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Abstract

We study the personalized federated learning problem under asynchronous updates.
In this problem, each client seeks to obtain a personalized model that simultane-
ously outperforms local and global models. We consider two optimization-based
frameworks for personalization: (i) Model-Agnostic Meta-Learning (MAML) and
(ii) Moreau Envelope (ME). MAML involves learning a joint model adapted for each
client through fine-tuning, whereas ME requires a bi-level optimization problem
with implicit gradients to enforce personalization via regularized losses. We focus
on improving the scalability of personalized federated learning by removing the
synchronous communication assumption. Our main technical contribution is a
unified proof for asynchronous federated learning with bounded staleness that we
apply to MAML and ME frameworks. For the smooth and non-convex functions class,
we show the convergence of our method to a first-order stationary point.

1 Introduction

Federated Learning (FL) is designed to facilitate distributed training of machine learning models
across devices by exploiting the data and computation power available to them [19, 15]. The common
underlying assumption that determines the superiority of vanilla FL to individual local training is that
the data points of all clients are coming from the same distribution, i.e., homogeneous data across
clients. In FL with heterogeneous data, an ideal scenario is to learn a globally common model easily
adaptable to local data on each client, i.e., model fusion. This approach is known as Personalized
Federated Learning (PFL), which strives to exploit both the shared and unshared information from
the data of all clients. Fallah et al. [8] suggest the MAML formulation as a potential solution for
PFL, and propose Per-FedAvg algorithm for collaborative learning with MAML personalized cost
function. Dinh et al. [6] present pFedMe algorithm for PFL via adopting a different formulation for
personalization, namely Moreau Envelopes (ME). Several recent works have approached PFL mainly
through optimization-based [13, 23, 37, 27, 5, 12], or structure-based [4, 32] techniques.

In cross-device FL, devices are naturally prone to update and communicate models under less
restrictive rules, whereas clients may apply updates in an asynchronous fashion, i.e., staleness.
Hogwild! [26] is one of the first efforts to model asynchrony in distributed setup with delayed updates.
Multiple works have studied asynchronous training under different setups and assumptions [22].
Specifically, some recent seminal works have studied the convergence of asynchronous SGD-based
methods, and show their convergence under certain assumptions on maximum or average delay
[1, 18]. More closely, FL under stale updates has been thoroughly studied in [35, 25, 2].

In this work, we study the PFL problem under asynchronous communications to improve training
concurrency, performance, and efficiency. Through the integration of two personalization formu-
lations, MAML & ME, we propose PersA-FL, an algorithm that allows PFL under asynchronous
communications with the server. We present the client algorithm under three different options for the
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local updates, each addressing a separate formulation, (A) vanilla AFL, (B) PersA-FL: MAML, and
(C) PersA-FL: ME. We show the convergence rate of PersAFL based on the maximum delay and
personalization budget.

2 Problem Setup

We consider a set of n clients and one server, where each client i ∈ [n] holds a private function
fi : Rd → R, and the goal is to obtain a model w ∈ Rd that

min
w∈Rd

f(w) :=
1

n

n∑
i=1

fi(w), (1)

with fi(w) := EΞi∼pi [ℓi(w,Ξi)], where ℓi : Rd × Si → R is a cost function that determines the
prediction error of some model w ∈ Rd over a single data point ξi ∈ Si on client i, where ξi is a
realization of Ξi ∼ pi, i.e., pi is the client i’s data distribution over Si, for i ∈ [n]. Let Di be a data
batch with samples drawn from the distribution pi. Then, the unbiased stochastic cost associated with
data batch Di can be denoted as follows:

f̃i(w,Di) :=
1

|Di|
∑

ξi∈Di

ℓi(w, ξi), (2)

where for simplicity, we assume that the size of all batches is larger than b. A solution of (1) is
a common model for all the clients; hence no adaptation or fusion to each client’s data. Next, we
elaborate on the personalization concept and discuss an alternative problem formulation for (1).

2.1 Personalized Federated Learning

When the data distributions of different clients share some similarities, e.g., bounded variance in
their heterogeneity, and the number of data points on each client is limited, joint training with fusion
improves the performance compared to individual locally trained models or vanilla FL. Therefore,
learning a shared model with little fine-tuning, e.g., a few steps of SGD with respect to the local cost,
may result in a proper personalized model.

Fallah et al. [8] proposed Per-FedAvg algorithm, which modifies the training loss function by taking
advantage of the fact that fine-tuning will occur after training. The MAML formulation assumes a
limited computational budget for personalization (fine-tuning) at each client. It then offers to look for
an initial (global) parameter that performs well after it is updated with one or a few steps of SGD. In
other words, [8] define the MAML loss function for PFL as follows:

min
w∈Rd

F (b)(w) :=
1

n

n∑
i=1

F
(b)
i (w), (3)

with F
(b)
i (w) := fi(w − α∇fi(w)) where α ≥ 0 is the MAML personalization stepsize. Solving (3)

yields a global (meta) model that can be used to create a personalized model by applying one step
of gradient descent with respect to individual loss functions. The degree of fine-tuning determines
the personalization budget, which often controls the trade-off between having a local (personalized)
or generic model, i.e., exploiting the shared and local knowledge simultaneously. In Problem (3),
stepsize α determines the personalization budget, where α = 0 implies vanilla FL in Problem (1).
See [14, 31, 9] for the study of multi-step MAML. In a nutshell, Per-FedAvg proposes to minimize
F (b)(w) via a similar paradigm as FedAvg. Hence, each client i computes the personalized gradient
of its MAML cost in (3), which can be written as follows:

∇F (b)
i (w) =

[
I−α∇2fi(w)

]
∇fi (w−α∇fi(w)) , (4)

where in Per-FedAvg, the authors propose to compute a biased estimation of (4) using stochastic
gradients/Hessian. We will elaborate on the stochastic approximation in Section 3.

3 Algorithm & Convergence Result

In this section, we propose Algorithms 1 & 3 to solve Problem 3. We move the result ME to Appendix
A. We present our method through two different perspectives, (i) server and (ii) client.
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⋄ Server Algorithm: Let us denote w0 ∈ Rd as the initial parameter at the server, where the objective
is to minimize the cost function in either (1), (3), or (8). Each client i ∈ [n] may communicate with
the server when the underlying connection is stable. Clients may request to download the server’s
parameters at any time, and the server will send the most recent model after receiving the request. All
underlying delays for the communications between the server and clients are modeled as download
and upload delays. We consider variable t as a counter for the updates at the server level. Algorithm 1
represents the server updates in PersA-FL. The server performs an iterative algorithm where at each
round t ≥ 0, remains on hold until receives an update ∆it ∈ Rd from some client it ∈ [n]. After
receiving the update from client it, the server updates its parameter according to Step 4 of Algorithm
1, where β ≥ 0 is the server stepsize.

Algorithm 1 [Personalized] Asynchronous Federated Learning (Server)

1: input: model w0, t = 0, server stepsize β.
2: repeat
3: if the server receives an update ∆it from some client it∈[n] then
4: wt+1 ← wt − β∆it
5: t← t+ 1
6: end if
7: until not converge

Algorithm 2 [Personalized] Asynchronous Federated Learning (Client i)
1: input: number of local steps Q, local stepsize η, MAML stepsize α, Moreau Envelope (ME)

regularization parameter λ, minimum batch size b, estimation error ν.
2: repeat
3: read w from the server
4: wi,0 ← w
5: for q = 0 to Q−1 do
6: sample a data batch Di,q from distribution pi

▷ Option A (AFL)

▷ Option B (PersA-FL: MAML)
7: sample two data batches D′

i,q,D′′
i,q from distribution pi

8: wi,q+1 ← wi,q − η
[
I−α∇2f̃i(wi,q,D′′

i,q)
]
∇f̃i

(
wi,q−α∇f̃i(wi,q,D′

i,q),Di,q

)
▷ Option C (PersA-FL: ME)

9: end for
10: ∆i ← wi,0 − wi,Q

11: client i broadcasts ∆i to the server
12: until not interrupted by the server

Note that we drop the time index from the iterates of the client algorithm for clarity of exposition.

⋄ Client Algorithm: Client i repeats an iterative procedure which is composed of three phases,
(i) downloading the most up-to-date model from the server as in Step 3, (ii) performing Q local
updates starting from the parameters of the downloaded model with respect to the cost function of
the underlying problem, (1), (3), or (8), as in Steps 5-9, and (iii) uploading the sum of updates on
the server as in Step 11. Note that η ≥ 0 is the local stepsize, a hyperparameter. The main idea for
the local updates is to perform Q sequential SGD steps on the local cost. By performing this option,
we aim to minimize the MAML cost function in (3). As we saw in Section 2, the full gradient can
be computed according to (4). Following [8], we sample three data batches to compute a biased
estimation of (4) as follows:

∇F̃ (b)
i (w,D′′

i ,D′
i,Di) =

[
I−α∇2f̃i(w,D′′

i )
]
∇f̃i

(
w−α∇f̃i(w,D′

i),Di

)
. (5)

We will discuss the variance and bias of this estimator in Subsection B.2. Next, we present the
convergence result of our method for the three formulations.
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3.1 Convergence Results

Now, we show the convergence of our method for MAML setup. Recall that the server updates its
model at round t using the updates sent by client it ∈ [n]. We denote Ω(t) as the timestep of the
round at which client it has received the server’s parameters before applying its Q local updates. In
other words, (Ω(t), t) denote the download and upload rounds for client it. Now, we introduce the
assumption of maximum delay.
Assumption 1 (Bounded Staleness). For all steps t ≥ 0, the staleness or effective delay between the
model version at the download step Ω(t) and upload step t is bounded by some constant τ , i.e.,

sup
t≥0
|t− Ω(t)| ≤ τ, (6)

and the server receives updates uniformly, i.e., it ∼ Uniform([n]).

Assumption 2 (Local Cost Properties). For all clients i ∈ [n], function fi : Rd → R is bounded
below, twice differentiable, and the following properties hold for all w, u ∈ Rd,
∥∇fi(w)−∇fi(u)∥ ≤ L∥w − u∥,
Eξi∼pi

∥∇ℓi(w, ξi)−∇fi(w)∥2 ≤ σ2
g ,

1
n

n∑
i=1

∥∇fi(w)−∇f(w)∥2 ≤ γ2
g ,

∥∇fi(w)∥ ≤ G,


∥∥∇2fi(w)−∇2fi(u)

∥∥ ≤ ρ∥w − u∥,
Eξi∼pi

∥∥∇2ℓi(w, ξi)−∇2fi(w)
∥∥2 ≤ σ2

h,

1
n

n∑
i=1

∥∥∇2fi(w)−∇2f(w)
∥∥2 ≤ γ2

h.

(7)

Assumption 2 summarizes all first-order and second order assumptions in [8]. We elaborate on all in
Appendix B.
Theorem 1 (PersA-FL: MAML). Let Assumptions 1 and 2 hold, α ≥ 0, β = 1, and η = 1

Q
√
LbT

.
Then, the following property holds for the joint iterates of Algorithms 1 & 3 under Option B on
Problem (3): for any timestep T ≥ 64Lb at the server

1

T

T−1∑
t=0

E
∥∥∥∇F (b)(wt)

∥∥∥2 ≤ O( 1√
T

)
+O

(
τ2

T

)
+O

(
α2σ2

g

b

)
.

The proof of this theorem can be found in Appendix D. The last term in the above rate, i.e.,O
(

α2σ2
g

b

)
accounts for personalization with biased gradient estimation. Moreover, compared to Per-FedAvg,
the second term of this rate is different, which accounts for the maximum delay in asynchronous
updates. For instance, under a fixed personalization budget α ≥ 0, our method requires T = O(ε−2)
and b = O(ε−1) to reach an ε-approximate first-order stationary solution. The last expression can
also be controlled through a combined stepsize α and batch size b. It is consistent with intuition,
meaning more samples are needed to obtain a higher degree of personalization. We present a detailed
analysis of our method in Appendix B.

4 Conclusion

This work studied the personalized federated learning problem for the heterogeneous data setting
under asynchronous communications with the server. We considered the MAML and ME formulations
to account for personalization. We proposed the PersA-FL algorithm to solve this problem under
stale updates. We showed the convergence rate of our method for smooth non-convex functions. The
extensions of our method to the buffered aggregation setups remain for future studies.
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A Problem Setup, Algorithm, and Comparisons: Extension

As an alternative option to MAML formulation in (3), Dinh et al. [6] suggest solving the following
optimization problem:

min
w∈Rd

F (c)(w) :=
1

n

n∑
i=1

F
(c)
i (w),

with F
(c)
i (w) := min

θi∈Rd

[
fi(θi) +

λ

2
∥θi − w∥2

]
,

(8)

where each function F
(c)
i (w) is a local cost of personalized parameter θi ∈ Rd by using the Moreau

Envelope as a regularized loss function, and parameter λ ≥ 0 determines the degree of personalization.
In this setup, λ = 0 is equivalent to local training with no collaboration and as λ → ∞, the
formulation in (8) converges to vanilla FL in (1) with no personalization which is similar to the case
in (3) with α = 0. For non-extreme values of λ, the clients jointly learn a global model w and
personalized parameters θi, which are regularized to remain close to w. Note that the gradient of
F

(c)
i (w) can be written as follows (please check out Appendix E to see the proof):

∇F (c)
i (w) = λ

(
w − θ̂i(w)

)
, (9)

with θ̂i(w) := argmin
θi∈Rd

[
fi(θi) +

λ

2
∥θi − w∥2

]
, (10)

where for large λ, θ̂i(w) is the exact solution to an optimization problem. Therefore, solving (8)
through a similar approach to FedAvg or Per-FedAvg, itself requires minimizing Problem (10)
which is potentially intractable. Dinh et al. [6] propose a bi-level optimization algorithm called
pFedMe, to minimize the optimization problem in (8) by alternating minimization over θi and w.
The main idea behind pFedMe is to integrating the computation of an inexact solution to (10) inside
an FL-type method. We will explain and use this inexact approximation in the presentation of our
method (Option C) in Section 3.

A.1 Asynchronous vs Synchronous Schedule

So far, we have discussed the three different formulations for collaborative learning that we will
consider in our method. As we described the FedAvg algorithm in Subsection ??, at each round t, the
parameter wt, which is the most recent version of the global parameter in the server, will be sent to a
subset of the clients. Then, the server halts the training process until all selected clients receive this
parameter, perform local updates, and transmit their updates back to the server. This synchronization
procedure restricts the algorithm flow to the slowest client at each round. Nevertheless, asynchronous
updates and communications can be described in this described framework.

Let us provide a comparison using the example in Figure 1 which illustrates the communication and
update schedule for synchronous (left) & asynchronous (right) aggregations for n = 5 clients in
FL with Q = 3 local updates. As shown in this Figure, for every update at the server-lever under
synchronized updates (left figure), the server has to wait for all the selected clients. Nevertheless,
these clients build their local updates based on the recent version of the server’s parameter. On the
contrary, in the asynchronous scenario (right figure), the server updates the global parameter once
it receives a new update from some client. The main challenge for the asynchronous setup is the
staleness between download and upload time from/to the server. We design PersA-FL based on the
second communication scenario.
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Figure 1: Communication and update schedule for synchronous and asynchronous aggregation: The
demonstrated setup in this example contains n = 5 clients with Q = 3 local updates.

A.2 Algorithm: Extension

Here, we present the client algorithm consisting all options.

⋄ Client Algorithm: Let us explain the operations of i-th client using the pseudo code in Algorithm
3. Client i repeats an iterative procedure which is composed of three phases, (i) downloading the
most up-to-date model from the server as in Step 3, (ii) performing Q local updates starting from the
parameters of the downloaded model with respect to the cost function of the underlying problem, (1),
(3), or (8), as in Steps 5-13, and (iii) uploading the sum of updates on the server as in Step 15. Note
that η ≥ 0 is the local stepsize, a hyperparameter. The main idea for the local updates is to perform Q
sequential SGD steps on the local cost. Below, we list our stochastic estimation for the full gradients
of each loss function introduced in Section 2:

• Option A: This option intends to minimize (1). Therefore, for each client i at each local round
q, we sample an independent data batch from pi and compute an unbiased estimation of the
vanilla loss as in (2).

• Option B: By performing this option, we aim to minimize the MAML cost function in (3). As we
saw in Section 2, the full gradient can be computed according to (4). Following [8], we sample
three data batches to compute a biased estimation of (4) as follows:

∇F̃ (b)
i (w,D′′

i ,D′
i,Di) =

[
I−α∇2f̃i(w,D′′

i )
]
∇f̃i

(
w−α∇f̃i(w,D′

i),Di

)
. (11)

We will discuss the variance and bias of this estimator in Subsection B.2
• Option C: Finally, we invoke this option to minimize the ME personalized loss in (8). As we

mentioned earlier, the full gradient of this cost is (9), where for a fixed w, we may obtain θ̂i(w)

by minimizing (10). Instead, following [6], we define the stochastic approximation h̃i(θi, w,Di)
as in Step 11, and minimize this function with respect to θi to obtain an approximate solution
θ̃i(w) where the gradient’s norm is less than some threshold ν ≥ 0. Therefore, we approximate
(9) with the following estimator:

∇F̃ (c)
i (w,Di) = λ

(
w − θ̃i(w)

)
. (12)

Let us denote the expectation of h̃i(.) as hi(.). Then, for λ > L, the expected function is
(λ+L)-smooth and (λ−L)-strongly convex due to the properties of Moreau Envelopes [6].
Then according to the property of [3, 6], for some ν ≤ 1 (e.g., 10−5), we can find θ̃i(w) in
O(λ+L

λ−L log( 1ν )) iterations.
We will also discuss the properties of (12) in Subsection B.3.

Next, we present the convergence result of our method for the three formulations.

A.3 Comparison

Table 1 illustrates the properties of our proposed method and provides a comparison between our
algorithm and underlying analysis with some related seminal works. As shown in this table, building
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Algorithm 3 [Personalized] Asynchronous Federated Learning (Client i)
1: input: number of local steps Q, local stepsize η, MAML stepsize α, Moreau Envelope (ME)

regularization parameter λ, minimum batch size b, estimation error ν.
2: repeat
3: read w from the server ▷ download phase
4: wi,0 ← w
5: for q = 0 to Q−1 do ▷ local updates
6: sample a data batch Di,q from distribution pi ▽ 3 options:

▷ Option A (AFL)
7: wi,q+1 ← wi,q − η∇f̃i(wi,q,Di,q)

▷ Option B (PersA-FL: MAML)
8: sample two data batches D′

i,q,D′′
i,q from distribution pi

9: wi,q+1 ← wi,q − η
[
I−α∇2f̃i(wi,q,D′′

i,q)
]
∇f̃i

(
wi,q−α∇f̃i(wi,q,D′

i,q),Di,q

)
▷ Option C (PersA-FL: ME)

10: h̃i(θi, wi,q,Di,q) := f̃i(θi,Di,q) +
λ
2 ∥θi − wi,q∥2

11: minimize h̃i(θi, wi,q,Di,q) w.r.t. θi up to accuracy level ν to find θ̃i(wi,q):∥∥∥∇h̃i

(
θ̃i(wi,q), wi,q,Di,q

)∥∥∥ ≤ ν

12: wi,q+1 ← wi,q − ηλ(wi,q − θ̃i(wi,q))

13: end for
14: ∆i ← wi,0 − wi,Q

15: client i broadcasts ∆i to the server ▷ upload phase
16: until not interrupted by the server

upon the results in [8, 6], we extend the capability of FL to staleness. Table 1 also contains the
convergence results for our proposed algorithm, which we will discuss in more details in Section ??.
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Table 1: Comparison of the characteristics considered in our work with previous methods for federated
learning with guaranteed convergence for smooth non-convex functions. Parameters τ , α, ν, and b
respectively denote the maximum delay, MAML personalization stepsize, ME inexact gradient estimation
error, batch size.

Algorithm & Reference

Pe
rs

on
al

iz
ed

C
os

t

A
sy

nc
hr

on
ou

s
U

pd
at

es

U
nb

ou
nd

ed
G

ra
di

en
t

Convergence Rate

McMahan et al. [24] ✗ ✗ - No Analysis

FedAvg Yu et al. [36] ✗ ✗ ✗ O
(

1√
T

)
Wang et al. [33] ✗ ✗ ✓ O

(
1√
T

)
FedAsync Xie et al. [35] ✗ ✓ ✗ O

(
1√
T

)
+O

(
τ2

T

)
FedBuff Nguyen et al. [25] ✗ ✓ ✗ O

(
1√
T

)
+O

(
τ2

T

)
Per-FedAvg Fallah et al. [8] ✓ ✗ ✗ O

(
1√
T

)
+O

(
α2

b

)
pFedMe Dinh et al. [6] ✓ ✗ ✓ O

(
1√
T

)
+O

(
λ2( 1

b+ν2)
(λ−L)2

)
AFL ✗ ✓ ✓ O

(
1√
T

)
+O

(
τ2

T

)
This Work PersA-FL: MAML ✓ ✓ ✗ O

(
1√
T

)
+O

(
τ2

T

)
+O

(
α2

b

)
PersA-FL: ME ✓ ✓ ✓ O

(
1√
T

)
+O

(
τ2

T

)
+O

(
λ2

(λ−L)2 ν
2
)
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B Convergence Results

In this section, we introduce the technical theorems and lemmas to show the convergence of our
method for the three described scenarios. First, we introduce the common assumptions we will use
in our analysis for all the three choices of Algorithm 3. As mentioned earlier, we require some
additional assumptions to show the convergence of MAML, which we will introduce in Subsection B.2.
After stating the assumptions, we will present the convergence results.

Recall that the server updates its model at round t using the updates sent by client it ∈ [n]. We
denote Ω(t) as the timestep of the round at which client it has received the server’s parameters before
applying its Q local updates. In other words, (Ω(t), t) denote the download and upload rounds for
client it. Now, we introduce the assumption of maximum delay.
Assumption 3 (Bounded Staleness). For all server steps t ≥ 0, the staleness or effective delay
between the model version at the download step Ω(t) and upload step t is bounded by some constant
τ , i.e.,

sup
t≥0
|t− Ω(t)| ≤ τ, (13)

and the server receives updates uniformly, i.e., it ∼ Uniform([n]).

The above assumption is standard in the analysis of asynchronous methods, specifically in heteroge-
neous settings [25, 35, 2, 18, 29, 1]. Assumption 3 guarantees that all clients remain active over the
course of training. However, they have transient delays and perform updates with staleness.

Next, we present our only assumption on the function class, i.e., smooth non-convex.
Assumption 4 (Smoothness). For all clients i ∈ [n], function fi : Rd → R is bounded below,
differentiable, and L-smooth, i.e., for all w, u ∈ Rd,

∥∇fi(w)−∇fi(u)∥ ≤ L∥w − u∥ (14)
f⋆
i := min

w∈Rd
fi(w) > −∞. (15)

The smoothness assumption is conventional in the analysis of non-convex functions. We also assume
boundedness from below, which is reasonable since the ultimate goal is to minimize the functions.
We also denote f⋆ = mini∈[n] f

⋆
i , where according to this definition, we can immediately see that

f⋆ ≤ minw∈Rd F (b)(w) and f⋆ ≤ minw∈Rd F (c)(w).

Now, we present our assumptions on bounded stochasticity and heterogeneity.
Assumption 5 (Bounded Variance). For all clients i ∈ [n], the variance of a stochastic gradient
∇ℓi(w, ξi) on a single data point ξi ∈ Si is bounded, i.e., for all w ∈ Rd

Eξi∼pi
∥∇ℓi(w, ξi)−∇fi(w)∥2 ≤ σ2

g . (16)

Assumption 5 is standard in the analysis of SGD-based methods and has been used in many relevant
works [30, 25, 16, 33, 17, 18, 31]. Since we perform updates using data batches, we also need to
show the stochastic variance for the sampled batches. Recall that for simplicity; we assumed that all
batch sizes are larger than b ≥ 1, thus, we have:

Epi

∥∥∥∇f̃i(w,Di)−∇fi(w)
∥∥∥2 ≤ σ2

g

|Di|
≤ σ2

a :=
σ2
g

b
(17)

Next, we present the bounded heterogeneity assumption.
Assumption 6 (Bounded Population Diversity). For all w ∈ Rd, the gradients of local functions
fi(w) and the global function f(w) satisfy the following property:

1

n

n∑
i=1

∥∇fi(w)−∇f(w)∥2 ≤ γ2
g . (18)

The above assumption measures the population diversity (heterogeneity) between the gradients. In
heterogeneous settings, this bound indicates the similarity between different distributions. Fallah et al.
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[8] show connections between heterogeneity and the Wasserstein distance between the distributions
under certain assumptions.

The above assumptions are sufficient to prove the convergence of our method (Algorithms 1 & 3)
under Option A and Option C. Therefore, we present the convergence analyses starting from our
results on AFL.

B.1 Asynchronous Federated Learning (Option A)

We now demonstrate the convergence rate of our method for the cost function in (1).
Theorem 2 (AFL). Let Assumptions 3-6 hold, β = 1, and η = 1

Q
√
LT

. Then, the following property
holds for the joint iterates of Algorithms 1 & 3 under Option A on Problem (1): for any timestep
T ≥ 160L(Q+7)(τ+1)3 at the server

1

T

T−1∑
t=0

E
∥∥∇f (wt

)∥∥2 ≤ 4
√
L
(
f(w0)− f⋆

)
√
T

+
8
√
L
(

σ2
g

b + γ2
g

)
√
T

+
80L(1+Q)(τ2+1)

(
σ2
g

b + γ2
g

)
T

.

The proof of Theorem 2 is provided in Appendix C. This theorem suggests a convergence rate of
O
(

1√
T

)
+O

(
Qτ2

T

)
for asynchronous federated learning AFL. Our analysis removes the unneces-

sary boundedness assumption on the gradient norm.
Remark 1. Selecting β = 1 in Theorem 2, results in a sub-optimal first-order stationary rate for
smooth non-convex cost functions. However, this is an arbitrary choice for the value of β and can be
relaxed to any β = O(1) similar to [25].

Next, we present the convergence of PersA-FL: MAML along with some technical lemmas borrowed
from [8].

B.2 Personalized Asynchronous Federated Learning: Model-Agnostic Meta-Learning Setup
(Option B)

As we discussed in Section 3, we require the second-order derivatives of the local functions to
compute the gradients of the personalized costs in (3). Accordingly, we consider similar assumptions
for the second-order derivatives as Assumptions 4-6.
Assumption 7 (Second-Order Properties). For all clients i ∈ [n], the following properties hold for
the Hessian of each fi : Rd → R, the variance of a stochastic Hessian∇2ℓi(w, ξi) on a single data
point ξi ∈ Si, and the global Hessian ∇2f(w): for all w, u ∈ Rd,∥∥∇2fi(w)−∇2fi(u)

∥∥ ≤ ρ∥w − u∥, (19)

Eξi∼pi

∥∥∇2ℓi(w, ξi)−∇2fi(w)
∥∥2 ≤ σ2

h, (20)

1

n

n∑
i=1

∥∥∇2fi(w)−∇2f(w)
∥∥2 ≤ γ2

h. (21)

Assumption 7 is conventional in the analysis of methods with access to second-order information
[7, 8, 28, 31]. Finally, we adopt another assumption from [11, 8, 10] on the gradient norm to simplify
the analysis for the MAML cost.
Assumption 8 (Bounded-Gradient). There exists a constant G such that for all clients i ∈ [n], and
any parameter w ∈ Rd,

∥∇fi(w)∥ ≤ G. (22)

To the best of our knowledge, seminal works on MAML loss mainly consider this assumption to
simplify the properties of the personalized function. Note that we consider Assumptions 7-8 only
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in the analysis of PersA-FL (Algorithms 1 & 3) under Option B. Under Assumptions 4 and 8, the
properties in (21) and (18) can be simply derived with γh = 2L and γg = 2G [8].

Before stating the convergence of PersA-FL: MAML, let us state some technical lemmas on the
personalized MAML cost function.

Lemma 1 ([8], Lemma 4.2 - Smoothness: MAML). Let Assumptions 4 and 8 hold. Then, F (b)
i in (3) is

Lb-smooth, i.e., for all clients i ∈ [n], and any parameters w, u ∈ Rd,∥∥∥∇F (b)
i (w)−∇F (b)

i (u)
∥∥∥ ≤ Lb∥w − u∥, (23)

where Lb := L(1+αL)2 + αρG.

Lemma 1 indicates that the personalized cost in (3) is also smooth. The smoothness parameter
Lb depends on the personalization hyperparameter α. Increasing the value of α results in higher
smoothness constant Lb. The smoothness property of MAML cost under multi-step personalization
(instead of one) is shown in [31][Lemma 3].

Lemma 2 ([8], Lemma 4.3 - Bounded Variance: MAML). Let Assumptions 4, 5, 7, and 8 hold, and
data batches D,D′,D′′ be randomly sampled according to data distribution pi. Then, the following
properties hold for the stochastic personalized gradient∇F̃ (b)

i (w,D′′,D′,D):∥∥∥Epi

[
∇F̃ (b)

i (w,D′′,D′,D)−∇F (b)
i (w)

]∥∥∥ ≤ µb :=
αL(1+αL)σg√

b
, (24)

Epi

∥∥∥∇F̃ (b)
i (w,D′′,D′,D)−∇F (b)

i (w)
∥∥∥2 ≤ σ2

b , (25)

for all w ∈ Rd, where σ2
b := 3(1+αL)2σ2

g

[
1
b+

α2L2

b

]
+ 3α2G2 σ2

h

b +
3α2σ2

gσ
2
h

b

[
1
b+

α2L2

b

]
.

Lemma 2 highlights two important results. First, the stochastic gradient in (11) is a biased estimation
of the full gradient 4. The biasness is controlled by two factors, personalization stepsize α, and batch
size b.1 Therefore, we obtain an unbiased estimation under no personalization, i.e., α = 0. However,
as we select a larger α, we require more samples to reduce the error imposed by biased gradient
estimations. Second, similar to Assumption 5 on the vanilla cost; we have a tight variance based on α
and b.

Lemma 3 ([8], Lemma 4.4 - Bounded Population Diversity: MAML). For all w ∈ Rd, the gradients of
local personalized functions F (b)

i (w) and the global function F (b)(w) satisfy the following property:

1

n

n∑
i=1

∥∥∥∇F (b)
i (w)−∇F (b)(w)

∥∥∥2 ≤ γ2
b := 12(1 + αL)2

[
1 + α2L2

]
γ2
g + 12α2G2γ2

h. (26)

The above lemma determines the heterogeneity of the personalized gradients ∇F (b)
i (w) based

on the heterogeneity of gradient and Hessian. One can see the connection of this bound with
O(γ2

g) + α2O(γ2
h), whereby setting α = 0, we recover the same heterogeneity in terms of O(·)

notion.

Lemma 4 (Bounded-Gradient: MAML). For all clients i ∈ [n], and any parameter w ∈ Rd,∥∥∥∇F (b)
i (w)

∥∥∥ ≤ Gb := (1+αL)G. (27)

This lemma indicates that the bound on the norm of personalized gradients potentially increases
under a larger personalization budget α.

Building upon the results in Lemmas 2-(27), we are now ready to present the convergence result for
PersA-FL: MAML.

1It should be noted that the batch size in the upper bound of (24) refers to the size of |D′|. Recall that we use
this batch to approximate the inner gradient in 12.
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Theorem 3 (PersA-FL: MAML). Let Assumptions 3-8 hold, α ≥ 0, β = 1, and η = 1
Q
√
LbT

. Then,
the following property holds for the joint iterates of Algorithms 1 & 3 under Option B on Problem
(3): for any timestep T ≥ 64Lb at the server

1

T

T−1∑
t=0

E
∥∥∥∇F (b)(wt)

∥∥∥2 ≤ 4
√
Lb

(
F (b)(w0)− f⋆

)
√
T

+
8
√
Lb

(
σ2
b + γ2

b

)
√
T

+
20QLb

(
G2

b+σ2
b

) (
τ2+1

)
T

+
4Qα2L2(1+αL)2σ2

g

b
.

The proof of this theorem can be found in Appendix D. Theorem 3 shows a convergence rate of

O
(

1√
T

)
+O

(
τ2

T

)
+O

(
α2σ2

g

b

)
for PersA-FL algorithm under MAML setup. Now, let us compare

this rate with the convergence rate of AFL and Per-FedAvg, as in Table 1. The last term in the

above rate, i.e., O
(

α2σ2
g

b

)
accounts for personalization with biased gradient estimation. Moreover,

compared to Per-FedAvg, the second term of this rate is different, which accounts for the maximum
delay in asynchronous updates. For instance, under a fixed personalization budget α ≥ 0, our method
requires T = O(ε−2) and b = O(ε−1) to reach an ε-approximate first-order stationary solution. The
last expression can also be controlled through a combined stepsize α and batch size b. It is consistent
with intuition, meaning more samples are needed to obtain a higher degree of personalization.

Next, we will present the analysis of PersA-FL: ME.

B.3 Personalized Asynchronous Federated Learning: Moreau Envelope Setup (Option C)

In this subsection, we show three technical lemmas on the bounded variance of stochasticity and
heterogeneity as well as smoothness for ME formulation (8) and then present the convergence rate of
PersA-FL for this personalization framework. The proof of all results in this subsection is provided
in Appendix E.

First, we present the smoothness property of ME loss.

Lemma 5 (Smoothness: ME). Let Assumption 4 holds and λ ≥ κL for some κ > 1. Then, F (c)
i in

(8) is Lc-smooth, where Lc =
λ

κ−1 .

According to Lemma 5, we limit our exploration to λ > L which satisfies the smoothness constraint
for the ME formulation. In fact, according to Appendix E, one can also see that originally, each F

(c)
i (·)

is λL
λ−L -smooth which is also smaller than Lc =

λ
κ−1 . As we mentioned in Section 2, when λ→∞,

ME framework converts to vanilla FL. The smoothness property in Lemma 5 is tight because, Lc → L
if λ→∞.

Corollary 1 ([6], Proposition 1). If λ ≥ 2L, then Lemma 5 implies that F (c)
i in (8) is λ-smooth.

Lemma 6 (Bounded Variance: ME). Let Assumptions 4 and 5 hold, λ ≥ κL (for some κ > 1),
and the data batch D be randomly sampled according to data distribution pi. Then, the following
properties hold for the stochastic personalized gradient∇F̃ (c)

i (w,D): for all w ∈ Rd,∥∥∥Epi

[
∇F̃ (c)

i (w,D)−∇F (c)
i (w)

]∥∥∥ ≤ µc :=
λ

λ−L
ν, (28)

Epi

∥∥∥∇F̃ (c)
i (w,D)−∇F (c)

i (w)
∥∥∥2 ≤ σ2

c :=
2λ2

(λ−L)2

[
σ2
g

b
+ ν2

]
. (29)

This lemma is analogous to Lemma 2 in Subsection B.2. In Lemma 6, we show an upper bound
on the variance and bias of the stochastic gradient compared to the full gradient. Note that when
λ→∞, we know that θ̂i(w)→ w. Therefore, by fixing θ̃i(w) = w, it is guaranteed that ν = 0, thus
our gradient estimation becomes unbiased and the variance similar to (17).

Lemma 7 (Bounded Population Diversity: ME). Let personalization hyperparameter λ ≥ 7L. Then,
for all w ∈ Rd, the gradients of local personalized functions F (c)

i (w) and the global ME function
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F (c)(w) satisfy the following property:

1

n

n∑
i=1

∥∥∥∇F (c)
i (w)−∇F (c)(w)

∥∥∥2 ≤ γ2
c :=

16λ2

λ2−48L2
γ2
g . (30)

Lemma 7 provides a bound on population diversity of ME as a factor of γ2
g . Similar to what we

explained so far, for λ→∞, the heterogeneity bound turns into γ2
g .

Remark 2. In the analysis for Theorem 4, we consider bounded population diversity as in Assumption
6, average bounded diversity. [6][Assumption 3] and [34][6.1.1 Assumptions and Preliminaries, (vii)]
consider a slightly stronger version of this assumption, namely uniformly “bounded heterogeneity”
which is defined as follows:

max
i∈[n]

sup
w∈Rd

∥∇fi(w)−∇f(w)∥2 ≤ γ2
g . (31)

Under the modified assumption in (31), we can improve γ2
c := 16λ2

λ2−8L2 γ
2
g .

Now, we present our convergence result of PersA-FL: ME under Assumption 3-6
Theorem 4 (PersA-FL: ME). Let Assumptions 3-6 hold, λ ≥ 7L, β = 1, and η = 1

Q
√
LcT

. Then,
the following property holds for the joint iterates of Algorithms 1 & 3 under Option C on Problem
(8): for any timestep T ≥ 288Lc(Q+7)(τ+1)2 at the server

1

T

T−1∑
t=0

E
∥∥∥∇F (c)(wt)

∥∥∥2 ≤ 4
√
Lc

(
F (c)(wt)− f⋆

)
√
T

+
8
√
Lc

(
σ2
c + γ2

c

)
√
T

+
144Lc(1+Q)(τ2+1)

(
σ2
c + γ2

g

)
T

+
4Qλ2ν2

(λ−L)2
.

This theorem proposes a convergence rate of O
(

1√
T

)
+O

(
τ2

T

)
+O

(
λ2ν2

(λ−L)2

)
for PersA-FL

under ME formulation. Again, under the exact same reasoning as Lemma 6, we know that ν = 0
when λ→∞, thus the convergence rate simply reduces to vanilla AFL with no personalization. Let
us compare this convergence rate with the rate of pFedMe [6] in Table 1. By comparing the last

terms in both rates, O
(

λ2ν2

(λ−L)2

)
and O

(
λ2( 1

b+ν2)
(λ−L)2

)
, one can see that the additional term 1

b in the

convergence rate of pFedMe, implies that even under λ→∞, the last term does not vanish unless
with large data batches, i.e., b = O(ε). Therefore, from the personalization perspective, our analysis
provides a tighter bound compared to pFedMe.
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C Asynchronous Federated Learning

Proof of Theorem 2. First, we present a set of useful inequalities we will use in the proof. For any
set of m vectors {wi}mi=1 such that wi ∈ Rd, and a constant α > 0, the following properties hold: for
all i, j ∈ [m]:

∥wi + wj∥2 ≤ (1+α)∥wi∥2 + (1+α−1)∥wj∥2, (32a)
∥wi + wj∥ ≤ ∥wi∥+ ∥wj∥, (32b)

2⟨wi, wj⟩ ≤ α∥wi∥2 + α−1∥wj∥2, (32c)∥∥∥∥∥
m∑
i=1

wi

∥∥∥∥∥
2

≤ m

(
m∑
i=1

∥wi∥2
)
. (32d)

Now, let us rewrite the update rule of the joint iterates in Algorithms 1 & 3 Option A at time t as
follows:

• Client update:

wt
i,0 = wt, (33)

wt
i,q+1 = wt

i,q − η∇f̃i(wt
i,q,Dt

i,q), (34)

• Server update:

wt+1 = wt − β∆it = wt − ηβ

Q−1∑
q=0

∇f̃it
(
w

Ω(t)
it,q

,DΩ(t)
i,q

)
. (35)

For simplicity, we denote ∇̃fi (w) = ∇f̃i (w,Di). Therefore, at round t, the server updates its
parameter by receiving ∆it from some client it ∈ [n], as follows:

wt+1 = wt − ηβ

Q−1∑
q=0

∇̃fit
(
w

Ω(t)
it,q

)
. (36)

Moreover, Due to Assumption 4, we can infer that f is L-smooth, thus

f
(
wt+1

) (14)
≤ f(wt)− ηβ

〈
∇f(wt),

Q−1∑
q=0

∇̃fit
(
w

Ω(t)
it,q

)〉
︸ ︷︷ ︸

=:Sa1

+
Lη2β2

2

∥∥∥∥∥
Q−1∑
q=0

∇̃fit
(
w

Ω(t)
it,q

)∥∥∥∥∥
2

︸ ︷︷ ︸
=:Sa2

(37)

First, we provide a lower bound on term Sa1 in (37). Prior to show the bound, let us denote

g̃ti =
Q−1∑
q=0
∇̃fi

(
w

Ω(t)
i,q

)
, g̃t = 1

n

n∑
i=1

g̃ti , g
t
i =

Q−1∑
q=0
∇fi

(
w

Ω(t)
i,q

)
, and gt = 1

n

n∑
i=1

gti . Therefore,

E [Sa1
] = E

[
Eit

〈
∇f(wt), g̃tit

〉]
(38)

= E

[〈
∇f(wt),

1

n

n∑
i=1

g̃ti

〉]
(39)

= E

〈
∇f(wt),

1

n

n∑
i=1

Epi

[
g̃ti
]〉

= E

〈
∇f(wt),

1

n

n∑
i=1

gti

〉
(40)

= QE
∥∥∇f(wt)

∥∥2 + E
〈
∇f(wt), gt −Q∇f(wt)

〉
(41)

(32c)
≥ QE

∥∥∇f(wt)
∥∥2 − 1

2
E
∥∥∇f(wt)

∥∥2 − 1

2
E
∥∥gt −Q∇f(wt)

∥∥2 (42)

=
2Q−1

2
E
∥∥∇f(wt)

∥∥2 − 1

2
E
∥∥gt −Q∇f(wt)

∥∥2 . (43)
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Moreover, the following holds for Sa2 in (37):

Eit [Sa2 ] = Eit

∥∥∥∥∥
Q−1∑
q=0

∇̃fit
(
w

Ω(t)
it,q

)∥∥∥∥∥
2

=
1

n

n∑
i=1

∥∥g̃ti∥∥2 . (44)

Now, according to (37), (43), and (44), we have:

Ef
(
wt+1

)
≤ Ef(wt)− ηβ(2Q−1)

2
E
∥∥∇f(wt)

∥∥2 (45)

+
ηβ

2
E
∥∥gt −Q∇f(wt)

∥∥2︸ ︷︷ ︸
=:Sa3

+
Lη2β2

2n
E

[
n∑

i=1

∥∥g̃ti∥∥2
]

︸ ︷︷ ︸
=:Sa4

, (46)

where we bound Sa3
and Sa4

as follows:

Sa3
=

∥∥∥∥∥ 1n
n∑

i=1

(
gti −Q∇fi(wt)

)∥∥∥∥∥
2

(32d)
≤ 1

n

n∑
i=1

∥∥gti −Q∇fi(wt)
∥∥2 (47)

=
1

n

n∑
i=1

∥∥∥∥∥
Q−1∑
q=0

∇fi
(
w

Ω(t)
i,q

)
−Q∇fi(wt)

∥∥∥∥∥
2

(48)

=
1

n

n∑
i=1

∥∥∥∥∥
Q−1∑
q=0

[
∇fi

(
w

Ω(t)
i,q

)
−∇fi(wt)

]∥∥∥∥∥
2

(49)

(32d)
≤ Q

n

n∑
i=1

Q−1∑
q=0

∥∥∥∇fi (wΩ(t)
i,q

)
−∇fi(wt)

∥∥∥2 , (50)

Sa4 =

n∑
i=1

∥∥∥Q−1∑
q=0

∇̃fi
(
w

Ω(t)
i,q

)∥∥∥2 (51)

(32d)
≤ Q

n∑
i=1

Q−1∑
q=0

∥∥∥∇̃fi (wΩ(t)
i,q

)∥∥∥2 (52)

= Q

n∑
i=1

Q−1∑
q=0

∥∥∥∇̃fi (wΩ(t)
i,q

)
−∇fi

(
w

Ω(t)
i,q

)
+∇fi

(
w

Ω(t)
i,q

)
−∇fi

(
wt
)

+∇fi
(
wt
)
−∇f

(
wt
)
+∇f

(
wt
) ∥∥∥2 (53)

(32d)
≤ 4Q

n∑
i=1

Q−1∑
q=0

[∥∥∥∇̃fi (wΩ(t)
i,q

)
−∇fi

(
w

Ω(t)
i,q

)∥∥∥2 + ∥∥∥∇fi (wΩ(t)
i,q

)
−∇fi

(
wt
) ∥∥∥2

+
∥∥∥∇fi (wt

)
−∇f

(
wt
) ∥∥∥2 + ∥∥∥∇f (wt

) ∥∥∥2]⇒ (54)
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E[Sa4
]

(54)
≤ 4Q

n∑
i=1

Q−1∑
q=0

Epi

[∥∥∥∇̃fi (wΩ(t)
i,q

)
−∇fi

(
w

Ω(t)
i,q

)∥∥∥2] (55)

+ 4Q

n∑
i=1

Q−1∑
q=0

E
∥∥∥∇fi (wΩ(t)

i,q

)
−∇fi

(
wt
) ∥∥∥2 (56)

+ 4Q

n∑
i=1

Q−1∑
q=0

E
∥∥∥∇fi (wt

)
−∇f

(
wt
) ∥∥∥2 (57)

+ 4Q

n∑
i=1

Q−1∑
q=0

E
∥∥∥∇f (wt

) ∥∥∥2 (58)

(17),(18)
≤ 4nQ2

[
σ2
a + γ2

g + E
∥∥∥∇f (wt

) ∥∥∥2] (59)

+ 4Q

n∑
i=1

Q−1∑
q=0

E
∥∥∥∇fi (wΩ(t)

i,q

)
−∇fi(wt)

∥∥∥2 . (60)

Therefore, due to (45)-(50) and (59)-(60), we have

Ef
(
wt+1

)
≤ Ef(wt)−

[
ηβ(2Q−1)

2
− 2η2Lβ2Q2

]
E
∥∥∇f(wt)

∥∥2 (61)

+

[
ηβQ

2n
+

2η2β2QL

n

] n∑
i=1

Q−1∑
q=0

E
∥∥∥∇fi (wΩ(t)

i,q

)
−∇fi(wt)

∥∥∥2 (62)

+ 2η2Lβ2Q2σ2
a + 2η2Lβ2Q2γ2

g (63)
(14)
≤ Ef(wt)−

[
ηβ(2Q−1)

2
− 2η2Lβ2Q2

]
E
∥∥∇f(wt)

∥∥2 (64)

+
ηβQL2 (1+4ηβL)

2n
E

n∑
i=1

Q−1∑
q=0

∥∥∥wΩ(t)
i,q − wt

∥∥∥2︸ ︷︷ ︸
=:Sa5

(65)

+ 2η2Lβ2Q2σ2
a + 2η2Lβ2Q2γ2

g . (66)

Thus, it is sufficient to bound the following expression in Sa5 :∥∥∥wt − w
Ω(t)
i,q

∥∥∥2 (67)

=

∥∥∥∥∥∥
t−1∑

s=Ω(t)

(
ws+1 − ws

)
+ wΩ(t) − w

Ω(t)
i,q

∥∥∥∥∥∥
2

(68)

(32a)
≤
(
1+

1

β2

)∥∥∥∥∥∥
t−1∑

s=Ω(t)

(
ws+1 − ws

)∥∥∥∥∥∥
2

+
(
1+β2

) ∥∥∥wΩ(t) − w
Ω(t)
i,q

∥∥∥2 (69)

(32d)
≤ (t−Ω(t))

(
1+

1

β2

) t−1∑
s=Ω(t)

∥∥ws+1 − ws
∥∥2+

(
1+β2

) ∥∥∥wΩ(t) − w
Ω(t)
i,q

∥∥∥2 (70)

(13)
≤ τ

(
1+

1

β2

)[ t−1∑
s=t−τ

∥∥ws+1 − ws
∥∥2]

︸ ︷︷ ︸
=:Sa7

+
(
1+β2

) ∥∥∥wΩ(t) − w
Ω(t)
i,q

∥∥∥2︸ ︷︷ ︸
=:Sa6

. (71)
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Now, we show a bound on the evolution of local updates at an arbitrary round s ≥ 0, i.e., the distance
between ws

i,q and ws:

E
∥∥ws

i,q − ws
∥∥2 = E

∥∥∥ws
i,q−1 − η∇̃fi

(
ws

i,q−1

)
− ws

∥∥∥2 (72)

= E
∥∥∥ws

i,q−1 − ws − η∇f (ws)

− η∇̃fi
(
ws

i,q−1

)
+ η∇fi

(
ws

i,q−1

)
− η∇fi

(
ws

i,q−1

)
+ η∇fi (ws)

− η∇fi (ws) + η∇f (ws)
∥∥∥2 (73)

(32a)
≤
(
1+

1

2Q

)
E
∥∥∥ws

i,q−1 − ws
∥∥∥2 (74)

+ 4(1+2Q)η2E

[∥∥∥∇̃fi (ws
i,q−1

)
−∇fi

(
ws

i,q−1

) ∥∥∥2
+
∥∥∥∇fi (ws

i,q−1

)
−∇fi (ws)

∥∥∥2
+
∥∥∥∇fi (ws)−∇f (ws)

∥∥∥2
+
∥∥∥∇f (ws)

∥∥∥2] (75)

(14),(17)
≤

(
1+

1

2Q

)
E
∥∥∥ws

i,q−1 − ws
∥∥∥2 (76)

+ 4(1+2Q)η2

[
σ2
a + L2 E

∥∥∥ws
i,q−1 − ws

∥∥∥2
+ E

∥∥∥∇fi (ws)−∇f (ws)
∥∥∥2 + E

∥∥∥∇f (ws)
∥∥∥2]. (77)

Note that we can select stepsize η ≤ 1
4L(Q+1) such that

η2 ≤ 1

16L2(Q+1)2
≤ 1

8L2Q(2Q+1)
⇒ 4(1+2Q)η2L2 ≤ 1

2Q
, (78)
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therefore, due to (72)-(78), we have:

E
∥∥ws

i,q − ws
∥∥2︸ ︷︷ ︸

:=P s
i,q

≤
(
1+

1

Q

)
E
∥∥∥ws

i,q−1 − ws
∥∥∥2︸ ︷︷ ︸

:=P s
i,q−1

(79)

+ 4(1+2Q)η2

[
σ2
a + E

∥∥∥∇fi (ws)−∇f (ws)
∥∥∥2 + E

∥∥∥∇f (ws)
∥∥∥2]︸ ︷︷ ︸

:=Rs
i

⇒ (80)

P s
i,q ≤

(
1+

1

Q

)
P s
i,q−1 +Rs

i (81)

= Rs
i

q−1∑
k=0

(
1+

1

Q

)k

≤ Rs
i

Q−1∑
k=0

(
1+

1

Q

)k

(82)

= Rs
i

(
1+ 1

Q

)Q
− 1(

1+ 1
Q

)
− 1

= Rs
iQ

[(
1+

1

Q

)Q

− 1

]
≤ Rs

iQ(e− 1) ≤ 2Rs
iQ⇒ (83)

E
∥∥ws

i,q − ws
∥∥2 ≤ 8Q(1+2Q)η2

[
σ2
a + E

∥∥∥∇fi (ws)−∇f (ws)
∥∥∥2 + E

∥∥∥∇f (ws)
∥∥∥2], (84)

for all q ∈ [Q] and s ≥ 0. We now will use (72)-(84) to provide a bound on the expression in Sa7 .
Again, note that according to Algorithms 1 & 3, we have:

ws+1 = ws − β
(
w

Ω(s)
is,0
− w

Ω(s)
is,Q

)
⇒ (85)

E
∥∥ws+1 − ws

∥∥2 ≤ β2 E
∥∥∥wΩ(s)

is,Q
− wΩ(s)

∥∥∥2 (86)

= β2 E
[
Eis

∥∥∥wΩ(s)
is,Q
− wΩ(s)

∥∥∥2] (87)

=
β2

n

n∑
j=1

E
∥∥∥wΩ(s)

j,Q − wΩ(s)
∥∥∥2 (88)

≤ 8Q(1+2Q)η2β2

[
σ2
a + γ2

g + E
∥∥∥∇f (wΩ(s)

)∥∥∥2]. (89)

Let ϕ = 8η2Q2(1+2Q)(1+β2), then according to (67)-(89)

1

nϕ
E[Sa5

] ≤ τ

[
t−1∑

s=t−τ

∥∥ws+1 − ws
∥∥2]+ 1

nQ

n∑
i=1

Q−1∑
q=0

∥∥∥wΩ(t) − w
Ω(t)
i,q

∥∥∥2 . (90)

≤ τ2σ2
a + τ2γ2

g + τ

t−1∑
s=t−τ

E
∥∥∥∇f (wΩ(s)

)∥∥∥2 (91)

+ σ2
a + γ2

g + E
∥∥∥∇f (wΩ(t)

)∥∥∥2 (92)

≤ (τ2+1)
[
σ2
a + γ2

g

]
+ E

∥∥∥∇f (wΩ(t)
)∥∥∥2 + τ

t−1∑
s=t−τ

E
∥∥∥∇f (wΩ(s)

)∥∥∥2 (93)

≤ (τ2+1)
[
σ2
a + γ2

g

]
+ τ

t∑
s=t−τ

E
∥∥∥∇f (wΩ(s)

)∥∥∥2. (94)
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Thus, by combining (61)-(94), we have the following inequality:

Ef
(
wt+1

)
≤ Ef(wt)− ηβ

[
2Q−1

2
− 2ηβLQ2

]
E
∥∥∇f(wt)

∥∥2 (95)

+ 4η3βL2Q3(1+2Q)(1+β2)(1+4ηβL) τ

[
t∑

s=t−τ

E
∥∥∥∇f (wΩ(s)

)∥∥∥2] (96)

+ 4η3βL2Q3(1+2Q)(τ2+1)(1+β2)(1+4ηβL)
(
σ2
a + γ2

g

)
(97)

+ 2η2β2LQ2
(
σ2
a + γ2

g

)
, (98)

where by rearranging, we obtain the following inequality:

(1− 4ηβLQ)E
∥∥∇f(wt)

∥∥2 (99)

− 8η2L2Q2(1+2Q)(1+β2)(1+4ηβL) τ

[
t∑

s=t−τ

E
∥∥∥∇f (wΩ(s)

)∥∥∥2] (100)

≤
2
[
Ef(wt)− Ef

(
wt+1

)]
ηβQ

(101)

+ 8η2L2Q2(1+2Q)(τ2+1)(1+β2)(1+4ηβL)
(
σ2
a + γ2

g

)
(102)

+ 4ηβLQ
(
σ2
a + γ2

g

)
. (103)

Now, note that for any s ≥ 0,2

E
∥∥∥∇f (wΩ(s)

)∥∥∥2 ≤ s∑
u=s−τ

E
∥∥∥∇f (wu)

∥∥∥2, (104)

Therefore, we add up the inequality in (99)-(103), for t = 0, 1, . . . T−1, and obtain

[
1− 4ηβLQ− 8η2L2Q2(1+2Q)τ(τ+1)2(1+β2)(1+4ηβL)

]T−1∑
t=0

E ∥∇f(wt)∥2

T
(105)

≤
2
[
f(w0)− Ef(wT )

]
ηβQT

+ 4ηβLQ
(
σ2
a + γ2

g

)
(106)

+ 8η2L2Q2(1+2Q)(τ2+1)(1+β2)(1+4ηβL)
(
σ2
a + γ2

g

)
. (107)

Thus, by setting β = 1 and η = 1
Q
√
LT

, we can simply see that

1− 4ηβLQ− 8η2L2Q2(1+2Q)τ(τ+1)2(1+β2)(1+4ηβL) ≥ 1

2
, (108)

η ≤ 1

4L(Q+1)
, (109)

for T ≥ 160L(Q+7)(τ+1)3. Therefore, we can conclude the final result in Theorem 2 under this
choice of η and β.

2For s < τ , the right-hand side of the inequality consists of fewer terms.
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D Personalized Asynchronous Federated Learning: MAML

Proof of Theorem 3. To simplify (11), we denote ∇̃F (b)
i (w) = ∇F̃ (b)

i (w,D′′
i ,D′

i,Di). Then similar
to (36), at round t, the update rule for Option B can be written as follows:

wt+1 = wt − ηβ

Q−1∑
q=0

∇̃F (b)
it

(
w

Ω(t)
it,q

)
. (110)

According to Lemma 1,

F (b)
(
wt+1

) (14)
≤ F (b)(wt)− ηβ

〈
∇F (b)(wt),

Q−1∑
q=0

∇̃F (b)
it

(
w

Ω(t)
it,q

)〉
︸ ︷︷ ︸

=:Sb1

+
Lbη

2β2

2

∥∥∥∥∥
Q−1∑
q=0

∇̃F (b)
it

(
w

Ω(t)
it,q

)∥∥∥∥∥
2

︸ ︷︷ ︸
=:Sb2

(111)

Similar to the inequalities in (38)-(43), we first show a lower bound on term Sb1 in (111). We also

denote g̃ti =
Q−1∑
q=0
∇̃F (b)

i

(
w

Ω(t)
i,q

)
, g̃t = 1

n

n∑
i=1

g̃ti , g
t
i =

Q−1∑
q=0
∇F (b)

i

(
w

Ω(t)
i,q

)
, and gt = 1

n

n∑
i=1

gti for

simplicity. Note that g̃ti and gti are the stochastic and deterministic gradients of the personalized cost
functions F (b)

i at stale parameters. According to these definitions, we have∥∥E [g̃t − gt
]∥∥ (32b)
≤ 1

n

n∑
i=1

∥∥E [g̃ti − gti
]∥∥ (112)

(32b)
≤ 1

n

n∑
i=1

Q−1∑
q=0

∥∥∥E [∇̃F (b)
i

(
w

Ω(t)
i,q

)
−∇F (b)

i

(
w

Ω(t)
i,q

)]∥∥∥ (113)

(24)
≤ 1

n

n∑
i=1

Q−1∑
q=0

µb = Qµb, (114)

where as we discussed in (24), µb measures the unbiasedness in the estimation of the personalized
stochastic gradient.

E [Sb1 ] = E
[
Eit

〈
∇F (b)(wt), g̃tit

〉]
(115)

= E

[〈
∇F (b)(wt),

1

n

n∑
i=1

g̃ti

〉]
= E

[〈
∇F (b)(wt), g̃t

〉]
(116)

= QE
∥∥∥∇F (b)(wt)

∥∥∥2 + E
〈
∇F (b)(wt),E

[
g̃t − gt

]〉
(117)

+ E
〈
∇F (b)(wt), gt −Q∇F (b)(wt)

〉
(118)

(32c)
≥ QE

∥∥∥∇F (b)(wt)
∥∥∥2 − 1

4
E
∥∥∥∇F (b)(wt)

∥∥∥2 − ∥∥E [gt − g̃t
]∥∥2 (119)

− 1

4
E
∥∥∥∇F (b)(wt)

∥∥∥2 − E
∥∥∥gt −Q∇F (b)(wt)

∥∥∥2 (120)

(112)−(114)
≥ 2Q−1

2
E
∥∥∥∇F (b)(wt)

∥∥∥2 − E
∥∥∥gt −Q∇F (b)(wt)

∥∥∥2 −Q2µ2
b , (121)

and

Eit [Sb2 ] = Eit

∥∥∥∥∥
Q−1∑
q=0

∇̃F (b)
it

(
w

Ω(t)
it,q

)∥∥∥∥∥
2

=
1

n

n∑
i=1

∥∥g̃ti∥∥2 . (122)
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Therefore, according to (111), (121), and (122),

EF (b)
(
wt+1

)
≤ EF (b)(wt)− ηβ(2Q−1)

2
E
∥∥∥∇F (b)(wt)

∥∥∥2 + ηβQ2µ2
b (123)

+ ηβ E
∥∥∥gt −Q∇F (b)(wt)

∥∥∥2︸ ︷︷ ︸
=:Sb3

+
Lbη

2β2

2n
E

n∑
i=1

∥∥g̃ti∥∥2︸ ︷︷ ︸
=:Sb4

, (124)

where similar to (47)-(50), we can bound Sb3 as follows:

Sb3 ≤
Q

n

n∑
i=1

Q−1∑
q=0

∥∥∥∇F (b)
i

(
w

Ω(t)
i,q

)
−∇F (b)

i (wt)
∥∥∥2 . (125)

Moreover, we can show an upper bound on Sb4 akin to (126)-(129):

Sb4 =

n∑
i=1

∥∥∥Q−1∑
q=0

∇̃F (b)
i

(
w

Ω(t)
i,q

)∥∥∥2 (126)

(32d)
≤ Q

n∑
i=1

Q−1∑
q=0

∥∥∥∇̃F (b)
i

(
w

Ω(t)
i,q

)∥∥∥2 (127)

= Q

n∑
i=1

Q−1∑
q=0

∥∥∥∇̃F (b)
i

(
w

Ω(t)
i,q

)
−∇F (b)

i

(
w

Ω(t)
i,q

)
+∇F (b)

i

(
w

Ω(t)
i,q

)
−∇F (b)

i

(
wt
)

+∇F (b)
i

(
wt
)
−∇F (b)

(
wt
)
+∇F (b)

(
wt
) ∥∥∥2 (128)

(32d)
≤ 4Q

n∑
i=1

Q−1∑
q=0

[∥∥∥∇̃F (b)
i

(
w

Ω(t)
i,q

)
−∇F (b)

i

(
w

Ω(t)
i,q

)∥∥∥2
+
∥∥∥∇F (b)

i

(
w

Ω(t)
i,q

)
−∇F (b)

i

(
wt
) ∥∥∥2

+
∥∥∥∇F (b)

i

(
wt
)
−∇F (b)

(
wt
) ∥∥∥2

+
∥∥∥∇F (b)

(
wt
) ∥∥∥2]⇒ (129)

E[Sb4 ]
(129)
≤ 4Q

n∑
i=1

Q−1∑
q=0

Epi

[∥∥∥∇̃F (b)
i

(
w

Ω(t)
i,q

)
−∇F (b)

i

(
w

Ω(t)
i,q

)∥∥∥2] (130)

+ 4Q

n∑
i=1

Q−1∑
q=0

E
∥∥∥∇F (b)

i

(
w

Ω(t)
i,q

)
−∇F (b)

i

(
wt
) ∥∥∥2 (131)

+ 4Q

n∑
i=1

Q−1∑
q=0

E
∥∥∥∇F (b)

i

(
wt
)
−∇F (b)

(
wt
) ∥∥∥2 (132)

+ 4Q

n∑
i=1

Q−1∑
q=0

E
∥∥∥∇F (b)

(
wt
) ∥∥∥2 (133)

(17),(18)
≤ 4nQ2

[
σ2
b + γ2

b + E
∥∥∥∇F (b)

(
wt
) ∥∥∥2] (134)

+ 4Q

n∑
i=1

Q−1∑
q=0

E
∥∥∥∇F (b)

i

(
w

Ω(t)
i,q

)
−∇F (b)

i (wt)
∥∥∥2 . (135)
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Therefore, due to (123)-(125) and (134)-(135), we have

EF (b)
(
wt+1

)
≤ EF (b)(wt)−

[
ηβ(2Q−1)

2
− 2η2Lbβ

2Q2

]
E
∥∥∥∇F (b)(wt)

∥∥∥2 (136)

+

[
ηβQ

n
+

2η2β2QLb

n

] n∑
i=1

Q−1∑
q=0

E
∥∥∥∇F (b)

i

(
w

Ω(t)
i,q

)
−∇F (b)

i (wt)
∥∥∥2 (137)

+ ηβQ2µ2
b + 2η2Lbβ

2Q2σ2
b + 2η2Lbβ

2Q2γ2
b (138)

(14)
≤ EF (b)(wt)−

[
ηβ(2Q−1)

2
− 2η2Lbβ

2Q2

]
E
∥∥∥∇F (b)(wt)

∥∥∥2 (139)

+
ηβQL2

b (1+2ηβLb)

n

n∑
i=1

Q−1∑
q=0

E
∥∥∥wΩ(t)

i,q − wt
∥∥∥2︸ ︷︷ ︸

=:Sb5

(140)

+ ηβQ2µ2
b + 2η2Lbβ

2Q2
(
σ2
b + γ2

b

)
. (141)

Now, we provide an upper bound on Sb5 in (139) as follows:

Sb5 =
∥∥∥wt − w

Ω(t)
i,q

∥∥∥2 =
∥∥∥wt − wΩ(t) + wΩ(t) − w

Ω(t)
i,q

∥∥∥2 (142)

(32a)
≤ 2

∥∥∥wΩ(t) − w
Ω(t)
i,q

∥∥∥2︸ ︷︷ ︸
Sb6

+2
∥∥∥wt − wΩ(t)

∥∥∥2︸ ︷︷ ︸
Sb7

, (143)

where the first term determines the evolution of local updates and the second term considers the effect
of asynchronous updates. Therefore, using Lemma 4, we have

E[Sb6 ] = E
∥∥∥wΩ(t) − w

Ω(t)
i,q

∥∥∥2 (144)

= E
∥∥∥wΩ(t)

i,0 − w
Ω(t)
i,q

∥∥∥2 (145)

(110)
= η2E

∥∥∥∥∥
q−1∑
r=0

∇̃F (b)
i

(
w

Ω(t)
i,r

)∥∥∥∥∥
2

(146)

(32d)
≤ η2q

q−1∑
r=0

E
∥∥∥∇̃F (b)

i

(
w

Ω(t)
i,r

)∥∥∥2 (147)

(32d)
≤ 2η2q

q−1∑
r=0

[
E
∥∥∥∇̃F (b)

i

(
w

Ω(t)
i,r

)
−∇F (b)

i

(
w

Ω(t)
i,r

)∥∥∥2 + E
∥∥∥∇F (b)

i

(
w

Ω(t)
i,r

)∥∥∥2] (148)

(25),(27)
≤ 2η2q

q−1∑
r=0

(
G2

b + σ2
b

)
= 2η2q2

(
G2

b + σ2
b

)
, (149)
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E[Sb7 ] = E
∥∥∥wt − wΩ(t)

∥∥∥2 (150)

= E

∥∥∥∥∥∥
t−1∑

s=Ω(t)

(
ws+1 − ws

)∥∥∥∥∥∥
2

(151)

Alg. 1,3
= η2β2E

∥∥∥∥∥∥
t−1∑

s=Ω(t)

Q−1∑
q=0

∇̃F (b)
is

(
w

Ω(s)
is,q

)∥∥∥∥∥∥
2

(152)

(32d)
≤ η2β2Q (t−Ω(t))

t−1∑
s=Ω(t)

Q−1∑
q=0

E
∥∥∥∇̃F (b)

is

(
w

Ω(s)
is,q

)∥∥∥2 (153)

(13)
≤ 2η2β2Qτ

t−1∑
s=t−τ

Q−1∑
q=0

[
E
∥∥∥∇̃F (b)

is

(
w

Ω(s)
is,q

)
−∇F (b)

is

(
w

Ω(s)
is,q

)∥∥∥2
+ E

∥∥∥∇F (b)
is

(
w

Ω(s)
is,q

)∥∥∥2 ] (154)

(25),(27)
≤ 2η2β2Qτ2

Q−1∑
q=0

(
G2

b + σ2
b

)
= 2η2β2Q2τ2

(
G2

b + σ2
b

)
. (155)

So, according to (136)-(155),

EF (b)
(
wt+1

)
≤ EF (b)(wt)− ηβ

2

(
2Q−1− 4ηβLbQ

2
)
E
∥∥∥∇F (b)(wt)

∥∥∥2 (156)

+ 4η3βQ4L2
b (1+2ηβLbQ)

(
G2

b+σ2
b

) (
β2τ2+1

)
(157)

+ ηβQ2µ2
b + 2η2β2LbQ

2σ2
b + 2η2β2LbQ

2γ2
b , (158)

where by adding the terms in (156)-(158), for t = 0, 1, . . . T−1, and rearranging them, we obtain the
following inequality:

1− 4ηβLbQ

T

T−1∑
t=0

E
∥∥∥∇F (b)(wt)

∥∥∥2 ≤ 2
(
F (b)(w0)− EF (b)(wT )

)
ηβQT

(159)

+ 8η2Q3L2
b (1+2ηβLbQ)

(
G2

b+σ2
b

) (
β2τ2+1

)
(160)

+ 4ηβLbQ
(
σ2
b + γ2

b

)
(161)

+ 2Qµ2
b . (162)

Finally, we can conclude the proof by fixing β = 1 and η := 1
Q
√
LbT

for T ≥ 64Lb, hence
η ≤ 1

8βLbQ
.
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E Personalized Asynchronous Federated Learning: ME

We start by showing (12), where according to the definitions in (8) and (10), we have

θ̂i(w) = argmin
θi∈Rd

[
fi(θi) +

λ

2
∥θi − w∥2

]
⇒ ∇fi

(
θ̂i(w)

)
+ λ

[
θ̂i(w)− w

]
= 0, (163)

F
(c)
i (w) = fi

(
θ̂i(w)

)
+

λ

2

∥∥∥θ̂i(w)− w
∥∥∥2 , (164)

therefore,

∇F (c)
i (w)

(164)
=

∂ θ̂i(w)

∂w

[
∇fi

(
θ̂i(w)

)]
+ λ

[
∂ θ̂i(w)

∂w
− I

] [
θ̂i(w)− w

]
(165)

(163)
= λ

∂ θ̂i(w)

∂w

[
w − θ̂i(w)

]
+ λ

[
∂ θ̂i(w)

∂w
− I

] [
θ̂i(w)− w

]
(166)

= λ
[
w − θ̂i(w)

]
. (167)

Before, presenting the proof of Theorem 4, we proceed by providing the proof of Lemmas 5, 6, and 7.

Proof of Lemma 5. Let w, v be two arbitrary vectors in Rd. Then, we have:

∇F (c)
i (w)−∇F (c)

i (y)
(167)
= λ

[
w − θ̂i(w)

]
− λ

[
v − θ̂i(v)

]
(168)

(163)
= ∇fi

(
θ̂i(w)

)
−∇fi

(
θ̂i(v)

)
⇒ (169)∥∥∥∇F (c)

i (w)−∇F (c)
i (y)

∥∥∥ =
∥∥∥∇fi (θ̂i(w))−∇fi (θ̂i(v))∥∥∥ (170)

(14)
≤ L

∥∥∥θ̂i(w)− θ̂i(v)
∥∥∥ (171)

(163)
= L

∥∥∥∥w − 1

λ
∇fi

(
θ̂i(w)

)
− v +

1

λ
∇fi

(
θ̂i(v)

)∥∥∥∥ (172)

≤ L ∥w − v∥+ L

λ

∥∥∥∇fi (θ̂i(w))−∇fi (θ̂i(v))∥∥∥ (173)

= L ∥w − v∥+ L

λ

∥∥∥∇F (c)
i (w)−∇F (c)

i (y)
∥∥∥⇒ (174)∥∥∥∇F (c)

i (w)−∇F (c)
i (y)

∥∥∥ ≤ λL

λ− L
∥w − v∥ , (175)

which means F (c)
i is λL

λ−L -smooth. Note that for λ ≥ κL, for some κ > 1,

λL

λ− L
≤ Lc :=

λ

κ− 1
(176)

This concludes the statement of Lemma 5.

Proof of Lemma 6. According to Step 11 of Algorithm 3, let us introduce full and stochastic auxiliary
cost functions hi(·) and h̃i(·) as follows:

hi(θi, w) = fi(θi) +
λ

2
∥θi − w∥2 , (177)

h̃i(θi, w,D) = f̃i(θi,D) +
λ

2
∥θi − w∥2 , (178)

where due to (177), we have

∇h̃i(θ̃i(w), w,D) = ∇f̃i(θ̃i(w),D) + λ
[
θ̃i(w)− w

]
, (179)
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hence, we can show (28) as follows:

∥∥∥Epi

[
∇F̃ (c)

i (w,D)−∇F (c)
i (w)

]∥∥∥ (180)

(9),(12)
=

∥∥∥Epi

[
λθ̂i(w)− λθ̃i(w)

]∥∥∥ (181)

(163),(178)
=

∥∥∥Epi

[
∇fi(θ̂i(w))−∇f̃i(θ̃i(w),D) +∇h̃i(θ̃i(w), w,D)

]∥∥∥ (182)

=
∥∥∥Epi

[
∇fi(θ̂i(w))−∇fi(θ̃i(w))

]
+ Epi

[
∇h̃i(θ̃i(w), w,D)

]∥∥∥ (183)

≤
∥∥∥Epi

[
∇fi(θ̂i(w))−∇fi(θ̃i(w))

]∥∥∥+ ν (184)

(14)
≤ L

∥∥∥Epi

[
θ̂i(w)− θ̃i(w)

]∥∥∥+ ν (185)

(181)
=

L

λ

∥∥∥Epi

[
∇F̃ (c)

i (w,D)−∇F (c)
i (w)

]∥∥∥+ ν ⇒ (186)∥∥∥Epi

[
∇F̃ (c)

i (w,D)−∇F (c)
i (w)

]∥∥∥ ≤ λ

λ− L
ν. (187)

You can find the proof of (29) in [6][Appendix A.2].

Proof of Lemma 7. First, note that we have

1

n

n∑
i=1

∥∥∥∇F (c)
i (w)−∇F (c)(w)

∥∥∥2 (188)

(167)
=

1

n

n∑
i=1

∥∥∥∥∥∥λ(w − θ̂i(w))−
1

n

n∑
j=1

λ(w − θ̂i(w))

∥∥∥∥∥∥
2

(189)

(163)
=

1

n3

n∑
i=1

∥∥∥∥∥∥
n∑

j=1

[
∇fi(θ̂i(w))−∇fj(θ̂j(w))

]∥∥∥∥∥∥
2

(190)

(32d)
≤ 1

n2

n∑
i=1

n∑
j=1

∥∥∥∇fi(θ̂i(w))−∇fj(θ̂j(w))∥∥∥2 . (191)
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So, we simplify the upper bound as follows:∥∥∥∇fi(θ̂i(w))−∇fj(θ̂j(w))∥∥∥2 (192)

=
∥∥∥∇fi(θ̂i(w))−∇fi(θ̂j(w)) +∇fi(θ̂j(w))−∇f(θ̂j(w))
+∇f(θ̂j(w))−∇f(θ̂i(w)) +∇f(θ̂i(w))−∇fj(θ̂i(w))

+∇fj(θ̂i(w))−∇fj(θ̂j(w))
∥∥∥2 (193)

(32a)
≤ 4

3

∥∥∥∇fi(θ̂i(w))−∇fi(θ̂j(w)) +∇f(θ̂j(w))−∇f(θ̂i(w))
+∇fj(θ̂i(w))−∇fj(θ̂j(w))

∥∥∥2 (194)

+ 4
∥∥∥∇f(θ̂i(w))−∇fj(θ̂i(w)) +∇fi(θ̂j(w))−∇f(θ̂j(w))∥∥∥2 (195)

(32d)
≤ 4

∥∥∥∇fi(θ̂i(w))−∇fi(θ̂j(w))∥∥∥2 (196)

+ 4
∥∥∥∇f(θ̂j(w))−∇f(θ̂i(w))∥∥∥2 (197)

+ 4
∥∥∥∇fj(θ̂i(w))−∇fj(θ̂j(w))∥∥∥2 (198)

+ 8
∥∥∥∇fi(θ̂j(w))−∇f(θ̂j(w))∥∥∥2 (199)

+ 8
∥∥∥∇f(θ̂i(w))−∇fj(θ̂i(w))∥∥∥2 (200)

Note that we can bound (199) and (200) according to Lemma 18:

1

n

n∑
i=1

∥∥∥∇fi(θ̂j(w))−∇f(θ̂j(w))∥∥∥2 (18)
≤ γ2

g , (201)

and also given the fact that function f(·) as well as each function fi(·) are L-smooth, we can bound
(196), (197), and (198) as follows:∥∥∥∇fi(θ̂i(w))−∇fi(θ̂j(w))∥∥∥2 (202)

≤ L2
∥∥∥θ̂i(w)− θ̂j(w)

∥∥∥2 (203)

=
L2

λ2

∥∥∥λ [θ̂i(w)− w
]
− λ

[
θ̂j(w)− w

] ∥∥∥2 (204)

(167)
=

L2

λ2

∥∥∥∇F (c)
i (w)−∇F (c)

j (w)
∥∥∥2 (205)

=
L2

λ2

∥∥∥∇F (c)
i (w)−∇F (c)(w) +∇F (c)(w)−∇F (c)

j (w)
∥∥∥2 (206)

(32d)
≤ 2L2

λ2

[∥∥∥∇F (c)
i (w)−∇F (c)(w)

∥∥∥2 + ∥∥∥∇F (c)(w)−∇F (c)
j (w)

∥∥∥2] . (207)

Therefore, according to (208)-(207), we have

1

n

n∑
i=1

∥∥∥∇F (c)
i (w)−∇F (c)(w)

∥∥∥2 ≤ 16γ2
g +

48L2

nλ2

n∑
i=1

∥∥∥∇F (c)
i (w)−∇ F (c)(w)

∥∥∥2 ⇒ (208)

1

n

n∑
i=1

∥∥∥∇F (c)
i (w)−∇F (c)(w)

∥∥∥2 ≤ 16λ2γ2
g

λ2 − 48L2
, (209)

which concludes the proof.

Now, we are ready to state the proof of Theorem 4.
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Proof of Theorem 4. We write ∇̃F (c)
i (w) = ∇F̃ (c)

i (w,Di) to simplify (12). Then, the update rule
for Algorithms 1 & 3 under Option C can be written as follows:

wt+1 = wt − ηβ

Q−1∑
q=0

∇̃F (c)
it

(
w

Ω(t)
it,q

)
, (210)

where similar to (111)-(141), we can show that:

EF (c)
(
wt+1

)
≤ EF (c)(wt)−

[
ηβ(2Q−1)

2
− 2η2Lcβ

2Q2

]
E
∥∥∥∇F (c)(wt)

∥∥∥2 (211)

+
ηβQL2

c (1+2ηβLc)

n

n∑
i=1

Q−1∑
q=0

E
∥∥∥wΩ(t)

i,q − wt
∥∥∥2︸ ︷︷ ︸

=:Sc1

(212)

+ ηβQ2µ2
c + 2η2Lcβ

2Q2
(
σ2
c + γ2

c

)
, (213)

with Lc, µc, σc, γc as defined in Lemmas 5, 6, and 7. Thus, to show the convergence rate of our
method for the cost function in (8), it would only be sufficient to provide an upper bound on Sc1 .
First, note that similar to (67)-(71), we have

∥∥∥wΩ(t)
i,q − wt

∥∥∥2 ≤ τ

(
1+

1

β2

) t−1∑
s=t−τ

∥∥ws+1 − ws
∥∥2︸ ︷︷ ︸

=:Sc3

+
(
1+β2

) ∥∥∥wΩ(t) − w
Ω(t)
i,q

∥∥∥2︸ ︷︷ ︸
=:Sc2

. (214)

Now, if we introduce stepsize η such that η ≤ 1
4Lc(Q+1) , similar to (72)-(77) and (85)-(89), the

following two inequalities holds for Sc2 and Sc3 :

E[Sc2 ] = E
∥∥∥wΩ(t)

i,q − wΩ(t)
∥∥∥2 (215)

≤ 8Q(1+2Q)η2

[
σ2
c + E

∥∥∥∇F (c)
i

(
wΩ(t)

)
−∇F (c)

(
wΩ(t)

)∥∥∥2 + E
∥∥∥∇F (c)

(
wΩ(t)

)∥∥∥2],

E [Sc3 ] = E
∥∥ws+1 − ws

∥∥2 ≤ 8Q(1+2Q)η2β2

[
σ2
c + γ2

c + E
∥∥∥∇F (c)

(
wΩ(s)

)∥∥∥2], (216)

where by denoting ϕ = 8η2Q2(1+2Q)(1+β2), we have

1

nϕ
E[Sc1 ] ≤ (τ2+1)

[
σ2
c + γ2

c

]
+ τ

t∑
s=t−τ

s∑
u=s−τ

E
∥∥∥∇F (c) (wu)

∥∥∥2. (217)

Then, according to (211)-(217), we obtain

EF (c)(wt+1) ≤ EF (c)(wt)−
[
ηβ(2Q−1)

2
− 2η2Lcβ

2Q2

]
E
∥∥∥∇F (c)(wt)

∥∥∥2 (218)

+ 8η3βQ3L2
c(1+2Q)(1+β2) (1+2ηβLc) τ

[
t∑

s=t−τ

s∑
u=s−τ

E
∥∥∥∇F (c)(wu)

∥∥∥2] (219)

+ 8η3βQ3L2
c(1+2Q)(τ2+1)(1+β2) (1+2ηβLc)

(
σ2
c + γ2

c

)
(220)

+ 2η2Lcβ
2Q2

(
σ2
c + γ2

c

)
(221)

+ ηβQ2µ2
c , (222)
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where by averaging the terms in (218)-(222), for t = 0, 1, . . . T−1, and rearranging them (similar to
(105)-(107), we can conclude the following inequality:

1− 4ηβQLc − 16η2Q2L2
c(1+2Q)τ(τ+1)2(1+β2) (1+2ηβLc)

T

T−1∑
t=0

E
∥∥∥∇F (c)(wt)

∥∥∥2
≤

2
(
F (c)(w0)− EF (c)(wT )

)
ηβQT

+ 2Qµ2
c (223)

+ 16η2Q2L2
c(1+2Q)(τ2+1)(1+β2) (1+2ηβLc)

(
σ2
c + γ2

c

)
(224)

+ 4ηβQLc

(
σ2
c + γ2

c

)
(225)

Finally, by fixing η = 1
Q
√
LcT

, for T ≥ 288Lc(Q+7)(τ+1)2, we obtain the sublinear convergence
rate in Theorem 4.

F Numerical Experiments

In this section, we discuss the concurrency, speed-up, and accuracy of our proposed method in
heterogeneous settings under delayed communications.

Let us first start by explaining our simulation setup for communications with delays. We consider
a set of n = 50 different clients, where each client holds a set of random delays at the upload and
download stage. We set the random delays to be generated such that the upload delay is 4 to 6 times
higher than the download delay on average. We assume that the time for local updates is negligible
compared to the time for communication and aggregation. Then, we plot the number of active users
(not idle) over the training process under asynchronous communications. The orange chart in Figure
2(a) describes the ratio of active users, which on average is roughly 80% over time. Therefore, we
consider the same ratio for client sampling in the synchronous updates for methods such as FedAvg
and plot the activity of users in the same figure with green color. As shown in Figure 2(a), the degree
of concurrency for asynchronous methods is dramatically higher than their synchronous counterparts.

We also generate heterogeneous data from MNIST [21] and CIFAR-10 [20] datasets on the clients,
i.e., each client holds a distinguished and unbalanced distribution of images from different classes.
For instance, client i ∈ [n] may mostly have samples from odd numbers in MNIST, while client
j ∈ [n] mainly holds digits zero to four. Over the underlying communication setup and heterogeneous
data setting, we compare the speed and accuracy of FedAvg, Per-FedAvg, pFedMe, AFL, PersA-FL:
MAML, PersA-FL: ME, where the first three methods are synchronous and the rest are asynchronous.
For MNIST and CIFAR-10, we consider 2-layer and 4-layer convolutional networks [20] with pooling
and dropout as well as cross-entropy loss. For all algorithms, we consider Q = 10 local updates,
and select the best λ ∈ {15, 20, 25, 30} for ME and α ∈ {0.001, 0.002, 0.005, 0.01, 0.02} for MAML.
Moreover, we pick β ∈ {0.7, 0.8, 0.9, 1.0, 1.1, 1.2} and fix η = 0.03. For both experiments, we
consider the exact same communication setup and repeat each experiment 3 times and plot the
test accuracy curve over time until one of the algorithms stops. Figure 2 (b)&(c) compares the
performance and speed of these algorithms.

It is worth mentioning that in the implementation of algorithms with MAML, we approximated the
Hessian-vector products via the following first-order formulation: for some small δ > 0,

∇2fi(w)u ≈
∇fi(w + δu)−∇fi(w − δu)

δ
. (226)

Moreover, in the bi-level optimization problem for the ME formulation, we applied a constant K = 10
steps of SGD to obtain θ̃i(w).

31



0 5 10 15 20
Communication Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ra
tio

 o
f A

ct
iv
e 
Us

er
s Asynch.

Synch.

0 200 400 600 800 1000
Communication Time

20

40

60

80

Te
st
 A
cc
ur
ac
y

FedAvg
Per-FedAvg
pFedMe
AFL
PersA-FL: MAML
PersA-FL: ME

0 200 400 600 800
Communication Time

10

20

30

40

50

Te
st
 A
cc
ur
ac
y

(a) Concurrency (b) MNIST (c) CIFAR-10

Figure 2: The impact of heterogeneity and communication delays on concurrency, convergence
speed, and performance of multiple FL-based algorithms. The underlying setup of this experiment
consists of n = 50 clients, Q = 10 local updates, and each client has a random upload and download
delay at each round. (a) A comparison between the ratio of active users for synchronous and
asynchronous updates over the course of training. (b) Comparison between the test accuracy of
FedAvg, Per-FedAvg, pFedMe, AFL, PersA-FL: MAML, and PersA-FL: ME on MNIST data with
heterogeneous distribution. (c) Test accuracy of the mentioned methods on CIFAR-10 data with
synthetic heterogeneity within a limited fixed time.
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