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Abstract

This paper delves into the fascinating challenge of enabling robots to acquire the
capacity to employ novel tools solely through the observation of another agent’s
behavior. Unlike traditional imitation learning, this problem necessitates high-
level cognitive abilities and the correct alignment of observed behaviors with the
robot’s physical embodiment. We discuss the complexities involved, emphasizing
the importance of causal reasoning and correct grounding to the robot’s body. To
address this challenge, we propose key aspects for consideration, including intuitive
physics and causal reasoning, reward shaping, and the development of an unlimited
action space with robust grounding methods. The exploration of this challenge
holds great promise for the field of artificial intelligence and robotics, offering
exciting possibilities for intelligent and adaptive machines in the future.

Figure 1: From Nat Geo Wild Video, a crow making tool

1 Introduction

As delineated in Figure 1, the depiction captures a remarkable scene in which a crow ingeniously
fashions a tool from a seemingly ordinary twig. Initially, the twig presents itself as a straight and
unadorned specimen, replete with minor twigs and leaves. However, through astute observation and
a keen appreciation for the superior functionality of hooked twigs over their straight counterparts
in the hands of humans, the crow adapts its approach. It learns to skillfully carve a hook at the
twig’s extremity, thus enhancing its capacity to procure sustenance. This remarkable capacity to
exploit available materials as implements for problem-solving is commonly referred to as "tool
use." Traditionally, tool use has been regarded as a hallmark of human superiority in the animal
kingdom [9]. Notably, Jane Goodall’s observations of ant-dipping chimpanzees challenged the
presumed uniqueness of tool use within the purview of human beings. An extensive body of literature
underscores the pivotal role of tool use in distinguishing humans from their evolutionary kin [9].
This body of work introduces various crucial cognitive facets, including but not limited to causal
reasoning, function representation, and social intelligence. This paper, however, is not intended to
engage in a definitive judgment regarding the criterion for human exceptionalism. Instead, its primary
focus is to explore specific facets of tool use within the context of the current discourse in artificial
intelligence (AI). In the domain of AI, a concept analogous to tool use is identified as "robot tool use"
[6]. In their comprehensive survey, Qin et al. (2022) define this concept across three core dimensions:
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(I) Perception, (II) Manipulation, and (III) High-level Cognition. Notably, they enumerate seven key
challenges associated with robot tool use, most of which predominantly pertain to the manipulation
aspect, with relatively limited emphasis on learning. This paper endeavors to introduce an eighth
challenge to the domain of robot tool use, focusing specifically on the perspective of learning: "How
can a robot acquire the capacity to employ a novel tool through the sole observation of another agent’s
behavior?" This problem closely parallels the setting of imitation learning [2], wherein an agent is
tasked with acquiring a behavioral policy solely from visual or recorded demonstrations of human
actions. However, the problem at hand deviates in two key dimensions:

1. High-Level Cognitive Ability: The challenge of enabling a robot to learn tool use through
observational learning necessitates a degree of high-level cognitive capability that surpasses
mere mimicry.

2. Correct Grounding to Robot Body: Unlike standard imitation learning, the robot must
correctly translate and adapt the observed behavior to its own embodied form.

The structure of this paper unfolds as follows: We shall commence by delineating the aforementioned
challenge and expound upon the formidable difficulties it presents. Subsequently, we shall offer
insightful perspectives on potential strategies for addressing this challenge within the purview of AI
and robotics research.

2 The Challenge

As articulated earlier, we present the fundamental challenge that this work aims to address: "How
can a robot acquire the capacity to employ a novel tool solely through the observation of another
agent’s behavior?" It is worth noting that this challenge diverges from traditional imitation learning in
two essential dimensions: (I) the requisite integration of high-level cognitive capabilities and (II) the
accurate alignment and adaptation of observed behaviors to the robot’s physical embodiment. These
distinctive aspects significantly underscore the inherent complexities of the challenge at hand.

2.1 High-Level Cognitive Ability

In their comprehensive work, Vaesen [9] aptly assert that the comprehension of causality transcends
mere observation of the statistical association between a cause and its corresponding effect. They
emphasize that a complete understanding of causality necessitates the ability to infer the mechanistic
link that underlies this cause-effect relationship, thereby elucidating the factors responsible for the
observed covariance.

Moreover, kyoung Ahn et al. [3] underscores a critical aspect of human cognition by positing that,
rather than merely possessing knowledge of covariation between events, humans exhibit a distinct
preference for grasping the underlying causal relationships that govern these events. This emphasis
on causal relationships as opposed to mere correlation underscores the importance of developing
robust causal reasoning abilities for the attainment of significant competence in tool use.

However, it is noteworthy that current research, such as the recent study by Gao et al. [1], reveals
limitations in the realm of causal reasoning, even within state-of-the-art Language Model (LLM)
systems, including but not limited to ChatGPT. These findings underscore the pressing need for
advancements in the realm of causal reasoning, particularly concerning AI models, to bridge this
cognitive gap and further their capacity to engage effectively in complex tasks such as tool use.

2.2 Correct Grounding to Robot Body

As elucidated by Rizzolatti and Craighero [7], mirror neurons in monkeys exhibit a remarkable
propensity for generalization. Specifically, they manifest robustness in the face of diverse visual
stimuli representing the same action. This robustness implies that these neurons can effectively
imitate or learn behaviors by observing the grasping hand of a human agent. This observation leads
to a significant inference: for a robot to attain a level of tool use proficiency comparable to that
of a monkey, it must operate within an action space that is either extensive or even unbounded.
Additionally, the robot must possess a grounding function that accurately maps the behavior of other
agents onto its own action space.
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While contemporary reinforcement learning algorithms have demonstrated considerable success
in various domains, including game playing [5, 8], they are inherently constrained by finite action
spaces. Similarly, imitation learning algorithms, as highlighted in Kai Arulkumaran [2], primarily
excel at learning from well-defined and pre-mapped behaviors. In the context of encountering novel
scenarios demanding tool use, the limitations posed by finite action spaces and reliance on restricted
mapping functions become evident shortcomings. To surmount these challenges, there is a pressing
need for innovative approaches that can empower robots to navigate uncharted tool-use scenarios with
greater adaptability and flexibility, transcending the constraints of finite action spaces and predefined
mappings.

3 A Possible Solution

As demonstrated above, the integration of existing modules falls short of yielding a proficient tool-
using agent. In this section, we endeavor to delineate crucial aspects that warrant dedicated attention
in the pursuit of addressing this formidable challenge. We posit that the following key facets merit
focused consideration:

1. Intuitive Physics and Causal Reasoning [10]: The capacity to discern the causal relationship
underpinning a given tool usage scenario is contingent upon the presence of robust intuitive
physics and causal reasoning modules. These modules are instrumental in assessing the
outcomes of observed behaviors and pinpointing the pivotal causal factors that lead to
specific outcomes.

2. Reward Shaping [4]: Tool use scenarios often entail a transformation from the current
situation to one that is considerably different, as exemplified in Figure 1, where the crow
must transform a raw twig into a hooked one to achieve its goal. This transformation
necessitates a guided path, which can be achieved through the application of reward shaping.
The development of effective and general reward-shaping methodologies is crucial to guide
the learning process.

3. Unlimited Action Space and Grounding Method: The attainment of a tool use capability
akin to the monkey’s ability to learn from a human’s hand requires two interconnected
attributes: an unbounded or expansive action space and a robust grounding method. Agents
need the capacity to accommodate a diverse range of actions, extending beyond predefined
limitations. Furthermore, these agents must possess the ability to effectively map other
agents’ actions, organs, or body parts to their own, facilitating comprehensive understanding
and adaptation.

4 Conclusion

In conclusion, this paper has explored the intriguing challenge of robot tool-using. This problem goes
beyond traditional imitation learning, requiring high-level cognitive abilities and correct grounding to
the robot’s physical embodiment. To address this formidable challenge, several key facets have been
proposed for consideration, including intuitive physics and causal reasoning, reward shaping, and the
development of an unlimited action space and robust grounding methods. These elements are pivotal
in guiding the development of proficient tool-using agents in the context of artificial intelligence and
robotics research. The exploration of this challenge opens up exciting possibilities in the field of AI,
as it delves into the intersection of cognition, perception, and manipulation, paving the way for robots
to harness observational learning and advance their capabilities in utilizing tools. As researchers
continue to tackle this challenge, it promises to have profound implications for the future of AI and
robotics, driving us closer to a new era of intelligent and adaptive machines.
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