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Abstract

Large Language Models (LLMs) are used by001
many to generate code in a pair-programming-002
like setting. However, intents in users’ cod-003
ing instructions are ambiguous, and models004
are limited in their ability to use dialogue to005
disambiguate intent to produce unambiguous006
code. This presents a fundamental difficulty007
in code generation, wherein the ambiguity in008
natural language can lead to seemingly correct009
programs that are different from the intended.010
We propose to use dialogue to reduce this am-011
biguity, specifically in the plotting domain, and012
contribute an analysis of the different types of013
ambiguity that may exist in multi-modal code014
generation. Based on our analysis, we propose015
different pragmatic models to inform dialogue016
strategies for ambiguity resolution, including017
those based on Rational Speech Acts (coop-018
erative), Discourse Theory (discoursive), and019
Questions under Discussion (inquisitive). Fi-020
nally, we compare these dialogue strategies in a021
simulated dialogue setting — operationalizing022
the pragmatic models via prompting. Our find-023
ings suggest that discoursive and cooperative024
reasoning styles show the best results regarding025
executability and disambiguation, while inquis-026
itive reasoning performs the best in disambigua-027
tion for vagueness. These suggest that simu-028
lated dialogues with pragmatic frameworks can029
resolve ambiguities in code generation.030

1 Introduction031

While we have made great strides in code genera-032

tion, current generative models still fail to provide a033

human-like pair-programming experience for their034

users (Sarkar et al., 2022). A user’s description of035

their intent (in natural language) is often miscon-036

strued by the model, forcing the user to switch back037

and forth between the typical pair-programming038

roles in human-human interactions, e.g., the coder039

and the director (Williams, 2001). This, we hy-040

pothesize, is the result of natural language coding041

Figure 1: This figure summarizes the contributions of
this paper. We analyze ambiguity in categories that exist
in the plotting domain of coding instructions. Then,
we address these ambiguities using simulated dialogues
with discourse pragmatics. We make this simulated
dataset of coding dialogues publicly available.

instructions being inherently ambiguous – map- 042

ping to multiple possible code implementations. In- 043

deed, we are not the first to make this observation 044

(Vaithilingam et al., 2022). Code generation mod- 045

els need a way to resolve this ambiguity while also 046

respecting the pragmatic rules expected by their 047

(human) users. We define pragmatics similarly to 048

Fried et al. (2023), where pragmatic communica- 049

tion is one that uses environmental context and 050

inferences about other agents’ unspoken goals. 051

To achieve this goal, we frame the natural lan- 052

guage to code problem as a two-player cooperative 053

dialogue. A director (typically the user) specifies 054

their intent in natural language and a coder (typi- 055

cally an automated coding assistant) generates code 056

with the functionality the director had in mind. A 057

goal for a pair-programming setting is to have a 058

coder agent that can interact with the director agent 059

to resolve ambiguity and generate code. 060
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To study this problem, we simulate this dialogue061

between two machine agents, drawing inspiration062

from theories of pragmatics to guide the dialogue063

acts these agents take. We show how (pragmatic)064

dialogues can help coders resolve ambiguity. We065

focus on problems where code is used to generate066

a visual output – matplotlib code generation – so067

we can simulate the dialogues where the intent can068

be specified in multiple ways (as the intended code069

solution, or the intended plot image).070

We propose to identify ambiguous natural lan-071

guage intents by sampling outputs from a language-072

to-code language model. Using our method, we073

identify ambiguity in 57% of Matplotlib problems074

in the DS-1000 dataset (Lai et al., 2022). We pro-075

pose resolving ambiguity through discourse, where076

the code generation model uses multiple turns of077

dialogue to clarify intent and resolve ambiguity.078

We instantiate this approach with iterative prompt-079

ing and show that ambiguity is resolved for 50%080

of those cases. Contributions of this paper are as081

follows:082

1. in-depth analysis of different ambiguity types083

in coding instructions (especially in plotting)084

2. characterization and structuring of pragmatics085

theories–such as Segmented Discourse Rep-086

resentation Theory (SDRT), Rational Speech087

Acts (RSA), and Questions Under Discussion088

(QUD)– around LLMs for dialogue generation089

to be used in pair programming instructions090

3. a technique based on sampling from code091

LLMs to quantify functional uniqueness and092

detect ambiguity in natural language coding093

instructions094

4. a new dataset of simulated dialogues called095

SyMPa-CoD between a coder and a director096

that resolves ambiguities in coding instruc-097

tions, and we define the new task of Coding098

Dialogues based on this dataset.099

From our analyses, we find that certain prag-100

matic frameworks perform the best at disambiguat-101

ing specific categories of ambiguity and that prag-102

matic frameworks generally increase the executabil-103

ity of the generated code. We make our code, and104

annotations publicly available for the camera-ready105

version of this paper.106

2 Related Work107

Code Generation Large language models of108

code have shown strong performance on natural lan-109

guage to code generation (Chen et al., 2021; Roz-110

ière et al., 2024; Lozhkov et al., 2024, inter alia). 111

Increasingly, attention has turned to more realistic 112

uses of code models, beyond single-turn code gen- 113

eration tasks. For instance, Jimenez et al. (2024) 114

introduce SWE-bench, which evaluates models’ 115

ability to solve real-world GitHub issues. However, 116

a line of work has investigated how users interact 117

with current code generation models, finding that 118

impressive benchmark performance does not al- 119

ways translate to improved task outcomes for users 120

(Sarkar et al., 2022; Vaithilingam et al., 2022; Ma 121

et al., 2023; Mozannar et al., 2024; Nguyen et al., 122

2024). Some of this gap can be attributed to the 123

ambiguity inherent to human interactions with code 124

models: Sarkar et al. (2022) observe that user ut- 125

terances are often underspecified and ambiguous, 126

forcing users to repeatedly refine their prompts and 127

adapt their thought processes to match the LLM; 128

likewise, Mozannar et al. (2024) observe that users 129

often provide fuzzy instructions, motivating a clari- 130

fication feature. 131

Ambiguity in Code Generation Recent work 132

has studied ambiguity resolution for code LLMs 133

via clarification questions. Mu et al. (2023) intro- 134

duce ClarifyGPT, a pipeline for code generation 135

with selective clarification. Similar to our work, 136

their pipeline detects semantic ambiguity via exe- 137

cution of the code model’s initial generated code. 138

However, we investigate the use of a broader set of 139

discourse strategies for this task. Li et al. (2023) 140

studies clarification for open-domain code genera- 141

tion in a scaffolded setting. 142

Ambiguity in NLP Tasks Ambiguity has been 143

studied across a wide array of NLP tasks, includ- 144

ing coreference resolution, question answering and 145

machine translation (Poesio and Artstein, 2005; 146

Min et al., 2020; Iyer et al., 2023; Niwa and Iso, 147

2024) . Current language models generally strug- 148

gle when applied directly to tasks with ambiguity 149

(Liu et al., 2023); by default, they do not recognize 150

ambiguity in instructions, nor do they seek clarifi- 151

cation or engage in proactive dialogue to resolve 152

ambiguity (Deng et al., 2023). However, recent 153

sampling-based methods have shown promise in 154

detecting ambiguity (Kuhn et al., 2023b; Cole et al., 155

2023; Lin et al., 2024), while prompting and self- 156

improvement methods have proven effective for 157

clarifying ambiguity with LLMs (Krasheninnikov 158

et al., 2022; Kuhn et al., 2023a; Andukuri et al., 159

2024). 160
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Pragmatics One approach to resolving ambigu-161

ity is to assume the speaker is a rational agent play-162

ing a cooperative game (Grice, 1975) where they163

are choosing an utterance that gives the code gener-164

ation model the best chance of recovering the pro-165

gram they have in mind. This form of inference has166

been formalized in the Rational Speech Acts frame-167

work (Frank and Goodman, 2012) This framework168

has been productively applied to programming169

tasks where a user specifies their intent using exam-170

ples (Pu et al., 2020, 2023; Vaduguru et al., 2024).171

Similar approaches to disambiguation also been172

applied to code generation from natural language173

using large language models (Zhang et al., 2023).174

Other pragmatic theories of discourse work include175

RSA for referential communication in a game of176

color (McMahan and Stone, 2020), question under177

discussion (Ko et al., 2023), and discourse theories178

as applied to dialogue settings (Asher et al., 2016;179

Chi and Rudnicky, 2022; Atwell et al., 2021, 2024,180

2022). The frameworks we use to implement our181

dialogue agents are inspired by these in this work.182

3 Ambiguity in Plotting Code183

We identify multiple categories of ambiguity –184

ways in which a natural language instruction may185

map to multiple code implementations.186

• Semantic ambiguity: certain wordings and187

their meaning are not clear in the coding ques-188

tion and can have multiple interpretations.189

e.g. “full line”, “solid red”, “regular mat-190

plotlib style plot”191

• Presupposition: even though not mentioned192

explicitly in the prompt (question), the refer-193

ence code writer has assumed certain things.194

e.g. knowing the default parameter values of195

the functions196

• Vagueness: Wording is not precise or a num-197

ber is not provided.198

e.g. “enough” space between axes.199

• Parameter underspecification: color, shape,200

and other multimodal parameters are left to201

the coder’s choice or not mentioned explicitly202

in the prompt. This has effects on the visual203

end-result or the code.204

e.g., title is set to be “xxx” even though not205

mentioned in the coding question206

• Function underspecification: non-explicit207

instructions on which function to use. This208

has effects on the visual end-result or the code.209

e.g. a coding question asks to show a heatmap,210

which could be implemented by one of multi- 211

ple functions: imshow or pcolor. 212

3.1 Detecting Ambiguity 213

We do a preliminary analysis of the distribution 214

of these categories of ambiguity in the DS1000 215

dataset, specifically with matplotlib library ques- 216

tions (Lai et al., 2022). This dataset consists of 217

natural language prompts based on StackOverflow 218

questions related to the Matplotlib library of Python 219

(Hunter, 2007). Our annotators are experts in ambi- 220

guity in dialogue, and we ask them to annotate 150 221

coding instructions from the DS1000. Even though 222

the DS1000 dataset consists of specifically hand- 223

picked questions that are unambiguous, we find 224

that 57% of the plotting questions fall under one or 225

more of the categories we have defined above. Ta- 226

ble 1 shows the distribution of different categories. 227

Ambiguity Category Distribution

semantic ambiguity 23.8%
presupposition 11.9%

vagueness 11.9%
parameter underspec. 45.2%
function underspec. 16.7%

Table 1: This table shows the ambiguity category distri-
bution of the DS1000 dataset based on our annotations.

3.2 Sampling for Ambiguity 228

One way to measure ambiguity in a given prompt is 229

to count different programs that may obey the con- 230

straints specified in the prompt. If two programs 231

are both appropriate responses to the same prompt, 232

then they differ in some way that is not specified – 233

and hence left ambiguous – in the prompt. Since 234

it is infeasible to determine exactly the set of all 235

programs consistent with the prompt, we measure 236

ambiguity by proxy by considering the variation 237

in a sample of programs drawn from a large code 238

language model. 239

Given a prompt, we sample a response ∼ 240

PLLM(·|prompt) k times. We measure the ratio 241

between the number of distinct responses1 and 242

the total number of responses as a proxy for the 243

number of different ways a code model interprets 244

the prompt. The idea of using multiple samples 245

from a code model to measure ambiguity has been 246

1We measure distinctness of responses by comparing their
parse trees; details of this Abstract Syntax Tree-based algo-
rithm are given in Appendix B.
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Figure 2: This figure shows the dialogue flow for a pragmatic director, where the initial intent of the dialogue is
given on the left, and the different responses generated using separate reasoning styles are given in the middle.

considered in Shi et al. (2022). In that work, they247

start with the hypothesis that models split probabil-248

ity mass across different semantically equivalent249

(but syntactically distinct) responses. While their250

method uses variation and agreement across sam-251

ples to break ties and choose a single response, we252

instead use it to measure ambiguity.253

One observation is that this notion of ambigu-254

ity is model-dependent and actually reflects how255

ambiguous the instruction is from the model’s per-256

spective. For instance, a model may incorrectly257

represent the instruction as ambiguous because of258

improper training: it does not return the optimal259

(unambiguous) solution and instead returns diverse260

incorrect ones. For this reason, we refer to this as261

Model Ambiguity. This notion of ambiguity is still262

useful, especially when we assume we are work-263

ing with a (fixed) large language model as a code264

generator. It is an easily measured form of ambi-265

guity, which we can attempt to resolve. We report266

a corrected form of model ambiguity, which re-267

stricts computation to only correct model solutions268

(passes test cases).269

4 Pragmatic Modeling of Disambiguation270

in Coding Dialogues with LLMs271

We propose resolving ambiguity in natural lan-272

guage specifications of intent with multi-turn di-273

alogue. Each coding task is defined by the nat-274

ural language intent I (see Figure 2). We have275

a sequence of alternating dialogue turns u =276

[uD1 , u
C
2 , u

D
3 , u

C
4 , . . . , u

D
n−1, u

C
n ] between the di-277

rector D and the coder C.278

The dialogue proceeds by each agent taking279

their turn. The director generates a response 280

uDi = fD(I,u
∗
:i−1) based on the intent and the dia- 281

logue history up to that turn. The coder takes the 282

next turn and generates a natural language response 283

uCi+1 = fC(u
∗
:i−1) based on only the dialogue his- 284

tory. At the end of the interaction, the coder model 285

conditions on the entire dialogue history and gen- 286

erates the code solution t = gC(u) to the task. We 287

enforce a turn-based dialogue structure that takes 288

the following pattern, as also given in Figure 2: 289

• Director presents initial instruction (a prompt 290

from DS1000). 291

• Coder takes a dialogue act with access to a set 292

of generated answers to the instruction 293

• Director responds, using access to the target 294

• (repeat previous two steps as desired) 295

• Coder generates code 296

Dialogue acts can be clarification questions, e.g., 297

“C: what location should I put the legend,” which 298

evokes a specific response, “D: The top left cor- 299

ner” or can be more general declarations that start 300

a sub-topic of conversation “C: I’ll plan for the 301

default legend arguments. D: Hmm. Keep it on 302

the top left. What else can you change?”. We in- 303

tegrate pragmatic frameworks into the turns of the 304

dialogue at each turn of the director and the coder. 305

We give details of this setup in Section §4.3. We 306

propose different ways of instantiating fD and fC 307

by prompting large language models inspired by 308

ideas from theories of pragmatics. 309

In a pair programming task, the director would 310

be a human user, who has an intent specification in 311

their mind (this may not be explicitly available) and 312

they interact with a coder agent to generate code. In 313
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this work, we explore ambiguity in code generation314

using a simulated director and coder. Both agents315

are simulated by instruction-tuned large language316

models prompted in different ways (and hence with317

access to different information about the problem).318

While most existing datasets for NL-to-code319

translation are single-turn, we argue that dialogue320

can be a principled way to reduce ambiguity. This321

section details the dialogue structure we assume, as322

well as the mechanisms through which we execute323

the discussed pragmatic frameworks. We simulate324

our dialogues for plotting code using LLMs and325

based on the algorithm given in Algorithm 1. In326

the algorithm, fD and fC are defined based on dif-327

ferent pragmatics strategies as given in detail in328

Section §4.3.329

Algorithm 1 Dialogue Simulation with LLMs

Require: Problem instance (uD1 , I)
Require: Director model fD
Require: Coder model for NL response fC
Require: Coder model to generate code gC
Require: Number of samples k
Require: Number of rounds of dialogue n

1: S ← {si ∼ gC(u
D
1 ) | 1 ≤ i ≤ k}

2: u← [ ]
3: for n times do
4: uC ← fC(u)
5: u← u+ [uC ]
6: uD ← fD(I,u)
7: u← u+ [uD]
8: end for
9: c ∼ gC(u)

10: return u, c

4.1 Generating director responses330

We prompt the director model fD to generate in-331

structions and clarifications that guide a coder332

model toward the correct solution. Since we work333

with an artificial director agent, we source intents334

from the DS-1000 dataset. We present the intent to335

the director in one of two ways – as the code for a336

reference solution or the plot generated by the code337

presented as an image. Since a natural language338

instruction accompanies the DS-1000 problem in-339

stances, we seed the interaction using that inter-340

action as the first director turn (uD1 ). We prompt341

the model to use different strategies to generate342

responses.343

4.2 Generating coder responses 344

We prompt a coder model to generate responses 345

that clarify intent and resolve ambiguity. To pro- 346

vide the coder model with an explicit representation 347

of its ambiguity, we first sample candidate solutions 348

by instructing the model to generate code to solve 349

the problem based on the initial turn of the interac- 350

tion, i.e. gC(uD1 ). We then list these solutions and 351

instruct the coder model to engage in dialogue to 352

resolve ambiguity and arrive at a single solution. 353

4.3 Pragmatics Frameworks 354

After defining ambiguity in plotting code and our 355

ways of detecting it using sampling language mod- 356

els, this section proposes possible strategies for 357

modeling disambiguation with follow-up coding 358

dialogues between a coding agent and a director. 359

We ground these strategies in several Pragmatics 360

frameworks and analyze how they can mitigate and 361

disambiguate various categories of ambiguity dif- 362

ferently. 363

We operationalize our pragmatics frameworks 364

by turning our dialogue setting into role prompt- 365

ing, persona prompting, and in-context learning as 366

described in Wang et al. (2023); Schulhoff et al. 367

(2024), and Zheng et al. (2023) to implement our 368

proposed pragmatics reasoning styles using role- 369

playing capabilities of agent-level LLMs. Also, we 370

employ prompt-boosted Theory-of-Mind capabili- 371

ties as described in (Moghaddam and Honey, 2023). 372

In the following sections, we describe our formal- 373

izations of this transformation and role prompting 374

for three different reasoning styles: cooperative, 375

discoursive, and inquisitive. 376

Cooperative Reasoning The first framework we 377

use is based on Grice’s maxims of cooperative dia- 378

logue partners (Grice, 1975; Horn, 1984; Levinson, 379

2000; McMahan and Stone, 2020). Here, the in- 380

terlocutors are pragmatic agents, where they recur- 381

sively engage in interaction and model each other’s 382

state of mind while responding to an utterance. The 383

Rational Speech Act (RSA) framework is the most 384

well-known Bayesian implementation of cooper- 385

ative reasoning. Inspired by this, we define the 386

disambiguation mapping in coding instructions as 387

the following optimization function, 388

fD(I,u) = argminn(UD(I,u) ∧ UC(u)) (1) 389

where U represents a cooperative utterance that 390

considers the other interlocutor’s beliefs and rea- 391

soning styles. Overall, the function tries to mini- 392
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mize the number of turns in the dialogue, which393

consists of cooperative utterances.394

Discoursive Reasoning The second pragmatics395

framework is based on Discourse theories. Here,396

the interlocutors are not necessarily responding397

strategically. Still, each of their utterances is re-398

lated to the history of the conversation and the399

coding context with a set of coherence relations.400

Hence, when a pragmatic coding director produces401

an utterance, the utterance relates to the reference402

solution. When a coder produces an utterance, it403

relates to the set of solutions they have sampled404

and what the director has said in the previous turn.405

This definition of discourse is mostly similar to406

SDRT-like dialogue-based relation categories (Ko407

et al., 2023; Asher et al., 2016; Fu, 2022; Atwell408

et al., 2024; Alikhani et al., 2023). Inspired by this,409

we propose the following discourse-based disam-410

biguation function,411

fD(I,u) = fD(I,u) 1C fC(u) (2)412

Here, 1 represents the coherence relations that413

exist between the coder and the director agents’ ut-414

terances. These relations should be from the set of415

1C⊂ {Comment, Clarification Question, Elabora-416

tion, Acknowledgment, Continuation, Explanation,417

Conditional, Alternation, Result, Background, Nar-418

ration, Correction, Parallel, Contrast} as defined in419

Chi and Rudnicky (2022).420

Inquisitive Reasoning The third Pragmatics421

framework is relative to discourse theories but fo-422

cuses more on question-type relations. In this case,423

each interlocutor’s utterance explicitly answers an424

implicit question the other interlocutor poses. This425

discourse framing is described in (Clifton and Fra-426

zier, 2012) under the umbrella term of Question427

Under Discussion (QUD). When a director gives a428

coding instruction, the pragmatic coder with QUD429

understanding recognizes an implied question un-430

der the instruction and gives an answer satisfying431

that question. This happens over a dialogue that op-432

timizes the semantic distance between the implied433

question understood by the coder and the actual434

instruction given by the director. The following435

disambiguation function can represent this,436

fD(I,u) = argminu|QD(I,u+ [u])

−QC(u+ [u])|
(3)437

where QD represents the actual instruction given438

by the director, and QC is the understood implicit439

question by the coder, and | · | represents the se- 440

mantic distance between the questions. The disam- 441

biguation function aims to minimize the difference 442

between these two questions over dialogue turns. 443

4.4 Generating dialogues 444

Pragmatic Director In this scenario, we hypoth- 445

esize that a pragmatic coding director chooses their 446

utterances according to the frameworks we pre- 447

sented in Section §4. To simulate a dialogue be- 448

tween a pragmatic director and a coder, we carry 449

out in-context learning and prefix-tuning using two 450

separate instruction-tuned LLM agents (using GPT- 451

4o in this case) and generate utterances for both of 452

the interlocutors. 453

We use a system prompt for the pragmatic direc- 454

tor, which instructs the agent’s purpose and outlines 455

the requirements and the structure of the dialogue 456

that is taking place between two interlocutors. The 457

details of the prompt are given in Appendix A. 458

Pragmatic Coder We present a second scenario, 459

which investigates different reasoning strategies 460

applied to the coder. The dialogue setup for the 461

pragmatic coder and regular director is similar to 462

the previous scenario but with the key difference 463

of having multiple reasoning types for the coder 464

instead of the director. We first extract the code con- 465

text and the coding instructions from the DS1000 466

dataset and then convert it into a dialogue format as 467

described in section § 4. Then, using CodeLLaMA- 468

13B, we generate codes that respond to the original 469

instruction (sampled k times)2. 470

To the pragmatic coder, we present a set of pos- 471

sible unique answers it can choose from the gener- 472

ated codes and the dialogue history that is happen- 473

ing and ask for a follow-up utterance for the coder 474

to converge to the solution that the director is de- 475

scribing. We then instruct it to give three solutions 476

based on the reasoning types. For the regular direc- 477

tor, we provide the reference code (or the reference 478

plot in the case of a multimodal model) and the 479

dialogue history and ask to generate a follow-up 480

utterance to converge to a solution without giving 481

away the answer. All the details of the prompts are 482

given in Appendix A. 483

Dialogue Policy We employ a rule-based dia- 484

logue policy to choose one of the three utterances 485

we generated for each strategy in the simulation. 486

2We mix code-specialized LLMs (CodeLLaMA) with
dialogue-specialized LLMs (GPT-4o) in our experiments

6



For the first turn of the dialogue, we do not use487

any LLM generations but directly use the coding488

instruction from the DS1000 dataset. For the fol-489

lowing turns, we generate three different utterances,490

one for each of the pragmatic director’s reasoning491

ways, and then generate a single utterance without492

any pragmatic reasoning prompting for the coder493

for each of the three responses of the director. We494

use the number of turns as a hyperparameter to495

generate the dialogue and perform ablation experi-496

ments on it. We do not mix reasoning styles across497

the dialogue’s turns, but we choose a single reason-498

ing style for the overall dialogue. We also exper-499

iment with providing the reference image or the500

reference code to the director to see how clarity of501

instructions affects execution.502

4.5 Dataset Creation503

We create the first synthetic dialogue dataset for504

plotting codes using the aforementioned strate-505

gies. We call this dataset SyMPa-CoD (Synthetic506

Multimodal Pragmatic Coding Dialogues), where507

we provide three different dialogues with multiple508

turns (t=3,4,5) for each Matplotlib question in the509

DS1000 dataset. In total, we provide 450 pragmatic510

coder with regular director, and 450 pragmatic di-511

rector with regular coder dialogues based on the512

150 Matplotlib coding questions.513

5 Experiments & Findings514

We experiment with different LLMs, code genera-515

tion models, pragmatic scenarios, and the number516

of turns during and after the dataset’s construction.517

In this section, we provide details of these exper-518

iments. We pose multiple research questions and519

report our findings in combination with our exper-520

iments. We first describe the automatic metrics521

based on our sampling approach for ambiguity as522

described in Section §3, and then follow-up with523

experimentation based on the dialogue approach to524

coding we described in Section §4.525

5.1 Automatic Metrics526

We measure the system’s success using two au-527

tomatic metrics: mean pass@1 and sampling di-528

versity. Pass@1 score is used directly from the529

DS1000 unit tests, with 30 samples from the cod-530

ing LLM. This score measures how many of the531

samples execute and pass the unit tests that were532

specifically hand-written for the questions. Sam-533

pling diversity is calculated by using the code gen-534

erations from the coding LLMs with the following535

following formula: 536

ds =
∑ #Unique code completions

#Total samples per question
(4) 537

We use these two metrics as proxies for evalu- 538

ating successful, executable disambiguation and 539

present our quantitative results using them.

Pass@1↑ ds↓

Baseline No Dialogue 0.422 0.744

Pragmatic
Director

with code
Cooperative 0.484 0.569
Discoursive 0.500 0.609
Inquisitive 0.407 0.796

with image
Cooperative 0.447 0.600
Discoursive 0.353 0.611
Inquisitive 0.362 0.722

Pragmatic
Coder

with code
Cooperative 0.427 0.640
Discoursive 0.467 0.613
Inquisitive 0.396 0.716

with image
Cooperative 0.447 0.584
Discoursive 0.493 0.624
Inquisitive 0.393 0.711

Table 2: This figure shows the main results of our exper-
imentation between pragmatic director and pragmatic
coder. Here, we give the metrics for both executability
and sampling diversity. Having a dialogue generally per-
forms better than the baseline code completion without
any dialogue. For each pragmatic setting, we experi-
ment with all the reasoning styles and have an image or
code as the reference solution for the director.

540

What is the best model temperature to depict 541

uniqueness for code completion in coding dia- 542

logues? We noted previously that we work with 543

functional uniqueness as a proxy for diversity in 544

the generated answers and the ambiguity. However, 545

this is a proxy governed by multiple parameters, 546

one of which is the temperature used to sample 547

from the code generation model. When the coding 548

instruction is very specific, even if temperature is 549

increased, the solutions tend to be very similar, but 550

by default, an increase in temperature results in an 551

increase in uniqueness. From our analyses, as we 552

present them in Appendix Figure 3, we observe 553

that higher temperatures have higher variability 554

in their uniqueness but they produce more unique 555

codes compared to lower temperatures. This also 556

changes the executability and the representation of 557

ambiguity in the answers by the model. 558

What is the difference in ambiguity resolution 559

and executability between a pragmatic coder 560

and a pragmatic director? In order to answer 561

this question, we run multiple experiments with 562

7



Coding Question Ambiguity Baseline Pragmatic Director Pragmatic Coder

draw a line (with random y) for each
different line style

underspecification 0.000 0.267 0.000 0.000 0.000 0.200 0.000

draw a full line from (0,0) to (1,2) semantic ambiguity 0.000 0.000 0.000 0.000 0.067 0.000 0.000
make seaborn relation plot and color

by the gender field of the dataframe df
parameter

underspecification
0.067 0.733 0.700 0.667 0.533 0.000 0.000

highlight in red the x range 2 to 4 vagueness 0.667 0.833 0.700 0.667 0.967 1.000 0.167

Table 3: This table shows a breakdown of the final executability scores for different questions in the DS1000 dataset,
with their annotated ambiguity categories. The examples are picked to show when most models have low scores, or
to show the performance according to different categories of ambiguity. From left to right, both pragmatic director
and pragmatic coder have three columns corresponding to Cooperative, Discoursive and Inquisitive reasoning styles.

pragmatic director and coder scenarios separated,563

which is presented in Table 2. The details of their564

prompting are given in Section §4. We can observe565

two main trends in the overall results.566

First, cooperative and discoursive reasoning567

styles get higher executability scores and lower568

sampling diversity, meaning that they disambiguate569

better than other strategies. The pragmatic director570

has the highest executability, especially with refer-571

ence code, in comparison to the pragmatic coder,572

and this is because when one side of the conversa-573

tion has full access to the reference solution and574

different reasoning styles, it performs the best. This575

scenario is not very realistic, as it is modeling a576

user of a code generation system and has full access577

to the final solution code.578

Secondly, if we focus on the pragmatic coder set-579

ting, we can see that reference image-based gener-580

ations are better than reference code. We postulate581

that in this scenario, the director does not give away582

the solution easily but can process the ambiguities583

in the final image to give meaningful instructions584

to satisfy the final execution tests. For the prag-585

matic coder with reference images, the highest ex-586

ecutability is with the discoursive reasoning, and587

the lowest sampling diversity is with the coopera-588

tive reasoning – the same trend was observed with589

the pragmatic director with reference code. This590

may be due to cooperative reasoning trying to min-591

imize the number of turns while discoursive can592

correctly identify the ambiguous intents (coherence593

relations) to improve the executability.594

The inquisitive reasoning style does not yield595

the best results in both cases. In certain cases,596

its performance falls below the baseline, which597

has no dialogue. To understand the reasons for598

the low inquisitive performance, we do a detailed599

error analysis with a breakdown of each question600

in Section §5.2.601

What is the effect of the number of turns on 602

the disambiguation efficiency of the generated 603

dialogue? We experimented with several num- 604

bers of turns, from 2 to 4 turns. The mean pass@1 605

scores for 2 turns were the lowest ( 0.400 for most 606

strategies), while 3 turns yielded the results we 607

have previously presented. Hence, the number of 608

turns affects the overall performance, but it is in- 609

conclusive if more turns are better for executability. 610

5.2 Error Analysis 611

We provide a detailed breakdown of the perfor- 612

mance of different dialogue strategies in Table 3. 613

The key takeaway is that some questions are still 614

hard even after dialogue, but specific ambiguity 615

categories have a best-performing pragmatic strat- 616

egy. Nearly none of the frameworks got the first 617

underspecification question correct (mean pass@1: 618

0.000). Only cooperative reasoning got it some- 619

times (mean pass@1: 0.267). Interestingly, some- 620

times, additional dialogue made the performance 621

worse for all the frameworks. Inquisitive reason- 622

ing performed the best with vagueness categories, 623

while discoursive and cooperative performed the 624

best for parameter underspecification. 625

6 Conclusion 626

Overall, in this paper, we have proposed a dialogue- 627

oriented perspective to code generation. We charac- 628

terized various pragmatics frameworks in relation 629

to pair-programming-like dialogues that happen be- 630

tween a director and a coder. We then analyzed the 631

effects of having dialogues with different reasoning 632

strategies on the executability and disambiguation 633

of the final generated code. As having a dialogue 634

based on code is becoming the norm with LLMs, fo- 635

cusing on the pragmatics of dialogue opens up new 636

venues for developing dialogue systems, datasets, 637

and evaluation mechanisms for code generation. 638
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7 Limitations639

We proposed using pragmatic dialogue for code640

generation, but the major limitation is from the641

side of human data collection and evaluation. We642

resorted to automatic metrics already being used or643

developed for this study to evaluate our setup with-644

out relying on human annotators. However, this645

entails that the evaluations may not be human-like646

and may not show the most accurate representa-647

tions even though they show improvements in gen-648

erally accepted code executability standards. Fur-649

ther, we did not deploy a dialogue system to study650

our approach. Instead, we resorted to simulations651

using LLMs, which may or may not accurately rep-652

resent how a human interlocutor would act in a653

real-world setting. We wanted to minimize this by654

using large parameter models for dialogue gener-655

ation and StackOverflow-based code instructions656

from the DS1000 dataset.657

8 Ethics Statement658

In our simulation process we have used GPT-4o,659

and this is a closed-source LLM, and we are aware660

that this model can propagate its own training bi-661

ases. The scientific community does not have ac-662

cess to any information regarding how this model663

is trained or what the dataset consists of. This may664

result in a deficient evaluation of the final perfor-665

mance and human-likeness of the generated dia-666

logue. This is a simulated analysis study to identify667

and characterize pragmatics frameworks with pos-668

sible LLM behavior in a pair programming setting.669

Hence, we do not involve humans in our current670

setup. The biases propagated by GPT-4o are the671

responsibility of OpenAI and should be held ac-672

countable by their and the scientific community’s673

ethical standards.674
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A Prompting Details 1046

A.1 Pragmatic Director 1047

Here, we provide the prompts we used for the prag- 1048

matic director and regular coder. 1049

A.1.1 System prompts: 1050

Director: You are a coding director. The things 1051

you say depend on your persona. You have the 1052

following different personas (reasoning styles): 1053

- Cooperative Persona (Pragmatic): You want to 1054

converge on the solution as quickly as possible and 1055

follow Grice’s Maxims when choosing your words. 1056

You anticipate the coder’s cooperative reasoning. 1057

You possess theory-of-mind capabilities and com- 1058

mon sense. You MUST start your utterance with 1059

variations of: "I can understand you were thinking 1060

about [coder’s cooperative reasoning]. Let’s go 1061

step-by-step." 1062

- Linguistic Reasoning Persona (Literal): You 1063

choose words according to semantic differences. 1064

You elaborate or describe the task more to target 1065

the ref code and exclude distractors. You elaborate, 1066

describe the target, and exclude the alternatives in 1067

the generated code. You MUST start your utterance 1068

with variations of: "Let’s move away from [distrac- 1069

tors in the generated answers]. Let me elaborate on 1070

my question." 1071

- Questioning Persona: Everything you say has 1072

an implicit question underneath it. You MUST 1073

start your utterance with variations of: "You are 1074

answering a different question, which is [implicit 1075

question]." 1076

You have a final product in mind. This is going 1077

to be named the REF CODE. You want a coder to 1078

write the codes for this final product. For the first 1079

turn of the dialogue, you give a specific instruction 1080
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Figure 3: This figure shows the change in unique responses of code completions depending on the temperature of
the model. From the left, the plots are showing histograms for 0.3, 0.7, and 1.0 temperatures. The horizontal axis is
the question number from the DS1000 matplotlib dataset. It is observable that the uniqueness is high for higher
temperatures, expectedly. However, very high temperatures may have minor differences that increase the overall
uniqueness. Hence, a moderate temperature like 0.7 gives more reliable results for further experimentation.

or a question about the final product. Then, the1081

coder will give you some answers, and then you1082

will have another turn to refine the codes.1083

Coder: No system prompt.1084

Coder: You are given the following dialogue that1085

happens between a coding director and a coder:1086

Director: Here is a code snippet: [code-context]1087

Director: coding-question1088

Coder: Here are the unique generated codes:1089

Solution 1: [CODE] Solution 2: [CODE] ... Direc-1090

tor: generated-dialogue1091

Give the next turn in the dialogue for the coder with1092

a new code solution. No unnecessary explanations,1093

and give the code in a code block with “‘ CODE “‘.1094

Short replies only, just give the dialogue turn.1095

A.2 Pragmatic Coder1096

A.2.1 System Prompts:1097

Director: You are a coding director. There is an-1098

other coding agent you are going to have a dialogue1099

with. You have a final product in mind. This is go-1100

ing to be named the REF CODE. You want a coder1101

to write the codes for this final product. For the first1102

turn of the dialogue, you give a specific instruction1103

or a question about the final product. Then, the1104

coder will give you some answers, and then you1105

will have another turn to refine the codes.1106

Coder: You are a coding agent. There is another1107

director agent you are going to have a dialogue with.1108

The things you say depend on your persona. You1109

have the following different personas (reasoning1110

styles):1111

- Cooperative Persona (Pragmatic): You want1112

to converge on the solution as quickly as possible1113

and follow Grice’s Maxims when choosing your1114

words. You anticipate the director’s cooperative1115

reasoning. You possess theory-of-mind capabilities1116

and common sense.1117

- Discourse Reasoning Persona: Everything you 1118

say is connected to the previous turn with a rela- 1119

tion. The possible discourse relations are Comment, 1120

Clarification Question, Elaboration, Acknowledg- 1121

ment, Continuation, Explanation, Conditional, Al- 1122

ternation, Result, Background, Narration, Correc- 1123

tion, Parallel, Contrast. You try to identify the 1124

relation between the utterance of the director in the 1125

previous with your utterance. Then you reply with 1126

an utterance that has the appropriate relation. 1127

- Questioning Persona: Everything you say has 1128

an implicit question underneath it. You should tell 1129

what the director is actually asking for (the question 1130

under their instruction), and give your answer to 1131

that implicit question. 1132

The director has a final product in mind. You, as 1133

the coder, write the codes for this final product or 1134

have a dialogue about the instruction. For the first 1135

turn of the dialogue, the director gives a specific 1136

instruction or a question about the final product. 1137

Then, you will give some answers, and then the 1138

director will have another turn to refine the codes. 1139

user prompts: 1140

Director: REF CODE: “‘+ ref-code “‘ + DIA- 1141

LOGUE HISTORY:" + dialogue-history + What 1142

can you say on the follow-up turn for the coder 1143

to converge to the reference code? Do not men- 1144

tion anything about the REF CODE, and don’t give 1145

away the answer. 1146

Coder: POSSIBLE GENERATED CODES: So- 1147

lution 1: “‘CODE“‘ Solution 2: “‘CODE“‘ .... 1148

DIALOGUE HISTORY: + dialogue-history + 1149

What can you say on the following turn as the 1150

coder to converge to the solution that the director 1151

has in mind? Give responses for all types of your 1152

personas. Personas must not give the same solu- 1153

tion! Your solution MUST NOT contain any new 1154

code. You can talk about the provided code. 1155
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B Abstract Syntax Tree (AST) Functional1156

Uniqueness Algorithm1157

In this section, we detail the AST-based function1158

uniqueness comparison algorithm between two sep-1159

arate generated functions. The code for the algo-1160

rithm is given in Listing 1. We find this form of1161

comparison to be appropriate for plotting tasks as1162

the lines of code of interest are generally the calls1163

to library functions, particularly those provided by1164

the matplotlib API.1165

C Temperature Adjustments1166

We present our experimentation results for the tem-1167

perature tuning in Figure 3.1168

D Additional Related Work1169

Interactive Semantic Parsing Prior work on1170

interactive semantic parsing has also extensively1171

studied ambiguity resolution for tasks adjacent1172

to code generation, including text-to-SQL. These1173

works can be broadly separated into three modes of1174

user interaction: (1) asking clarification questions1175

(Chaurasia and Mooney, 2017; Yao et al., 2019;1176

Li et al., 2020) (2) requesting natural language1177

feedback on simplified representations of the parse1178

(Labutov et al., 2018; Elgohary et al., 2020, 2021;1179

Tian et al., 2023) and (3) requesting labels for spe-1180

cific inputs (Zhong et al., 2023; Chen et al., 2023).1181

Our work aligns most closely with the first mode;1182

however, we study a wider set of discourse strate-1183

gies, beyond just clarification questions.1184
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1 def compare_parse_trees(response1 , response2):
2 """ Compare the parse trees of two responses."""
3 unique_function_calls = []
4 unique_params = {}
5 unique_keywords = {}
6 try:
7 tree1 = ast.parse(response1)
8 functions1 = get_params(tree1)
9 tree2 = ast.parse(response2)

10 functions2 = get_params(tree2)
11 for function in functions1.keys():
12 if function not in functions2.keys():
13 unique_function_calls.append(function)
14 else:
15 for i, arg in enumerate(functions1[function ]):
16 if arg not in functions2[function ]:
17 if function not in unique_params.keys():
18 unique_params[function] = []
19 unique_params[function ]. append(arg)
20 if isinstance(arg , dict):
21 for key in arg.keys():
22 for j in range(len(functions2[function ])):
23 if isinstance(functions2[function ][j], dict):
24 if key not in functions2[function ][j].keys():
25 if function not in unique_keywords.keys():
26 unique_keywords[function] = []
27 unique_keywords[function ]. append(key)
28 else:
29 if arg[key] != functions2[function ][j][key]:
30 if function not in unique_keywords.keys

():
31 unique_keywords[function] = []
32 unique_keywords[function ]. append(key)
33 except SyntaxError:
34 print("Syntax Error")
35 return unique_function_calls , unique_params , unique_keywords

Listing 1: This code snippet shows how the functions of two separate generated codes are compared using their
ASTs.
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