scorers are summed, and their gradient with respect to xk is used to compute
the next reverse prediction xk+1. The classifier-free guidance (Ho & Salimans, 2022) can be treated
as an implicit classifier that directly provides pixel-wise gradient feedback to the generated image.
Our framework enables the use of ensembles of different pre-trained models as scorers, significantly
improving the zero-shot results by leveraging the strengths of multiple expert models.

Our implementation for image generation is modified based on the code of GLIDE (Nichol et al.,
2021) and the classifier guidance diffusion (Dhariwal & Nichol, 2021). We use DDIM to sample
images from GLIDE in 100 steps. The guidance scale is set to 3.

B.2 VIDEO QUESTION ANSWERING

In video question answering, we use the proposed method to generate captions for the video frames
and then use GPT-3 to summarize the captions to answer questions. We use GPT-2 as the generator and
a set of CLIP models as scorers to generate captions for each video frame. The CLIP models (Radford
et al., 2021; Reimers & Gurevych, 2019) are from the Huggingface library (Wolf et al., 2019):

• CLIP-32: https://huggingface.co/openai/clip-vit-base-patch32.

• CLIP-14: https://huggingface.co/openai/clip-vit-large-patch14.

• CLIP-multilingual: https://huggingface.co/sentence-transformers/clip-
ViT-B-32-multilingual-v1.

Fig. A4 shows the framework for generating frame captions. Given a video frame I , we generate
a sequence of words to describe it. To integrate feedback from scorers to the generator, similar to
ZeroCap (Tewel et al., 2021), we define a context cache Ct (a set of embedding functions in GPT-2,
such as the embedding functions, K, Q, V , in the Transformer blocks.) that stores the context
information generated so far, which is updated iteratively based on the feedback from scorers. The
prediction of the next word from the generator G is given by xt+1 = G(xt, Ct), where G is the
pre-trained language model. ZeroCap uses the following loss function to optimize Ct:

argmin
Ct

(
LCLIP

(
G(xt, Ct) , I

)
+ λLCE

(
G
(
xt, Ct

)
, x̂t+1

))
, (A1)

15

https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/openai/clip-vit-large-patch14
https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1
https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1

Published as a conference paper at ICLR 2023

Generator:
Diffusion
Model

Input text: Goldfinch

Update based on the gradient
of the summed score

Image

Image

Image

Classifier-free
guidance

CLIP score +
Classifier score

Under review as a conference paper at ICLR 2023

Figure 2: The proposed unified framework and examples on three representative tasks. (a) Overview of
the proposed unified framework. Dashed lines are omitted for certain tasks. (b) Image generation. A pre-trained
diffusion model is used as the generator, and multiple scorers, such as CLIP and image classifiers, are used to
provide feedback to the generator. (c) Video question answering. GPT-2 is used as the generator, and a set of
CLIP models are used as scorers. (d) Robot manipulation. MPC+World model is used as the generator, and a
pre-trained image segmentation model is used to compute the scores from multiple camera views to select the
best action. Orange lines represent the components used to refine the generated result.

image and text features as the score. The scores generated by different scorers are summed, and their
gradient with respect to xk is used to compute the next reverse prediction xk+1:

xk+1 x̂k+1 + �rxk

NX

n=1

En
✓

�
xk, c

�
, (2)

where N is the number of scorers and c is the text label. We denote the reverse process prediction as
xk+1 instead of xk�1 (used by most diffusion models) to keep consistent notation across tasks.

Video question answering (VQA). We first use PIC to generate video frame captions. We then use
GPT-3 to summarize the captions and answer questions about this video. Caption generation for a
single video frame is shown in Fig. 2 (c). We use GPT-2 as the generator and multiple different CLIP
models, trained with different configurations, as the scorers. Given a video frame I , we generate
a sequence of words to describe it. To integrate feedback from scorers to the generator, similar to
(Tewel et al., 2021), we define a context cache Ct (a set of embedding functions in GPT-2) that stores
the context information generated so far, which is updated iteratively based on the feedback from
scorers. The prediction of the next word from the generator G is given by xt+1 = G(xt, Ct). To
update Ct, we first use G to generate a set of candidate words X̂t+1 = {x̂t+1}, and then use the
feature distance (after softmax) between each sentence (the concatenation of previous words and each
new word {x1, x2, · · · , x̂t+1}, where x̂t+1 2 X̂t+1) and the video frame as the probability of them
matching. The CLIP score is the cross-entropy loss LCLIP between this new probability distribution
and the original distribution of the next word obtained from the generator G. The gradient of the
summed score (multiple CLIP models) is then propagated to G to update Ct:

Ck+1
t Ck

t + �rx

NX

n=1

LCLIP(E
n
✓ (x1, x2, · · · , x̂t+1, I)), (3)

where k is the step of iterative refinement. After several iterations, the updated Ct is used to generate
the next token xt+1 = G(xt, Ct). We repeat this process until we generate the entire caption. We

4

Under review as a conference paper at ICLR 2023

Figure 2: The proposed unified framework and examples on three representative tasks. (a) Overview of
the proposed unified framework. Dashed lines are omitted for certain tasks. (b) Image generation. A pre-trained
diffusion model is used as the generator, and multiple scorers, such as CLIP and image classifiers, are used to
provide feedback to the generator. (c) Video question answering. GPT-2 is used as the generator, and a set of
CLIP models are used as scorers. (d) Robot manipulation. MPC+World model is used as the generator, and a
pre-trained image segmentation model is used to compute the scores from multiple camera views to select the
best action. Orange lines represent the components used to refine the generated result.

image and text features as the score. The scores generated by different scorers are summed, and their
gradient with respect to xk is used to compute the next reverse prediction xk+1:

xk+1 x̂k+1 + �rxk

NX

n=1

En
✓

�
xk, c

�
, (2)

where N is the number of scorers and c is the text label. We denote the reverse process prediction as
xk+1 instead of xk�1 (used by most diffusion models) to keep consistent notation across tasks.

Video question answering (VQA). We first use PIC to generate video frame captions. We then use
GPT-3 to summarize the captions and answer questions about this video. Caption generation for a
single video frame is shown in Fig. 2 (c). We use GPT-2 as the generator and multiple different CLIP
models, trained with different configurations, as the scorers. Given a video frame I , we generate
a sequence of words to describe it. To integrate feedback from scorers to the generator, similar to
(Tewel et al., 2021), we define a context cache Ct (a set of embedding functions in GPT-2) that stores
the context information generated so far, which is updated iteratively based on the feedback from
scorers. The prediction of the next word from the generator G is given by xt+1 = G(xt, Ct). To
update Ct, we first use G to generate a set of candidate words X̂t+1 = {x̂t+1}, and then use the
feature distance (after softmax) between each sentence (the concatenation of previous words and each
new word {x1, x2, · · · , x̂t+1}, where x̂t+1 2 X̂t+1) and the video frame as the probability of them
matching. The CLIP score is the cross-entropy loss LCLIP between this new probability distribution
and the original distribution of the next word obtained from the generator G. The gradient of the
summed score (multiple CLIP models) is then propagated to G to update Ct:

Ck+1
t Ck

t + �rx

NX

n=1

LCLIP(E
n
✓ (x1, x2, · · · , x̂t+1, I)), (3)

where k is the step of iterative refinement. After several iterations, the updated Ct is used to generate
the next token xt+1 = G(xt, Ct). We repeat this process until we generate the entire caption. We

4

Under review as a conference paper at ICLR 2023

Figure 2: The proposed unified framework and examples on three representative tasks. (a) Overview of
the proposed unified framework. Dashed lines are omitted for certain tasks. (b) Image generation. A pre-trained
diffusion model is used as the generator, and multiple scorers, such as CLIP and image classifiers, are used to
provide feedback to the generator. (c) Video question answering. GPT-2 is used as the generator, and a set of
CLIP models are used as scorers. (d) Robot manipulation. MPC+World model is used as the generator, and a
pre-trained image segmentation model is used to compute the scores from multiple camera views to select the
best action. Orange lines represent the components used to refine the generated result.

image and text features as the score. The scores generated by different scorers are summed, and their
gradient with respect to xk is used to compute the next reverse prediction xk+1:

xk+1 x̂k+1 + �rxk

NX

n=1

En
✓

�
xk, c

�
, (2)

where N is the number of scorers and c is the text label. We denote the reverse process prediction as
xk+1 instead of xk�1 (used by most diffusion models) to keep consistent notation across tasks.

Video question answering (VQA). We first use PIC to generate video frame captions. We then use
GPT-3 to summarize the captions and answer questions about this video. Caption generation for a
single video frame is shown in Fig. 2 (c). We use GPT-2 as the generator and multiple different CLIP
models, trained with different configurations, as the scorers. Given a video frame I , we generate
a sequence of words to describe it. To integrate feedback from scorers to the generator, similar to
(Tewel et al., 2021), we define a context cache Ct (a set of embedding functions in GPT-2) that stores
the context information generated so far, which is updated iteratively based on the feedback from
scorers. The prediction of the next word from the generator G is given by xt+1 = G(xt, Ct). To
update Ct, we first use G to generate a set of candidate words X̂t+1 = {x̂t+1}, and then use the
feature distance (after softmax) between each sentence (the concatenation of previous words and each
new word {x1, x2, · · · , x̂t+1}, where x̂t+1 2 X̂t+1) and the video frame as the probability of them
matching. The CLIP score is the cross-entropy loss LCLIP between this new probability distribution
and the original distribution of the next word obtained from the generator G. The gradient of the
summed score (multiple CLIP models) is then propagated to G to update Ct:

Ck+1
t Ck

t + �rx

NX

n=1

LCLIP(E
n
✓ (x1, x2, · · · , x̂t+1, I)), (3)

where k is the step of iterative refinement. After several iterations, the updated Ct is used to generate
the next token xt+1 = G(xt, Ct). We repeat this process until we generate the entire caption. We

4

Under review as a conference paper at ICLR 2023

Figure 2: The proposed unified framework and examples on three representative tasks. (a) Overview of
the proposed unified framework. Dashed lines are omitted for certain tasks. (b) Image generation. A pre-trained
diffusion model is used as the generator, and multiple scorers, such as CLIP and image classifiers, are used to
provide feedback to the generator. (c) Video question answering. GPT-2 is used as the generator, and a set of
CLIP models are used as scorers. (d) Robot manipulation. MPC+World model is used as the generator, and a
pre-trained image segmentation model is used to compute the scores from multiple camera views to select the
best action. Orange lines represent the components used to refine the generated result.

image and text features as the score. The scores generated by different scorers are summed, and their
gradient with respect to xk is used to compute the next reverse prediction xk+1:

xk+1 x̂k+1 + �rxk

NX

n=1

En
✓

�
xk, c

�
, (2)

where N is the number of scorers and c is the text label. We denote the reverse process prediction as
xk+1 instead of xk�1 (used by most diffusion models) to keep consistent notation across tasks.

Video question answering (VQA). We first use PIC to generate video frame captions. We then use
GPT-3 to summarize the captions and answer questions about this video. Caption generation for a
single video frame is shown in Fig. 2 (c). We use GPT-2 as the generator and multiple different CLIP
models, trained with different configurations, as the scorers. Given a video frame I , we generate
a sequence of words to describe it. To integrate feedback from scorers to the generator, similar to
(Tewel et al., 2021), we define a context cache Ct (a set of embedding functions in GPT-2) that stores
the context information generated so far, which is updated iteratively based on the feedback from
scorers. The prediction of the next word from the generator G is given by xt+1 = G(xt, Ct). To
update Ct, we first use G to generate a set of candidate words X̂t+1 = {x̂t+1}, and then use the
feature distance (after softmax) between each sentence (the concatenation of previous words and each
new word {x1, x2, · · · , x̂t+1}, where x̂t+1 2 X̂t+1) and the video frame as the probability of them
matching. The CLIP score is the cross-entropy loss LCLIP between this new probability distribution
and the original distribution of the next word obtained from the generator G. The gradient of the
summed score (multiple CLIP models) is then propagated to G to update Ct:

Ck+1
t Ck

t + �rx

NX

n=1

LCLIP(E
n
✓ (x1, x2, · · · , x̂t+1, I)), (3)

where k is the step of iterative refinement. After several iterations, the updated Ct is used to generate
the next token xt+1 = G(xt, Ct). We repeat this process until we generate the entire caption. We

4

+

Figure A3: Overview of image generation. We use the reverse diffusion process of GLIDE (Nichol et al.,
2021), a text-guided diffusion model, as the generator to generate image proposals. At each step of the diffusion
process (corresponding to a step of the iterative refinement), we use the gradient from an ensemble of scorers,
such as CLIP (Radford et al., 2021), to guide and update the generated proposals. The image xk generated at
iteration k is first sent to the diffusion model to generate an image proposal x̂k+1. The scorers provide feedback
to refine the generated result. The CLIP model computes the cosine similarity between the image and text
features as the score. The image classifier (Dhariwal & Nichol, 2021) predicts the probability of the image
matching the text label as the score. The scores generated by different scorers are summed, and their gradient
with respect to xk is used to compute the next reverse prediction xk+1. Classifier-free guidance (Ho & Salimans,
2022) can be treated as an implicit classifier that directly provides pixel-wise gradient feedback to the generated
image. We iteratively repeat this procedure until the final step. Our framework enables the use of ensembles of
different pre-trained models as scorers, significantly improving the zero-shot results by leveraging the strengths
of multiple expert models.

where I is the feature of a video frame and x̂t+1 is the next word predicted by the original language
model. The CLIP loss LCLIP optimizes Ct to make the new generated sentence describe the video
frame. The second loss LCE ensures the new generated sentence is close to the sentence generated by
the original language model.

Our implementation is based on the code of ZeroCap (Tewel et al., 2021). The context cache Ct is
updated using:

Ct ←− Ct + α
∇Ct

p (xt+1 | Ct)

∥∇Ct
p (xt+1 | Ct)∥2

, (A2)

where p(xt+1|Ct) is the probability of predicting word xt+1 given Ct. Optimizing Eq. (A1) can be
achieved by conducting the gradient descent using Eq. (A2). In our experiments, we use 5 steps of
gradient descent. The learning rate α is set to 0.3.

In the video question answering tasks, we compose multiple CLIP scores and use their composed
score to optimize Ct:

argmin
Ct

(
LCLIP-32

(
G(xt, Ct) , I

)
+LCLIP-14

(
G(xt, Ct) , I

)
(A3)

+ LCLIP-multilingual
(
G(xt, Ct) , I

)
+λLCE

(
G
(
xt, Ct

)
, x̂t+1

))
. (A4)

After several iterations, the updated Ct is used to generate the next token xt+1 = G(xt, Ct). We
repeat this process until we generate the entire caption.

To answer the video questions, we cascade the generated captions of the video frames and the
questions about this video to prompt GPT-3 to generate answers. For each video, we delete the first

16

Published as a conference paper at ICLR 2023

candidate
word

A human is making

Generator: GPT-2Context information

Under review as a conference paper at ICLR 2023

generators (G), such as GPT (Brown et al., 2020; Radford et al., 2019) and Diffusion models (Ho
et al., 2020), that can generate candidate solutions, and scorers (E), such as CLIP (Radford et al.,
2021) and classifiers, that output a scalar score to evaluate each generated solution. We propose PIC
(composing Pre-trained models via Iterative Consensus), a framework which composes ensembles of
pre-trained models for multimodal tasks. The core idea of our framework is to generate solutions
through iterative optimization, where we leverage the knowledge from different models to jointly
construct a consensus solution. In PIC, a generator G iteratively and sequentially generate candidate
solutions, each of which is refined based on the feedback from a set of scorers. In particular, we seek
to obtain a solution x⇤ such that

x⇤ = arg min
x⇠G

X

n

En(x), (1)

where En is the set of scorers. At each iteration, we refine the solutions to have a lower score than the
previous iterations. This procedure, described in Equation (1), converges to a solution that minimizes
the energy across multiple pre-trained models, which maximizes the agreement between the generator
and scorers. In contrast to Socratic Models where outputs from different pre-trained models are called
sequentially, the closed-loop iterative refinement through which we obtain x⇤ enables the generator
and scorers to communicate with each other to reach a consensus on the final solution.

Below, we illustrate how PIC can be broadly applied across tasks in image generation, video question
answering, grade school math, and robot manipulation. To optimize Equation (1), we consider two
different optimization procedures – either a continuous approach that leverages the gradients of each
scorer En(x) or a discrete approach that directly samples possible solutions.

3.1 APPLICATIONS TO ZERO-SHOT TASKS

sec:methodtasksImage generation.Wefirstapplytheproposedframeworktoimagegenerationtogenerateimagesconditionedonatextdescriptionoraclasslabel.WeuseGLIDE (Nicholet al., 2021), atext�
guideddiffusionmodel, asthegeneratortogenerateimageproposals.Wethencomposethegeneratorwithanensembleofscorers, suchasCLIP (Radfordet al., 2021), toiterativelyupdatethegeneratedproposalsbasedontheclosed�
loopcommunicationsbetweenthemodels.

As shown in Fig. 2 (b), the image xt generated at iteration t is first sent to the GLIDE diffusion model
to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the generated
image matches the given text input. For example, CLIP computes the cosine distance between the
image and text features. The image classifier predicts the probability of the image matching the
text label. The classifier-free guidance can be treated as an implicit classifier that directly provides
pixel-wise gradient feedback to the generated image. The scores generated by different scorers are
summed up, and their gradient with respect to xt is used to obtain xt+1:

xt+1 = N (x̂t+1 + �rx

NX

n=1

En
✓ (xt, c) ,�2), (2)

where N is the normal distribution, N is the number of scorers and �2 is the variance.

Video question answering (VQA). We first use the proposed framework to generate video frame
captions. We then use GPT-3 to summarize the captions and answer questions. As shown in Fig. 2
(c), our framework combines GPT-2 and multiple CLIP models, trained with different configurations,
for zero-shot video frame captioning. Given a video frame and a text prompt, such as “Image of”, we
generate a sequence of words to describe the frame. Similar to (Tewel et al., 2021), we define a context
cache Ct (a set of embedding functions in Transformer (Vaswani et al., 2017)) that store the context
information generated so far. The prediction of the next word can be written as xt+1 = LM(xt, Ct),
where LM is the language model (GPT-2). The goal is to update Ct iteratively based on the CLIP
score to generate the next word such that the sentence is grammatically sound as well as accurately
describes the given video frame. To do this, we first use GPT-2 to generate a set of candidate words
{x̂i

t+1}, and then use the feature distance between each sentence (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) and the video frame as the probability of them matching.
The CLIP score is the cross-entropy loss between this clip distribution and the original distribution of
the next word obtained from GPT-2. Similar to image generation, the gradient of summed scores
(multiple CLIP models) is propagated to GPT-2 to update Ct. After several iterations, the updated Ct

is used to generate the next token xt+1 = LM(xt, Ct). We repeat this process until we generate the
entire frame caption. We cascade the video frame captions and questions about this video to prompt
GPT-3 for video question answering.

4

pastaa

CLIP 1 + … + CLIP N

word generated
after iterative
refinement

Under review as a conference paper at ICLR 2023

generators (G), such as GPT (Brown et al., 2020; Radford et al., 2019) and Diffusion models (Ho
et al., 2020), that can generate candidate solutions, and scorers (E), such as CLIP (Radford et al.,
2021) and classifiers, that output a scalar score to evaluate each generated solution. We propose PIC
(composing Pre-trained models via Iterative Consensus), a framework which composes ensembles of
pre-trained models for multimodal tasks. The core idea of our framework is to generate solutions
through iterative optimization, where we leverage the knowledge from different models to jointly
construct a consensus solution. In PIC, a generator G iteratively and sequentially generate candidate
solutions, each of which is refined based on the feedback from a set of scorers. In particular, we seek
to obtain a solution x⇤ such that

x⇤ = arg min
x⇠G

X

n

En(x), (1)

where En is the set of scorers. At each iteration, we refine the solutions to have a lower score than the
previous iterations. This procedure, described in Equation (1), converges to a solution that minimizes
the energy across multiple pre-trained models, which maximizes the agreement between the generator
and scorers. In contrast to Socratic Models where outputs from different pre-trained models are called
sequentially, the closed-loop iterative refinement through which we obtain x⇤ enables the generator
and scorers to communicate with each other to reach a consensus on the final solution.

Below, we illustrate how PIC can be broadly applied across tasks in image generation, video question
answering, grade school math, and robot manipulation. To optimize Equation (1), we consider two
different optimization procedures – either a continuous approach that leverages the gradients of each
scorer En(x) or a discrete approach that directly samples possible solutions.

3.1 APPLICATIONS TO ZERO-SHOT TASKS

sec:methodtasksImage generation.Wefirstapplytheproposedframeworktoimagegenerationtogenerateimagesconditionedonatextdescriptionoraclasslabel.WeuseGLIDE (Nicholet al., 2021), atext�
guideddiffusionmodel, asthegeneratortogenerateimageproposals.Wethencomposethegeneratorwithanensembleofscorers, suchasCLIP (Radfordet al., 2021), toiterativelyupdatethegeneratedproposalsbasedontheclosed�
loopcommunicationsbetweenthemodels.

As shown in Fig. 2 (b), the image xt generated at iteration t is first sent to the GLIDE diffusion model
to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the generated
image matches the given text input. For example, CLIP computes the cosine distance between the
image and text features. The image classifier predicts the probability of the image matching the
text label. The classifier-free guidance can be treated as an implicit classifier that directly provides
pixel-wise gradient feedback to the generated image. The scores generated by different scorers are
summed up, and their gradient with respect to xt is used to obtain xt+1:

xt+1 = N (x̂t+1 + �rx

NX

n=1

En
✓ (xt, c) ,�2), (2)

where N is the normal distribution, N is the number of scorers and �2 is the variance.

Video question answering (VQA). We first use the proposed framework to generate video frame
captions. We then use GPT-3 to summarize the captions and answer questions. As shown in Fig. 2
(c), our framework combines GPT-2 and multiple CLIP models, trained with different configurations,
for zero-shot video frame captioning. Given a video frame and a text prompt, such as “Image of”, we
generate a sequence of words to describe the frame. Similar to (Tewel et al., 2021), we define a context
cache Ct (a set of embedding functions in Transformer (Vaswani et al., 2017)) that store the context
information generated so far. The prediction of the next word can be written as xt+1 = LM(xt, Ct),
where LM is the language model (GPT-2). The goal is to update Ct iteratively based on the CLIP
score to generate the next word such that the sentence is grammatically sound as well as accurately
describes the given video frame. To do this, we first use GPT-2 to generate a set of candidate words
{x̂i

t+1}, and then use the feature distance between each sentence (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) and the video frame as the probability of them matching.
The CLIP score is the cross-entropy loss between this clip distribution and the original distribution of
the next word obtained from GPT-2. Similar to image generation, the gradient of summed scores
(multiple CLIP models) is propagated to GPT-2 to update Ct. After several iterations, the updated Ct

is used to generate the next token xt+1 = LM(xt, Ct). We repeat this process until we generate the
entire frame caption. We cascade the video frame captions and questions about this video to prompt
GPT-3 for video question answering.

4

Under review as a conference paper at ICLR 2023

Generator (G):
e.g. World Model

Red Bowl on Top of Blue Mug

Energy Scorers (E)

Updated result

Original result

View 1:

View K:

…

State

Iteratively try different
actions to apply an object

Generator (G):
e.g. GPT2

Energy Scorers (E)

Updated result

Original result

CLIP 1:

CLIP 2:

…

Text

“a bowl with” “rice”

“egg”

Decision Making Video Question Answering

Input video
frame

Used as the input of
the next iteration

Figure 3: Details 2.

to generate image proposals. Our method can compose the generator with one or multiple scorers,
such as CLIP (Radford et al., 2021), text-image classifiers (Dhariwal & Nichol, 2021), and the
classifier-free guidance (Ho & Salimans, 2022).

As shown in Fig. 2 (right), the image xt generated at iteration t is first sent to the GLIDE diffusion
model to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the
generated image matches the given text input. For example, CLIP computes the cosine distance
of the image feature and text feature. The text-image classifier predicts a probability of the image
matching the text label. The classifier-free guidance can be treated as an implicit classifier that
provides pixel-wise gradient feedback to the generator directly. The energy scores generated by
different scorers are summed up. We compute the gradient of summed energy score with respect to
the original image proposal to update the generated image:

xt+1 = xt �
�

2
rx

NX

n=1

En
✓ (xt, c) , (4)

where N is the number of scorers.

Robot planning.

Video Question Answering. We first use the proposed framework to generate video frame captions.
We then use GPT-3 (Brown et al., 2020) to summarize the captions and answer questions. As shown
in Fig. 3, our framework combines GPT-2 (Medium size) and multiple CLIP models, trained with
different configurations, for zero-shot video frame captioning. The history tokens {x1, · · · , xt}
is first sent to the generator to predict the next token x̂t+1. Then the scorers compute the feature
distances (scores) between the new sentence (concatenation of history tokens and the new token) and
the given video frame. Similar to image generation, the gradient of summed scores are propagated
to the generator to update the next token xt+1. We cascade the video frame captions and questions
about this video to prompt GPT-3. Results show that utilizing the proposed framework and GPT-3
enables effective video question answering.

Grade school math. We treat the grade school math problem as the text generation problem. Similar
to video question answering, the generator is a GPT-2 model (Medium size) and the scorers provide
feedback to the generator to guide the generation of next token xt+1. The scorers can be text
classifiers to evaluate the correctness of the output answer for the given math problem (See ??.)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing large models on four representative zero-
shot tasks, including image generation, video question answering, grade school math, and robot
manipulation.

Image Generation. We first show that composing the image generation model, i.e. GLIDE, and
multiple scorer models, i.e. CLIP, text-image classifier, and classifier-free guidance, enables effective
zero-shot image generation. We evaluate the image generation results on ImageNet (Deng et al.,

4

Figure A4: Overview of video frame captioning for video question answering. We use GPT-2 as the
generator and a set of CLIP models as scorers to generate captions for each video frame. To integrate feedback
from scorers to the generator, similar to ZeroCap (Tewel et al., 2021), we define a context cache Ct (a set
of embedding functions in GPT-2) that stores the context information generated so far, which is updated
iteratively based on the feedback from scorers. To update Ct, we first use G to generate a set of candidate words
X̂t+1 = {x̂t+1}, and then use the feature distance (after softmax) between each sentence (the concatenation
of previous words and each new word {x1, x2, · · · , x̂t+1}, where x̂t+1 ∈ X̂t+1) and the video frame as the
probability of them matching. The CLIP score is the cross-entropy loss LCLIP between this new probability
distribution and the original distribution of the next word obtained from the generator G (see Equation 4 in
(Tewel et al., 2021)). The gradient of summed scores (multiple CLIP models) is propagated to G to update Ct

(see Equation 5 in (Tewel et al., 2021)). After several iterations, the updated Ct is used to generate the next
token xt+1 = G(xt, Ct). We repeat this process until we generate the entire caption. We cascade the captions
of multiple video frames and questions about this video to prompt GPT-3 for video question answering.

Q: how many people are there in the video
A: 2
Q: what is behind the person in white clothes
A: tree
Q: what is in front of the person with braid
A: chair
...
Q: what is the person in white doing
A: tie hair
Q: what happened to the person in gray after he threw a goal
A: clap with your teammates
Summarize the following descriptions and answer the question as shown above:
a Video showing the new Hair tutorial; a video showing young blond hair clip attaching to
top pony tail of teens hair; …; a video on the head hair clip website showing blonde long
hair twisted in two knots.

Q: is the person with a golden hair long hair

Figure A5: Prompt given to GPT-3 for video question answering. Text in black contains the question-answer
pairs randomly sampled from the ActivityNet-QA training dataset. Text in blue has the video frame captions
generated by the proposed method. Text in orange is the question about this video that needs to be answered.

10 frames and the last 10 frames to remove the beginning or ending advertisements. We then take 30
video frames evenly from the rest frames and send them to GPT-3. To guide GPT-3 to generate proper
answers, we randomly select 30 question-answer pairs from the training set of ActivityNet-QA (Yu
et al., 2019) and use them as part of the prompt of GPT-3. As shown in Fig. A5, the prompt of
GPT-3 consists of examples of question-answer pairs, the video frame captions generated by the
proposed method, and the question about this video that needs to be answered. The text generated
by GPT-3 is used as the answer to the question asked. We also used the profanity check tool
(https://github.com/vzhou842/profanity-check) to remove the improper answers.

17

https://github.com/vzhou842/profanity-check

Published as a conference paper at ICLR 2023

candidate
word

A : 2 5

Generator: GPT-2Context information

Under review as a conference paper at ICLR 2023

generators (G), such as GPT (Brown et al., 2020; Radford et al., 2019) and Diffusion models (Ho
et al., 2020), that can generate candidate solutions, and scorers (E), such as CLIP (Radford et al.,
2021) and classifiers, that output a scalar score to evaluate each generated solution. We propose PIC
(composing Pre-trained models via Iterative Consensus), a framework which composes ensembles of
pre-trained models for multimodal tasks. The core idea of our framework is to generate solutions
through iterative optimization, where we leverage the knowledge from different models to jointly
construct a consensus solution. In PIC, a generator G iteratively and sequentially generate candidate
solutions, each of which is refined based on the feedback from a set of scorers. In particular, we seek
to obtain a solution x⇤ such that

x⇤ = arg min
x⇠G

X

n

En(x), (1)

where En is the set of scorers. At each iteration, we refine the solutions to have a lower score than the
previous iterations. This procedure, described in Equation (1), converges to a solution that minimizes
the energy across multiple pre-trained models, which maximizes the agreement between the generator
and scorers. In contrast to Socratic Models where outputs from different pre-trained models are called
sequentially, the closed-loop iterative refinement through which we obtain x⇤ enables the generator
and scorers to communicate with each other to reach a consensus on the final solution.

Below, we illustrate how PIC can be broadly applied across tasks in image generation, video question
answering, grade school math, and robot manipulation. To optimize Equation (1), we consider two
different optimization procedures – either a continuous approach that leverages the gradients of each
scorer En(x) or a discrete approach that directly samples possible solutions.

3.1 APPLICATIONS TO ZERO-SHOT TASKS

sec:methodtasksImage generation.Wefirstapplytheproposedframeworktoimagegenerationtogenerateimagesconditionedonatextdescriptionoraclasslabel.WeuseGLIDE (Nicholet al., 2021), atext�
guideddiffusionmodel, asthegeneratortogenerateimageproposals.Wethencomposethegeneratorwithanensembleofscorers, suchasCLIP (Radfordet al., 2021), toiterativelyupdatethegeneratedproposalsbasedontheclosed�
loopcommunicationsbetweenthemodels.

As shown in Fig. 2 (b), the image xt generated at iteration t is first sent to the GLIDE diffusion model
to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the generated
image matches the given text input. For example, CLIP computes the cosine distance between the
image and text features. The image classifier predicts the probability of the image matching the
text label. The classifier-free guidance can be treated as an implicit classifier that directly provides
pixel-wise gradient feedback to the generated image. The scores generated by different scorers are
summed up, and their gradient with respect to xt is used to obtain xt+1:

xt+1 = N (x̂t+1 + �rx

NX

n=1

En
✓ (xt, c) ,�2), (2)

where N is the normal distribution, N is the number of scorers and �2 is the variance.

Video question answering (VQA). We first use the proposed framework to generate video frame
captions. We then use GPT-3 to summarize the captions and answer questions. As shown in Fig. 2
(c), our framework combines GPT-2 and multiple CLIP models, trained with different configurations,
for zero-shot video frame captioning. Given a video frame and a text prompt, such as “Image of”, we
generate a sequence of words to describe the frame. Similar to (Tewel et al., 2021), we define a context
cache Ct (a set of embedding functions in Transformer (Vaswani et al., 2017)) that store the context
information generated so far. The prediction of the next word can be written as xt+1 = LM(xt, Ct),
where LM is the language model (GPT-2). The goal is to update Ct iteratively based on the CLIP
score to generate the next word such that the sentence is grammatically sound as well as accurately
describes the given video frame. To do this, we first use GPT-2 to generate a set of candidate words
{x̂i

t+1}, and then use the feature distance between each sentence (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) and the video frame as the probability of them matching.
The CLIP score is the cross-entropy loss between this clip distribution and the original distribution of
the next word obtained from GPT-2. Similar to image generation, the gradient of summed scores
(multiple CLIP models) is propagated to GPT-2 to update Ct. After several iterations, the updated Ct

is used to generate the next token xt+1 = LM(xt, Ct). We repeat this process until we generate the
entire frame caption. We cascade the video frame captions and questions about this video to prompt
GPT-3 for video question answering.

4

50

Question-solution classifier

word generated
after iterative
refinement

Under review as a conference paper at ICLR 2023

generators (G), such as GPT (Brown et al., 2020; Radford et al., 2019) and Diffusion models (Ho
et al., 2020), that can generate candidate solutions, and scorers (E), such as CLIP (Radford et al.,
2021) and classifiers, that output a scalar score to evaluate each generated solution. We propose PIC
(composing Pre-trained models via Iterative Consensus), a framework which composes ensembles of
pre-trained models for multimodal tasks. The core idea of our framework is to generate solutions
through iterative optimization, where we leverage the knowledge from different models to jointly
construct a consensus solution. In PIC, a generator G iteratively and sequentially generate candidate
solutions, each of which is refined based on the feedback from a set of scorers. In particular, we seek
to obtain a solution x⇤ such that

x⇤ = arg min
x⇠G

X

n

En(x), (1)

where En is the set of scorers. At each iteration, we refine the solutions to have a lower score than the
previous iterations. This procedure, described in Equation (1), converges to a solution that minimizes
the energy across multiple pre-trained models, which maximizes the agreement between the generator
and scorers. In contrast to Socratic Models where outputs from different pre-trained models are called
sequentially, the closed-loop iterative refinement through which we obtain x⇤ enables the generator
and scorers to communicate with each other to reach a consensus on the final solution.

Below, we illustrate how PIC can be broadly applied across tasks in image generation, video question
answering, grade school math, and robot manipulation. To optimize Equation (1), we consider two
different optimization procedures – either a continuous approach that leverages the gradients of each
scorer En(x) or a discrete approach that directly samples possible solutions.

3.1 APPLICATIONS TO ZERO-SHOT TASKS

sec:methodtasksImage generation.Wefirstapplytheproposedframeworktoimagegenerationtogenerateimagesconditionedonatextdescriptionoraclasslabel.WeuseGLIDE (Nicholet al., 2021), atext�
guideddiffusionmodel, asthegeneratortogenerateimageproposals.Wethencomposethegeneratorwithanensembleofscorers, suchasCLIP (Radfordet al., 2021), toiterativelyupdatethegeneratedproposalsbasedontheclosed�
loopcommunicationsbetweenthemodels.

As shown in Fig. 2 (b), the image xt generated at iteration t is first sent to the GLIDE diffusion model
to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the generated
image matches the given text input. For example, CLIP computes the cosine distance between the
image and text features. The image classifier predicts the probability of the image matching the
text label. The classifier-free guidance can be treated as an implicit classifier that directly provides
pixel-wise gradient feedback to the generated image. The scores generated by different scorers are
summed up, and their gradient with respect to xt is used to obtain xt+1:

xt+1 = N (x̂t+1 + �rx

NX

n=1

En
✓ (xt, c) ,�2), (2)

where N is the normal distribution, N is the number of scorers and �2 is the variance.

Video question answering (VQA). We first use the proposed framework to generate video frame
captions. We then use GPT-3 to summarize the captions and answer questions. As shown in Fig. 2
(c), our framework combines GPT-2 and multiple CLIP models, trained with different configurations,
for zero-shot video frame captioning. Given a video frame and a text prompt, such as “Image of”, we
generate a sequence of words to describe the frame. Similar to (Tewel et al., 2021), we define a context
cache Ct (a set of embedding functions in Transformer (Vaswani et al., 2017)) that store the context
information generated so far. The prediction of the next word can be written as xt+1 = LM(xt, Ct),
where LM is the language model (GPT-2). The goal is to update Ct iteratively based on the CLIP
score to generate the next word such that the sentence is grammatically sound as well as accurately
describes the given video frame. To do this, we first use GPT-2 to generate a set of candidate words
{x̂i

t+1}, and then use the feature distance between each sentence (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) and the video frame as the probability of them matching.
The CLIP score is the cross-entropy loss between this clip distribution and the original distribution of
the next word obtained from GPT-2. Similar to image generation, the gradient of summed scores
(multiple CLIP models) is propagated to GPT-2 to update Ct. After several iterations, the updated Ct

is used to generate the next token xt+1 = LM(xt, Ct). We repeat this process until we generate the
entire frame caption. We cascade the video frame captions and questions about this video to prompt
GPT-3 for video question answering.

4

Q: John buys 2 pairs
of shoes for each of
his 3 children. They
cost $60 each. How
much did he pay?

Under review as a conference paper at ICLR 2023

Generator (G):
e.g. World Model

Red Bowl on Top of Blue Mug

Energy Scorers (E)

Updated result

Original result

View 1:

View K:

…

State

Iteratively try different
actions to apply an object

Generator (G):
e.g. GPT2

Energy Scorers (E)

Updated result

Original result

CLIP 1:

CLIP 2:

…

Text

“a bowl with” “rice”

“egg”

Decision Making Video Question Answering

Input video
frame

Used as the input of
the next iteration

Figure 3: Details 2.

to generate image proposals. Our method can compose the generator with one or multiple scorers,
such as CLIP (Radford et al., 2021), text-image classifiers (Dhariwal & Nichol, 2021), and the
classifier-free guidance (Ho & Salimans, 2022).

As shown in Fig. 2 (right), the image xt generated at iteration t is first sent to the GLIDE diffusion
model to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the
generated image matches the given text input. For example, CLIP computes the cosine distance
of the image feature and text feature. The text-image classifier predicts a probability of the image
matching the text label. The classifier-free guidance can be treated as an implicit classifier that
provides pixel-wise gradient feedback to the generator directly. The energy scores generated by
different scorers are summed up. We compute the gradient of summed energy score with respect to
the original image proposal to update the generated image:

xt+1 = xt �
�

2
rx

NX

n=1

En
✓ (xt, c) , (4)

where N is the number of scorers.

Robot planning.

Video Question Answering. We first use the proposed framework to generate video frame captions.
We then use GPT-3 (Brown et al., 2020) to summarize the captions and answer questions. As shown
in Fig. 3, our framework combines GPT-2 (Medium size) and multiple CLIP models, trained with
different configurations, for zero-shot video frame captioning. The history tokens {x1, · · · , xt}
is first sent to the generator to predict the next token x̂t+1. Then the scorers compute the feature
distances (scores) between the new sentence (concatenation of history tokens and the new token) and
the given video frame. Similar to image generation, the gradient of summed scores are propagated
to the generator to update the next token xt+1. We cascade the video frame captions and questions
about this video to prompt GPT-3. Results show that utilizing the proposed framework and GPT-3
enables effective video question answering.

Grade school math. We treat the grade school math problem as the text generation problem. Similar
to video question answering, the generator is a GPT-2 model (Medium size) and the scorers provide
feedback to the generator to guide the generation of next token xt+1. The scorers can be text
classifiers to evaluate the correctness of the output answer for the given math problem (See ??.)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing large models on four representative zero-
shot tasks, including image generation, video question answering, grade school math, and robot
manipulation.

Image Generation. We first show that composing the image generation model, i.e. GLIDE, and
multiple scorer models, i.e. CLIP, text-image classifier, and classifier-free guidance, enables effective
zero-shot image generation. We evaluate the image generation results on ImageNet (Deng et al.,

4

Figure A6: Overview of solving grade school math problems. We use GPT-2 as the generator and treat the
grade school math problem as a text generation problem. The scorer, a pre-trained question-solution classifier,
provides the generator feedback to guide the next token’s generation xt+1. We follow the approach used in VQA
to iteratively optimize the generations based on the feedback from scorers. Our generator G first generates a
set of candidate words X̂t+1 = {x̂t+1}, and then the classifier predicts the probability of each solution (the
concatenation of previous words and each new word {x1, x2, · · · , x̂t+1}, where x̂t+1 ∈ X̂t+1) matching the
given question. The classifier score is the cross-entropy loss between this new probability distribution and the
original distribution of the next word obtained from the generator G. The gradient of the classifier score is used
to update Ct through iterative refinement (see Equation 5 in (Tewel et al., 2021)). The updated Ct is used to
predict the next word xt+1 = G(xt, Ct). We repeat this process until we generate the complete solution.

B.3 GRADE SCHOOL MATH

We treat the grade school math problem as a text generation problem. As shown in Fig. A6, we use
GPT-2 as the generator and a pre-trained question-solution classifier as the scorer. The pre-trained
classifier is a binary classifier trained on the training set of GSM8K (Cobbe et al., 2021). Given a
math problem, such as “Natalia sold clips to 48 of her friends in April, and then she sold half as many
clips in May. How many clips did Natalia sell altogether in April and May?”, and an answer, such as
“72”. If the answer is correct for the given problem, then the label is 1; otherwise, the label is 0.

After training, the classifier is used as the scorer to provide feedback to the generator to guide the next
token’s generation xt+1. Similar to VQA, the generator G first generates a set of candidate words
X̂t+1 = {x̂t+1}, and then the classifier predicts the probability of each solution (the concatenation
of previous words and each new word {x1, x2, · · · , x̂t+1}, where x̂t+1 ∈ X̂t+1) matching the given
question. The classifier score is the cross-entropy loss between this new probability distribution and
the original distribution of the next word obtained from the generator G (the way to compute the
classifier score is the same as computing the CLIP score in VQA). We also used the cross-entropy loss
LCE in Equation 2 of ZeroCap (Tewel et al., 2021) to ensure the generated sentence is grammatically
sound. The context cache Ct is updated in the same way as the video question answering task, but we
use the classifier score when providing the feedback to Ct. The updated Ct is used to predict the next
word xt+1 = G(xt, Ct). We repeat this process until we generate the complete solution. Similarly to
the video question task, we use 5 steps of gradient descent. The learning rate α is set to 0.3.

B.4 ROBOT MANIPULATION

In robot manipulation, we use the proposed method to manipulate objects in Ravens (Zeng et al.,
2020) to conform to a set of object relations specified by text descriptions or real-world images. We
use MPC+World Model as the generator and ViLD (Gu et al., 2021) as the scorer. As shown in
Figure A7, given a real-world image, our model manipulates objects in the environment to achieve a
state with objects having the same object relations as the given image. We first use ViLD to generate
a 2D segmentation of the real-world image and the corresponding text label, such as “mug”, for each
segment. We then use the relative pixel-wise offsets of segmentation masks and the text labels to
infer a set of object relations (top panel of Figure A7).

18

Published as a conference paper at ICLR 2023

VILD Extract
object

relations

red bowl to the
right of yellow bowl

pink mug in front
of yellow bowl

blue mug in front
of red bowl

Object relations specified
by a real-world image

Scorer

Extract
object

relations

red bowl to the
right of yellow bowl

pink mug in front
of yellow bowl

blue mug in front
of red bowl

Extract
object

relations

red bowl to the
right of yellow bowl

pink mug in front
of yellow bowl

blue mug on top of
red bowl

…

Camera View 1

Camera View N

Match
Score 1=0

Not Match
Score 1=1

VILD

VILD

Summed
score 0

Candidate
action

Under review as a conference paper at ICLR 2023

candidate
word

A human is making

Generator: GPT-2Context information

Under review as a conference paper at ICLR 2023

generators (G), such as GPT (Brown et al., 2020; Radford et al., 2019) and Diffusion models (Ho
et al., 2020), that can generate candidate solutions, and scorers (E), such as CLIP (Radford et al.,
2021) and classifiers, that output a scalar score to evaluate each generated solution. We propose PIC
(composing Pre-trained models via Iterative Consensus), a framework which composes ensembles of
pre-trained models for multimodal tasks. The core idea of our framework is to generate solutions
through iterative optimization, where we leverage the knowledge from different models to jointly
construct a consensus solution. In PIC, a generator G iteratively and sequentially generate candidate
solutions, each of which is refined based on the feedback from a set of scorers. In particular, we seek
to obtain a solution x⇤ such that

x⇤ = arg min
x⇠G

X

n

En(x), (1)

where En is the set of scorers. At each iteration, we refine the solutions to have a lower score than the
previous iterations. This procedure, described in Equation (1), converges to a solution that minimizes
the energy across multiple pre-trained models, which maximizes the agreement between the generator
and scorers. In contrast to Socratic Models where outputs from different pre-trained models are called
sequentially, the closed-loop iterative refinement through which we obtain x⇤ enables the generator
and scorers to communicate with each other to reach a consensus on the final solution.

Below, we illustrate how PIC can be broadly applied across tasks in image generation, video question
answering, grade school math, and robot manipulation. To optimize Equation (1), we consider two
different optimization procedures – either a continuous approach that leverages the gradients of each
scorer En(x) or a discrete approach that directly samples possible solutions.

3.1 APPLICATIONS TO ZERO-SHOT TASKS

sec:methodtasksImage generation.Wefirstapplytheproposedframeworktoimagegenerationtogenerateimagesconditionedonatextdescriptionoraclasslabel.WeuseGLIDE (Nicholet al., 2021), atext�
guideddiffusionmodel, asthegeneratortogenerateimageproposals.Wethencomposethegeneratorwithanensembleofscorers, suchasCLIP (Radfordet al., 2021), toiterativelyupdatethegeneratedproposalsbasedontheclosed�
loopcommunicationsbetweenthemodels.

As shown in Fig. 2 (b), the image xt generated at iteration t is first sent to the GLIDE diffusion model
to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the generated
image matches the given text input. For example, CLIP computes the cosine distance between the
image and text features. The image classifier predicts the probability of the image matching the
text label. The classifier-free guidance can be treated as an implicit classifier that directly provides
pixel-wise gradient feedback to the generated image. The scores generated by different scorers are
summed up, and their gradient with respect to xt is used to obtain xt+1:

xt+1 = N (x̂t+1 + �rx

NX

n=1

En
✓ (xt, c) ,�2), (2)

where N is the normal distribution, N is the number of scorers and �2 is the variance.

Video question answering (VQA). We first use the proposed framework to generate video frame
captions. We then use GPT-3 to summarize the captions and answer questions. As shown in Fig. 2
(c), our framework combines GPT-2 and multiple CLIP models, trained with different configurations,
for zero-shot video frame captioning. Given a video frame and a text prompt, such as “Image of”, we
generate a sequence of words to describe the frame. Similar to (Tewel et al., 2021), we define a context
cache Ct (a set of embedding functions in Transformer (Vaswani et al., 2017)) that store the context
information generated so far. The prediction of the next word can be written as xt+1 = LM(xt, Ct),
where LM is the language model (GPT-2). The goal is to update Ct iteratively based on the CLIP
score to generate the next word such that the sentence is grammatically sound as well as accurately
describes the given video frame. To do this, we first use GPT-2 to generate a set of candidate words
{x̂i

t+1}, and then use the feature distance between each sentence (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) and the video frame as the probability of them matching.
The CLIP score is the cross-entropy loss between this clip distribution and the original distribution of
the next word obtained from GPT-2. Similar to image generation, the gradient of summed scores
(multiple CLIP models) is propagated to GPT-2 to update Ct. After several iterations, the updated Ct

is used to generate the next token xt+1 = LM(xt, Ct). We repeat this process until we generate the
entire frame caption. We cascade the video frame captions and questions about this video to prompt
GPT-3 for video question answering.

4

pastaa

CLIP 1 + … + CLIP N

Under review as a conference paper at ICLR 2023

generators (G), such as GPT (Brown et al., 2020; Radford et al., 2019) and Diffusion models (Ho
et al., 2020), that can generate candidate solutions, and scorers (E), such as CLIP (Radford et al.,
2021) and classifiers, that output a scalar score to evaluate each generated solution. We propose PIC
(composing Pre-trained models via Iterative Consensus), a framework which composes ensembles of
pre-trained models for multimodal tasks. The core idea of our framework is to generate solutions
through iterative optimization, where we leverage the knowledge from different models to jointly
construct a consensus solution. In PIC, a generator G iteratively and sequentially generate candidate
solutions, each of which is refined based on the feedback from a set of scorers. In particular, we seek
to obtain a solution x⇤ such that

x⇤ = arg min
x⇠G

X

n

En(x), (1)

where En is the set of scorers. At each iteration, we refine the solutions to have a lower score than the
previous iterations. This procedure, described in Equation (1), converges to a solution that minimizes
the energy across multiple pre-trained models, which maximizes the agreement between the generator
and scorers. In contrast to Socratic Models where outputs from different pre-trained models are called
sequentially, the closed-loop iterative refinement through which we obtain x⇤ enables the generator
and scorers to communicate with each other to reach a consensus on the final solution.

Below, we illustrate how PIC can be broadly applied across tasks in image generation, video question
answering, grade school math, and robot manipulation. To optimize Equation (1), we consider two
different optimization procedures – either a continuous approach that leverages the gradients of each
scorer En(x) or a discrete approach that directly samples possible solutions.

3.1 APPLICATIONS TO ZERO-SHOT TASKS

sec:methodtasksImage generation.Wefirstapplytheproposedframeworktoimagegenerationtogenerateimagesconditionedonatextdescriptionoraclasslabel.WeuseGLIDE (Nicholet al., 2021), atext�
guideddiffusionmodel, asthegeneratortogenerateimageproposals.Wethencomposethegeneratorwithanensembleofscorers, suchasCLIP (Radfordet al., 2021), toiterativelyupdatethegeneratedproposalsbasedontheclosed�
loopcommunicationsbetweenthemodels.

As shown in Fig. 2 (b), the image xt generated at iteration t is first sent to the GLIDE diffusion model
to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the generated
image matches the given text input. For example, CLIP computes the cosine distance between the
image and text features. The image classifier predicts the probability of the image matching the
text label. The classifier-free guidance can be treated as an implicit classifier that directly provides
pixel-wise gradient feedback to the generated image. The scores generated by different scorers are
summed up, and their gradient with respect to xt is used to obtain xt+1:

xt+1 = N (x̂t+1 + �rx

NX

n=1

En
✓ (xt, c) ,�2), (2)

where N is the normal distribution, N is the number of scorers and �2 is the variance.

Video question answering (VQA). We first use the proposed framework to generate video frame
captions. We then use GPT-3 to summarize the captions and answer questions. As shown in Fig. 2
(c), our framework combines GPT-2 and multiple CLIP models, trained with different configurations,
for zero-shot video frame captioning. Given a video frame and a text prompt, such as “Image of”, we
generate a sequence of words to describe the frame. Similar to (Tewel et al., 2021), we define a context
cache Ct (a set of embedding functions in Transformer (Vaswani et al., 2017)) that store the context
information generated so far. The prediction of the next word can be written as xt+1 = LM(xt, Ct),
where LM is the language model (GPT-2). The goal is to update Ct iteratively based on the CLIP
score to generate the next word such that the sentence is grammatically sound as well as accurately
describes the given video frame. To do this, we first use GPT-2 to generate a set of candidate words
{x̂i

t+1}, and then use the feature distance between each sentence (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) and the video frame as the probability of them matching.
The CLIP score is the cross-entropy loss between this clip distribution and the original distribution of
the next word obtained from GPT-2. Similar to image generation, the gradient of summed scores
(multiple CLIP models) is propagated to GPT-2 to update Ct. After several iterations, the updated Ct

is used to generate the next token xt+1 = LM(xt, Ct). We repeat this process until we generate the
entire frame caption. We cascade the video frame captions and questions about this video to prompt
GPT-3 for video question answering.

4

word generated
after iterative
refinement

Under review as a conference paper at ICLR 2023

generators (G), such as GPT (Brown et al., 2020; Radford et al., 2019) and Diffusion models (Ho
et al., 2020), that can generate candidate solutions, and scorers (E), such as CLIP (Radford et al.,
2021) and classifiers, that output a scalar score to evaluate each generated solution. We propose PIC
(composing Pre-trained models via Iterative Consensus), a framework which composes ensembles of
pre-trained models for multimodal tasks. The core idea of our framework is to generate solutions
through iterative optimization, where we leverage the knowledge from different models to jointly
construct a consensus solution. In PIC, a generator G iteratively and sequentially generate candidate
solutions, each of which is refined based on the feedback from a set of scorers. In particular, we seek
to obtain a solution x⇤ such that

x⇤ = arg min
x⇠G

X

n

En(x), (1)

where En is the set of scorers. At each iteration, we refine the solutions to have a lower score than the
previous iterations. This procedure, described in Equation (1), converges to a solution that minimizes
the energy across multiple pre-trained models, which maximizes the agreement between the generator
and scorers. In contrast to Socratic Models where outputs from different pre-trained models are called
sequentially, the closed-loop iterative refinement through which we obtain x⇤ enables the generator
and scorers to communicate with each other to reach a consensus on the final solution.

Below, we illustrate how PIC can be broadly applied across tasks in image generation, video question
answering, grade school math, and robot manipulation. To optimize Equation (1), we consider two
different optimization procedures – either a continuous approach that leverages the gradients of each
scorer En(x) or a discrete approach that directly samples possible solutions.

3.1 APPLICATIONS TO ZERO-SHOT TASKS

sec:methodtasksImage generation.Wefirstapplytheproposedframeworktoimagegenerationtogenerateimagesconditionedonatextdescriptionoraclasslabel.WeuseGLIDE (Nicholet al., 2021), atext�
guideddiffusionmodel, asthegeneratortogenerateimageproposals.Wethencomposethegeneratorwithanensembleofscorers, suchasCLIP (Radfordet al., 2021), toiterativelyupdatethegeneratedproposalsbasedontheclosed�
loopcommunicationsbetweenthemodels.

As shown in Fig. 2 (b), the image xt generated at iteration t is first sent to the GLIDE diffusion model
to generate an image proposal x̂t+1. Each scorer outputs a score to evaluate whether the generated
image matches the given text input. For example, CLIP computes the cosine distance between the
image and text features. The image classifier predicts the probability of the image matching the
text label. The classifier-free guidance can be treated as an implicit classifier that directly provides
pixel-wise gradient feedback to the generated image. The scores generated by different scorers are
summed up, and their gradient with respect to xt is used to obtain xt+1:

xt+1 = N (x̂t+1 + �rx

NX

n=1

En
✓ (xt, c) ,�2), (2)

where N is the normal distribution, N is the number of scorers and �2 is the variance.

Video question answering (VQA). We first use the proposed framework to generate video frame
captions. We then use GPT-3 to summarize the captions and answer questions. As shown in Fig. 2
(c), our framework combines GPT-2 and multiple CLIP models, trained with different configurations,
for zero-shot video frame captioning. Given a video frame and a text prompt, such as “Image of”, we
generate a sequence of words to describe the frame. Similar to (Tewel et al., 2021), we define a context
cache Ct (a set of embedding functions in Transformer (Vaswani et al., 2017)) that store the context
information generated so far. The prediction of the next word can be written as xt+1 = LM(xt, Ct),
where LM is the language model (GPT-2). The goal is to update Ct iteratively based on the CLIP
score to generate the next word such that the sentence is grammatically sound as well as accurately
describes the given video frame. To do this, we first use GPT-2 to generate a set of candidate words
{x̂i

t+1}, and then use the feature distance between each sentence (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) and the video frame as the probability of them matching.
The CLIP score is the cross-entropy loss between this clip distribution and the original distribution of
the next word obtained from GPT-2. Similar to image generation, the gradient of summed scores
(multiple CLIP models) is propagated to GPT-2 to update Ct. After several iterations, the updated Ct

is used to generate the next token xt+1 = LM(xt, Ct). We repeat this process until we generate the
entire frame caption. We cascade the video frame captions and questions about this video to prompt
GPT-3 for video question answering.

4

Figure 6: Overview of video frame captioning for video question answering. We define a context cache Ct

(a set of embedding functions in GPT-2 as in (Tewel et al., 2021)) that stores the context information generated
so far, which is updated iteratively based on the feedback from scorers. To update Ct, we first use G to generate
a set of candidate words {x̂i

t+1}, and then use the feature distance between each sentence (the concatenation
of previous words and each new word {x1, x2, · · · , x̂i

t+1}) and the video frame as the probability of them
matching. The CLIP score is the cross-entropy loss LCLIP between this new probability distribution and the
original distribution of the next word obtained from the generator G (see Equation 4 in (Tewel et al., 2021)). The
gradient of summed scores (multiple CLIP models) is propagated to G to update Ct. After several iterations,
the updated Ct is used to generate the next token xt+1 = G(xt, Ct). We repeat this process until we generate
the entire caption. We cascade the captions of multiple video frames and questions about this video to prompt
GPT-3 for video question answering.

Q: how many people are there in the video
A: 2
Q: what is behind the person in white clothes
A: tree
Q: what is in front of the person with braid
A: chair
...
Q: what is the person in white doing
A: tie hair
Q: what happened to the person in gray after he threw a goal
A: clap with your teammates
Summarize the following descriptions and answer the question as shown above:
a Video showing the new Hair tutorial; a video showing young blond hair clip attaching to
top pony tail of teens hair; …; a video on the head hair clip website showing blonde long
hair twisted in two knots.

Q: is the person with a golden hair long hair

Figure 7: Prompt given to GPT-3 for video question answering. Text in black contains the question-answer
pairs randomly sampled from the ActivityNet-QA dataset. Text in blue has the video frame captions generated
by the proposed method. Text in orange is the question about this video that needs to be answered.

A.4 ROBOT MANIPULATION

In robot manipulation, we use the proposed method to manipulate objects in Ravens (Zeng et al.,
2020) to conform to a set of object relations specified by text descriptions or real-world images. We
use MPC+World model as the generator and the ViLD (Gu et al., 2021) as the scorer. As shown in
Figure 9, given a real-world image, our model manipulates objects in the environment to achieve a
state with objects having the same object relations as the given image. We first use ViLD to generate
a 2D segmentation of the real-world image and the corresponding text label, such as “mug”, for each
segment. We then use the relative pixel-wise offsets of segmentation masks and the text labels to
infer a set of object relations (top panel of Figure 9).

Given the current world state xt, we aim to generate an action at+1 so that the new world state after
executing at+1 has object relations the same as object relations in the given image. To do this, we
first use the generator (MPC+World model) to generate a set of candidate actions {âk

t+1} and the

14

Extract
object

relations

red bowl to the
right of yellow bowl

pink mug in front
of yellow bowl

blue mug in front
of red bowl

Match
Score N=0

VILD

…
…

+

Action with the
minimum summed
score:

Under review as a conference paper at ICLR 2023

cascade the captions of multiple video frames and questions about this video to prompt GPT-3 for
video question answering.

Grade school math. We further apply PIC to solve grade school math problems. We use GPT-2 as
the generator and treat the grade school math problem as a text generation problem. The scorer, a
pre-trained question-solution classifier, provides the generator feedback to guide the next token’s
generation xt+1. We follow the approach used in VQA to iteratively optimize the generations based
on the feedback from scorers. Our generator G first generates a set of candidate words {x̂i

t+1}, and
then the classifier predicts the probability of each solution (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) matching the given question. The classifier score is the
cross-entropy loss between this new probability distribution and the original distribution of the next
word obtained from the generator G. The gradient of the classifier score is used to update Ct through
iterative refinement. The updated Ct is used to predict the next word xt+1 = G(xt, Ct). We repeat
this process until we generate the complete solution.

Robot manipulation. Finally, we illustrate how PIC can be applied to manipulate objects in the robot
environment to conform to a set of object relations such as “red bowl on top of blue mug” shown in
Fig. 2 (d). We use the combination of the Model Predictive Control (MPC) (Williams et al., 2015)
and the World Model as the generator. At each time step, we first use MPC to sample a set of possible
actions and then render the state images (after executing an action) from multiple camera views using
the world model. For each action, the scorer computes a summed score across all camera views as its
final score, which is used to select the best action to execute.

For the generator, we assume that there is a pre-trained model, i.e. world model, that can accurately
render and simulate the dynamic changes in the robot world. Since such a large pre-trained model
does not directly exist, we approximate it using an environment simulator combined with MPC as the
generator. For the scorer, we use the pre-trained ViLD (Gu et al., 2021) to generate segmentation
maps for images captured by different camera views, and the corresponding text label for each
segment, which are used to obtain object relations. We compare the generated object relations and
the relations specified by the text description to obtain the scorer, i.e. score equals 0 if they match;
otherwise, 1 (here the score means the distance). To obtain a final world state xT that satisfies the
specified relations, and the action sequence {a1, · · · , aT } that manipulates the objects into the final
state xT , the generator iteratively samples possible actions âi

t+1 and gets feedback from scorers. The
best action is selected by:

at+1 = arg min
ât+1

NX

n=1

En
✓ (xt, ât+1). (4)

Each scorer, En
✓ , outputs a score for the resultant state obtained when a candidate action ât+1 is

applied to the current world state xt. We execute at+1 in the environment and get a new state xt+1.
We repeat this process until the task is accomplished or we are at the final step T .

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing pre-trained models on four representative tasks,
including image generation, video question answering, grade school math, and robot manipulation.

Image generation. We first show that composing the pre-trained image generation model and scorer
models such as CLIP enables effective zero-shot image generation. We evaluate the image generation
results on ImageNet (Deng et al., 2009) with the image resolution of 64⇥ 64. The class labels are
used as text input to guide image generation. Each method generates 50 images for each class. We
evaluate the image generation quality using Inception Score (IS) (Salimans et al., 2016), Fréchet
Inception Distance (FID) (Heusel et al., 2017), and Kernel Inception Distance (KID) (Bińkowski
et al., 2018). IS measures the distribution of generated images. Higher values mean the models
can generate more distinct images. FID considers both the distribution of generated images and the
distribution of real images. Lower scores represent the generated images are closer to the real images.
KID is similar to FID, measuring the similarity between two data distributions but in the kernel space.

Video question answering. We evaluate methods for solving VQA tasks on ActivityNet-QA (Yu
et al., 2019). Our method generates free-form language answers instead of selecting an answer from
a pre-defined answer set (Yang et al., 2021; Lei et al., 2022). To evaluate such free-form VQA, we
ask workers from Amazon Mechanical Turk to measure whether the generated answer matches the
given question and video (See Appendix B for IRB approval and experimental details). For fair

5

…

Camera View 1

Camera View N

Extract
object

relations

red bowl to the
right of yellow bowl

pink mug in front
of yellow bowl

blue mug on top of
red bowl

Not Match
Score N=1

VILD

Summed
score N+…

…

Generator:
MPC +

World Model

World state

Under review as a conference paper at ICLR 2023

cascade the captions of multiple video frames and questions about this video to prompt GPT-3 for
video question answering.

Grade school math. We further apply PIC to solve grade school math problems. We use GPT-2 as
the generator and treat the grade school math problem as a text generation problem. The scorer, a
pre-trained question-solution classifier, provides the generator feedback to guide the next token’s
generation xt+1. We follow the approach used in VQA to iteratively optimize the generations based
on the feedback from scorers. Our generator G first generates a set of candidate words {x̂i

t+1}, and
then the classifier predicts the probability of each solution (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) matching the given question. The classifier score is the
cross-entropy loss between this new probability distribution and the original distribution of the next
word obtained from the generator G. The gradient of the classifier score is used to update Ct through
iterative refinement. The updated Ct is used to predict the next word xt+1 = G(xt, Ct). We repeat
this process until we generate the complete solution.

Robot manipulation. Finally, we illustrate how PIC can be applied to manipulate objects in the robot
environment to conform to a set of object relations such as “red bowl on top of blue mug” shown in
Fig. 2 (d). We use the combination of the Model Predictive Control (MPC) (Williams et al., 2015)
and the World Model as the generator. At each time step, we first use MPC to sample a set of possible
actions and then render the state images (after executing an action) from multiple camera views using
the world model. For each action, the scorer computes a summed score across all camera views as its
final score, which is used to select the best action to execute.

For the generator, we assume that there is a pre-trained model, i.e. world model, that can accurately
render and simulate the dynamic changes in the robot world. Since such a large pre-trained model
does not directly exist, we approximate it using an environment simulator combined with MPC as the
generator. For the scorer, we use the pre-trained ViLD (Gu et al., 2021) to generate segmentation
maps for images captured by different camera views, and the corresponding text label for each
segment, which are used to obtain object relations. We compare the generated object relations and
the relations specified by the text description to obtain the scorer, i.e. score equals 0 if they match;
otherwise, 1 (here the score means the distance). To obtain a final world state xT that satisfies the
specified relations, and the action sequence {a1, · · · , aT } that manipulates the objects into the final
state xT , the generator iteratively samples possible actions âi

t+1 and gets feedback from scorers. The
best action is selected by:

at+1 = arg min
ât+1

NX

n=1

En
✓ (xt, ât+1). (4)

Each scorer, En
✓ , outputs a score for the resultant state obtained when a candidate action ât+1 is

applied to the current world state xt. We execute at+1 in the environment and get a new state xt+1.
We repeat this process until the task is accomplished or we are at the final step T .

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing pre-trained models on four representative tasks,
including image generation, video question answering, grade school math, and robot manipulation.

Image generation. We first show that composing the pre-trained image generation model and scorer
models such as CLIP enables effective zero-shot image generation. We evaluate the image generation
results on ImageNet (Deng et al., 2009) with the image resolution of 64⇥ 64. The class labels are
used as text input to guide image generation. Each method generates 50 images for each class. We
evaluate the image generation quality using Inception Score (IS) (Salimans et al., 2016), Fréchet
Inception Distance (FID) (Heusel et al., 2017), and Kernel Inception Distance (KID) (Bińkowski
et al., 2018). IS measures the distribution of generated images. Higher values mean the models
can generate more distinct images. FID considers both the distribution of generated images and the
distribution of real images. Lower scores represent the generated images are closer to the real images.
KID is similar to FID, measuring the similarity between two data distributions but in the kernel space.

Video question answering. We evaluate methods for solving VQA tasks on ActivityNet-QA (Yu
et al., 2019). Our method generates free-form language answers instead of selecting an answer from
a pre-defined answer set (Yang et al., 2021; Lei et al., 2022). To evaluate such free-form VQA, we
ask workers from Amazon Mechanical Turk to measure whether the generated answer matches the
given question and video (See Appendix B for IRB approval and experimental details). For fair

5

Candidate
action

…

Action sampled in
different iterations

Under review as a conference paper at ICLR 2023

cascade the captions of multiple video frames and questions about this video to prompt GPT-3 for
video question answering.

Grade school math. We further apply PIC to solve grade school math problems. We use GPT-2 as
the generator and treat the grade school math problem as a text generation problem. The scorer, a
pre-trained question-solution classifier, provides the generator feedback to guide the next token’s
generation xt+1. We follow the approach used in VQA to iteratively optimize the generations based
on the feedback from scorers. Our generator G first generates a set of candidate words {x̂i

t+1}, and
then the classifier predicts the probability of each solution (the concatenation of previous words
and each new word {x1, x2, · · · , x̂i

t+1}) matching the given question. The classifier score is the
cross-entropy loss between this new probability distribution and the original distribution of the next
word obtained from the generator G. The gradient of the classifier score is used to update Ct through
iterative refinement. The updated Ct is used to predict the next word xt+1 = G(xt, Ct). We repeat
this process until we generate the complete solution.

Robot manipulation. Finally, we illustrate how PIC can be applied to manipulate objects in the robot
environment to conform to a set of object relations such as “red bowl on top of blue mug” shown in
Fig. 2 (d). We use the combination of the Model Predictive Control (MPC) (Williams et al., 2015)
and the World Model as the generator. At each time step, we first use MPC to sample a set of possible
actions and then render the state images (after executing an action) from multiple camera views using
the world model. For each action, the scorer computes a summed score across all camera views as its
final score, which is used to select the best action to execute.

For the generator, we assume that there is a pre-trained model, i.e. world model, that can accurately
render and simulate the dynamic changes in the robot world. Since such a large pre-trained model
does not directly exist, we approximate it using an environment simulator combined with MPC as the
generator. For the scorer, we use the pre-trained ViLD (Gu et al., 2021) to generate segmentation maps
for images captured by different camera views, and the corresponding text label for each segment,
which are used to obtain object relations. We compare the generated object relations and the relations
specified by the text description to obtain the scorer, i.e. score equals 0 if they match; otherwise,
1 (here the score means the distance) (see Appendix A.4 for details). To obtain a final world state
xT that satisfies the specified relations, and the action sequence {a1, · · · , aT } that manipulates
the objects into the final state xT , the generator iteratively samples possible actions âk

t+1 and gets
feedback from scorers. The best action is selected by:

at+1 = arg min
âk

t+1

NX

n=1

En
✓ (xt, â

k
t+1). (4)

Each scorer, En
✓ , outputs a score for the resultant state obtained when a candidate action âk

t+1 is
applied to the current world state xt. We execute at+1 in the environment and get a new state xt+1.
We repeat this process until the task is accomplished or we are at the final step T .

âk+2
t+1 (5)

4 EXPERIMENT SETUP

We evaluate the proposed framework for composing pre-trained models on four representative tasks,
including image generation, video question answering, grade school math, and robot manipulation.

Image generation. We first show that composing the pre-trained image generation model and scorer
models such as CLIP enables effective zero-shot image generation. We evaluate the image generation
results on ImageNet (Deng et al., 2009) with the image resolution of 64⇥ 64. The class labels are
used as text input to guide image generation. Each method generates 50 images for each class. We
evaluate the image generation quality using Inception Score (IS) (Salimans et al., 2016), Fréchet
Inception Distance (FID) (Heusel et al., 2017), and Kernel Inception Distance (KID) (Bińkowski
et al., 2018). IS measures the distribution of generated images. Higher values mean the models
can generate more distinct images. FID considers both the distribution of generated images and the
distribution of real images. Lower scores represent the generated images are closer to the real images.
KID is similar to FID, measuring the similarity between two data distributions but in the kernel space.

Video question answering. We evaluate methods for solving VQA tasks on ActivityNet-QA (Yu
et al., 2019). Our method generates free-form language answers instead of selecting an answer from

5

Goal object
relations

Goal object
relations

Figure A7: Overview of robot manipulation. We use MPC+World Model as the generator and ViLD as the
scorer to manipulate objects to conform to a set of object relations specified by text descriptions or real-world
images. Top: given a real-world image, we first use ViLD to generate a 2D segmentation of the real-world image
and the corresponding text label, such as “mug”, for each segment. We then use the relative pixel-wise offsets
of segmentation masks and the text labels to infer a set of object relations. Bottom: Given the current world
state xt, we aim to generate an action at+1 so that the new world state after executing at+1 has object relations
closer to the object relations in the given image. To do this, we first use the generator (MPC+World model)
to generate a set of candidate actions {âk

t+1} and the corresponding world states {x̂k
t+1} after executing each

candidate action. For each new world state x̂k
t+1, we render N 2D images from N camera views. Each rendered

image is sent to VILD to get a segmentation map and text labels. We project the objects into 3D space based on
the segmentation map and the depth map of the image. We then obtain the object relations based on their 3D
positions and predicted text labels. We compare the object relations obtained from each rendered image and
the object relations obtained from the real-world image to compute the score. The score is 0 if the relations are
matching; otherwise, 1. We sum the scores from each rendered image to obtain the final score. We choose the
action at+1 that leads to a world state with the minimum summed score. We execute at+1 in the environment
and get a new state xt+1. We repeat this process until the task is accomplished or we are at the final step T .

Given the current world state xt, we aim to generate an action at+1 so that the new world state after
executing at+1 has object relations closer to the object relations in the given image. To do this, we
first use the generator (MPC+World Model) to generate a set of candidate actions {âkt+1} and the
corresponding world states {x̂k

t+1} after executing each candidate action. For each new world state
x̂k
t+1, we render N 2D images from N camera views. Each rendered image is sent to VILD to get a

segmentation map and text labels. We project the objects into 3D space based on the segmentation
map and the depth map of the image. We then obtain the object relations based on their 3D positions
and the predicted text labels. We compare the object relations obtained from each rendered image
and the object relations obtained from the real-world image to compute the score. The score is 0 if
the relations are matching; otherwise, 1. We sum the scores from each rendered image to obtain the
final score. We choose the action at+1 that leads to a world state with the minimum summed score.
We execute at+1 in the environment and get a new state xt+1. We repeat this process until the task is
accomplished or we are at the final step T , where T equals to the number of relations extracted from
the real-world image.

19

Published as a conference paper at ICLR 2023

Figure A8: Screenshot of the approval form from the Committee on the Use of Humans as Experimental
Subjects.

B.5 A UNIFIED FRAMEWORK FOR COMPOSING PRE-TRAINED MODELS

Our method shares some similar architecture with existing works, such as ZeroCap (Tewel et al.,
2021) and CLIP-guided diffusion models (Nichol et al., 2021). However, the focus of our paper is to
propose a general framework for composing different pre-trained models across a variety of tasks, and
these particular methods are concrete instantiations of our proposed framework. In addition, in this
work, we also illustrate how we may combine ensembles of different pre-trained models as scorers to
leverage the “wisdom of the crowds” where each scorer provides complementary feedback to the
generator, compensating for the potential weaknesses of other scorers. Through iterative optimization
and the composition of multiple scorers, our method shows effective zero-shot generalization ability
on various multimodal tasks.

C ETHICS STATEMENT OF AMAZON MECHANICAL TURK EXPERIMENTS

To evaluate approaches on solving the zero-shot video question answering tasks, we ask workers
from Amazon Mechanical Turk to evaluate the generated answer based on the video and the asked
question. Before showing the questions and answers to the workers, we used the profanity check tool
(https://github.com/vzhou842/profanity-check) to remove the improper questions
and answers. As shown in Fig. A8, this experiment was approved by the Committee on the Use of
Humans as Experimental Subjects. A screenshot of the task is shown in Fig. A9. The instructions
shown to participants are listed as follows:

Instructions: By making judgments about these questions and answers, you are participat-
ing in a study being performed by [XXX]. Your participation in this research is voluntary.
You may decline further participation, at any time, without adverse consequences. Your
anonymity is assured; the researchers who have requested your participation will not receive
any personal information about you.

Given a video, a question, and a generated answer, the workers from Amazon Mechanical Turk
measure whether the answer is correct for the given question and video. Each video shows three
question-answer pairs (only one question-answer pair is shown in the screenshot). The answers are
generated by different methods. The workers are not told which method generates each answer. The
workers are asked to choose “yes” or “no”. If the worker thinks the answer matches the given video
and question, they should choose “yes”; otherwise, “no”.

To control the quality, each task is evaluated by three different workers. The workers are required to
have an approval rate greater than 98%. Our test shows that each task takes around 10 seconds, but
the workers are given up to one hour to complete each task. The workers are paid $0.05 for finishing
each task with an estimated hourly payment of $18, more than the United States federal minimum
wage. There are 33 workers in total who joined our experiment.

20

https://github.com/vzhou842/profanity-check

Published as a conference paper at ICLR 2023

Figure A9: Screenshot of Amazon Mechanical Turk we used for the video question answering experiment.
Workers are shown a video, three questions, and the answer to each question. The answers are generated by
different methods. The workers are not told which method generates each answer. The workers are asked
to select “yes” or “no” based on their measurement of whether the answer is correct for the given video and
question.

21

	Introduction
	Related Work
	Method
	Applications to Zero-shot Tasks

	Experiment Setup
	Experiments
	Image Generation
	Video question answering
	Grade school math
	Robot manipulation

	Analysis
	Effect of consensus optimization
	Effect of Iterative Refinement

	Conclusion and Future Work
	Additional Results
	Image Generation results
	Image generation with different generator
	Grade School Math Qualitative Results
	Composing Scorer Models
	Additional Baseline Comparisons

	Experimental details
	Image generation
	Video question answering
	Grade school math
	Robot manipulation
	A unified framework for composing pre-trained models

	Ethics Statement of Amazon Mechanical Turk Experiments

