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ABSTRACT

Recent Video-Language Models (VLMs) achieve promising results on long-video
understanding, but their performance still lags behind that achieved on tasks in-
volving images or short videos. This has led to great interest in improving the long
context modeling of VLMs by introducing novel modules and additional complex-
ity. In this paper, we take a different approach: rather than fine-tuning VLMs with
the limited data available, we attempt to maximize the performance of existing
models. To this end, we propose a novel visual prompting strategy specifically
designed for long-video understanding. By combining multiple frames as panels
into one image, we effectively trade off spatial details for temporal resolution.
Our approach is training-free, parameter-free, and model-agnostic, and can be
seamlessly integrated into existing VLMs. Extensive experiments on five estab-
lished benchmarks across a wide range of model architectures, sizes, and context
windows confirm the consistency of our approach. For the TimeScope (Long)
dataset, which has the longest videos, the accuracy for video question answering
is improved by up to 19.4%. Overall, our method raises the bar for long video
understanding models. We will make our code available upon acceptance.

1 INTRODUCTION

Connecting the reasoning capabilities of Large Language Models (LLMs) with other modalities has
opened up the possibility to reason about and interact with multi-modal data (Yin et al., 2024; Yi
et al., 2025). Vision–Language Models in particular, which are capable of reasoning over images
or videos based on a textual query, now have impressive perceptive and cognitive capabilities. This
has led to their application across a variety of imaging domains like medical imaging (Hartsock &
Rasool, 2024) and industrial defect detection (Mokhtar et al., 2025), and progress is further driven by
the publication of strong open-source models such as LLaVA-Video (Zhang et al., 2025b), LLaVA-
OneVision (Li et al., 2024b), and Qwen2.5-VL (Bai et al., 2025). However, with image datasets and
benchmarks far outnumbering those for videos, video understanding by Video–Language Models
(VLMs) remains a challenge.

While VLMs can still achieve high performance on tasks involving short video clips, their perfor-
mance drastically decreases as video length increases. For example, Qwen-VL2.5 exhibits a notable
drop in accuracy when processing videos longer than three minutes (Zohar et al., 2025). This de-
cline is largely caused by their limited temporal resolution, stemming from relatively small context
windows and memory constraints, which restrict the effective visual context that the model can pro-
cess. Nonetheless, the importance of reasoning about long videos is crucial for many tasks, setting
long-video understanding as one of the crucial challenges in VLM research.

Recent works try to improve the long context modeling of VLMs in a variety of ways, typically
by heavily compressing the tokens used to represent input frames before modeling the temporal
dynamics (Bai et al., 2025; Li et al., 2024d; Zhang et al., 2025a). Although recent approaches add
new modules, additional training procedures, and additional training data to a base model, which
makes the training more complex, they struggle to consistently outperform the base models with
limited context sizes (Shu et al., 2025; Wang et al., 2025a; Zhang et al., 2024b). We therefore address
the question: Is there a simple yet efficient way to consistently improve long video understanding of
existing VLMs?

In this paper, we thus take a different approach. Rather than fine-tuning VLMs for long-video un-
derstanding with the limited instruction data available, we focus on making the most out of the ca-
pabilities of existing models. To this end, we introduce the first visual prompting approach designed
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Q: What is made after making the waffles?
A: scramble eggs      B: a cup of latte      C: bacon      D: a fruit smoothie      E: hot chocolate      F: fruit salad

B: a cup of latte

A: scramble eggsVLM

VLM

Original

Paneled

Figure 1: Illustration of our approach. We show the output of LLaVA-OneVision 7B on a sam-
ple from Video-MME. Without our proposed visual prompting, the model is unable to answer the
question correctly. By paneling multiple frames into one, we increase the capacity for long video
understanding and output the correct answer, without introducing any additional complexity.

specifically for long video understanding. Specifically, we combine multiple frames of a video into
one image, as panels in a comic as shown in Fig. 1. Our method leverages these multi-panel inputs
to improve temporal reasoning: a sequence of such panels enables denser temporal coverage within
the model’s constrained input window. This effectively increases temporal resolution at the cost of
some spatial detail, leading to a better balance between them for long videos. Since our approach
does not modify the underlying VLM architecture and is training-free and model-agnostic, it is a
versatile approach that can be applied to any existing VLM. Additionally, we show that fine-tuning
these models with their original, short-video training data represented in panels further amplifies
performance gains on long videos.

We evaluate our approach on 5 video question answering benchmarks, namely VideoMME (Fu et al.,
2025), TimeScope (Zohar et al., 2025), MLVU (Zhou et al., 2025), MF2 (Zaranis et al., 2025), and
VNBench (Zhao et al., 2024), and apply our approach to 7 VLMs, namely Video-LLaVA (Lin et al.,
2023), VideoChat2-HD (Li et al., 2024c), LLaVA-OV (Li et al., 2024b), Qwen-2VL (Wang et al.,
2024), Qwen-2.5VL (Bai et al., 2025), LLaVA-Video (Zhang et al., 2025b), VideoLLaMA 3 (Zhang
et al., 2024b), which use between 8 and 180 context frames. Our approach improves the base VLMs
in most settings and on average over all datasets for all VLMs. For the TimeScope (Long) dataset,
which has the longest videos, the accuracy of VideoLLaMA 3, which is the strongest base model
on this dataset, is improved by a large margin. The accuracy is increased by +7.6, which is an
improvement by 19.4%. This shows that paneled images are a simple yet efficient approach to
improve the long video understanding performance of VLMs.

Overall, the main contributions of this paper are as follows:

• We present the first visual prompt engineering method for long-video understanding that
requires no training or additional parameters, and can be seamlessly integrated into existing
VLMs.

• We show through extensive experiments that our framework improves results across a wide
variety of benchmarks, model types, and context sizes.

• We show that fine-tuning can increase the performance even further, without introducing
new training data.

2 RELATED WORK

Long Video Understanding. Scaling vision–language models (VLMs) to long videos is challeng-
ing due to the large number of visual tokens and the limited context windows of language backbones.
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A common strategy is to reduce the input size, either by modifying visual re-samplers to extract
fewer tokens (Li et al., 2023; 2024e; Cheng et al., 2024) or by pruning and merging features through
heuristic techniques (Chen et al., 2024; Shang et al., 2024; Jin et al., 2024; Zhou et al., 2024). Other
works extend the sequence capacity of the LLM, as in LongVA (Zhang et al., 2024b), who trans-
fer the long-context pretraining of their language backbones to multi-modal settings. Another line
of work aims to preserve temporal coherence through memory mechanisms or summarization to-
kens. For instance, VideoLLaMB (Wang et al., 2025a) introduces recurrent memory bridges with
scene segmentation, while Video-XL (Shu et al., 2025) condenses video intervals into summariza-
tion tokens within the Transformer. These divergent strategies highlight the difficulty in finding
a good balance between efficiency and information preservation, and motivate the exploration of
lightweight alternatives such as prompt-based strategies.

Visual Prompting in VLMs. Visual prompting, or visual prompt engineering, is a strategy that
modifies the visual input (images or videos) of VLMs to steer their attention, rather than altering the
model itself. Prior studies show that even simple geometric cues, such as e.g., colored regions (Yao
et al., 2024) or red circles (Shtedritski et al., 2023) for CLIP (Radford et al., 2021), or bounding
boxes (Dang et al., 2023; Duan et al., 2024; Ma et al., 2024), can effectively guide focus in image
understanding tasks. In multi-modal settings, visual prompting has been successfully applied to
improve alignment and reasoning in MLLMs (Cai et al., 2024; Wu et al., 2024). Extending this idea
to videos, Wu et al. (2025) introduce numerical tags as visual prompts within video frames, Du et al.
(2025) improve fine-grained motion recognition with motion blur and spotlighting, and Wang et al.
(2025b) improve emotion recognition with an ensemble of visual prompting techniques. Our work
follows a related intuition: we project temporal information into the spatial domain by concatenating
subsequent frames into a single visual input. This design leverages visual prompting as a lightweight
yet effective way to enhance long-video understanding without introducing additional complexity.

Composite Images. Combining multiple images into a single representation has been explored
in several domains, such as multi-sensor fusion for autonomous driving (Li et al., 2024b), action
recognition (Fan et al., 2022), efficient retrieval (Nishimura et al., 2024), and comic book under-
standing (Iyyer et al., 2017). These works demonstrate the effectiveness of spatially arranging vi-
sual inputs to capture relationships across multiple sources or instances. However, we are the first
to apply this idea to long video understanding.

3 METHOD

We focus on improving video understanding of VLMs as measured by their question answering
accuracy. For this scenario, we make use of datasets in the form of {xi, qi, yi}Ni=1 with videos
x ∈ RD×3×H×W of duration D, multiple-choice questions q ∈ Σ∗ from an alphabet Σ, and correct
answers y. The VLM is typically soft-constrained by a prompt to only output the letter of the
correct answer, allowing for an easy evaluation and comparison between methods by measuring
their accuracy (Bai et al., 2025; Fu et al., 2025).

3.1 MOTIVATION

Video understanding aims to determine the extent to which VLMs can reason about the videos they
receive as input. While for short videos, this often comes in the form of action recognition, longer
videos allow for higher-level questions. This makes them especially interesting, as reasoning aspects
such as event ordering and long-range dependencies can now be considered. However, this increase
in the sophistication of the questions comes with a notable increase in difficulty.

The main challenge is the limited temporal resolution of the VLMs, which is defined by their context
window C and determines how many frames (or tokens) the model can process. In the case of long
videos, i.e., the case where D ≫ C, this means that the model can not densely parse the entire
input video. Instead, the temporal resolution has to be reduced in order to fit within this constraint.
In practice, this is done by a sampling function ϕ : RD×3×H×W → RT×3×H×W that samples T
frames from the input video.

The application of ϕ to long videos creates an important imbalance. VLMs are largely trained on
images and short videos, where the spatial and temporal resolution are both still high after sampling.
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For long videos, however, the temporal resolution decreases drastically, while the spatial resolution
remains the same. This mismatch leads to a disproportionately large part of the computational power
of the model being dedicated to spatial, rather than temporal, relations.

3.2 VISUAL PROMPTING FOR LONG VIDEO UNDERSTANDING

To re-balance the allocation of computational resources between the spatial and temporal compo-
nents, we introduce the first visual prompting technique for long video understanding by combining
multiple frames into a single image. By creating a sequence of these multi-panel frames, we enable
denser temporal coverage within the given input budget, thereby increasing temporal resolution at
the expense of some spatial detail. Beyond simply seeing more frames, this allows the model to use
its strong pre-trained visual encoder to infer temporal relations as well. In this way, our approach
effectively extends the video context of existing VLMs. Our method operates in two steps:

Dynamic frame sampling. The requirements for understanding short and long videos differ (Li
et al., 2024d), and our prompting strategy is designed explicitly for long videos. Therefore, we
choose the number of sampled frames T dynamically. We set T depending on the ratio between the
context window size C and the duration D,

T =

{
C, if γC ≥ D,
αβC, otherwise.

(1)

As a result, we only use paneling in the case where the sampled frames are spaced at least γ frames
apart. The hyperparameters α and β define the number of frames that are combined horizontally
and vertically, respectively, into one image. We find that our method reaches the best results when
α=β, and, therefore, these can be considered as a single hyperparameter. Fig. 1 shows our default
setting with α=β=2. We explore other combinations of the hyperparameters in the ablation study.

Panel construction. In the case where γC ≥ D, the resulting sampled video x ∈ RαβC×3×H×W

is too large for the context window of the VLM. Therefore, we downsample x to x′ ∈
RαβC×3×H/α×W/β . Then, every αβ frames are stacked into one image in left-to-right, top-to-
bottom order into a panel image. This way, the final input to the VLM, x′′ ∈ RC×3×H×W , is again
within the constraints expected by the vision encoder. For example, in the case of α=β=2, we have:

x′′
i =

(
x′
4i x′

4i+1
x′
4i+2 x′

4i+3

)
.

This procedure preserves the standard input shape while extending temporal coverage by a factor of
αβ.

We found that for specific models, describing the panels in the prompt improved results. However,
we did not find a single textual prompt that increases performance across models uniformly. As a
result, we do not provide any extra information in the prompt. Nonetheless, if the model architec-
ture is fixed, an appropriate description can improve results further. We explore this further in the
Appendix.

3.3 FINE-TUNING

Applying our approach to existing VLMs improves zero-shot performance on long-video bench-
marks, even though these models are originally trained on standard videos without panels. When
additional resources are available, VLMs can be fine-tuned to better adapt to the proposed input for-
mat and further enhance performance. Specifically, we fine-tune the models on the video-question
pairs from their original training data by maximizing the likelihood of the correct multiple-choice
answer:

ℓFT (x, q, y) = − log pθ(y | x, q). (2)
We discuss the impact of fine-tuning in Section 4.3.

4 EXPERIMENTS

We perform experiments across five well-established datasets and models to evaluate our visual
prompting strategy and show that it is model-agnostic and generally applicable.
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4.1 EXPERIMENTAL SET-UP

Models. Since our approach works on the input level and does not need any architecture changes,
we can apply it directly to a large variety of existing VLMs. In particular, we focus on three main
groups of VLMs:

• Small-context. VLMs taking up to 16 frames as input. We evaluate Video-LLaVA (Lin
et al., 2023) and VideoChat2-HD (Li et al., 2024c).

• Medium-context. 16-128 frames as input. We evaluate three variants of LLaVA-OV (Li
et al., 2024b) (0.5, 7, and 72 billion parameter), Qwen-2.5VL (Bai et al., 2025) with 32
input frames, and LLaVA-Video (Zhang et al., 2025b) in two variants (7 and 72 billion).

• Long-context. VLMs taking more than 128 frames as input. We evaluate Qwen-
2VL (Wang et al., 2024), Qwen-2.5VL (Bai et al., 2025), and VideoLLaMA 3 (Zhang
et al., 2024b), all with 180 frames input.

Datasets. We use six established and public benchmarks for our evaluation:

• VideoMME (Fu et al., 2025) (VMME). 2,7000 videos between 11 seconds and 1 hour
long, categorized as short videos (80 seconds on average), medium (500 seconds) and long
(2500 seconds).

• TimeScope (Zohar et al., 2025). Videos are divided into 13 different lengths, ranging from
60 to 36, 000 seconds. We divide the evaluation into short (up to 3 hours, average 2590
seconds, 1500 videos) and long (videos lasting 5, 8, or 10 hours, average 27, 600, 450
videos).

• MLVU (Zhou et al., 2025) covers video lengths from 3 minutes to 2 hours, with an average
length of 15 minutes. We evaluate on the dev set, which consists of 2593 QA pairs over
1730 videos.

• MF2 (Zaranis et al., 2025) uses full-length movies with an average duration of 88.3 min-
utes. The task is to discriminate between true and false claims across 850 claim-pairs.

• VNBench (Zhao et al., 2024) (VNB) consists of 5400 questions on videos ranging from 10
to 180 seconds

Extended details on the datasets are provided in Sec. B. We report the accuracy over all the questions
for each benchmark.

Implementation Details. We evaluate all models with lmms-eval (Li et al., 2024a; Zhang et al.,
2024a). The VLMs are given the question and the multiple-choice answers in the format expected
by the model, after which all VLMs get the standard instruction to “Answer with the option’s letter
from the given choices directly.\n”. We set α = β = 2, γ to frames per second of the input video,
and use uniform sampling for ϕ.

For fine-tuning, we optimize LLaVA-OneVision 7B on the video subset of LLaVA-Video-
178K (Zhang et al., 2025b) for one epoch, using a batch size of 2 and a gradient accumulation
step of 4.

4.2 MAIN RESULTS

We show in Table 1 that our paneling approach consistently improves upon the baseline across a
wide range of model architectures, parameter counts, context windows, and datasets, and using
panels is, on average, the best approach for all models tested. The benefits are consistent across
question types, but are especially pronounced in datasets where the task is to reason about “needles”,
i.e., specific moments inserted in a video, such as TimeScope or VNBench. For example, paneling
raises the VNBench score of LLaVA-OneVision 72B by 3.2 percentage points, and the VMME and
long TimeScope scores are raised by 2.0 and 1.3 points, respectively, for Qwen-2.5 VL with 32
context frames. For VideoLLaMA 3 7B, our approach even raise the accuracy from 39.1 to 46.7,
which is an increase by 7.6 points or 19.4%. There are some cases where we outperform previously
reported numbers. For instance, our long-context settings for Qwen2.5-VL are slightly higher than
those reported on, e.g., VideoMME (Bai et al., 2025) (65.1 versus 66.0). Even there, our panels
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#frames VMME TIMESCOPE MLVU MF2 VNBench Avg.

medium long overall Short Long
Avg. Duration (s) 516 2467 1018 2586 27600 651 5300 57

Small-context VLMs
Video-LLaVA 7B 8 36.6 32.6 37.1 24.4 17.6 45.7 50.4 27.8 33.8

+ ours 8 37.9 34.2 38.7 25.6 17.1 45.7 50.2 32.0 34.8 (+1.0)
VideoChat2-HD 16 26.4 24.8 25.2 21.2 19.8 49.2 50.0 27.9 32.2

+ ours 16 26.7 25.1 25.4 21.3 19.8 49.8 50.0 28.5 32.5 (+0.3)
Medium-context VLMs

LLaVA-OV 0.5B 32 40.9 37.0 43.8 49.4 25.6 44.0 50.1 39.8 42.1
+ ours 32 42.6 36.6 44.3 56.9 30.0 43.1 50.2 41.0 44.3 (+1.2)

LLaVA-OV 7B 32 56.7 48.8 58.5 58.7 30.2 62.9 51.5 54.8 52.8
+ ours 32 56.2 50.2 58.9 69.5 33.8 65.3 52.1 57.7 56.2 (+3.4)

LLaVA-OV 72B 32 62.9 57.6 66.0 59.1 33.8 21.6 56.6 59.4 49.4
+ ours 32 66.4 59.3 67.7 70.0 32.4 23.8 58.5 62.6 52.5 (+3.1)

Qwen-2.5VL 7B 32 61.6 51.2 61.9 52.8 28.7 60.1 52.6 55.6 51.9
+ ours 32 64.0 54.7 63.9 60.8 30.0 64.9 53.8 58.5 55.3 (+3.4)

LLaVA-Video 7B 64 62.3 53.6 64.3 64.8 34.7 66.2 52.8 - 56.6
+ ours 64 62.2 54.0 64.4 79.2 39.3 66.0 54.4 - 60.7 (+4.1)

LLaVA-Video 72B 64 67.8 61.2 69.8 65.4 30.9 52.9 58.2 - 55.4
+ ours 64 68.6 61.4 70.1 75.7 30.9 54.4 59.9 - 58.2 (+2.8)

Long-context VLMs
Qwen-2VL 7B 180 62.7 51.0 62.4 66.1 23.8 65.7 54.3 - 54.5

+ ours 180 62.9 52.7 63.0 71.2 26.7 65.8 56.7 - 56.7 (+2.2)
Qwen-2.5VL 7B 180 67.6 54.8 66.0 73.9 37.6 66.7 54.2 - 59.7

+ ours 180 66.9 56.1 66.3 79.1 35.6 66.8 54.8 - 60.5 (+0.8)
VideoLLaMA 3 7B 180 64.6 54.1 65.3 80.2 39.1 47.3 58.9 - 58.2

+ ours 180 63.7 55.1 65.3 87.2 46.7 47.1 58.3 - 60.9 (+2.7)

Table 1: Benefits of using our approach across datasets and models. We report the video question
answering accuracy. The overall set of VMME, report Since the videos of VNBench are very short,
we evaluate only VLMs with up to 32 frames context on it. Our method improves the baseline
results in nearly all cases and in average for all VLMs.

improve results further to 66.3, showing that even with close to optimal settings, we can increase
performance.

Nonetheless, there are still some cases where paneling slightly hurts the results, such as the per-
formance of VideoLLaMA 3 7B on MF2 dropping by 0.6 points, and some other isolated drops in
performance can be found. However, these cases do not occur often and are to be expected with
such a wide evaluation.

If we compare the averages over the datasets for each VLM, we observe a consistent improvement.
For the VLMs with small context, i.e., 8-16 frames, the average improvement is between 0.3 and
1.0 points. For the medium-context VLM, the average improvement is even higher and between
1.2 and 4.1 points. For the VLMs with 180 frames as context, the gain is between 0.8 and 2.7
points. It is interesting to see that our approach with LLaVA-Video 7B, which uses 64 context
frames, outperforms the long-context base VLMs. If we add our approach to the long-context VLMs,
they remain the best performing approaches but the gap is much smaller (60.9 for VideoLLaMA 3
7B vs. 60.7 LLaVA-Video 7B). This shows on the one hand that our approach is versatile and
improves various VLMs for video question answering without any additional training or increase
of parameters. On the other hand, it questions whether existing VLMs efficiently utilize the larger
context.

4.3 FINE-TUNING

We show the results for fine-tuning with and without the proposed paneling in Table 2 to disentangle
the effect of paneling from the fine-tuning itself. We find that fine-tuning further boosts performance
by 0.4 and 0.6 on VMME and long TimeScope, respectively, over its zero-shot application when
fine-tuning the projection and LLM modules. In the case without paneling, the average performance
on VideoMME remains unchanged, while for Timescope, a slight improvement for long videos, but
an equivalent drop for short videos, yields no net benefit. Overall, these results show that paneling
images is an effective representation for long videos in general, both in the zero-shot setting and
with fine-tuning.
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VMME TIMESCOPE

short medium long overall Short Long
Without Panels

No Fine-Tuning 70.1 56.7 48.8 58.5 58.7 30.2
Proj + LLM 71.1 56.2 48.2 58.5 58.0 30.9

With Panels
No Fine-Tuning 70.1 56.2 50.2 58.9 69.5 33.8
Proj + LLM 70.4 58.1 49.4 59.3 69.5 34.4

Table 2: Effect of fine-tuning. We report results on VMME using LLaVA-OV 7B. Proj is the pro-
jector between the vision encoder and the Large-Language Model (LLM). Fine-tuning with panels
reaches superior performance over fine-tuning with standard inputs.

LLaVA-OV 7B LLaVA-Video 7B
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Figure 2: Comparison to token reduction baseline. We show results for LLaVA-OneVision 7B
and LLaVA-Video 7B on TimeScope with three different reduction strategies: default (no reduction),
low-res, and panels. Panels consistently improve the results.

4.4 WHY PANELS?

Our approach provides a natural way to spend more tokens on temporal rather than spatial resolution.
While our approach is model-agnostic, as the visual prompting is done at the input level, there are
other ways to do so. To further justify the choice for visual prompting with panels, we compare our
method against another way of increasing the ratio of tokens used for temporal understanding.

We perform the analysis with LLaVA-OneVision and LLaVA-Video. We use average pooling on the
visual tokens right before projection into the LLM. As there are 27 × 27 tokens per image at this
point, we zero-pad to 28× 28 before pooling. This way, this baseline uses slightly more tokens than
our proposed panels (25088 vs. 23328). We refer to this baseline in both cases as low-res. For a
fair comparison, we only apply low-res when the videos are at least γC frames long (Eq. 1) and use
normal sampling otherwise, similar to our own method.

We show the results of our comparison in Fig. 2. Our strategy outperforms both the default strategy
and low-res for all the models, except for LLaVA-Video 7B on TimeScope, where low-res reaches
equal performance. Overall, these results show that our approach is the optimal way of increasing
temporal resolution and effectively allows VLMs to use context sizes far bigger than what they were
trained with.

Our findings are in line with previous works on high-resolution image understanding with VLMs,
which found that scaling resolution is more effective than scaling the number of tokens (Li et al.,
2024b; Liu et al., 2024). Our approach can be seen as the inverse of this strategy; rather than splitting
one high-resolution image into multiple chunks, we combine many high-resolution frames into one
image, outperforming approaches based on token pooling.

4.5 ABLATIONS

Performance for different video lengths. TimeScope (Zohar et al., 2025) provides videos with
corresponding question–answer pairs across 13 different video lengths, allowing us to analyze how

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1m
in

2m
in

3m
in

5m
in

10
min

20
min

30
min 1h

r
2h

r
3h

r
5h

r
8h

r

Time (s)

30
40
50
60
70
80
90

100

Sc
or

e 
(%

)

Base
Panels

1m
in

2m
in

3m
in

5m
in

10
min

20
min

30
min 1h

r
2h

r
3h

r
5h

r
8h

r

Time (s)

40
50
60
70
80
90

Sc
or

e 
(%

)

Base
Panels

(a) (b)

Figure 3: Performance as a function of video duration. We show results for (a) LLaVA-Video 7B
and (b) Video-LLaMA 7B on short and long TimeScope. Panels consistently improve the results for
longer videos.
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Figure 4: Performance as a function of context window size. We show results for (a) LLaVA-
OneVision 7B and (b) LLaVA-Video 7B. Panels consistently improve the results, with more pro-
nounced effects for smaller window sizes.

paneling affects performance as duration increases. The results for LLaVA-Video 7B and Video-
LLaMA 7B in Fig. 3 show that our visual prompting strategy consistently improves accuracy on
longer videos, confirming the efficacy of paneling inputs.

Trade-off between accuracy and inference time. The same VLM can process different numbers
of frames as input. Using fewer frames reduces the number of visual tokens to process, which
in turn lowers inference time and computational cost. In Fig. 4, we show how paneling impacts
performance across a range of different context window sizes, alongside the relative inference time.
Our prompting strategy is effective for all window sizes. Furthermore, the gain in performance
allows for fewer computational resources needed without losing performance. For instance, we
achieve the same performance for LLaVA-OneVision 7B with half the frames (8 vs. 16), and,
therefore, also half the visual tokens.

Impact of γ We report results for different values of γ in Tab. 3. Recall that lower values of γ trigger
paneling for shorter videos. Across all tested values, panels consistently outperform the baseline.
However, skipping paneling for the shortest videos yields better results, as reflected in higher average
performance for larger values of γ. Interestingly, from γ = 1×fps onwards, performance on short
videos is slightly better than with no paneling at all, suggesting that paneling is already beneficial
at relatively short videos. We note that the impact of γ is more pronounced on datasets with lower
frame rates (e.g. TimeScope at 2 fps), where long durations are reached with fewer frames.

Impact of α and β. We explore the effect of different values for α and β on two benchmarks:
VideoMME, which involves standard QA across various tasks, and TimeScope with needle-in-a-
haystack (NIAH) questions. The results in Tab. 4 reveal several trends. First, paneling itself im-
proves performance overall in the majority of cases. However, increasing both α and β has a clear
trade-off: it provides more frames to the VLM, which benefits benchmarks involving NIAH queries,
but comes at the cost of reduced spatial resolution, which hurts tasks requiring fine-grained visual
detail. Second, we find that uneven paneling,i.e. when α ̸= β, leads to worse results than when they
are equal. As such, they can be considered as a single hyperparameter.
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VMME TIMESCOPE

short medium long overall Short Long
No panels 70.1 56.7 48.8 58.5 58.7 30.2
γ = 0 69.2 56.8 49.7 58.6 70.5 33.8

γ = 0.5×fps 70.1 56.8 49.7 58.9 70.2 33.8
γ = 1×fps 70.2 56.8 49.7 58.9 69.5 33.8
γ = 2×fps 70.2 56.8 49.7 58.9 69.2 33.8
γ = 3×fps 70.2 56.7 49.7 58.9 67.7 33.8

Table 3: Effect of the FPS constraint γ. We
report results on VMME using LLaVA-OV 7B.
Results are better when not paneling on the
shortest videos, but performance is robust to
values of γ. The configuration used in our ex-
periments is highlighted for clarity.

VMME TIMESCOPE

short medium long overall Short Long
1×1 70.1 56.7 48.8 58.5 58.7 30.2
1×2 69.9 57.6 48.4 58.6 65.9 31.3
2×1 70.9 55.4 48.1 58.1 63.5 32.7
2×2 70.1 56.3 50.3 58.9 69.5 33.8
3×3 70.1 56.1 49.9 58.7 76.5 33.8
4×4 70.1 56.4 48.8 58.4 73.9 30.9

Table 4: Effect of the number of panels. We
report results on VMME using LLaVA-OV 7B.
2x2 panels achieve the best results, especially
on long videos. The configuration used in our
experiments is highlighted for clarity.

New key informations
thanks to paneling:

Q: What is not mentioned in the video that need to pay attention to before entering the court?
A. Brush teeth before hearing      B. Turn off cell phone      C. Throw gum away      D. Eat before or after hearing

Original: Turn off the cell phone

Paneled: Brush teeth before hearing

Figure 5: Qualitative example on VideoMME. We use LLaVA-OV 7B as the VLM. Without pan-
els, the relevant information to answer the question is absent.

4.6 QUALITATIVE RESULTS

Paneling provides VLMs with a broader temporal context, allowing them to access more informa-
tion. In the example of Fig. 5, the key evidence for answering the question lies in the text appearing
within the video frames. Despite the lower spatial resolution of each paneled frame, the VLM suc-
cessfully identifies and interprets this information, demonstrating that enhancing temporal coverage
at the cost of some spatial detail is beneficial for long-video understanding.

5 CONCLUSION

We presented the first visual prompting strategy for long-video understanding. By combining mul-
tiple frames into panels within a single image, our method enhances the temporal resolution of
existing VLMs. This training-free, model-agnostic approach can be integrated seamlessly without
modifying the underlying architecture. Extensive experiments demonstrate that it consistently im-
proves performance across a wide range of benchmarks and model designs. Furthermore, we showed
that fine-tuning can provide additional gains, both compared to zero-shot paneling performance, as
well as fine-tuning with the normal data representation. While our approach does not improve the
understanding capabilities of the underlying VLMs, it raises the bar for new models in long video
understanding to surpass before being able to justify their additional complexity.
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6 REPRODUCIBILITY STATEMENT

We will make our code available upon acceptance. For all experiments, public available models and
datasets have been used. We did not use any data for training that is not public available.
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A APPENDIX

B DATASET DETAILS

• VideoMME (Fu et al., 2025) (VMME). A multi-modal evaluation benchmark that spans
across 6 different domains (knowledge, Film & Television, Sports Competition, Artistic
Performance, Life Record, and Multilingual). Video durations range between 11 seconds to
1 hour, and are categorized as short videos (80 seconds on average), medium (500 seconds)
and long (2500 seconds).

• TimeScope (Zohar et al., 2025) inserts multiple short video clips (”needles”) into long
videos. These needles contain the key information required to answer the questions. As
opposed to the usual NIAH evaluation, this forces models to understand the whole video.
Videos are divided into 13 different lengths, ranging from 60 to 36, 000 seconds. We divide
the evaluation into short (up to 3 hours, average 2590 seconds) and long (videos lasting
5, 8, or 10 hours, average 27, 600).

• MLVU (Zhou et al., 2025) covers a wide range of video lengths, from 3 minutes to 2 hours,
with an average length of 15 minutes. It includes both real-world videos (e.g. egocentric,
movies) and simulated videos (e.g. video games, cartoons). The benchmark provides mul-
tiple choice and open-ended generation QA tasks across 9 different categories. We evaluate
on the dev set, which consists of 2593 QA pairs over 1730 videos.

• MF2 (Zaranis et al., 2025) evaluates comprehension and recall of key narrative information
from full-length movies (50-170 minutes). It includes 53 complete movies with an average
duration of 88.3 minutes. Unlike other benchmarks, the task is to discriminate between
true and false claims across 850 claim-pairs. The claims span five categories: character
motivations and emotions, memorable moments, casual chains and event order.

• VNBench (Zhao et al., 2024) (VNB) targets three aspects of video understanding: temporal
perception, chronological ordering and spatio-temporal coherence. It includes tasks such
as retrieval, ordering and counting, and consists of 1350 samples ranging from 10 to 180
seconds, collected from 150 videos.

Prompt. Our main results show that existing VLMs are already capable of interpreting the paneled
images without any additional information in the prompt. Nonetheless, adding additional directions
in the textual prompt can, in some cases, improve results further.

To illustrate, we show results on LLaVA-OV 7B and Qwen2.5-VL 7B with three different prompts:

• Prompt 1: “You are given a sequence of images. Each image is a composite grid of video
frames arranged in temporal order: panels are ordered from left to right, then top to bottom
— like reading a book. Within each composite, the panels represent consecutive frames
from the video. Across the sequence, the composites are shown in chronological order.
When answering, interpret the full temporal sequence, not individual panels in isolation.”
added before the question.

• Prompt 2: “When answering, treat the panels as frames from one video, in order from left
to right, then top to bottom.” added before the question.

• Prompt 3: “Each image is divided into {r} rows and {c} columns of panels. Read them
in left-to-right top-to-bottom order as consecutive video frames. Answer with the option’s
letter from the given choices directly.” added after the questions. {r} and {c} are replaced
by the number of rows and columns.

As can be seen from Tab. 5, even between these models, there is no consistently best prompt, but
with model-specific prompts, performance can get another boost, such as Prompt 1 for VMME with
LLava-OneVision, and Prompt 3 for VMME with Qwen2.5-VL. Therefore, if a user is set on a
specific model, a small search over possible prompts is beneficial.
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No prompt Prompt 1 Prompt 2 Prompt 3
LLaVA-OV 7B 58.9 60.1 59.4 58.8
Qwen2.5-VL 62.4 61.9 61.8 62.9

Table 5: Effect of changing the prompt. We report results of using additional prompts on VMME
using LLaVA-OV 7B.
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