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Abstract

Machine learning models have achieved widespread success but often inherit and
amplify historical biases, resulting in unfair outcomes. Traditional fairness methods
typically impose constraints at the prediction level, without addressing underlying
biases in data representations. In this work, we propose a principled framework
that adjusts data representations to balance predictive utility and fairness. Using
sufficient dimension reduction, we decompose the feature space into target-relevant,
sensitive, and shared components, and control the fairness—utility trade-off by
selectively removing sensitive information. We provide a theoretical analysis of
how prediction error and fairness gaps evolve as shared subspaces are added, and
employ influence functions to quantify their effects on the asymptotic behavior
of parameter estimates. Experiments on both synthetic and real-world datasets
validate our theoretical insights and show that the proposed method effectively
improves fairness while preserving predictive performance.

1 Introduction

Machine learning (ML) models have achieved remarkable success across a wide range of high-
stakes applications, including finance Hardt et al| [2016]], [Liu et al.| [2018]], healthcare [Potash
et al.| [2015]], Rudin and Ustun| [2018]], and criminal justice |Van Dijck| [2022], Billi et al.| [2023]].
Despite these advances, growing evidence highlights that ML systems often inherit and reinforce
historical biases, leading to unfair outcomes [Tolan et al.|[2019], Mehrabi et al.|[2021]. Biases in data
collection |[Liang et al.|[2020], [Pagano et al.| [2023]] and disparities in group representation De-Arteaga
et al|[2019], Dablain et al.|[2024]] can manifest in model predictions, ultimately amplifying social
inequities \Bolukbasi et al.|[2016], Hassani| [2021], Hu et al.| [2024], |Ding et al.| [2024].

To address fairness concerns, researchers have introduced a range of formal definitions and algo-
rithmic interventions. Early work focused on ensuring statistical criteria such as Demographic
Parity Kamishima et al.|[2012], Jiang et al.| [2020], and more recent developments extend fairness
guarantees to multiple sensitive attributes |Tian et al.|[2024]], |Chen et al.|[2024] or local prediction
regions Jin et al.[[2024]]. Many approaches operationalize fairness by adding constraints or regulariza-
tion terms to learning objectives |Hardt et al|[2016], [Li et al.| [2023]]. However, this strategy typically
treats fairness as an external correction layered on top of predictive modeling, without addressing the
root causes of bias encoded within data representations themselves.

This work proposes a new perspective: instead of adjusting model predictions post hoc, we seek to
understand and manage the trade-off between utility and fairness at the level of data representation.
Specifically, we focus on how to construct representations that balance predictive accuracy for the
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target variable and independence from sensitive attributes. This viewpoint naturally connects fairness
with the framework of sufficient dimension reduction (SDR)|Cook and Li| [2002], /Adragni and Cook
[2009], where the goal is to project high-dimensional features onto lower-dimensional subspaces that
preserve essential information.

We consider a structured setup in which both the prediction target Y and the sensitive attribute Z admit
low-dimensional sufficient reductions with respect to the covariates X . By analyzing the subspaces
associated with Y and Z, we separate two types of directions: (1) directions informative about ¥
but orthogonal to Z and (2) directions jointly informative about both Y and Z. This decomposition
enables a principled subspace selection: start with Z-orthogonal directions for fairness, then add
shared ones to boost accuracy as needed.

To quantify the fairness—utility trade-off, we develop a theoretical framework showing how prediction
error and group-wise disparities evolve as shared directions are added. While incorporating Z-
related directions improves accuracy, it reintroduces unfairness, which is captured through variance
decomposition and gap metrics. We further apply influence functions to analyze the impact of
partially fair representations on parameter estimation and prediction. The contributions of this paper
are summarized as follows:

1. We propose a general framework for fairness-aware learning by directly manipulating data repre-
sentations. It enables controlled removal of sensitive information without relying on a specific
fairness definition.

2. We theoretically characterize how prediction risk and fairness gaps evolve as shared informa-
tion is gradually introduced, and use influence functions to analyze the effect of partially fair
representations on estimation and prediction.

3. We validate our approach through experiments on synthetic and real-world datasets, demonstrating
that subspace elimination achieves trade-offs between fairness and predictive performance.

The structure of this paper is as follows. Section [3]introduces the motivation and problem setup,
along with theoretical analysis of the utility—fairness trade-off under subspace elimination. Section 4]
details the estimation procedure. Section[5]analyzes the asymptotic behavior of the estimators and
predictors using influence functions. Section [6] presents simulation and real-world experiments that
demonstrate the effectiveness of our approach.

2 Related Work

A major approach to fairness in machine learning focuses on enforcing fairness during model training,
known as in-processing [Wang et al|[2022a], Berk et al.| [2023]], |(Caton and Haas| [2024]]. These
methods incorporate fairness constraints|Zafar et al.|[2019]],/Agarwal et al.|[2019] into the optimization
objective to satisfy predefined criteria such as Demographic Parity Dwork et al.|[2012] or Equality of
Opportunity [Hardt et al.| [2016], Shen et al.|[2022]], and have been applied across various paradigms
including contrastive learning Wang et al.|[2022b], Zhang et al.| [2022], adversarial training |Han
et al.| [2021], domain adaptation Wang et al.| [2020], and balanced supervised learning Han et al.
[2022]. However, fairness guarantees obtained this way are often task-specific and may not generalize
across downstream applications. A complementary direction focuses on achieving fairness at the
representation level by removing sensitive information from feature embeddings. Notable methods
such as Iterative Null-space Projection (INLP) Ravfogel et al.| [2020| [2023]] and Relaxed Linear
Adversarial Concept Erasure (RLACE) Ravfogel et al.|[2022] aim to systematically eliminate sensitive
information. More recently, sufficient dimension reduction (SDR) techniques have been adapted for
debiasing |Shi et al.|[2024]], identifying and removing subspaces associated with sensitive attributes
while offering theoretical guarantees, with an extension of non-linear SDR via deep neural networks
as proposed in [Shi et al.|[2025]].

3 Methodology

3.1 Motivation

We study the problem of removing sensitive information from vector representations while preserving
task-relevant content. Let (X, Y, Z) be random variables where X € R? denotes the representation,



Y € R is the prediction target, and Z € R? is the sensitive attribute. Our goal is to learn a
transformation h : RP — RP such that the transformed representation i (X) satisfies: (1) Minimal
dependence on the sensitive attribute Z and (2) Sufficient information for predicting the target variable
Y . A direct approach involves constructing a linear transformation h(X) = PX, where P € RP*P
is a projection matrix. This induces a decomposition of the input space as X = PX + (I — P)X,
with P projecting onto a subspace S; C RP and I — P projecting onto its orthogonal complement
Sy = Si-. The representation space is thus decomposed as R? = S; @ S,. For effective debiasing, S
should minimize information about Z, while Sy captures the Z-relevant components to be removed.

This formulation is introduced by |Shi et al.|[2024]], who adopt the sufficient dimension reduction
(SDR) framework to identify and eliminate sensitive information in representations. Given X and Z,
their goal is to find a matrix B, € RP*”" with orthonormal columns such that

Z 1L X |B!X, 1))

ensuring that B, X contains all the information in X relevant to predicting Z. The column space of
B,, known as the SDR subspace of X with respect to Z, see (Cook and Li [2002], |Adragni and Cook
[2009], thus serves as a natural candidate for Sy with dim(Ss) = r. Its orthogonal complement,
spanned by P = [ — B, B/, defines S; with dim(S;) = p — r. Then h(X) = PX removes all
information associated with Z, yielding a fair projection that satisfies h(X) 1 Z.

While the sufficient projection method in|Shi et al.|[2024] performs well across downstream tasks,
it primarily focuses on removing Z-related information without explicitly preserving information
relevant to Y. This can lead to substantial utility loss when Y and Z share overlapping subspaces. To
address this, we propose a finer decomposition of the representation space R?, separating directions
informative about Y but orthogonal to Z, directions shared by both, and directions unrelated to either.
This more granular perspective allows for better control of the fairness—utility trade-off by retaining
task-relevant features while minimizing bias from sensitive attributes.

3.2 Problem Setup

We adopt a SDR framework for both the target variable Y and the sensitive attribute Z, modeled as
Y:f(ﬂIrX75;Xa"'7B;—X7EY)> (2)
Z =g X,y X, 9 X e7), 3)

for some measurable functions f and g, where {3 }i_, C R and {¢;}7_; C R? are orthonormal
direction vectors, and €y, €z are noise terms independent of X. The SDR assumption implies
that all information relevant for predicting Y and Z is captured by the low-dimensional projec-
tions {3 X }{_, and {z/);'—X }7_1, respectively. Equivalently, the models in (2) and (3) imply the
conditional independence statements:

YU X|MyX, Z1X|MX, )

where My, Mz € RP*P are matrices with rank ¢ and r. The subspaces spanned by these matrices
are referred to as the central subspaces, defined by

Sy|x = Span(My ) = Span{f1,...,B4}, Sz x = Span(Mz) = Span{t1,..., ¢, }.
Assume that the central subspaces Sy |x and Sz|x intersect in a subspace

Sy|x NSz x = Span{¢y,...,ds},

where s < min{q,r}. When s = 0, the subspaces intersect only at the origin. In the special case
where Sy x C S él x> the two subspaces are completely separable. In this setting, removing all

information associated with Z does not affect the information relevant for predicting Y, and thus
fairness can be achieved without sacrificing utility.

In practice, the subspaces Sy |x and Sz x often overlap, with a nontrivial intersection (s > 0).
In such cases, removing all Z-related components may also eliminate valuable information for
predicting Y. To address this, we decompose Sy | x into two orthogonal parts: one shared with Sz x
and one independent of it. This decomposition enables a principled approach to balancing fairness
and utility by selectively retaining target-relevant features uncorrelated with the sensitive attribute.



Without loss of generality, we assume that the shared basis vectors satisfy ¢; = Sq—s4; = ¥r_sy; for

i =1,...,s. Define the projection matrix onto Sz|x as P, = Z§=1 ijj—«'— and Q. = I, — P, where
@ projects onto the orthogonal complement of the sensitive subspace. Let B = (51, .. ., ;) € RP*?
and ® = (41,...,¢s) € RP*®. Since Sy |x N Sz|x = Span(®), the uncorrelated component

Sy x NS JZ-‘ x can be identified by finding a matrix B such that
Y 1L Q.X|B'X, &)

Theorem 3.1. Let B be an orthonormal matrix satisfying condition @), then Span(é) -

Theorem [3.1] provides a direct link between the central subspace of Y and its component orthogonal
to the sensitive subspace Sz|x . Building on this decomposition, we define a sequence of partially

fair projection matrices { P("™)}3 _ as
P = BBT 4 ®,,®  where ®,, = (¢1,...,bm).

Each P(") projects X onto a subspace that retains B-based directions uncorrelated with Z, along

with m of the s shared directions between Y and Z. Let 2™ = P(™) X denote the resulting
representation. When m = 0, the representation is entirely uncorrelated with Z; when m = s,
the representation spans the full central subspace of Y, preserving complete utility but potentially
reintroducing bias.

To study the predictive behavior under this fairness—utility trade-off, we define the Bayes optimal
predictor using the partially fair representation:

Fom (&) = Bl | 50
This formulation allows gradual control over the balance between fairness and accuracy by varying
m, i.e., the number of shared components included. In the following, we analyze the theoretical
properties of f("™), characterizing how prediction risk and fairness evolve with subspace selection.

3.3 Utility and Fairness Trade-off

Recall that the full sufficient representation of Y is given by U = BBT X, and let 2™ = p(m) X
denote the reduced representation. The following result characterizes the prediction error of the
Bayes optimal predictor based on the reduced representation.

Theorem 3.2. Let f(m)(E(m)) =E[Y | E(m)] denote the Bayes predictor using the partially fair

representation 2™, and let f*(U) = E[Y | U] denote the Bayes optimal predictor using the full
sufficient representation. Then, the expected squared prediction error satisfies

E[(Y — fO(E"™)?] = EVar(f*(U) |[E"™)]+  E[7] = A(m) + ot
——
Approximation error Irreducible noise

Moreover, the approximation error A(m) is non-increasing in m, i.e.,
A(m+1) < A(m) forallme {0,...,s—1}.

This decomposition follows from the orthogonality principle in L? space, which ensures that the
conditional expectation minimizes mean squared error. The term E[Var(f*(U) | £™)] quantifies
the loss in predictive information due to reducing the representation to =), As more shared
directions are included, the reduced representation becomes increasingly informative, and the error
A(m) decreases. When m = s, the full central subspace for Y is recovered, yielding A(s) = 0.

Quantifying unfairness theoretically is inherently challenging, as it often stems from disparities in
prediction outcomes across sensitive subpopulations. Instead of relying on specific fairness metrics
like TPR or demographic parity (DP) gaps, we adopt a distributional perspective by measuring the
statistical dependence between the predictor and the sensitive attribute using distance covariance
(dCov) Székely et al.|[2007]], which quantifies the discrepancy between joint and marginal charac-
teristic functions. The following result illustrates how the reduced representation =) mitigates
unfairness by weakening the dependency between the predictor and the sensitive attribute. While the
result is stated for binary Z, it naturally extends to multivariate cases with Z € R%.



Theorem 3 3. Let Z € {0,1} be a binary sensitive attribute with p = P(Z = 1), and let f(™) =
E[Y | 2] be the Bayes predictor using the reduced SDR representation ™. Then the squared
population distance covariance between f F(m) and Z satisfies

dCov?(F™, 2) = 2p(1 — p) (B /™ = 5™~ E[F = 7))

where f( ™ fm) | Z = zfor z € {0,1}, and f(’”) is an independent copy of f(™). Specifically,
when m = 0, we have dCov?(f(™) | Z) = 0 and thereby f™) 1 Z.

This expression reveals that distance covariance is determined by the discrepancy between within-
group and between-group variations in predictions. When the reduced representation =) sufficiently
removes dependence on Z, the term E| fl(m) — fém) || approaches the population-level variation
E[|f(™) — f(m)"|], leading to a smaller dCov and improved fairness.

4 Subspace Estimation and Algorithm Implementation

4.1 Estimation of Projections

We describe the procedure to estimate the sufficient directions for predicting Y . The first step is to
estimate the intersection subspace Sy |x N Sz|x, spanned by {1, ...,0s}. This is equivalent to

estimating a matrix ® € RP** such that
YIZ|o'X, (6)

which corresponds to dimension reduction with respect to the interaction between response variables
as proposed in [Luo| [2022].
Let > denote the covariance matrix of X. Note that My and M are the symmetric candidate

matrices from SDR methods that satisfy @]), with estimates ]/W\Y and M. . Define the cross-matrix
My z = My¥X My, and let s = rank(My, z). [Luo|[2022] show that ® satisfies (6) if and only if

MyY Py oMz = My,z, @)

where Py, g = B(BTXB)~'BTX. The following theorem characterize the estimation of intersection
subspace as a generalized eigenvalue decomposition problem.

Theorem 4.1. Suppose Span{®} C RP is an s-dimensional subspace. Then Span{®} is given by
the span of the leading s eigenvectors of the following generalized eigenvalue decomposition problem:
My XMzv = AEv. The candidate symmetric matrix for @) is My,z = My X M.

Then the estimation procedure of ® is as follows. First, construct M\y and M. 7 using any exhaustive
inverse regression method (e.g., SIR |[Li| [[1991]], SAVE |Cook and Welsberg [1991]], or dlrectlonal

regressmn Li and Wang|[2007]]), and compute the sample covariance matrix 3. Next, form My 7 =
My S, ~ and estimate the dimension § = rank(My’ 7 ) using the ladle estimator [Luo and Li, 2016].

Once ® is estimated, the remaining directions relevant for predicting Y™ can be obtained via projection.
Rather than estimating 1, ..., 8,—s directly, we estimate their prOJectlons onto the orthogonal

complement of Sz x. Define the estimated projection matrix Qz = I, Z L j=1 wj LZJJ , then we
apply any SDR method to (Y, Q. X) to obtain By, . such that Y 1L ]3ZX | BY’ _X. This matrix
approximates the projected directions 3, P., ..., ﬂqT_SPZ. Together, the estimated shared directions
® and the unshared components Ey, p, form a sufficient projection P(m) The consistency and
n~1/2 convergence rates of the estimated directions and projections are well-established in the SDR
literature; we omit these details for brevity. The complete procedure is summarized in Algorithm [T}
Remark 4.2. The computational cost of obtaining the fair projection matrix primarily arises from
estimating the candidate matrices My, Mz and My z, each typically constructed as a weighted
covariance matrix. These computations scale linearly with the sample size n. In addition, the
procedure includes an eigen-decomposition step for p x p matrices, and the rank estimation step
scales linearly with dimension p.



Algorithm 1 Estimation of Sufficient Projections

Input: Data (X;,Y;, Z;)" ;; SDR method for candidate matrix construction
Output: Estlmated sufficient projections P("’) m=0,.

Compute My, M. 7 using SDR method; compute S = cov(X )

Form My 7 = Z/W\YZM 7, apply ladle estimator to estimate rank 3.

Obtain estimator ® eRP %% and get projection Qz

Apply SDR to (Y Q.X ) and obtain By @. with rank dyQ

Obtain P(™) = Byp BYP + By, <I>m form=20,...,8

A A R ol S

4.2 Algorithm Implementation

=(m) _

The sufficient variables 2™ = P(™) X can then be used to fit regression or classification models

for downstream tasks. Note that the columns of ® are ordered by the eigenvalues of ]/\4\3/, z, reflect
their predictive power for both Y and Z. By gradually adding these columns in the projection, we
can incrementally build models with varying levels of sensitive information included.

This setup allows users to manually control the amount of sensitive information retained when
predicting Y. The post-SDR training procedure is summarized in Algorithm 2] using a classification
task with accuracy (Acc) as the utility metric and demographic parity (DP) as the fairness metric.
The optimal feature set and fair model are chosen to achieve at least 95% of the validation accuracy
from the full dataset while minimizing unfairness.

Remark 4.3. Algorithm 2] presents one example of post-SDR training. In practice, DP and Acc can be
replaced by any fairness and utility metrics, and the 95% threshold generalized to any 7 € (0, 1). The
shared dimension s acts as a tuning parameter analogous to a regularization coefficient, offering two
advantages: (1) s is selected from a finite set, avoiding continuous grid search (one can step every
2-3 dimensions or use bisection); and (2) each added component remains interpretable, enabling
clear insight into the fairness—performance trade-off.

Algorithm 2 Sequential Fair Projection: Post-SDR Fair Model Training

=(m) __

Input: Sufficient variables = — pimx , training and validation datasets

Output: Fair model Mg, and selected feature set zm?)

fori = 0tosdo , '
Train model Mﬁafr based on 2 and record Acc” and DP¥) on validation set.
end for 4 , 4 _
Let s* = argmin; {DP¥ | Acc® > 95% Acc("9}, where Acc(®"™) is the accuracy trained
by original datasets X .

7: return Selected model My, = /\/lgflr and corresponding feature set =m?),

SA AN A e

5 Theoretical Analysis

In this section, we analyze the impact of using sufficient variables in the post-SDR training procedure,
with a focus on how they influence parameter estimation and expected errors. We employ influence
functions to trace a model’s prediction through the learning algorithm and back to its input features.

5.1 Influence Functions

Let (X,Y,Z) ~ F, be the joint law and we denote the empirical distribution on n samples of
(X,Y,Z) as F,. Define the SDR functional My (F') and Mz (F') for estimating central subspaces
Sy|x and Sz x respectively, and let X(F") = Var(X) be the functional for the covariance matrix.

Therefore, the intersection subspace estimation for ® corresponds to reduction functional My z(F') =
My (F)S(F)Mz(F).

In the following, an asterisk on a symbol always indicates the influence function of a statistical
functional represented by that symbol. For a sample point S = (z, y, z) drawn from Fp, let d5 be the



Dirac measure at S. The influence function of the functional R is defined as
N 0
R*(S) = &R[(l —¢e)Fy +eds] |e=o -

For notation simplicity, we abbreviate R*(.S) by R*. In the following, an asterisk on a symbol always
indicates the influence function of a statistical functional represented by that symbol. For example,
we denote the influence functions of functionals My (F), Mz(F'), My,z(F) and X(F') as My, M3,
My, , and X%, respectively. For notation simplicity, we omit the Using the product rule for Gateaux
derivatives, we obtain the influence function of My ,.

Lemma 5.1. Suppose My (F'), Mz (F) and 3(F) are Hadamard differentiable. Then, the influence
function of the reduction functional My z(F) is

My, 7z = My 5(F) Mz(F) + My (F)X" Mz(F) + My (F)X(F) M.

5.2 Asymptotic Normality of Estimators

Let f(X;0) be the differentiable predictive function parametrized by 6§ € © and let L(z,y;0) be
the differentiable loss function with respect to 6, where we fold in any regularization terms into L.
For notation simplicity, we denote L(z,y;6) by L(S;8). Then the population and empirical risk
minimizer of the parameter is given by

g — L ; 0. — 2 N _
0 =0(F,) = arg ggélE[L(S, 0], 6,=0(F,)= argmin — ;L(Sz,e)
Similarly, we define the parameters estimated by sufficient variables S(™) = (P(™)z, v, 2) as

60 = 60" (Fy, P (Fy)) £ arg minE[L(S™, 6)]
€
~ 1 & ~
(m) — g(m) (m) S T (m)
(2 0\ (F,, P'™(F,)) = arg min — z_: L(S;",6),

where P (F,) = P(m) and §(m) = (ﬁ(m)x, Yy, z). We refer to 8, as the original estimator and
%m) as the fair estimator. The entire post-SDR learning procedure can be viewed as a composition of

three mappings:

F, reduction pm) (Fn) estimation g(m) (Frm pim) (Fn)) f( . g™ (Fn7 p(m) (Fn)))

The composition mapping allows us to derive the asymptotic normality of both the estimators and
predictors after applying fair projections, as stated in the following theorems.

prediction

Theorem 5.2. Suppose all the statistical functionals presented above are Hadamard differentiable,
and their influence functions has zero expectation and finite variance, then we have the following

asymptotic normality for the estimator é\( m)

Ja@m — (0 Var[-H-! a™ 4 D™ Vec(P(m)*)D , ®)
where H(;( I [VQL( §m) gm) )} is the expected Hessian of loss function, G™) =
VoL(S™) 6(m) is the gradient, D™ = (9 0(F,, P(™ (Fy))/dvec(P™)T, vec(-) is vector-

ization of the matrix, and P"™)* denotes the influence function of P"™ (F), whose explicit form
depends on the choice of SDR method and is provided in the Appendix.

Corollary 5.3. Under the same assumptions stated in Theorem we have

nim n n(m Y 1 m m m)*
B2 —0a]*) < 07 — 0 + —Tr (Var[H~1G HZ! GO 4 DU yee( P >)]), )

where H>" = E[V3L(S,0)] and G = Vo L(S, 0).

Theorem 5.4. Let f(x;0) be the predictor evaluated at covariate x. Under the same assumptions
stated in Theorem[5.2] we have the following asymptotic normality for the predictor

f(f(a:,@n ) — f(x;g(m))> 2>/\/(O,gT Var[—H Fom L gm 4 D) yee(Pm* )]g), (10)
where g = Vo f(x;60(™)).



Theorems [5.2] and [5.4] provide feasible inference procedures for the fair estimators corresponding
to each m, which are useful for subsequent statistical inference or hypothesis testing. Corollary[5.3]
follows directly from Theorem [5.2]by comparing the asymptotic distributions of the fair and original
estimators. It shows that the expected distance between the fair and original estimators is upper
bounded by the distance between their respective true parameters and the sampling variability.

Moreover, the projection matrix P("™) plays a crucial role in shaping the asymptotic variance of
the fair estimator. By restricting the estimation to a subspace spanned by P(™) it reduces the
dimensionality of the parameter space, leading to smaller asymptotic variance. However, smaller m
also implies that important predictive directions are truncated and inflate the ||§™ — 6|2 term. Thus,
P(™) provides a natural mechanism to balance variance reduction and bias introduction.

6 Experiments

6.1 Simulation Studies

In this section, we use simulation results to justify the behavior of using the sufficient variables under
the fairness setting. Consider the multivariate linear regression, we simulate a dataset (X,Y, Z),
where the sensitive attribute Z € {0, 1} is binary.

Let A be a randomly generated matrix with columns are orthonormal. Denote Ay € RP*? is the first
q columns of A and Az € RP*" is the ¢ — s to ¢ — s + r columns of A, which means Ay and Az has
s shared columns. Define the latent variables Uy = X Ay Ay and Uz = XAz A}. Let X € R?
drawn from a standard multivariate normal distribution: X ~ N(0, I,,). The response Y € R¥ is
generated from

Y =Uy0 +cy, ey ~N(0,05%Ik),

where the coefficients @ € RP*X are randomly generated with each entry samples from N(1,1).
The sensitive variables Z is generated based on the following latent score

1 p
Z =1if ¢ > 1,and Z = 0 otherwise; where { = — E tanh([U z],) + ez and ez ~ N(0,1).
i=1

Finally, we introduce a distributional shift between groups by applying a non-linear transformation to
the X samples based only on the span of Ay. Specifically, for all samples X with Z =1,

X« X +05-exp (XAzA}).

We generate synthetic data with parameters n = 5000, p = 10, K = 5, ¢ = 8,7 = 8, and s = 6. The
dataset is randomly split into 4000 training samples and 1000 testing samples. We fit a multivariate
ordinary least squares (OLS) model on both the original features X and the projected representations

P X to estimate the model parameters 6.

To assess performance, we repeat the entire process over 30 independent replications. For each
trial, we compute the root mean squared error (RMSE) on the test set overall and separately for
the subgroups Z = 0 and Z = 1, along with the RMSE gap between groups. We also report the

parameter distance H@ilm) - §n||, where aim) is the OLS estimator obtained from the projected

data P X, and @, is the baseline estimator from the original data. Results are averaged over the
30 trials and summarized in the left panel of Figure|l} We also project X onto the direction that
best discriminates the sensitive attribute Z using Linear Discriminant Analysis (LDA), in order to
visualize the distributional discrepancy between the two sensitive groups.

The simulation results clearly support our theoretical findings. Specifically, as the shared dimension
increases, more directions in ¢ are used to predict the target variable, incorporating additional
sensitive and predictive information. This leads to a reduction in the MSE of the predictor and the
parameter distance to the original estimator, but an increase in the MSE gap between sensitive groups.
Both the distribution discrepancy and the Wasserstein distance also increase, indicating growing
divergence between groups as more sensitive information is included.
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Figure 1: Left panel: Trends of RMSE and parameter distance as the number of shared dimensions
increases, averaged over 30 replications. Right panel: Distributional discrepancy between sensitive
groups visualized via LDA, along with the average Wasserstein distance (WD) across all p dimensions
between the original and projected data as the shared dimension increases in one replication.

6.2 Real Data Applications

We evaluate our proposed Sequential Fair Projection (SFP) method on two tabular datasets: Adult
Kohavil [[1996] and Bank Moro et al.|[2014]. The Adult dataset contains personal data from over
40K individuals, with the task of predicting whether annual income exceeds $50K; gender is used as
the sensitive attribute. The Bank dataset originates from Portuguese marketing campaigns, where the
goal is to predict whether a client will subscribe to a deposit; age (over/under 25) is treated as the
sensitive attribute. The data is standardized during preprocessing and split into training, validation,
and test sets with a ratio of 70%:10%:20%.

We compare SFP against the following baselines: Logistic Regression (LR), AdvDebias|Zhang
et al.| [2018]], FairMixup (Chuang and Mroueh| [2021]], DRAlign [Li et al.| [2023[], Diff MCDP Jin
et al.| [2024], INLP Ravfogel et al.|[2020], RLACE Ravfogel et al.|[2022], and SUP |Shi et al.| [2024].
Fairness is evaluated using TPR gap, DP, and MCDP, and utility is evaluated using accuracy. The
detailed experimental settings are shown in Appendix [B] All methods are repeated 20 times, and we
report the average performance with standard deviations. The results are presented in Table [T]

Table 1: Performance metrics on the Adult and Bank datasets over 20 replications. Optimal results
are in bold, and sub-optimal results are underlined.

Adult Dataset Bank Dataset
Method Accuracy T DP | TPR | MCDP | Method Accuracy 1 DP | TPR | MCDP |
LR 84.90 17.37 6.87 35.12 LR 91.17 6.72 2.62 26.28

AdvDebias 76.49 (0.65) 1245 (1.56) 5.27 (0.53) 29.32(2.31) AdvDebias  60.56 (1.00) 2.01 (1.36) 220 (0.13) 17.55 (1.39)
FairMixup 7448 (0.43) 3.93(1.34) 5.11(0.34) 24.91 (1.58) FairMixup ~ 59.48 (1.96) 1.07 (0.25) 2.21 (0.24) 13.18 (2.94)
DRAlign  75.01 (0.41) 758 (1.03) 4.78 (0.29) 22.04 (1.22) DRAlign  59.12(1.56) 1.16 (0.41) 1.96 (0.21) 13.61 (1.23)
DiffMCDP  73.93 (0.31) 5.92(1.25) 5.33(0.46) 11.50 (1.09) DiffMCDP  60.01 (1.83) 1.19(0.39) 2.18 (0.13) 11.00 (0.97)

INLP 68.27 (0.57) 4.16 (0.34) 4.79 (0.51) 8.58 (1.24) INLP 70.13 (0.86) 0.93 (0.21) 2.38 (0.31) 10.44 (0.63)
RLACE 7279 (0.83)  5.24 (0.56) 4.56(0.31) 7.45 (0.86) RLACE 72.51(0.53) 1.02(0.35) 2.26 (0.27) 8.98 (0.38)
SUP 70.53 (0.36) 4.33(0.27) 4.37(0.29) 8.16 (1.25) SUP 70.82 (0.47) 0.96 (0.16) 2.51(0.22) 10.63 (0.42)

SFP (Ours) 76.88 (0.47) 3.78 (0.15) 4.43 (0.26) 10.52 (0.72) SFP (Ours) 89.66 (0.27) 0.51(0.26) 2.33 (0.27) 10.57 (0.34)

Our results show that SFP consistently strikes an effective balance between predictive accuracy
and fairness. On both the Adult and Bank datasets, SFP achieves competitive or superior accuracy
compared to existing fairness-aware methods while substantially reducing group-level disparities. On
the Adult dataset, SFP attains the highest accuracy (76.88%) and the lowest DP gap, demonstrating
strong control over statistical bias. It also performs well in terms of TPR gap and MCDP, with only
minor trade-offs relative to sub-optimal methods. On the Bank dataset, SFP also achieves the highest
accuracy (89.66%) and the lowest DP gap (0.51), indicating minimal disparity. Although RLACE
slightly outperforms in MCDP, SFP maintains competitive fairness across all metrics. These findings
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Figure 2: Trends of RMSE, parameter distance and distributional discrepancy as the number of shared
dimensions increases when the linear SDR assumption is violated.

confirm that SFP is a practical and flexible framework for fairness-aware learning, enabling users to
suppress sensitive information while preserving task-relevant predictive power.

6.3 Model Misspecification

In practice, the linear SDR assumption could be violated and the estimated central subspaces will
fail to capture the full conditional independence structure. Therefore, conditional independence tests
can be applied to verify whether the estimated projections preserve sufficiency. When the linear
SDR assumption is strongly violated, the estimated matrices My and Mz may lose their low-rank
structure. This indicates that no low-dimensional linear subspace can capture the dependence between
(X,Y) or (X, Z). In such cases, one practical remedy is to retain a subset of directions corresponding
to the leading eigenvalues and My, 7 and construct a fair projection by eliminating leading directions.

To examine the trade-off between utility and fairness of SFP under model misspecification, we
conduct additional experiments based on the simulation setup described in Section[6.1} with an added
nonlinear term || X ||3/p in the generating processes of both Y and £. This modification violates
the linear SDR assumption. We set p = 30, K = 5, and ¢ = r = s = 30, making it impossible to
recover a low-rank representation thr01/1§h SDR. After applying SFP, the estimated shared dimension
is § = 28, indicating that the rank of My z is 28. We then sequentially add the directions obtained

from 1\//—71/, z and report the resulting trend in Figure

The overall RMSE and RMSE gap using the original representation are 3.18 and 3.06, respectively.
As shown in Figure@ there is a clear trend that, as the number of shared dimensions used to construct
the projection matrix increases, both the overall MSE and the parameter distance decrease, indicating
that the projected representation gradually approaches the information contained in the original
features. Meanwhile, the RMSE gap and the distributional discrepancy increase as more sensitive
information is included. This demonstrates that SFP can still capture the trade-off between utility and
fairness even when the linear SDR assumption is violated.

7 Discussion

We propose a principled and model-agnostic framework for fairness-aware learning through subspace
decomposition of data representations. Our method manipulates the representation space by selec-
tively removing shared information between the target and sensitive attributes, which enables flexible
control over the fairness-utility trade-off. We provide theoretical guarantees on how prediction
error and fairness metrics evolve as more sensitive information is incorporated, and further apply
influence function analysis to characterize the impact of partially fair representations on estimator
behavior. Empirical results on both synthetic and real-world datasets validate our theoretical insights,
demonstrating that the proposed SFP method achieves good performance.
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A Influence Function of Projections

In this section, we give explicit form of the influence function of projection P(™), which can used to
derive the asymptotic normality of the parameter estimators.

Let {(Ag,i, i) }5_, be the eigenvalues and associated eigenvectors of My z, {(Agi, 8i)}i_, be the
eigenvalues and associated eigenvectors of My and {(Ay i, ¥;) }i—_; be the eigenvalues and associated
eigenvectors of M.

Then, by Zhu and Fang|[[1996], the influence function of the directions estimated by SDR techniques
can be written as, fori = 1,...,s,

.  b0] My 2
DD W an
j=1,j#i ¢yt N

Andfork=1,...,g—s

T

(Q:81)" = Q85 + Q1B = Q85 + B | L = D_ (5w + w07 ) (12)

j=1

where .
BeB, My B and o = Z Vo) Myip;

P = sk — g Apj = Age

(=1, 0£k (=1, 0#£]

Then we have
PO = (Q.B1)"(Q:B1r) T + (Q:86)(Q:8k)" T + 05,8} + 8,87,

where @ = (¢7,...,05,).

The influence functions for the candidate matrices My and Mz estimated via SDR techniques have
been well studied. For details, we refer readers to Section 4 of [Kim et al.| [2020] and omit the
derivations here.

B Experiments Details

B.1 Experiment Setup

Throughout the experiments, we use the MSAVE method to estimate the candidate matrices My and
M 7, with the number of slices set to p + 1, where p denotes the dimensionality of the input X. In the
post-SDR training procedure (as described in Algorithm 2), we apply multivariate linear regression
for synthetic simulations and logistic regression for real-world datasets. The MCDP metric is used to

select the optimal fair model Mgﬁ ). To estimate the rank of each candidate matrix, we adopt the
ladle estimator with 30 bootstrap replications.

For baseline methods, we use the official code released by the respective authors. Specifically, for
AdvDebias, FairMixup, DRAlign, and DiffMCDP, we use the implementation provided in Jin et al.
[2024]. For INLP, we set the number of iterations to 100. For RLACE, we follow the training
hyperparameters used in the original paper. For SUP, we adopt the same number of slices (p + 1) as
in our method, and select the dimension to remove based on 10-fold cross-validation, choosing the
model that achieves the lowest MCDP.
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B.2 Fairness Measurement

We consider a multi-class classification setting where the target label Y € R¥ is a one-hot encoded
vector, i.e., Y ; = 1 if the true label corresponds to class j and O otherwise. We denote the predicted

probability vector as Y, and the sensitive attribute as a binary variable Z € {0,1}.

Demographic Parity (DP) Gap. Demographic Parity requires that the predicted output is indepen-
dent of the sensitive attribute. For each class j € {1,..., K}, we define the group-wise expected
predicted score as:

DPZJ‘ = E[YJ | Z = Z],
and the corresponding DP gap for class j as:
DPgy,j = DPyj — DPo ;.

The overall DP gap across classes is then aggregated as:

1 K-1

DPgyp = T Z (DPgyp, ;)% x 100%.

j=1
When K = 2, this definition reduces to the binary case, where DP,,, = |DP; ; — DP, ;.
True Positive Rate (TPR) Gap. Foreachclass j € {1,..., K}, the TPR for group z € {0,1} is

defined as: .

and the corresponding TPR gap is:
TPRgp,; = TPR; ; — TPRy ;.

We aggregate TPR gaps across all classes into a single fairness metric:

K
1
TPRyp = | 7 D (TPRyap )2 X 100%.
j=1

Maximum Class-wise Discrepancy in Predictions (MCDP). For each class j, define the group-
wise cumulative distribution function:
Fy) =P(Y;<y|Z=2).

The MCDP for class j is then the Kolmogorov—Smirnov distance between the distributions of
predicted probabilities for the two sensitive groups:

MCDP; = max, |F1i(y) — Fo(y)] -

Since the components of Y sum to 1 due to the softmax constraint, only K — 1 of them are linearly
independent. Therefore, we define the overall MCDP gap as:

K-1
> (MCDP;)2 x 100%.

j=1

MCDPgap - ﬁ

When K = 2, this definition reduces to the binary case as in/Jin et al.|[2024].

C Proof of Theorems

Proof of Theorem[3.1} Let B be an orthonormal basis for the central subspace Sy | x, so that E[Y" |

X] =E[Y | BT X]. Since Q. X is a measurable function of X,and Y | X | BT X, it follows
that E[Y | Q.X] =E[Y | BTQ.X]. Noting that B' Q. X = (Q.B)" X, we conclude that

E[Y | QZX] = ]E[Y | (QZB)TXL
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which implies that (), B spans a sufficient subspace for Y with respect to @, X.

By definition, the central subspace for Y | @, X is the minimal subspace satisfying this conditional

independence. Therefore, if B is any orthonormal matrix such that E[Y" | Q. X] = E[Y | BT X], it
must hold that

Span(B) C Span(Q.B).

and Span(B) = Span(Q.B) if and only if rank(B) = rank(Q.B) O

Proof of Theorem[3.2] We begin by substituting the model into the expected error:
BI(Y =] ")) = B U)oy =[] = B (©) = F) 4207 (0) = ey +5 .

Take expectations term-by-term. For the first term, we observe that f(™) = E[Y | (™)), which is
the projection of Y onto a coarser sigma-algebra. Therefore f(™) = E[f*(U) | £™)] and

E[(f*(U) = f'™)?] = E[Var(f*(U) | E"™)].

For the second term, since Efey | ™)) = E[E[ey | U] | £™)] = 0, we have:
E[(f*(U) = f'™)ey] = 0.

Finally, the third term is simply E[¢%.] = o%.. Putting everything together gives:

E[(Y — f)%] = E[Var(f*(U) | ™)) + oF.
Note that f(™) (™)) is the orthogonal projection of f*(U) := E[Y | U] onto ¢(E™)) in L2. Since
=M c 2+ the projection becomes finer, and by the Pythagorean identity in L?:

1) = F D17 < 1f7(U) = Ff7.

Hence, the approximation error A(m) := E[Var(f*(U) | £™)] satisfies A(m + 1) < A(m). O

Proof of Theorem[3.3] From the definition of distance covariance for scalar X and binary Z, we
consider the V-statistic form:

dCov?(X,Z) =E[|X - X'|- |Z - Z'| + E[|X — X'|] - E[|Z — Z'] - 2E[| X — X'|-|Z — Z"]).
Specializing to Z € {0, 1}, we know:
E[|Z - Z'| =E[Z - Z"|] = 2p(1 - p),
and |Z — Z'| = 1 only when Z # Z', meaning cross-group expectation. Then:
E[|X = X' -1Z = Z'] = 2p(1 — p) - E[| X0 — Xu]],
E[IX - X'|-1Z = Z"[] = 2p(1 - p) - E[|X — X|].

So:
dCov*(X, Z) = 2p(1 - p) (E[| Xo — Xu[] ~ E[|IX — X').

Substituting X = f (™) we obtain the stated identity. Specifically, when m = 0, we have f (m) =
ém) = fl(m) and thereby the distance covariance equals zero. O

Proof of Theorem Following [Luo|[2022], Span{®} is the unique solution of
My ¥ Ps oMz = My X Mg, (13)
where, for any full rank B, Py g is the 3-orthogonal projector onto Span{B}.
Observe that
Py =X"Y2pPy 22 where U=%Y2®, P,=UU'U)"'U".
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Substituting into (T3) yields
My SYV2 Py st2 My = My ¥ My.
Left- and right-multiplying by ¥~1/2 gives
APyB=E, A=X"'"2My 3?2 B=x2M,2"'? E=AB=Y"Y’MyXM,x >

Since range(A") C range(U) and range(B) C range(U), we have A Py = Aand Py B = B. It
follows that
EPy = E.

Because F is symmetric, its nonzero-eigenvalue subspace coincides with range(U). Writing the
spectral decomposition
E=VAV', Vv=I,

and setting ® = L1/ 2V(S) (the s leading eigenvectors), we recover the equivalent generalized
eigenproblem
(My X Mz)p =X,

whose top s eigenvectors {¢;} span Span{®}. O

Proof of Theorem 5.2} Tt is well-known that, if 6(™)(F) is Hadamard differentiable, then it satisfies
the following expansion

0™ (F,, PU™(Fy,)) = 0™ (Fy, P (Fyp)) + En[00™)] + 0,(n~1/2)
1 n
= 01" (Fy, P (Fy)) o - 300" (83, P () + 0y (%)

i=1

By Theorem 1 and Proposition 1 in|Kim et al.|[2020], since L(.S, #) is differentiable, we have

D 0(Fy, P (Fy))
dvec(P(m))

d0(Fy, P (Fy))
dvec(P(m))

-
U (S, PU(F,)) = 00 (5, PU (Fy)) + < ) vee(PU™*(S))

f(m)

.
= —HZ! VeL(S™,00m) + ( > vec(P™*(8)),
where H(,:ulm — E[V2L(S,0(™)]. Therefore, we have

—~ ~ 1 <&
pim) — g(m) 4 — oS, P (F, —-1/2
s +5 D0(S PE) + o)

SLEEEDY [—Hm;veL(Sf’”% 0o) + (Mgﬁjﬁigl)”“) ) el P (5| + 0,
i=1
Consequently, by the Central Limit Theorem
V(e — gy By v (o, Var[—H=! Vo L(S"™,60™) + D™ vec( P(M)*)D 7
where D) = (90(Fy, PU™ (Fy)) /0 vee(P™)) . O

Proof of Corollary[5.3] Similar as shown in Theorem[5.2] the original estimator satisfies the follow-
ing expansion

_ l - * ) —-1/2
en_e+n29 (Si) + 0,(n"1/?)

1 - _ n(im -
=0 S HVOL(SL0) + oy )
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Then we have
(B —8,) = (6™ ~ )

n T
_l —1 - p(m) -1 (m) n(m) ae(FO’ P(Tn) (FO)) (m)x* )
= E H="VoL(S;,0"™) — Hs | VoL (5;™,0"™) + Dvec(PIM) vec(P™*(S;))

i=1

Therefore, by Central Limit Theorem, we have

Am o ~TI’L Y 1 — — m m m)*
B — 0al®) < 07 — 61 + —Tr (Var[HalG—Hg(iL)G( ) 4+ D™ e (P >)]),

O

Proof of Theorem Consider the first-order Taylor expansion of f(x;6)
s 8) = f(2:07) = Vo f (:6) T (O = 0) + o [85m) — 80)).

From Theorem we know [|65™ — 6(™)|| = O, (n=1/2). Then, following the same expansion as
shown in the proof of Theorem[5.2} along with Slutsky’s theorem, gives the results. O

D Limitations

The current work builds upon linear SDR, which assumes that both the target label and the sensitive
attribute depend on linear projections of the representation. While this is a relatively mild assumption,
it limits our ability to capture and mitigate nonlinear dependencies that may be embedded in the
representation.

A promising future direction is to extend the framework using nonlinear SDR theory. In this approach,
the representation is first mapped into a higher-dimensional feature space using a predefined kernel
function, denoted by Ker(X'). The goal is then to find a projection matrix B, such that

Z 1L X | B] Ker(X),

enforcing conditional independence in the nonlinear space. Importantly, the core derivations and
structural components of our method remain applicable in this generalized setting. Developing this
extension is a promising direction for future research.

E Impact Statement

The framework proposed in this paper tackles the fundamental challenge of fairness in machine
learning by directly mitigating bias in learned data representations. Departing from post-hoc de-
biasing methods, we enforce fairness for new representations, enabling scalable and generalizable
solutions for sensitive domains such as employment, healthcare, and finance. By balancing fairness
and predictive utility through subspace decomposition, SFP helps reduce systemic disparities and
promotes the development of trustworthy Al systems. This work underscores the importance of rigor-
ous fairness evaluation and responsible deployment to advance equitable and accountable machine
learning technologies.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All the claims made in the abstract and introduction are established in Method-
ology and Theoretical Analysis sections and demonstrated on both simulations and real
datasets.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section D of the Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

19



Answer: [Yes]

Justification: The assumptions are clearly stated and all the proofs are provided in Section C
of Appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the technical details of our experimental setup. Furthermore,
we provide the code necessary to reproduce our results in the supplementary materials.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used are publicly available, and we have uploaded code in the
supplementary materials.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all the technical details of our experimental setup.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All the results are reported with mean and standard deviation for multiple
replicates.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We conduct all our experiments on an Ubuntu Server with CPU AMD Ryzen
Threadripper PRO 3995WX 64-Cores Processor and 256G RAM.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impact in Section E of Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All the methods, codes and datasets used in the paper are properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper propose new algorithm and does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM used only for editing and grammatical refinements.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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