Identifying and Resolving Ambiguous Intents in Coding Instructions using
Discourse Frameworks

Anonymous ACL submission

Abstract

Large Language Models (LLMs) are used by
many to generate code in a pair-programming-
like setting. However, intents in users’ cod-
ing instructions are ambiguous, and models
are limited in their ability to use dialogue to
disambiguate intent to produce unambiguous
code. This presents a fundamental difficulty
in code generation, wherein the ambiguity in
natural language can lead to seemingly correct
programs that are different from the intended.
We propose to use dialogue to reduce this am-
biguity, specifically in the plotting domain, and
contribute an analysis of the different types of
ambiguity that may exist in multi-modal code
generation. Based on our analysis, we propose
different pragmatic models to inform dialogue
strategies for ambiguity resolution, including
those based on Rational Speech Acts (coop-
erative), Discourse Theory (discoursive), and
Questions under Discussion (inquisitive). Fi-
nally, we compare these dialogue strategies in a
simulated dialogue setting — operationalizing
the pragmatic models via prompting. Our find-
ings suggest that discoursive and cooperative
reasoning styles show the best results regarding
executability and disambiguation, while inquis-
itive reasoning performs the best in disambigua-
tion for vagueness. These suggest that simu-
lated dialogues with pragmatic frameworks can
resolve ambiguities in code generation.

1 Introduction

While we have made great strides in code genera-
tion, current generative models still fail to provide a
human-like pair-programming experience for their
users (Sarkar et al., 2022). A user’s description of
their intent (in natural language) is often miscon-
strued by the model, forcing the user to switch back
and forth between the typical pair-programming
roles in human-human interactions, e.g., the coder
and the director (Williams, 2001). This, we hy-
pothesize, is the result of natural language coding

Detect Ambiguity in Plotting
Code

semantic

Sy presupposition

vagueness underspecification

I see what you
mean. Here's my
updated solution:

make a sin plot Discourse Pragmatics

Simulate Dialogues with ’
Frameworks

plt.plot(x, vy,
label=\"sin\")

[cooperative] [discoursive] [inquisitive]

can you add a
legend?

|

SyMPa-CoD

Figure 1: This figure summarizes the contributions of
this paper. We analyze ambiguity in categories that exist
in the plotting domain of coding instructions. Then,
we address these ambiguities using simulated dialogues
with discourse pragmatics. We make this simulated
dataset of coding dialogues publicly available.

instructions being inherently ambiguous — map-
ping to multiple possible code implementations. In-
deed, we are not the first to make this observation
(Vaithilingam et al., 2022). Code generation mod-
els need a way to resolve this ambiguity while also
respecting the pragmatic rules expected by their
(human) users. We define pragmatics similarly to
Fried et al. (2023), where pragmatic communica-
tion is one that uses environmental context and
inferences about other agents’ unspoken goals.

To achieve this goal, we frame the natural lan-
guage to code problem as a two-player cooperative
dialogue. A director (typically the user) specifies
their intent in natural language and a coder (typi-
cally an automated coding assistant) generates code
with the functionality the director had in mind. A
goal for a pair-programming setting is to have a
coder agent that can interact with the director agent
to resolve ambiguity and generate code.

To study this problem, we simulate this dialogue
between two machine agents, drawing inspiration
from theories of pragmatics to guide the dialogue
acts these agents take. We show how (pragmatic)
dialogues can help coders resolve ambiguity. We
focus on problems where code is used to generate
a visual output —matplotlib code generation — so
we can simulate the dialogues where the intent can
be specified in multiple ways (as the intended code
solution, or the intended plot image).

We propose to identify ambiguous natural lan-
guage intents by sampling outputs from a language-
to-code language model. Using our method, we
identify ambiguity in 57% of Matplotlib problems
in the DS-1000 dataset (Lai et al., 2022). We pro-
pose resolving ambiguity through discourse, where
the code generation model uses multiple turns of
dialogue to clarify intent and resolve ambiguity.
We instantiate this approach with iterative prompt-
ing and show that ambiguity is resolved for 50%
of those cases. Contributions of this paper are as
follows:

1. in-depth analysis of different ambiguity types

in coding instructions (especially in plotting)

2. characterization and structuring of pragmatics

theories—such as Segmented Discourse Rep-
resentation Theory (SDRT), Rational Speech
Acts (RSA), and Questions Under Discussion
(QUD)- around LLMs for dialogue generation
to be used in pair programming instructions

3. a technique based on sampling from code

LLMs to quantify functional uniqueness and
detect ambiguity in natural language coding
instructions

4. a new dataset of simulated dialogues called

SyMPa-CoD between a coder and a director
that resolves ambiguities in coding instruc-
tions, and we define the new task of Coding
Dialogues based on this dataset.

From our analyses, we find that certain prag-
matic frameworks perform the best at disambiguat-
ing specific categories of ambiguity and that prag-
matic frameworks generally increase the executabil-
ity of the generated code. We make our code, and
annotations publicly available for the camera-ready
version of this paper.

2 Related Work

Code Generation Large language models of
code have shown strong performance on natural lan-
guage to code generation (Chen et al., 2021; Roz-

iere et al., 2024; Lozhkov et al., 2024, inter alia).
Increasingly, attention has turned to more realistic
uses of code models, beyond single-turn code gen-
eration tasks. For instance, Jimenez et al. (2024)
introduce SWE-bench, which evaluates models’
ability to solve real-world GitHub issues. However,
a line of work has investigated how users interact
with current code generation models, finding that
impressive benchmark performance does not al-
ways translate to improved task outcomes for users
(Sarkar et al., 2022; Vaithilingam et al., 2022; Ma
et al., 2023; Mozannar et al., 2024; Nguyen et al.,
2024). Some of this gap can be attributed to the
ambiguity inherent to human interactions with code
models: Sarkar et al. (2022) observe that user ut-
terances are often underspecified and ambiguous,
forcing users to repeatedly refine their prompts and
adapt their thought processes to match the LLM;
likewise, Mozannar et al. (2024) observe that users
often provide fuzzy instructions, motivating a clari-
fication feature.

Ambiguity in Code Generation Recent work
has studied ambiguity resolution for code LLMs
via clarification questions. Mu et al. (2023) intro-
duce ClarifyGPT, a pipeline for code generation
with selective clarification. Similar to our work,
their pipeline detects semantic ambiguity via exe-
cution of the code model’s initial generated code.
However, we investigate the use of a broader set of
discourse strategies for this task. Li et al. (2023)
studies clarification for open-domain code genera-
tion in a scaffolded setting.

Ambiguity in NLP Tasks Ambiguity has been
studied across a wide array of NLP tasks, includ-
ing coreference resolution, question answering and
machine translation (Poesio and Artstein, 2005;
Min et al., 2020; Iyer et al., 2023; Niwa and Iso,
2024) . Current language models generally strug-
gle when applied directly to tasks with ambiguity
(Liu et al., 2023); by default, they do not recognize
ambiguity in instructions, nor do they seek clarifi-
cation or engage in proactive dialogue to resolve
ambiguity (Deng et al., 2023). However, recent
sampling-based methods have shown promise in
detecting ambiguity (Kuhn et al., 2023b; Cole et al.,
2023; Lin et al., 2024), while prompting and self-
improvement methods have proven effective for
clarifying ambiguity with LLMs (Krasheninnikov
et al., 2022; Kuhn et al., 2023a; Andukuri et al.,
2024).

Pragmatics One approach to resolving ambigu-
ity is to assume the speaker is a rational agent play-
ing a cooperative game (Grice, 1975) where they
are choosing an utterance that gives the code gener-
ation model the best chance of recovering the pro-
gram they have in mind. This form of inference has
been formalized in the Rational Speech Acts frame-
work (Frank and Goodman, 2012) This framework
has been productively applied to programming
tasks where a user specifies their intent using exam-
ples (Pu et al., 2020, 2023; Vaduguru et al., 2024).
Similar approaches to disambiguation also been
applied to code generation from natural language
using large language models (Zhang et al., 2023).
Other pragmatic theories of discourse work include
RSA for referential communication in a game of
color (McMahan and Stone, 2020), question under
discussion (Ko et al., 2023), and discourse theories
as applied to dialogue settings (Asher et al., 2016;
Chi and Rudnicky, 2022; Atwell et al., 2021, 2024,
2022). The frameworks we use to implement our
dialogue agents are inspired by these in this work.

3 Ambiguity in Plotting Code

We identify multiple categories of ambiguity —
ways in which a natural language instruction may
map to multiple code implementations.

* Semantic ambiguity: certain wordings and
their meaning are not clear in the coding ques-
tion and can have multiple interpretations.
e.g. “full line”, “solid red”, “regular mat-
plotlib style plot”

* Presupposition: even though not mentioned
explicitly in the prompt (question), the refer-
ence code writer has assumed certain things.
e.g. knowing the default parameter values of
the functions

* Vagueness: Wording is not precise or a num-
ber is not provided.

e.g. “enough” space between axes.

* Parameter underspecification: color, shape,
and other multimodal parameters are left to
the coder’s choice or not mentioned explicitly
in the prompt. This has effects on the visual
end-result or the code.

e.g., title is set to be “xxx” even though not
mentioned in the coding question

* Function underspecification: non-explicit
instructions on which function to use. This
has effects on the visual end-result or the code.
e.g. a coding question asks to show a heatmap,

which could be implemented by one of multi-
ple functions: imshow or pcolor.

3.1 Detecting Ambiguity

We do a preliminary analysis of the distribution
of these categories of ambiguity in the DS1000
dataset, specifically with matplotlib library ques-
tions (Lai et al., 2022). This dataset consists of
natural language prompts based on StackOverflow
questions related to the Matplotlib library of Python
(Hunter, 2007). Our annotators are experts in ambi-
guity in dialogue, and we ask them to annotate 150
coding instructions from the DS1000. Even though
the DS1000 dataset consists of specifically hand-
picked questions that are unambiguous, we find
that 57% of the plotting questions fall under one or
more of the categories we have defined above. Ta-
ble 1 shows the distribution of different categories.

Ambiguity Category | Distribution
semantic ambiguity 23.8%
presupposition 11.9%
vagueness 11.9%
parameter underspec. 45.2%
function underspec. 16.7%

Table 1: This table shows the ambiguity category distri-
bution of the DS1000 dataset based on our annotations.

3.2 Sampling for Ambiguity

One way to measure ambiguity in a given prompt is
to count different programs that may obey the con-
straints specified in the prompt. If two programs
are both appropriate responses to the same prompt,
then they differ in some way that is not specified —
and hence left ambiguous — in the prompt. Since
it is infeasible to determine exactly the set of all
programs consistent with the prompt, we measure
ambiguity by proxy by considering the variation
in a sample of programs drawn from a large code
language model.

Given a prompt, we sample a response ~
Piim(-|prompt) k times. We measure the ratio
between the number of distinct responses! and
the total number of responses as a proxy for the
number of different ways a code model interprets
the prompt. The idea of using multiple samples
from a code model to measure ambiguity has been

'We measure distinctness of responses by comparing their

parse trees; details of this Abstract Syntax Tree-based algo-
rithm are given in Appendix B.

Coding Context
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

X = np.linspace(0, 2 * np.pi, 10)

y = np.cos(x)

plt.plot(x, y, label="sin")

Generated Codes
"plt.legend(loc="best", fontsize=20)",
"plt.legend(loc="upper right",

fontsize=20)",

"plt.legend(loc="best', fontsize=20)",

Cooperative Reasoning
Turn 2: | can understand you were thinking about

"plt.legend(loc=\"lower left\", fontsize=20)"

Dialogue
Turn 0 (Director) : show legend and set

the font to size 20

Turn 1 (Coder): OK, but what about the

setting the legend's location and font size, but don't Turn n+1:
forget to also include a title for the legend. Lets go - ----- Regenerated
step-by-step. Could you modify your code to ensure Code
that it includes a title for the legend and uses a font
size of 20?
Discoursive Reasoning
Turn 2: You responded with an Elaboration by
providing different loc options for plt.legend(). Let me Turn n+1:
acknowledge that you've covered various locations, - - - Regenerated
which is great. However, let's continue by also Code
including a title for the legend in our next set of code
attempts.
Inquisitive Reasoning
Turn 2: You are answering a different question, which
is mainly about positioning the legend and setting its Turn n+1:
font size, but | was asking how you would add a title
while ensuring it uses a specific font size too. Does Reggnzrated
ode

location of the legend? Here are some
options for the location ‘best’, ‘upper
right’, ‘bottom left’

your current approach allow for adding titles? How
can you update your code so that it shows both
elements properly?

Figure 2: This figure shows the dialogue flow for a pragmatic director, where the initial intent of the dialogue is
given on the left, and the different responses generated using separate reasoning styles are given in the middle.

considered in Shi et al. (2022). In that work, they
start with the hypothesis that models split probabil-
ity mass across different semantically equivalent
(but syntactically distinct) responses. While their
method uses variation and agreement across sam-
ples to break ties and choose a single response, we
instead use it to measure ambiguity.

One observation is that this notion of ambigu-
ity is model-dependent and actually reflects how
ambiguous the instruction is from the model’s per-
spective. For instance, a model may incorrectly
represent the instruction as ambiguous because of
improper training: it does not return the optimal
(unambiguous) solution and instead returns diverse
incorrect ones. For this reason, we refer to this as
Model Ambiguity. This notion of ambiguity is still
useful, especially when we assume we are work-
ing with a (fixed) large language model as a code
generator. It is an easily measured form of ambi-
guity, which we can attempt to resolve. We report
a corrected form of model ambiguity, which re-
stricts computation to only correct model solutions
(passes test cases).

4 Pragmatic Modeling of Disambiguation
in Coding Dialogues with LL.Ms

We propose resolving ambiguity in natural lan-
guage specifications of intent with multi-turn di-
alogue. Each coding task is defined by the nat-
ural language intent [(see Figure 2). We have
a sequence of alternating dialogue turns u =
[uf’,u%u?,uf,...,ufb)fl,ug] between the di-
rector D and the coder C.

The dialogue proceeds by each agent taking

their turn. The director generates a response
uP = fp(I,u?_,) based on the intent and the dia-
logue history up to that turn. The coder takes the
next turn and generates a natural language response
u,; = fc(uf_,) based on only the dialogue his-
tory. At the end of the interaction, the coder model
conditions on the entire dialogue history and gen-
erates the code solution ¢ = g (u) to the task. We
enforce a turn-based dialogue structure that takes
the following pattern, as also given in Figure 2:
* Director presents initial instruction (a prompt
from DS1000).
* Coder takes a dialogue act with access to a set
of generated answers to the instruction
* Director responds, using access to the target
* (repeat previous two steps as desired)
* Coder generates code

Dialogue acts can be clarification questions, e.g.,
“C: what location should I put the legend,” which
evokes a specific response, “D: The top left cor-
ner” or can be more general declarations that start
a sub-topic of conversation “C: I'll plan for the
default legend arguments. D: Hmm. Keep it on
the top left. What else can you change?”. We in-
tegrate pragmatic frameworks into the turns of the
dialogue at each turn of the director and the coder.
We give details of this setup in Section §4.3. We
propose different ways of instantiating fp and f¢o
by prompting large language models inspired by
ideas from theories of pragmatics.

In a pair programming task, the director would
be a human user, who has an intent specification in
their mind (this may not be explicitly available) and
they interact with a coder agent to generate code. In

this work, we explore ambiguity in code generation
using a simulated director and coder. Both agents
are simulated by instruction-tuned large language
models prompted in different ways (and hence with
access to different information about the problem).

While most existing datasets for NL-to-code
translation are single-turn, we argue that dialogue
can be a principled way to reduce ambiguity. This
section details the dialogue structure we assume, as
well as the mechanisms through which we execute
the discussed pragmatic frameworks. We simulate
our dialogues for plotting code using LLMs and
based on the algorithm given in Algorithm 1. In
the algorithm, fp and fo are defined based on dif-
ferent pragmatics strategies as given in detail in
Section §4.3.

Algorithm 1 Dialogue Simulation with LLMs

Require: Problem instance (ul’, I)
Require: Director model fp
Require: Coder model for NL response f¢o
Require: Coder model to generate code g¢
Require: Number of samples k
Require: Number of rounds of dialogue n

1S+ {si~gowP)|1<i<k}

2: U< []

3: for n times do

4w fo(u)

50 u<+ u+ [u’

6: uP « fp(I,u)

7. u < u+ [u]

8: end for

9 ¢~ golu)

10: return u, c

4.1 Generating director responses

We prompt the director model fp to generate in-
structions and clarifications that guide a coder
model toward the correct solution. Since we work
with an artificial director agent, we source intents
from the DS-1000 dataset. We present the intent to
the director in one of two ways — as the code for a
reference solution or the plot generated by the code
presented as an image. Since a natural language
instruction accompanies the DS-1000 problem in-
stances, we seed the interaction using that inter-
action as the first director turn (uf’). We prompt
the model to use different strategies to generate
responses.

4.2 Generating coder responses

We prompt a coder model to generate responses
that clarify intent and resolve ambiguity. To pro-
vide the coder model with an explicit representation
of its ambiguity, we first sample candidate solutions
by instructing the model to generate code to solve
the problem based on the initial turn of the interac-
tion, i.e. go(ul’). We then list these solutions and
instruct the coder model to engage in dialogue to
resolve ambiguity and arrive at a single solution.

4.3 Pragmatics Frameworks

After defining ambiguity in plotting code and our
ways of detecting it using sampling language mod-
els, this section proposes possible strategies for
modeling disambiguation with follow-up coding
dialogues between a coding agent and a director.
We ground these strategies in several Pragmatics
frameworks and analyze how they can mitigate and
disambiguate various categories of ambiguity dif-
ferently.

We operationalize our pragmatics frameworks
by turning our dialogue setting into role prompt-
ing, persona prompting, and in-context learning as
described in Wang et al. (2023); Schulhoff et al.
(2024), and Zheng et al. (2023) to implement our
proposed pragmatics reasoning styles using role-
playing capabilities of agent-level LLMs. Also, we
employ prompt-boosted Theory-of-Mind capabili-
ties as described in (Moghaddam and Honey, 2023).
In the following sections, we describe our formal-
izations of this transformation and role prompting
for three different reasoning styles: cooperative,
discoursive, and inquisitive.

Cooperative Reasoning The first framework we
use is based on Grice’s maxims of cooperative dia-
logue partners (Grice, 1975; Horn, 1984; Levinson,
2000; McMahan and Stone, 2020). Here, the in-
terlocutors are pragmatic agents, where they recur-
sively engage in interaction and model each other’s
state of mind while responding to an utterance. The
Rational Speech Act (RSA) framework is the most
well-known Bayesian implementation of cooper-
ative reasoning. Inspired by this, we define the
disambiguation mapping in coding instructions as
the following optimization function,

fp(I,u) = argmin, (Up(I,u) ANUc(u)) (1)

where U represents a cooperative utterance that
considers the other interlocutor’s beliefs and rea-
soning styles. Overall, the function tries to mini-

mize the number of turns in the dialogue, which
consists of cooperative utterances.

Discoursive Reasoning The second pragmatics
framework is based on Discourse theories. Here,
the interlocutors are not necessarily responding
strategically. Still, each of their utterances is re-
lated to the history of the conversation and the
coding context with a set of coherence relations.
Hence, when a pragmatic coding director produces
an utterance, the utterance relates to the reference
solution. When a coder produces an utterance, it
relates to the set of solutions they have sampled
and what the director has said in the previous turn.
This definition of discourse is mostly similar to
SDRT-like dialogue-based relation categories (Ko
et al., 2023; Asher et al., 2016; Fu, 2022; Atwell
et al., 2024; Alikhani et al., 2023). Inspired by this,
we propose the following discourse-based disam-
biguation function,

fo(I,u) = fp(I,u) Xc fo(u) (2)

Here, X represents the coherence relations that
exist between the coder and the director agents’ ut-
terances. These relations should be from the set of
Mo C {Comment, Clarification Question, Elabora-
tion, Acknowledgment, Continuation, Explanation,
Conditional, Alternation, Result, Background, Nar-
ration, Correction, Parallel, Contrast} as defined in
Chi and Rudnicky (2022).

Inquisitive Reasoning The third Pragmatics
framework is relative to discourse theories but fo-
cuses more on question-type relations. In this case,
each interlocutor’s utterance explicitly answers an
implicit question the other interlocutor poses. This
discourse framing is described in (Clifton and Fra-
zier, 2012) under the umbrella term of Question
Under Discussion (QUD). When a director gives a
coding instruction, the pragmatic coder with QUD
understanding recognizes an implied question un-
der the instruction and gives an answer satisfying
that question. This happens over a dialogue that op-
timizes the semantic distance between the implied
question understood by the coder and the actual
instruction given by the director. The following
disambiguation function can represent this,

fD(Ia u) - argminu‘QD(I7 u -+ [u])
— Qo(u+ [u])]

where () p represents the actual instruction given
by the director, and ()¢ is the understood implicit

3)

question by the coder, and | - | represents the se-
mantic distance between the questions. The disam-
biguation function aims to minimize the difference
between these two questions over dialogue turns.

4.4 Generating dialogues

Pragmatic Director In this scenario, we hypoth-
esize that a pragmatic coding director chooses their
utterances according to the frameworks we pre-
sented in Section §4. To simulate a dialogue be-
tween a pragmatic director and a coder, we carry
out in-context learning and prefix-tuning using two
separate instruction-tuned LLM agents (using GPT-
4o in this case) and generate utterances for both of
the interlocutors.

We use a system prompt for the pragmatic direc-
tor, which instructs the agent’s purpose and outlines
the requirements and the structure of the dialogue
that is taking place between two interlocutors. The
details of the prompt are given in Appendix A.

Pragmatic Coder We present a second scenario,
which investigates different reasoning strategies
applied to the coder. The dialogue setup for the
pragmatic coder and regular director is similar to
the previous scenario but with the key difference
of having multiple reasoning types for the coder
instead of the director. We first extract the code con-
text and the coding instructions from the DS1000
dataset and then convert it into a dialogue format as
described in section § 4. Then, using CodeLLaMA-
13B, we generate codes that respond to the original
instruction (sampled k times)?.

To the pragmatic coder, we present a set of pos-
sible unique answers it can choose from the gener-
ated codes and the dialogue history that is happen-
ing and ask for a follow-up utterance for the coder
to converge to the solution that the director is de-
scribing. We then instruct it to give three solutions
based on the reasoning types. For the regular direc-
tor, we provide the reference code (or the reference
plot in the case of a multimodal model) and the
dialogue history and ask to generate a follow-up
utterance to converge to a solution without giving
away the answer. All the details of the prompts are
given in Appendix A.

Dialogue Policy We employ a rule-based dia-
logue policy to choose one of the three utterances
we generated for each strategy in the simulation.

We mix code-specialized LLMs (CodeLLaMA) with
dialogue-specialized LLMs (GPT-40) in our experiments

For the first turn of the dialogue, we do not use
any LLM generations but directly use the coding
instruction from the DS1000 dataset. For the fol-
lowing turns, we generate three different utterances,
one for each of the pragmatic director’s reasoning
ways, and then generate a single utterance without
any pragmatic reasoning prompting for the coder
for each of the three responses of the director. We
use the number of turns as a hyperparameter to
generate the dialogue and perform ablation experi-
ments on it. We do not mix reasoning styles across
the dialogue’s turns, but we choose a single reason-
ing style for the overall dialogue. We also exper-
iment with providing the reference image or the
reference code to the director to see how clarity of
instructions affects execution.

4.5 Dataset Creation

We create the first synthetic dialogue dataset for
plotting codes using the aforementioned strate-
gies. We call this dataset SyMPa-CoD (Synthetic
Multimodal Pragmatic Coding Dialogues), where
we provide three different dialogues with multiple
turns (t=3,4,5) for each Matplotlib question in the
DS1000 dataset. In total, we provide 450 pragmatic
coder with regular director, and 450 pragmatic di-
rector with regular coder dialogues based on the
150 Matplotlib coding questions.

5 Experiments & Findings

We experiment with different LLMs, code genera-
tion models, pragmatic scenarios, and the number
of turns during and after the dataset’s construction.
In this section, we provide details of these exper-
iments. We pose multiple research questions and
report our findings in combination with our exper-
iments. We first describe the automatic metrics
based on our sampling approach for ambiguity as
described in Section §3, and then follow-up with
experimentation based on the dialogue approach to
coding we described in Section §4.

5.1 Automatic Metrics

We measure the system’s success using two au-
tomatic metrics: mean pass@1 and sampling di-
versity. Pass@]1 score is used directly from the
DS1000 unit tests, with 30 samples from the cod-
ing LLM. This score measures how many of the
samples execute and pass the unit tests that were
specifically hand-written for the questions. Sam-
pling diversity is calculated by using the code gen-
erations from the coding LLMs with the following

following formula:

“)

d — Z #Unique code completions
s #Total samples per question

We use these two metrics as proxies for evalu-
ating successful, executable disambiguation and
present our quantitative results using them.

Pass@11 d,|

Baseline No Dialogue 0.422 0.744
Cooperative 0.484 0.569

with code Discoursive 0.500 0.609

Pragmatic Inquisitive 0.407 0.796
Director Cooperative 0.447 0.600
with image Discoursive 0.353 0.611

Inquisitive 0.362 0.722

Cooperative 0.427 0.640

with code Discoursive 0.467 0.613

Pragmatic Inquisitive 0.396 0.716
Coder Cooperative 0.447 0.584
with image Discoursive 0.493 0.624

Inquisitive 0.393 0.711

Table 2: This figure shows the main results of our exper-
imentation between pragmatic director and pragmatic
coder. Here, we give the metrics for both executability
and sampling diversity. Having a dialogue generally per-
forms better than the baseline code completion without
any dialogue. For each pragmatic setting, we experi-
ment with all the reasoning styles and have an image or
code as the reference solution for the director.

What is the best model temperature to depict
uniqueness for code completion in coding dia-
logues? We noted previously that we work with
functional uniqueness as a proxy for diversity in
the generated answers and the ambiguity. However,
this is a proxy governed by multiple parameters,
one of which is the temperature used to sample
from the code generation model. When the coding
instruction is very specific, even if temperature is
increased, the solutions tend to be very similar, but
by default, an increase in temperature results in an
increase in uniqueness. From our analyses, as we
present them in Appendix Figure 3, we observe
that higher temperatures have higher variability
in their uniqueness but they produce more unique
codes compared to lower temperatures. This also
changes the executability and the representation of
ambiguity in the answers by the model.

What is the difference in ambiguity resolution
and executability between a pragmatic coder
and a pragmatic director? In order to answer
this question, we run multiple experiments with

Coding Question Ambiguity Baseline Pragmatic Director Pragmatic Coder
draw a line (with random y) foreach | o o ifcation 0.000 0.267 0.000 0.000 0.000 0200 0.000
different line style
draw a full line from (0,0) to (1,2) semantic ambiguity 0.000 0.000 0.000 0.000 0.067 0.000 0.000
make seaborn relation plot and color parameter
by the gender field of the dataframe df underspecification 0.067 0733 0.700 0.667 0.533 0.000 0.000
highlight in red the x range 2 to 4 vagueness 0.667 0.833 0.700 0.667 0.967 1.000 0.167

Table 3: This table shows a breakdown of the final executability scores for different questions in the DS1000 dataset,
with their annotated ambiguity categories. The examples are picked to show when most models have low scores, or
to show the performance according to different categories of ambiguity. From left to right, both pragmatic director
and pragmatic coder have three columns corresponding to Cooperative, Discoursive and Inquisitive reasoning styles.

pragmatic director and coder scenarios separated,
which is presented in Table 2. The details of their
prompting are given in Section §4. We can observe
two main trends in the overall results.

First, cooperative and discoursive reasoning
styles get higher executability scores and lower
sampling diversity, meaning that they disambiguate
better than other strategies. The pragmatic director
has the highest executability, especially with refer-
ence code, in comparison to the pragmatic coder,
and this is because when one side of the conversa-
tion has full access to the reference solution and
different reasoning styles, it performs the best. This
scenario is not very realistic, as it is modeling a
user of a code generation system and has full access
to the final solution code.

Secondly, if we focus on the pragmatic coder set-
ting, we can see that reference image-based gener-
ations are better than reference code. We postulate
that in this scenario, the director does not give away
the solution easily but can process the ambiguities
in the final image to give meaningful instructions
to satisfy the final execution tests. For the prag-
matic coder with reference images, the highest ex-
ecutability is with the discoursive reasoning, and
the lowest sampling diversity is with the coopera-
tive reasoning — the same trend was observed with
the pragmatic director with reference code. This
may be due to cooperative reasoning trying to min-
imize the number of turns while discoursive can
correctly identify the ambiguous intents (coherence
relations) to improve the executability.

The inquisitive reasoning style does not yield
the best results in both cases. In certain cases,
its performance falls below the baseline, which
has no dialogue. To understand the reasons for
the low inquisitive performance, we do a detailed
error analysis with a breakdown of each question
in Section §5.2.

What is the effect of the number of turns on
the disambiguation efficiency of the generated
dialogue? We experimented with several num-
bers of turns, from 2 to 4 turns. The mean pass@ 1
scores for 2 turns were the lowest (0.400 for most
strategies), while 3 turns yielded the results we
have previously presented. Hence, the number of
turns affects the overall performance, but it is in-
conclusive if more turns are better for executability.

5.2 Error Analysis

We provide a detailed breakdown of the perfor-
mance of different dialogue strategies in Table 3.
The key takeaway is that some questions are still
hard even after dialogue, but specific ambiguity
categories have a best-performing pragmatic strat-
egy. Nearly none of the frameworks got the first
underspecification question correct (mean pass@1:
0.000). Only cooperative reasoning got it some-
times (mean pass@1: 0.267). Interestingly, some-
times, additional dialogue made the performance
worse for all the frameworks. Inquisitive reason-
ing performed the best with vagueness categories,
while discoursive and cooperative performed the
best for parameter underspecification.

6 Conclusion

Overall, in this paper, we have proposed a dialogue-
oriented perspective to code generation. We charac-
terized various pragmatics frameworks in relation
to pair-programming-like dialogues that happen be-
tween a director and a coder. We then analyzed the
effects of having dialogues with different reasoning
strategies on the executability and disambiguation
of the final generated code. As having a dialogue
based on code is becoming the norm with LLMs, fo-
cusing on the pragmatics of dialogue opens up new
venues for developing dialogue systems, datasets,
and evaluation mechanisms for code generation.

7 Limitations

We proposed using pragmatic dialogue for code
generation, but the major limitation is from the
side of human data collection and evaluation. We
resorted to automatic metrics already being used or
developed for this study to evaluate our setup with-
out relying on human annotators. However, this
entails that the evaluations may not be human-like
and may not show the most accurate representa-
tions even though they show improvements in gen-
erally accepted code executability standards. Fur-
ther, we did not deploy a dialogue system to study
our approach. Instead, we resorted to simulations
using LLMs, which may or may not accurately rep-
resent how a human interlocutor would act in a
real-world setting. We wanted to minimize this by
using large parameter models for dialogue gener-
ation and StackOverflow-based code instructions
from the DS1000 dataset.

8 Ethics Statement

In our simulation process we have used GPT-4o,
and this is a closed-source LLM, and we are aware
that this model can propagate its own training bi-
ases. The scientific community does not have ac-
cess to any information regarding how this model
is trained or what the dataset consists of. This may
result in a deficient evaluation of the final perfor-
mance and human-likeness of the generated dia-
logue. This is a simulated analysis study to identify
and characterize pragmatics frameworks with pos-
sible LLM behavior in a pair programming setting.
Hence, we do not involve humans in our current
setup. The biases propagated by GPT-40 are the
responsibility of OpenAl and should be held ac-
countable by their and the scientific community’s
ethical standards.

References

Malihe Alikhani, Baber Khalid, and Matthew Stone.
2023. Image—text coherence and its implications for
multimodal Al. Front. Artif. Intell., 6:1048874.

Chinmaya Andukuri, Jan-Philipp Frianken, Tobias Ger-
stenberg, and Noah D. Goodman. 2024. Star-gate:
Teaching language models to ask clarifying questions.
ArXiv, abs/2403.19154.

Nicholas Asher, Julie Hunter, Mathieu Morey, Bena-
mara Farah, and Stergos Afantenos. 2016. Discourse
structure and dialogue acts in multiparty dialogue:
the STAC corpus. In Proceedings of the Tenth In-
ternational Conference on Language Resources and

Evaluation (LREC’16), pages 2721-2727, PortoroZ,
Slovenia. European Language Resources Association
(ELRA).

Katherine Atwell, Remi Choi, Junyi Jessy Li, and Mal-
ihe Alikhani. 2022. The role of context and uncer-
tainty in shallow discourse parsing. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 797-811, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

Katherine Atwell, Mert Inan, Anthony B. Sicilia, and
Malihe Alikhani. 2024. Combining discourse coher-
ence with large language models for more inclusive,
equitable, and robust task-oriented dialogue. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 3538—
3552, Torino, Italia. ELRA and ICCL.

Katherine Atwell, Junyi Jessy Li, and Malihe Alikhani.
2021. Where are we in discourse relation recogni-
tion? In Proceedings of the 22nd Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, pages 314-325, Singapore and Online. Asso-
ciation for Computational Linguistics.

Shobhit Chaurasia and Raymond J. Mooney. 2017. Di-
alog for language to code. In Proceedings of the
Eighth International Joint Conference on Natural
Language Processing (Volume 2: Short Papers),
pages 175-180, Taipei, Taiwan. Asian Federation
of Natural Language Processing.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023.
Codet: Code generation with generated tests. In
The Eleventh International Conference on Learning
Representations.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Ta-Chung Chi and Alexander Rudnicky. 2022. Struc-
tured dialogue discourse parsing. In Proceedings

https://doi.org/10.3389/frai.2023.1048874
https://doi.org/10.3389/frai.2023.1048874
https://doi.org/10.3389/frai.2023.1048874
https://api.semanticscholar.org/CorpusID:268732915
https://api.semanticscholar.org/CorpusID:268732915
https://api.semanticscholar.org/CorpusID:268732915
https://aclanthology.org/L16-1432
https://aclanthology.org/L16-1432
https://aclanthology.org/L16-1432
https://aclanthology.org/L16-1432
https://aclanthology.org/L16-1432
https://aclanthology.org/2022.coling-1.67
https://aclanthology.org/2022.coling-1.67
https://aclanthology.org/2022.coling-1.67
https://aclanthology.org/2024.lrec-main.314
https://aclanthology.org/2024.lrec-main.314
https://aclanthology.org/2024.lrec-main.314
https://aclanthology.org/2024.lrec-main.314
https://aclanthology.org/2024.lrec-main.314
https://doi.org/10.18653/v1/2021.sigdial-1.34
https://doi.org/10.18653/v1/2021.sigdial-1.34
https://doi.org/10.18653/v1/2021.sigdial-1.34
https://aclanthology.org/I17-2030
https://aclanthology.org/I17-2030
https://aclanthology.org/I17-2030
https://openreview.net/forum?id=ktrw68Cmu9c
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2022.sigdial-1.32
https://doi.org/10.18653/v1/2022.sigdial-1.32
https://doi.org/10.18653/v1/2022.sigdial-1.32

of the 23rd Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 325-335,
Edinburgh, UK. Association for Computational Lin-
guistics.

Charles Clifton, Jr. and Lyn Frazier. 2012. Discourse In-
tegration Guided by the ‘Question under Discussion’.
Cognit. Psychol., 65(2):352.

Jeremy Cole, Michael Zhang, Daniel Gillick, Julian
Eisenschlos, Bhuwan Dhingra, and Jacob Eisenstein.
2023. Selectively answering ambiguous questions.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
530-543, Singapore. Association for Computational
Linguistics.

Yang Deng, Lizi Liao, Liang Chen, Hongru Wang,
Wengiang Lei, and Tat-Seng Chua. 2023. Prompt-
ing and evaluating large language models for proac-
tive dialogues: Clarification, target-guided, and non-
collaboration. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pages
10602-10621, Singapore. Association for Compu-
tational Linguistics.

Ahmed Elgohary, Saghar Hosseini, and Ahmed Has-
san Awadallah. 2020. Speak to your parser: Interac-
tive text-to-SQL with natural language feedback. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2065—
2077, Online. Association for Computational Lin-
guistics.

Ahmed FElgohary, Christopher Meek, Matthew
Richardson, Adam Fourney, Gonzalo Ramos,
and Ahmed Hassan Awadallah. 2021. NL-EDIT:
Correcting semantic parse errors through natural
language interaction. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 5599-5610, Online.
Association for Computational Linguistics.

Michael C. Frank and Noah D. Goodman. 2012. Predict-
ing pragmatic reasoning in language games. Science,
336(6084):998-998.

Daniel Fried, Nicholas Tomlin, Jennifer Hu, Roma Pa-
tel, and Aida Nematzadeh. 2023. Pragmatics in lan-
guage grounding: Phenomena, tasks, and modeling
approaches. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages 12619—
12640, Singapore. Association for Computational
Linguistics.

Yingxue Fu. 2022. Towards unification of discourse
annotation frameworks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics: Student Research Workshop, pages 132—
142, Dublin, Ireland. Association for Computational
Linguistics.

H. P. Grice. 1975. Logic and Conversation. In Speech
Acts, pages 41-58. Brill, Leiden, The Netherlands.

10

Laurence Horn. 1984. Toward a new taxonomy for prag-
matic inference: Q-based and r-based implicature.

J. D. Hunter. 2007. Matplotlib: A 2d graphics environ-
ment. Computing in Science & Engineering, 9(3):90—
95.

Vivek Iyer, Pinzhen Chen, and Alexandra Birch. 2023.
Towards effective disambiguation for machine trans-
lation with large language models. In Proceedings
of the Eighth Conference on Machine Translation,
pages 482495, Singapore. Association for Compu-
tational Linguistics.

Carlos E. Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2024. Swe-bench: Can language mod-
els resolve real-world github issues? Preprint,
arXiv:2310.06770.

Wei-Jen Ko, Yating Wu, Cutter Dalton, Dananjay Srini-
vas, Greg Durrett, and Junyi Jessy Li. 2023. Dis-
course analysis via questions and answers: Parsing
dependency structures of questions under discussion.
In Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 11181-11195, Toronto,
Canada. Association for Computational Linguistics.

Dmitrii Krasheninnikov, Egor Krasheninnikov, and
David Krueger. 2022. Assistance with large language
models. In NeurlPS ML Safety Workshop.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023a.
Clam: Selective clarification for ambiguous ques-
tions with generative language models. Preprint,
arXiv:2212.07769.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023b.
Semantic uncertainty: Linguistic invariances for un-
certainty estimation in natural language generation.
In The Eleventh International Conference on Learn-
ing Representations.

Igor Labutov, Bishan Yang, and Tom Mitchell. 2018.
Learning to learn semantic parsers from natural lan-
guage supervision. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1676—1690, Brussels, Belgium.
Association for Computational Linguistics.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000:
A natural and reliable benchmark for data science
code generation. Preprint, arXiv:2211.11501.

Stephen C. Levinson. 2000. Presumptive Meanings:
The Theory of Generalized Conversational Implica-
ture. The MIT Press, Cambridge, MA, USA.

Haau-Sing (Xiaocheng) Li, Mohsen Mesgar, André Mar-
tins, and Iryna Gurevych. 2023. Python code genera-
tion by asking clarification questions. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 14287-14306, Toronto, Canada. Association
for Computational Linguistics.

https://doi.org/10.1016/j.cogpsych.2012.04.001
https://doi.org/10.1016/j.cogpsych.2012.04.001
https://doi.org/10.1016/j.cogpsych.2012.04.001
https://doi.org/10.18653/v1/2023.emnlp-main.35
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.18653/v1/2023.findings-emnlp.711
https://doi.org/10.18653/v1/2020.acl-main.187
https://doi.org/10.18653/v1/2020.acl-main.187
https://doi.org/10.18653/v1/2020.acl-main.187
https://doi.org/10.18653/v1/2021.naacl-main.444
https://doi.org/10.18653/v1/2021.naacl-main.444
https://doi.org/10.18653/v1/2021.naacl-main.444
https://doi.org/10.18653/v1/2021.naacl-main.444
https://doi.org/10.18653/v1/2021.naacl-main.444
https://doi.org/10.1126/science.1218633
https://doi.org/10.1126/science.1218633
https://doi.org/10.1126/science.1218633
https://doi.org/10.18653/v1/2023.findings-emnlp.840
https://doi.org/10.18653/v1/2023.findings-emnlp.840
https://doi.org/10.18653/v1/2023.findings-emnlp.840
https://doi.org/10.18653/v1/2023.findings-emnlp.840
https://doi.org/10.18653/v1/2023.findings-emnlp.840
https://doi.org/10.18653/v1/2022.acl-srw.12
https://doi.org/10.18653/v1/2022.acl-srw.12
https://doi.org/10.18653/v1/2022.acl-srw.12
https://doi.org/10.1163/9789004368811_003
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.18653/v1/2023.wmt-1.44
https://doi.org/10.18653/v1/2023.wmt-1.44
https://doi.org/10.18653/v1/2023.wmt-1.44
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://doi.org/10.18653/v1/2023.findings-acl.710
https://doi.org/10.18653/v1/2023.findings-acl.710
https://doi.org/10.18653/v1/2023.findings-acl.710
https://doi.org/10.18653/v1/2023.findings-acl.710
https://doi.org/10.18653/v1/2023.findings-acl.710
https://openreview.net/forum?id=OE9V81spp6B
https://openreview.net/forum?id=OE9V81spp6B
https://openreview.net/forum?id=OE9V81spp6B
https://arxiv.org/abs/2212.07769
https://arxiv.org/abs/2212.07769
https://arxiv.org/abs/2212.07769
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://doi.org/10.18653/v1/D18-1195
https://doi.org/10.18653/v1/D18-1195
https://doi.org/10.18653/v1/D18-1195
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://doi.org/10.7551/mitpress/5526.001.0001
https://doi.org/10.7551/mitpress/5526.001.0001
https://doi.org/10.7551/mitpress/5526.001.0001
https://doi.org/10.7551/mitpress/5526.001.0001
https://doi.org/10.7551/mitpress/5526.001.0001
https://doi.org/10.18653/v1/2023.acl-long.799
https://doi.org/10.18653/v1/2023.acl-long.799
https://doi.org/10.18653/v1/2023.acl-long.799

Yuntao Li, Bei Chen, Qian Liu, Yan Gao, Jian-Guang
Lou, Yan Zhang, and Dongmei Zhang. 2020. “what
do you mean by that?” a parser-independent interac-
tive approach for enhancing text-to-SQL. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6913-6922, Online. Association for Computational
Linguistics.

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. 2024.
Generating with confidence: Uncertainty quantifica-
tion for black-box large language models. Transac-
tions on Machine Learning Research.

Alisa Liu, Zhaofeng Wu, Julian Michael, Alane Suhr,
Peter West, Alexander Koller, Swabha Swayamdipta,
Noah Smith, and Yejin Choi. 2023. We’re afraid
language models aren’t modeling ambiguity. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 790-807,
Singapore. Association for Computational Linguis-
tics.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu,
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,
Wenhao Yu, Lucas Krauf3, Naman Jain, Yixuan Su,
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,
Niklas Muennighoff, Xiangru Tang, Muhtasham
Oblokulov, Christopher Akiki, Marc Marone, Cheng-
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat-
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muifioz
Ferrandis, Lingming Zhang, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2024. Starcoder 2 and the stack v2: The
next generation. Preprint, arXiv:2402.19173.

Qianou Ma, Tongshuang Wu, and Kenneth Koedinger.
2023. Is ai the better programming partner? human-
human pair programming vs. human-ai pair program-
ming. Preprint, arXiv:2306.05153.

Brian McMahan and Matthew Stone. 2020. Analyz-
ing speaker strategy in referential communication.
In Proceedings of the 21th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
pages 175185, 1st virtual meeting. Association for
Computational Linguistics.

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2020. AmbigQA: Answering am-
biguous open-domain questions. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 5783—
5797, Online. Association for Computational Lin-
guistics.

Shima Rahimi Moghaddam and Christopher J. Honey.
2023. Boosting theory-of-mind performance in

large language models via prompting. Preprint,
arXiv:2304.11490.

Hussein Mozannar, Valerie Chen, Mohammed Alsobay,
Subhro Das, Sebastian Zhao, Dennis Wei, Manish
Nagireddy, Prasanna Sattigeri, Ameet Talwalkar, and
David Sontag. 2024. The realhumaneval: Evaluating
large language models’ abilities to support program-
mers. Preprint, arXiv:2404.02806.

Fangwen Mu, Lin Shi, Song Wang, Zhuohao Yu, Bin-
quan Zhang, Chenxue Wang, Shichao Liu, and Qing
Wang. 2023. Clarifygpt: Empowering llm-based
code generation with intention clarification. Preprint,
arXiv:2310.10996.

Sydney Nguyen, Hannah McLean Babe, Yangtian Zi,
Arjun Guha, Carolyn Jane Anderson, and Molly Q
Feldman. 2024. How beginning programmers and
code llms (mis)read each other. CHI 24, New York,
NY, USA. Association for Computing Machinery.

Ayana Niwa and Hayate Iso. 2024. Ambignlg: Address-
ing task ambiguity in instruction for nlg. Preprint,
arXiv:2402.17717.

Massimo Poesio and Ron Artstein. 2005. The reliability
of anaphoric annotation, reconsidered: Taking ambi-
guity into account. In Proceedings of the Workshop
on Frontiers in Corpus Annotations Il: Pie in the Sky,
pages 76-83, Ann Arbor, Michigan. Association for
Computational Linguistics.

Yewen Pu, Kevin Ellis, Marta Kryven, Josh Tenenbaum,
and Armando Solar-Lezama. 2020. Program synthe-
sis with pragmatic communication. In Advances in
Neural Information Processing Systems, volume 33,
pages 13249-13259. Curran Associates, Inc.

Yewen Pu, Saujas Vaduguru, Priyan Vaithilingam, Elena
Glassman, and Daniel Fried. 2023. Amortizing prag-
matic program synthesis with rankings. Preprint,
arXiv:2309.03225.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2024. Code llama: Open foundation mod-
els for code. Preprint, arXiv:2308.12950.

Advait Sarkar, Andrew D. Gordon, Carina Negreanu,
Christian Poelitz, Sruti Srinivasa Ragavan, and Ben
Zorn. 2022. What is it like to program with artificial
intelligence? Preprint, arXiv:2208.06213.

Sander Schulhoff, Michael Ilie, Nishant Balepur, Kon-
stantine Kahadze, Amanda Liu, Chenglei Si, Yin-
heng Li, Aayush Gupta, HyoJung Han, Sevien Schul-
hoff, Pranav Sandeep Dulepet, Saurav Vidyadhara,

https://doi.org/10.18653/v1/2020.emnlp-main.561
https://doi.org/10.18653/v1/2020.emnlp-main.561
https://doi.org/10.18653/v1/2020.emnlp-main.561
https://doi.org/10.18653/v1/2020.emnlp-main.561
https://doi.org/10.18653/v1/2020.emnlp-main.561
https://openreview.net/forum?id=DWkJCSxKU5
https://openreview.net/forum?id=DWkJCSxKU5
https://openreview.net/forum?id=DWkJCSxKU5
https://doi.org/10.18653/v1/2023.emnlp-main.51
https://doi.org/10.18653/v1/2023.emnlp-main.51
https://doi.org/10.18653/v1/2023.emnlp-main.51
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2306.05153
https://arxiv.org/abs/2306.05153
https://arxiv.org/abs/2306.05153
https://arxiv.org/abs/2306.05153
https://arxiv.org/abs/2306.05153
https://doi.org/10.18653/v1/2020.sigdial-1.22
https://doi.org/10.18653/v1/2020.sigdial-1.22
https://doi.org/10.18653/v1/2020.sigdial-1.22
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://doi.org/10.18653/v1/2020.emnlp-main.466
https://arxiv.org/abs/2304.11490
https://arxiv.org/abs/2304.11490
https://arxiv.org/abs/2304.11490
https://arxiv.org/abs/2404.02806
https://arxiv.org/abs/2404.02806
https://arxiv.org/abs/2404.02806
https://arxiv.org/abs/2404.02806
https://arxiv.org/abs/2404.02806
https://arxiv.org/abs/2310.10996
https://arxiv.org/abs/2310.10996
https://arxiv.org/abs/2310.10996
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/3613904.3642706
https://doi.org/10.1145/3613904.3642706
https://arxiv.org/abs/2402.17717
https://arxiv.org/abs/2402.17717
https://arxiv.org/abs/2402.17717
https://aclanthology.org/W05-0311
https://aclanthology.org/W05-0311
https://aclanthology.org/W05-0311
https://aclanthology.org/W05-0311
https://aclanthology.org/W05-0311
https://proceedings.neurips.cc/paper_files/paper/2020/file/99c83c904d0d64fbef50d919a5c66a80-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/99c83c904d0d64fbef50d919a5c66a80-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/99c83c904d0d64fbef50d919a5c66a80-Paper.pdf
https://arxiv.org/abs/2309.03225
https://arxiv.org/abs/2309.03225
https://arxiv.org/abs/2309.03225
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2208.06213
https://arxiv.org/abs/2208.06213
https://arxiv.org/abs/2208.06213

Dayeon Ki, Sweta Agrawal, Chau Pham, Gerson
Kroiz, Feileen Li, Hudson Tao, Ashay Srivastava,
Hevander Da Costa, Saloni Gupta, Megan L. Rogers,
Inna Goncearenco, Giuseppe Sarli, Igor Galynker,
Denis Peskoff, Marine Carpuat, Jules White, Shya-
mal Anadkat, Alexander Hoyle, and Philip Resnik.
2024. The prompt report: A systematic survey of
prompting techniques. Preprint, arXiv:2406.06608.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke
Zettlemoyer, and Sida I. Wang. 2022. Natural lan-
guage to code translation with execution. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 3533-3546,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Yuan Tian, Zheng Zhang, Zheng Ning, Toby Li,
Jonathan K. Kummerfeld, and Tianyi Zhang. 2023.
Interactive text-to-SQL generation via editable step-
by-step explanations. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 16149-16166, Singapore.
Association for Computational Linguistics.

Saujas Vaduguru, Daniel Fried, and Yewen Pu. 2024.
Generating pragmatic examples to train neural pro-
gram synthesizers. In The Twelfth International Con-
ference on Learning Representations.

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glass-
man. 2022. Expectation vs. Experience: Evaluating
the Usability of Code Generation Tools Powered by
Large Language Models. In CHI EA ’22: Extended
Abstracts of the 2022 CHI Conference on Human Fac-
tors in Computing Systems, pages 1-7. Association
for Computing Machinery, New York, NY, USA.

Zekun Moore Wang, Zhongyuan Peng, Haoran Que,
Jiaheng Liu, Wangchunshu Zhou, Yuhan Wau,
Hongcheng Guo, Ruitong Gan, Zehao Ni, Jian
Yang, Man Zhang, Zhaoxiang Zhang, Wanli Ouyang,
Ke Xu, Stephen W. Huang, Jie Fu, and Junran Peng.
2023. RoleLLM: Benchmarking, Eliciting, and En-
hancing Role-Playing Abilities of Large Language
Models. arXiv.

. Williams. 2001. Integrating pair programming into
a software development process. In Proceedings
14th Conference on Software Engineering Education
and Training. 'In search of a software engineering
profession’ (Cat. No.PR01059), pages 27-36.

Ziyu Yao, Yu Su, Huan Sun, and Wen-tau Yih. 2019.
Model-based interactive semantic parsing: A unified
framework and a text-to-SQL case study. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5447-5458, Hong
Kong, China. Association for Computational Linguis-
tics.

Tianyi Zhang, Tao Yu, Tatsunori Hashimoto, Mike
Lewis, Wen-Tau Yih, Daniel Fried, and Sida Wang.

12

2023. Coder reviewer reranking for code generation.
In Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 41832-41846.
PMLR.

Minggqian Zheng, Jiaxin Pei, and David Jurgens. 2023.
Is "a helpful assistant" the best role for large language
models? a systematic evaluation of social roles in
system prompts. Preprint, arXiv:2311.10054.

Ruiqi Zhong, Charlie Snell, Dan Klein, and Jason Eis-
ner. 2023. Non-programmers can label programs
indirectly via active examples: A case study with
text-to-SQL. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 5126-5152, Singapore. Association for
Computational Linguistics.

A Prompting Details

A.1 Pragmatic Director

Here, we provide the prompts we used for the prag-
matic director and regular coder.

A.1.1 System prompts:

Director: You are a coding director. The things
you say depend on your persona. You have the
following different personas (reasoning styles):

- Cooperative Persona (Pragmatic): You want to
converge on the solution as quickly as possible and
follow Grice’s Maxims when choosing your words.
You anticipate the coder’s cooperative reasoning.
You possess theory-of-mind capabilities and com-
mon sense. You MUST start your utterance with
variations of: "I can understand you were thinking
about [coder’s cooperative reasoning]. Let’s go
step-by-step."

- Linguistic Reasoning Persona (Literal): You
choose words according to semantic differences.
You elaborate or describe the task more to target
the ref code and exclude distractors. You elaborate,
describe the target, and exclude the alternatives in
the generated code. You MUST start your utterance
with variations of: "Let’s move away from [distrac-
tors in the generated answers]. Let me elaborate on
my question."

- Questioning Persona: Everything you say has
an implicit question underneath it. You MUST
start your utterance with variations of: "You are
answering a different question, which is [implicit
question]."

You have a final product in mind. This is going
to be named the REF CODE. You want a coder to
write the codes for this final product. For the first
turn of the dialogue, you give a specific instruction

https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2406.06608
https://arxiv.org/abs/2406.06608
https://doi.org/10.18653/v1/2022.emnlp-main.231
https://doi.org/10.18653/v1/2022.emnlp-main.231
https://doi.org/10.18653/v1/2022.emnlp-main.231
https://doi.org/10.18653/v1/2023.emnlp-main.1004
https://doi.org/10.18653/v1/2023.emnlp-main.1004
https://doi.org/10.18653/v1/2023.emnlp-main.1004
https://openreview.net/forum?id=yxKZGQLzOP
https://openreview.net/forum?id=yxKZGQLzOP
https://openreview.net/forum?id=yxKZGQLzOP
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.48550/arXiv.2310.00746
https://doi.org/10.48550/arXiv.2310.00746
https://doi.org/10.48550/arXiv.2310.00746
https://doi.org/10.48550/arXiv.2310.00746
https://doi.org/10.48550/arXiv.2310.00746
https://doi.org/10.1109/CSEE.2001.913816
https://doi.org/10.1109/CSEE.2001.913816
https://doi.org/10.1109/CSEE.2001.913816
https://doi.org/10.18653/v1/D19-1547
https://doi.org/10.18653/v1/D19-1547
https://doi.org/10.18653/v1/D19-1547
https://proceedings.mlr.press/v202/zhang23av.html
https://arxiv.org/abs/2311.10054
https://arxiv.org/abs/2311.10054
https://arxiv.org/abs/2311.10054
https://arxiv.org/abs/2311.10054
https://arxiv.org/abs/2311.10054
https://doi.org/10.18653/v1/2023.emnlp-main.312
https://doi.org/10.18653/v1/2023.emnlp-main.312
https://doi.org/10.18653/v1/2023.emnlp-main.312
https://doi.org/10.18653/v1/2023.emnlp-main.312
https://doi.org/10.18653/v1/2023.emnlp-main.312

‘h_l_l‘r L

Figure 3: This figure shows the change in unique responses of code completions depending on the temperature of
the model. From the left, the plots are showing histograms for 0.3, 0.7, and 1.0 temperatures. The horizontal axis is
the question number from the DS1000 matplotlib dataset. It is observable that the uniqueness is high for higher
temperatures, expectedly. However, very high temperatures may have minor differences that increase the overall
uniqueness. Hence, a moderate temperature like 0.7 gives more reliable results for further experimentation.

or a question about the final product. Then, the
coder will give you some answers, and then you
will have another turn to refine the codes.

Coder: No system prompt.

Coder: You are given the following dialogue that
happens between a coding director and a coder:
Director: Here is a code snippet: [code-context]
Director: coding-question
Coder: Here are the unique generated codes:
Solution 1: [CODE] Solution 2: [CODE] ... Direc-
tor: generated-dialogue
Give the next turn in the dialogue for the coder with
a new code solution. No unnecessary explanations,
and give the code in a code block with “* CODE *““.
Short replies only, just give the dialogue turn.

A.2 Pragmatic Coder
A.2.1 System Prompts:

Director: You are a coding director. There is an-
other coding agent you are going to have a dialogue
with. You have a final product in mind. This is go-
ing to be named the REF CODE. You want a coder
to write the codes for this final product. For the first
turn of the dialogue, you give a specific instruction
or a question about the final product. Then, the
coder will give you some answers, and then you
will have another turn to refine the codes.

Coder: You are a coding agent. There is another
director agent you are going to have a dialogue with.
The things you say depend on your persona. You
have the following different personas (reasoning
styles):

- Cooperative Persona (Pragmatic): You want
to converge on the solution as quickly as possible
and follow Grice’s Maxims when choosing your
words. You anticipate the director’s cooperative
reasoning. You possess theory-of-mind capabilities
and common sense.

13

- Discourse Reasoning Persona: Everything you
say is connected to the previous turn with a rela-
tion. The possible discourse relations are Comment,
Clarification Question, Elaboration, Acknowledg-
ment, Continuation, Explanation, Conditional, Al-
ternation, Result, Background, Narration, Correc-
tion, Parallel, Contrast. You try to identify the
relation between the utterance of the director in the
previous with your utterance. Then you reply with
an utterance that has the appropriate relation.

- Questioning Persona: Everything you say has
an implicit question underneath it. You should tell
what the director is actually asking for (the question
under their instruction), and give your answer to
that implicit question.

The director has a final product in mind. You, as
the coder, write the codes for this final product or
have a dialogue about the instruction. For the first
turn of the dialogue, the director gives a specific
instruction or a question about the final product.
Then, you will give some answers, and then the
director will have another turn to refine the codes.

user prompts:

Director: REF CODE: “‘+ ref-code “* + DIA-
LOGUE HISTORY:" + dialogue-history + What
can you say on the follow-up turn for the coder
to converge to the reference code? Do not men-
tion anything about the REF CODE, and don’t give
away the answer.

Coder: POSSIBLE GENERATED CODES: So-
lution 1: “‘“CODE** Solution 2: “‘CODE*"

DIALOGUE HISTORY: + dialogue-history +
What can you say on the following turn as the
coder to converge to the solution that the director
has in mind? Give responses for all types of your
personas. Personas must not give the same solu-
tion! Your solution MUST NOT contain any new
code. You can talk about the provided code.

B Abstract Syntax Tree (AST) Functional
Uniqueness Algorithm

In this section, we detail the AST-based function
uniqueness comparison algorithm between two sep-
arate generated functions. The code for the algo-
rithm is given in Listing 1. We find this form of
comparison to be appropriate for plotting tasks as
the lines of code of interest are generally the calls
to library functions, particularly those provided by
the matplotlib APL

C Temperature Adjustments

We present our experimentation results for the tem-
perature tuning in Figure 3.

D Additional Related Work

Interactive Semantic Parsing Prior work on
interactive semantic parsing has also extensively
studied ambiguity resolution for tasks adjacent
to code generation, including text-to-SQL. These
works can be broadly separated into three modes of
user interaction: (1) asking clarification questions
(Chaurasia and Mooney, 2017; Yao et al., 2019;
Li et al., 2020) (2) requesting natural language
feedback on simplified representations of the parse
(Labutov et al., 2018; Elgohary et al., 2020, 2021;
Tian et al., 2023) and (3) requesting labels for spe-
cific inputs (Zhong et al., 2023; Chen et al., 2023).
Our work aligns most closely with the first mode;
however, we study a wider set of discourse strate-
gies, beyond just clarification questions.

14

def

compare_parse_trees(responsel, response2):
"""Compare the parse trees of two responses.
unique_function_calls = []
unique_params = {}
unique_keywords = {}
try:
treel = ast.parse(responsel)
functions1 = get_params(treel)
tree2 = ast.parse(response2)
functions2 = get_params(tree2)
for function in functions1.keys():
if function not in functions2.keys():
unique_function_calls.append(function)
else:
for i, arg in enumerate(functions1[function]):
if arg not in functions2[function]:
if function not in unique_params.keys():
unique_params[function] = []
unique_params[function]. append(arg)
if isinstance(arg, dict):
for key in arg.keys():
for j in range(len(functions2[functionl])):
if isinstance(functions2[function][j], dict):
if key not in functions2[function][j].keys():
if function not in unique_keywords.keys():
unique_keywords[function] = []
unique_keywords[function]. append(key)
else:
if arglkey] != functions2[function][jl[key]:
if function not in unique_keywords.keys

nnn

OF
unique_keywords[function] = []
unique_keywords[function]. append(key)
except SyntaxError:
print(”"Syntax Error")
return unique_function_calls, unique_params, unique_keywords

Listing 1: This code snippet shows how the functions of two separate generated codes are compared using their

ASTs.

15

	Introduction
	Related Work
	Ambiguity in Plotting Code
	Detecting Ambiguity
	Sampling for Ambiguity

	Pragmatic Modeling of Disambiguation in Coding Dialogues with LLMs
	Generating director responses
	Generating coder responses
	Pragmatics Frameworks
	Generating dialogues
	Dataset Creation

	Experiments & Findings
	Automatic Metrics
	Error Analysis

	Conclusion
	Limitations
	Ethics Statement
	Prompting Details
	Pragmatic Director
	System prompts:

	Pragmatic Coder
	System Prompts:

	Abstract Syntax Tree (AST) Functional Uniqueness Algorithm
	Temperature Adjustments
	Additional Related Work

