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ABSTRACT

In many practical scenarios of signal extraction from a nonlinear mixture, only
one (signal) source is intended to be extracted. However, modern methods involv-
ing Blind Source Separation are inefficient for this task since they are designed to
recover all sources in the mixture. In this paper, we propose supervised Variational
Component Decoder (sVCD) as a method dedicated to extracting a single source
from nonlinear mixture. sVCD leverages the sequence-to-sequence (Seq2Seq)
translation ability of a specially designed neural network to approximate a non-
linear inverse of the mixture process, assisted by priors of the interested source.
In order to maintain the robustness in the face of real-life samples, sVCD com-
bines Seq2Seq with variational inference to form a deep generative model, and
it is trained by optimizing a variant of variational bound on the data likelihood
concerning only the interested source. We demonstrate that sVCD has superior
performance on nonlinear source extraction over a state-of-the-art method on di-
verse datasets, including artificially generated sequences, radio frequency (RF)
sensing data, and electroencephalogram (EEG) results.

1 INTRODUCTION

Signal extraction from nonlinear mixture is a recurring yet hard research problem in signal pro-
cessing and representation learning. To tackle this problem, conventional methods can be divided
into two categories. One is Blind Source Separation (BSS) that recovers all sources in the mix-
ture (Comon & Jutten, 2010), the other is to leverage available prior knowledge to extract only the
desired components from the mixture (Leong et al., 2008). Following the hardness results of nonlin-
ear BSS based on nonlinear Independent Component Analysis (ICA) (Hyvärinen & Pajunen, 1999),
many attempts have been made to realize nonlinear ICA and to further connect it with representation
learning (Hyvärinen & Morioka, 2016; 2017; Khemakhem et al., 2020). However, in many practi-
cal scenarios, only one or few sources are supposed to be retrieved for the concerned application;
for example, heartbeat monitoring, especially that achieved by contact-free approaches (Ha et al.,
2020), demands the heartbeat signal (waveform) to be extracted out of the nonlinear mixture with
other signals such as body movements and respiration. Compared with nonlinear BSS, nonlinear
source extraction can be far more efficient and effective under these scenarios: on one hand, extract-
ing only the source of interest could significantly reduce the computation cost for the same category
of algorithms (e.g., deep-learning based signal extraction would be computationally cheaper than
deep-learning based signal separation). On the other hand, if prior knowledge of the source is avail-
able, the training may substantially leverage such knowledge so as to sufficiently improve the (later)
inference accuracy.

Recently, there is a rising interest in investigating disentangled representation learning exploiting
deep learning techniques. Different from conventional source separation methods that demand hard-
coded rules, a deep learning model aims to learn the underlying generating factors automatically
and adaptively. To this end, the frameworks of variational auto-encoder (VAE) (Kingma & Welling,
2013) and generative adversarial network (GAN) (Goodfellow et al., 2014) are widely used, and
variants modifying designs and training techniques to enhance disentanglement have also been pro-
posed, such as β-VAE (Higgins et al., 2016). However, as the existing proposals mostly focus on
disentangling on the representation in image or video data (Kingma & Welling, 2013; Higgins et al.,
2016; Fabius & Van Amersfoort, 2014; Yingzhen & Mandt, 2018) where signal mixture never take
place, we cannot directly apply the idea of disentangled representation learning to our problem of
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Figure 1: Source extraction from nonlinear mixture with sVCD.

source extraction (a special form of disentanglement) from nonlinear time-series mixture. Though a
few results have been obtained for disentangling the sources in nonlinear mixing using deep learning,
they fall into the category of BSS (Hyvärinen & Morioka, 2016; Khemakhem et al., 2020).

In this paper, we propose supervised Variational Component Decoder (sVCD) as a robust deep-
learning framework for source extraction from nonlinear mixture. As illustrated in Figure 1, sVCD
aims to recover the interested source y from observed signals x formed by source signals mixed in
a nonlinear manner. In particular, sVCD involves an encoder to analyze the temporal features of
the observed signals and hence to encode them to the hidden state (posterior distributions in a latent
space), and it then decodes the hidden state to recover the interested source. A modified variational
inference is applied to help approximate the intractable posterior and to achieve a disentangled
representation in the latent space dedicated to the interested source, guided by the prior knowledge
applied to train sVCD. Essentially, while y is available for supervised training, sVCD takes x as the
sole input during the testing phase to obtain ŷ. To summarize, our main contributions include:

• We prove that nonlinear source extraction can be formulated as modified variational infer-
ence and achieved by maximizing a tighter variational lower bound.

• We design a novel sequence-to-sequence (Seq2Seq) translation architecture; it leverages
the modified variational inference to extract the desired source from nonlinear mixture.

• We provide empirical evidence that sVCD outperforms a state-of-the-art method based on
extensive evaluations under different nonlinear mixing scenarios.

The rest of the paper is organized as follows. Section 2 presents related works. Section 3 introduces
the mathematical framework for source extraction from nonlinear mixture. Section 4 presents the
details sVCD model. Section 5 introduces the datasets and reports the evaluation results. Finally,
Section 6 concludes this paper and points out potential future applications.

2 RELATED WORKS

Numerous algorithms have been developed to solve the BSS problem (Comon & Jutten, 2010):
they all aim to decompose signal mixtures into individual components without knowing informa-
tion about the source signals or the mixing process. Among them, Non-negative Matrix Factor-
ization (NMF) decomposes the signal by using low-rank approximations under the non-negative
constraint (Wang & Zhang, 2012). Independent Component Analysis (ICA) assumes that the under-
lying signals are statistically independent to separate them (Hyvärinen & Oja, 2000). BSS achieved
by masking and re-weighting the frequency spectrograms have also been implemented by Hidden
Markov Models (HMMs) (Roweis, 2000) and segmentation methods (Bach & Jordan, 2005).

One common assumption of regular BSS is that the mixing process is linear, under which the statisti-
cal independence of the underlying sources is a sufficient condition to constrain the linear unmixing
function. However, as we extend BSS to nonlinear mixture, the statistical independence of the
sources can no longer be treated as a sufficient constraint for the unmixing (Hyvärinen & Pajunen,
1999). Harmeling et al. (2003) and Hyvärinen & Morioka (2016) have proposed to utilize tem-
poral structure in the mixture to overcome this challenge. Furthermore, several properties on the
mixed sources, e.g., autocorrelation (Sprekeler et al., 2014), general non-Gaussian temporal depen-
dency (Hyvärinen & Morioka, 2017), or non-stationarity (Hyvärinen & Morioka, 2016), can also
provide sufficient constraints for solving the problem.
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Aother broadly related topic is disentanglement representation learning (Bengio et al., 2013). The
word “disentanglement” means decoupling of generating factors. Unlike BSS performing separation
in signal space, disentanglement representation learning uncovers the underlying factors of varia-
tion in latent space. With the development of deep learning, disentanglement representation learn-
ing based on VAEs has gained momentum (Kingma & Welling, 2013). By augmenting the lower
bound formulation with the coefficient that regulates the independence prior, Higgins et al. (2016)
proposes β-VAE, a framework to discover interpretable latent representations automatically. Subse-
quent works (Burgess et al., 2018; Rolinek et al., 2019; Chen et al., 2018) have led to significant ac-
complishments in understanding the capabilities of nonlinear disentanglement in VAEs. Researchers
have also been seeking the formal definition of disentanglement in several works (Ridgeway, 2016;
Higgins et al., 2018; Eastwood & Williams, 2018).

The aforementioned algorithms assume that the sources are completely unknown, however, in many
practical cases, we have some prior knowledge available and do not actually have to perform source
separation in a completely blind manner. As such, these algorithms can be extended to incorporate
the knowledge from the priors. In Calhoun et al. (2005), paradigm information was employed to aid
ICA analysis, and the results are shown to be more robust to noise and outperform basic ICA. In
another work (Jeong et al., 2009), the original NMF algorithm for BSS is significantly improved by
enforcing a constraint that requires disjointness under the semi-blind denoising framework. Last but
not least, Kameoka et al. (2018) achieves source separation by leveraging conditional VAE (Sohn
et al., 2015) with source class as labels in priors during training. All the aforementioned approaches
do not seem to suit our need for extracting specific source(s).

3 VARIATIONAL INFERENCE FOR SIGNAL EXTRACTION

Unlike VAE (Kingma & Welling, 2013) that aims to recover input by finding an efficient encoding in
latent space, our sVCD focuses on extracting a specific component from nonlinear mixture. There-
fore, if we directly borrow the idea of variational inference from VAE, the variational lower bound
will not be as tight. As such, we propose and prove a new lower bound for our problem setup, so as
to endow a new mathematical framework for sVCD.

Let x be a nonlinear mixture of several independent sources. In order to find a representation of x,
Bayesian modeling (Lee, 1989) can be used to encode the beliefs about the processes that generate
x from all components into a model M with latent vectors z and parameters θM. The model is
then “learned” by inferring z and adjusting the parameters θM. In other words, given the observed
mixture x, Bayesian modeling aims to infer the posterior p(z|x). However, since the posterior
distribution is intractable, an optimization approach, which is called variational inference (Blei et al.,
2017), can be leveraged to approach the problem. To be specific, a surrogate distribution q(z)
is employed to approximate p(z|x) by minimizing their KL divergence (Van Erven & Harremos,
2014). However, the KL divergence itself still involves the intractable posterior p(z|x). To cope
with this issue, the KL divergence is decomposed into:

KL (q(z)‖p(z|x)) = log p(x)− Eq(z)

[
log

p(x, z)

q(z)

]
. (1)

Since the marginal log-likelihood log p(x) is independent of the variational distribution q(z), the
KL divergence can be minimized by maximizing the variational lower bound Eq(z)

[
log p(x,z)

q(z)

]
. As

a particular type of variational inference method, VAE uses deep neural networks to approximate
the generative models. It should be noted that in VAE, the distribution q is conditioned on the
observation x, and approximated by an encoder network q(z|x). As such, the variational lower
bound of VAE can be expressed as:

Eq(z|x)

[
log

p(x, z)

q(z|x)

]
= Eq(z|x) [log p(x|z)]−KL (q(z|x)‖p(z)) , (2)

By slight modifications (Higgins et al., 2016; Kim & Mnih, 2018), the latent representation z of VAE
shows disentanglement properties, suggesting that a regular VAE can be used for separating mixed
sources. However, unlike the scenario faced by VAE which is unsupervised and source-agnostic,
our task is not completely “blind”, i.e., prior knowledge about a specifically interested component y

is available. In this case, the variational lower bound should be Eq̃(z|y)

[
log p(y,z)

q̃(z|y)

]
, where q̃(z|y) is
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an approximate posterior distribution in the form q̃(z|y) =
∫
p (z|x) q (x|y) dx. It can be observed

that the posterior q̃(z|y) takes into account the effect of the mixing process q(x|y), thus covering
a broader class of distributions and becoming more expressive. We also notice that there is still the
desired component y in the denominator. Considering the goal of extraction signal component from
a nonlinear mixture, we would like to maximize Eq̃(z|y)

[
log p(y,z)

q(z|x)

]
instead, in which case x and y

should be used as the input and output of the network, respectively. Therefore, we need to study this
new lower bound specifically.
Lemma 3.1. We get a tighter lower bound for the source extraction problem:

log p(y) ≥ Eq̃(z|y)

[
log

p(y, z)

q (z|x)

]
≥ Eq̃(z|y)

[
log

p(y, z)

q̃(z|y)

]
. (3)

Proof. For the left inequality, by using Jensen’s inequality, we have:

Eq̃(z|y)

[
log

p(y, z)

q (z|x)

]
=

∫
q̃(z|y) log p(y, z)

q (z|x)
dz = Eq(x|y)Eq(z|x)

[
log

p(y, z)

q (z|x)

]
≤ logEq(x|y)Eq(z|x)

[
p(y, z)

q (z|x)

]
= log p(y). (4)

For the right inequality, by using Jensen’s inequality, we have:

Eq̃(z|y)

[
log

p(y, z)

q (z|x)

]
= Eq̃(z|y)[log p(y, z)]− Eq̃(z|y) [log q (z|x)]

≥ Eq̃(z|y)[log p(y, z)]− Eq̃(z|y)[q̃(z|y)] = Eq̃(z|y)

[
log

p(y, z)

q̃(z|y)

]
. (5)

As a result, we can optimize the surrogate lower bound Eq̃(z|y)

[
log p(y,z)

q(z|x)

]
of sVCD, which is

tighter than that of VAE, for the task of source extraction. This variational inference can be readily
implemented by the sVCD network in Section 4.

4 SUPERVISED VARIATIONAL COMPONENT DECODER ARCHITECTURE

To implement the variational inference framework for extracting signals from nonlinear mixture
as presented in Section 3, we specifically design sVCD network to take observed nonlinear signal
mixtures (containing multiple components) as input and to output the temporal sequence of the
desired component. It inherits from encoder-decoder architecture with an encoder and decoder, both
based on Recurrent Neural Network (RNN) (Cho et al., 2014), sandwiching a latent space. The
architecture of sVCD is shown in Figure 2, and we elaborate the details in the following.

4.1 ENCODER

We employ an RNN-based encoder to implement the q(z|x) of the variational inference as intro-
duced in Section 3. The encoder is parameterized by φ. As demonstrated in Figure 3a, the RNN-
based encoder qφ(z1:T |x1:T ) of sVCD takes in the temporal signal x1:T = [x1, · · · ,xt, · · · ,xT ] of
length T , where xt is abbreviated for xt ∈ RN , N represents number of observed signal mixtures.
The encoder takes the responsibility of decomposing and selecting the desired component, which
is in turn encoded to a compressed latent distribution z. Samples drawn from z are then used to
drive the decoder for recovering the desired component. We use RNN to form the encoder as it is
naturally suitable for sequence modeling. At each timestamp t, the RNN reads the symbol xt and
previous hidden state denoted as et−1 that summarizes the past information, and updates the new
hidden state et. In general, RNNs model sequences by parameterizing a factorization of the joint
sequence probability distribution as a product of conditional probabilities such that:

p (x1,x2, . . . ,xT ) =

T∏
t=1

p (xt|x<t) , (6)

p (xt|x<t) = gτ (et−1) , (7)
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where gτ is a function that maps the RNN hidden state et−1 to a probability distribution over possible
outputs, and τ is the parameter set of g. RNN can be implemented with gated activation functions
for longer dependecies, such as Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber,
1997) or Gated Recurrent Unit (GRU) (Cho et al., 2014). In this paper, we apply bidrectional GRU
to for sequential learning. Given an input sequence x1:T to the bidirectional GRU, we obtain the
encoded features e1:T = [−→e1,

←−eT ; · · · ;−→eT ,←−e1].

Input signal 𝒙1:T

Linear Linear Linear

𝒒1:𝑇 𝒌1:𝑇 𝒗1:𝑇

Attention
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Figure 2: Architecture of sVCD.

We let the prior distribution zt ∼ N (µt,Σ
2
t ) be a Gaus-

sian with a diagonal covariance matrix, whose mean and log-
variance are parameterized by neural networks (usually imple-
mented by fully connected layer), and the values depend on
deterministic encoded features et:

µt = Wµet + bµ, logΣt
2 = WΣet + bΣ. (8)

Then zt is sampled from mean and variance by reparameter-
ization tricks (Kingma & Welling, 2013). We denote the en-
coder parameters for computing the input features as φx and
the parameters for computing the mean and variance as φe, we
can model encoder as:

qφ(z1:T |x1:T ) =

T∏
t=1

qφe(et|x<t)
T∏
t=1

qφz (zt|et). (9)

As such, the encoder has transformed the input temporal se-
quence to distributions on the latent space, which can be then
readily sampled to drive the decoder for recovering the desired
component y.

4.2 ATTENTION MECHANISM

Although RNN introduced in Section 4.1 is a good way to
handle sequential data, they may still lack the ability to dis-
cover very long dependencies across thousands of steps. To
solve this problem, we employ the scaled dot product attention
mechanism (Vaswani et al., 2017) to add more contexts to the
temporal sequence; the modified encoder architecture is shown
in Fig. 3b. The core idea of attention is to focus on the most
relevant parts of the input sequence for each output. An atten-
tion function can be described as mapping a query and a set of
key-value pairs to an output. Specifically, the query q1:T , key
k1:T , and value v1:T can be deemed as modified versions of
the input x1:T by three different linear transformations as follows:

q1:T = Wqx1:T + bq, (10)

k1:T = Wkx1:T + bk, (11)
v1:T = Wvx1:T + bv, (12)

where W and b (with respective superscripts) are parameters that are trained to transform the input
to its corresponding query q1:T , key k1:T , and value v1:T , whose dimensions are denoted by dq ,
dk, dv . The output context c1:T is obtained by calculating a weighted sum of the values, where
the weight of each value is a normalized product of the query and its corresponding key. Then the
context is concatenated to the query to form the final output of our attention layer. In summary, the
attention mechanism can be expressed as follows:

c1:T = softmax

(
1√
dk
q1:Tk

T
1:T

)
v1:T , (13)

a1:T = (c1:T ⊕ q1:T ) , (14)

where ⊕ represents concatenation. Compared with its input x1:T , the output of the attention layer
c1:T contains more contexts of the whole signal by taking into account the interactions among the
elements, thus forming a better input for the ensuing RNN.
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Figure 3: Architecture of the encoder and decoder.

4.3 DECODER

To realize pθ(y|z) in the variational inference problem discussed in Section 3, we implement a
decoder using RNN-based network, as shown in Figure 3c. The decoder pθ(y1:T |z1:T ) is param-
eterized by θ, and serves to reconstruct the source of interest y1:T from a latent vector z1:T . The
decoding consists of three steps. Firstly the latent vector z1:T is expanded to a hidden feature di-
mension by a fully connected layer:

ht = Whzt + bh, (15)

with Wh and bh being the weight matrix and bias represented by the linear layer. Then h is sent
to the sequence decoding layer implemented by a forward directional GRU that produces output d.
Finally, we have the decoded output sequence d1:T = [

−→
d1, · · · ,

−→
dt, · · · ,

−→
dT ], where feature at each

step is connected to a two linear layers with rectified linear units (ReLU) to the dimension of y1:T .

yt = Wy2(ReLU(Wy1dt + by1)) + by2, (16)

where Wy1, Wy2, by1, and by2 are the weights and biases of the linear layer. Overall we have the
decoder represented as:

pθ(y1:T |z1:T ) =

T∏
t=1

pθh(ht|zt)
T∏
t=1

pθd(dt|h<t)
T∏
t=1

pθy (yt|dt). (17)

4.4 LOSS FUNCTIONS

As stated in Section 3, we maximize the variational lower bound Eq̃(z|y)

[
log p(y,z)

q(z|x)

]
in Equation (3)

to solve the variational inference problem. Since we have parameterized the probabilities with deep
neural networks, we rewrite the variational lower bound as Eq̃(z|y)

[
ln pθ(y,z)

qφ(z|x)

]
, and it can be de-

composed as:

Eq̃(z|y)

[
ln
pθ(y, z)

qφ (z|x)

]
=Eqφ(x|y)Eqφ(z|x)

[
ln
pθ(y, z)

qφ (z|x)

]
=Eqφ(x|y)

[
Eqφ(z|x)[ln pθ(y|z)]−KL (qφ (z|x) |pθ(z))

]
. (18)

This lower bound can be separated into two parts, the first term is a reconstruction error between
the sVCD output and the ground truth, and the second term as a regularizer which enforces the
approximate posterior to be close to the specified prior. To practically implement the reconstruction
loss Eqφ(z|x)[ln pθ(y|z)], we use the L2 distance between the separated component ŷ and y:

LRC = ‖ŷ − y‖2 . (19)
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Since the prior distribution is defined to be unit Gaussian, the second term can be practically imple-
mented by:

LRE = KL
(
N
(
µt,Σ

2
t

)
,N (0, I)

)
. (20)

And the loss function of sVCD can be defined as:

LsVCD = LRC + λLRE, (21)

where λ is the weight controlling the strength of the regularization.

5 EVALUATION

In this section, we first report experimental results on three datasets for sVCD compared with state-
of-the-art baselines. We then perform an ablation study on sVCD by removing its certain parts, in
order to gaining more understanding of the network.

5.1 DATASETS FOR NONLINEAR MIXTURES

Traditional datasets for BSS, e.g., those created for audio source separation (Garofolo et al., 1993;
Vincent et al., 2007) are mostly linear. To demonstrate the nonlinear mixture separation efficacy of
sVCD, we employ three datasets of nonlinear mixtures, with details elaborated in the following.

Artificially Generated Dataset One artificially generated dataset is employed in our evaluation
due to its special statistical properties. For this dataset, both source signals and observed signals
are generated according to the settings in (Hyvärinen & Morioka, 2017). All source signals are
randomly produced from an AutoRegressive (AR) model with a non-Gaussian process. Then, we
obtain nonlinear mixtures from the source signals leveraging a nonlinear mixing function comprised
of a multi-layer perceptron (MLP) with nonlinear activation functions, i.e., leaky ReLU units. For
each of the 4,000 trials, we leverage the model to generate 12 temporally dependent sources (inde-
pendent of each other) that are in turn mixed to produce 12 observed signals; we select one as source
of interest to be extracted by sVCD.

RF-PPG Dataset Contact-free vital sign sensing is the problem of extracting vital signs of human
subjects via contact-free sensors, a representative and practical scenario for signal extraction from
the nonlinear mixture. To be specific, the micromovements of the skin caused by heartbeats are
mixed non-linearly with respiration-induced movements and other body movements, and the mix-
ture is carried on RF signals reflected back from human bodies. In this dataset, a high-resolution
radar sensor (Novelda AS, 2017) is used to collect the RF signals. The ground truth heartbeat
photoplethysmography (PPG) waveforms are measured by NeuLog (2017). The data collection is
conducted with 12 healthy subjects (6 females and 6 males) under the IRB approval of our institute.
The subjects are asked to sit at quasi-static and natural states. The RF-PPG dataset includes 48-hour
data, approximately 180,000 heart cycles in total, and is divided into 20-seconds segments.

EEG-EOG Dataset Electroencephalography (EEG) is an electrophysiological monitoring tech-
nique for recording electrical activity on the scalp, which has been proven to reflect the activity of
the brain’s surface layer underneath (Henry, 2006). Due to the sophisticated structure of the brain,
the signals at different locations of the underneath brain (whose ground truths cannot be obtained
directly), when manifested as EEG signals, are often superimposed nonlinearly and exhibit complex
behavior (Steyrl et al., 2013), and the nonlinearity is escalated by the nonlinear properties of the
brain (Nunez et al., 2006) and the skull (Zhang et al., 2014). Moreover, the electrical activity of
the eye, which is the main source of artifacts of brain signals, complicates the EEG recordings. As
such, it is often required to isolate and remove electrical signals of the eyes, i.e., electrooculography
(EOG) signals, from EEG recordings. In the collected dataset (Torkamani-Azar et al., 2020), EEG
and EOG signals are recorded simultaneously to form 2.5-minute segments. The EEG signals have
64 channels corresponding to electrodes mounted on the scalp, and the EOG signals have 3 channels
corresponding to electrodes connected to the outer corners of both left and right eyes, and the middle
of the eyebrows. The dataset is collected from 10 human subjects for a duration of 105 minutes.
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5.2 EXPERIMENT SETUP

We employ the aforementioned datasets to evaluate the performance of sVCD. The collected datasets
are divided into 80% training and 20% test sets. For the model parameters, we set the size for dq , dk
and dv as 64; e, z, h, d are set respectively as: 64, 8, 128, 128; and dropout rate at 0.2. The weight
λ is set to 0.1 by line search. For the training process, we employ the Adam optimizer (Kingma &
Ba, 2014) with a starting learning rate of 0.001 to update the parameters according to equation 21.
The batch size is set to 20. To enable proper evaluation, all signals are scaled to [−1, 1] beforehand.
To evaluate the performance of the method we calculate the cosine similarity between the recovered
component ŷ and the ground truth component y. The cosine similarity is defined as S(ŷ,y) =

ŷ·y
‖ŷ‖‖y‖ =

∑T
t=1 ŷtyt√∑T

t=1 ŷ
2
t

√∑T
t=1 y

2
t

, with value in the range of [−1, 1]. A high similarity indicates that

better performance of the model, and vice versa.

To compare sVCD with previous works, we choose ICA (Hyvärinen & Oja, 2000) and Conv-
TasNet (Luo & Mesgarani, 2019) as baseline methods; they are both designed for separating linear
signal mixture. ICA is chosen because it is a widely used blind source separation technique, and
the fitting of ICA and the training of sVCD are similar since both consider the context of the signal
including both the past and the future. Conv-TasNet is chosen as the baseline because it is a state-
of-the-art deep-learning method for automatic signal separation. We follow the parameter settings
in the original papers, and for ICA, we separate 12, 5, and 64 independent components from the
artificially generated, RF-PPG, and EEG-EOG datasets, respectively.

5.3 RESULTS

In Figure 4, we show the waveforms of the ground truth, and the signals extracted by ICA, Conv-
TasNet (abbreviated as C-TasNet) and sVCD signal on the three datasets. For the artificially gen-
erated data, sVCD retrieves a component approximately the same as the ground truth, while ICA
and Conv-TasNet obtain very noisy results. For the RF-PPG data, sVCD successfully recovers the
heartbeat waveform bearing correct heart rate, while ICA barely separate heartbeat signal from res-
piration as the breath waveform is still dominating, and Conv-TasNet fails to recover event details
in the waveform. For the EEG-EOG dataset, sVCD extracts a source signal bearing high similarity
to the ground truth, while ICA and Conv-TasNet seem to have deduced totally wrong outcomes.
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Figure 4: Source signals extracted by ICA, Conv-TasNet, and sVCD, against the ground truth (GT).
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Figure 5: Statistics on cosine similarities for respective datasets.
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In Figure 5, we show the cosine similarities between the recovered waveforms and the ground truth
of ICA, Conv-TasNet, and sVCD. It can be observed that the performance of sVCD substantially
surpasses those of ICA and Conv-TasNet on all three datasets, and the median cosine similarities
of sVCD are all above 0.8 on all three datasets, indicating a strong resemblance between the sVCD
extracted source signals and the ground truth.

5.4 ABLATION STUDIES

We provide an ablation study of the main design decisions for sVCD in this Section. In the first study
labeled as “Seq2Seq”, we skip the variational inference part, and make the output of the encoder
GRU directly driving the decoder GRU. Meanwhile, in the second study “sVCD with only mean
regularization”, instead of regularizing the distributions to the standard Gaussian, we regularize
only the mean value towards 0. Lastly, the study labeled as “sVCD without attention” holds out the
attention mechanism. Our goal is to see the respective accuracy drops to measure their importance
in the proposed sVCD network. Given the cost of training a single model, we did not compute
confidence intervals for each variation. The result of the ablation study is shown in Table 1.

We can observe that our proposed sVCD achieves cosine similarities of 0.9358, 0.8634, and 0.7803
on the three datasets, respectively. Performance drops can be observed for the Seq2Seq model
on Artificially generated, RF-PPG and EEG-EOG datasets, indicating that a discrete latent space
without regularization encodes less useful information that can be used by the decoder to recover
the source. For the sVCD with only mean regularization, further performance decrease can be
observed, proving that the distribution mean and variance should better off be regularized together.
As for the sVCD without attention, some clear drop in cosine similarity can be observed on all three
datasets, demonstrating that the attention mechanism helps boosting the performance of sVCD.

Table 1: Average cosine similarities in the ablation studies.

Artificially generated RF-PPG EEG-EOG
Proposed sVCD 0.9358 0.8634 0.7803

Seq2Seq 0.9339 0.8593 0.7765
sVCD with only mean regularization 0.8737 0.8499 0.7596

sVCD without attention 0.8552 0.8342 0.7577

6 CONCLUSION

Taking an important step toward deep learning enabled signal processing, we proposed a new ap-
proach for source extraction from nonlinear mixture. We started by formulating nonlinear signal
extraction as a modified variational inference problem. By detailed derivation, we have proved that
the mathematical framework of signal extraction can be implemented by an sVCD network, in which
the modified variational lower bound is maximized using backpropagation. Experiments on artifi-
cially generated data, RF-PPG data, and EEG-EOG data have proved the signal extraction efficacy of
sVCD. The sVCD in this paper is used as a vehicle to validate the overall mathematical framework,
but better architectures are likely to be found. In the future, we plan to apply the sVCD network
to other promising applications such as source extraction from video data, econometric data, and
biomedical data (such as EMG and ECG), in which source signals have nonlinear mixtures.

ETHICS STATEMENT

All experiments involve human subjects have been approved by IRB of our institute, and the experi-
ments have been conducted strictly followed the standard procedures. The RF-PPG data will not be
made available to the public to protect the privacy of the subjects.

REPRODUCIBILITY STATEMENT

In this section we briefly reference the details needed to help reproducibility. For the dataset: we
have uploaded the artificially generated dataset in the link in our supplementary materials; due to
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privacy concerns we could not make the RF-PPG dataset to public; the EEG-EOG dataset is a
public dataset acquired from Torkamani-Azar et al. (2020). The model implementation, settings are
described as in Section 5.2. We have also uploaded the source code to allow for reproducing our
results in supplementary materials.
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A EXPERIMENTS ON LENGTH OF SEQUENCE

As sVCD is built on RNN structure, there is no strict requirement on the length of input sequence.
We provide an experiment on the adaptability of sVCD by training with sequence length of L, then
testing with different lengths from 2L to 0.01L. For the three datasets mentioned in Section 5.1,
L is 800 time steps which equivalent to: 16 seconds for artificially generated data, 20 seconds for
RF-PPG data, 4 seconds for EEG-EOG data. The cosine similarities are presented in Figure 6. It
can be observed that generally tested with sequence lengths from 0.5L to 2L, resulting statistics
do not have much variation for all three datasets. For artificially generated dataset, test data length
with only 0.01L still has median of similarity above 0.9, but much larger error can be observed. For
RF-PPG dataset, test data that have length lower than 0.4L have similarities much lower than those
longer. While for EEG-EOG dataset, test data length lower than 0.5L will make the performance
drops. Different minimum sequence length of test data may be due to different source signals have
distinct time-correlation features. Therefore, it is better to take a sufficiently long sequence as it
is hard to judge the minimum yet sufficient length a priori. Overall, the results show a promising
future of sVCD that after training with an adequate length, the model could adapt to not only short
time observation but also long time monitoring without extra training efforts.
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(a) Artificially generated data.
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(b) RF-PPG data.
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(c) EEG-EOG data.

Figure 6: Statistics on cosine similarities for respective testing data sequence length.
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B EXPERIMENTS ON LINEAR AND NONLINEAR REGRESSIONS

We have performed linear and nonlinear regression for the signal extraction purpose. For nonlinear
regression, we employ least square regression and support vector regression. For each category of
nonlinear regression, we employ polynomial, radial basis function and sigmoid kernel. For non-
linear regression, we only report the results of support vector regression with polynomial kernel
because this combination delivers the best performance. The recovered waveforms of linear regres-
sion (denoted as “LinReg”), nonlinear regression (denoted as “NLinReg”), and sVCD are shown
in Figure 7, and their respective cosine similarities are shown in Figure 8. It can be observed that
sVCD significantly outperforms these two regression methods, while both regressions fail to recover
meaningful results. The reason for their inferior performance can be readily explained by their omis-
sion of temporal correlations, but they do offer instantaneous point-to-point conversion instead of
the seq-to-seq manner operated by sVCD.
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Figure 7: Source signals extracted by linear regression, nonlinear regression, and sVCD, against the
ground truth (GT).
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(c) EEG-EOG data.

Figure 8: Statistics on cosine similarities for respective datasets.
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