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Abstract001

Entity tracking is a fundamental challenge in002
natural language understanding, requiring mod-003
els to maintain coherent representations of en-004
tities. Previous work has benchmarked entity005
tracking performance in purely text-based tasks.006
We introduce MET-Bench, a multimodal entity007
tracking benchmark designed to evaluate the008
ability of vision-language models to track entity009
states across modalities. Using two structured010
domains, Chess and the Shell Game, we assess011
how effectively current models integrate textual012
and image-based state updates. Our findings013
reveal a significant performance gap between014
text-based and image-based tracking and that015
this performance gap stems from deficits in016
visual reasoning rather than perception. We017
further show that explicit text-based reasoning018
strategies improve performance, yet substantial019
limitations remain, especially in long-horizon020
multimodal scenarios. Our results highlight the021
need for improved multimodal representations022
and reasoning techniques to bridge the gap be-023
tween textual and visual entity tracking.024

1 Introduction025

Natural language understanding requires the ability026

to track and update information about entities as027

they evolve through text. From coreference reso-028

lution (Hobbs, 1978; Lappin and Leass, 1994) and029

discourse processing to narrative comprehension,030

computational linguistics has long grappled with031

the challenge of maintaining coherent entity rep-032

resentations across textual contexts (Bunescu and033

Paşca, 2006; Schank and Abelson, 1977).034

While significant progress has been made035

in tasks like coreference resolution and entity036

linking (Liu et al., 2023; Papalampidi et al.,037

2022), the broader challenge of tracking entity038

states—understanding how entities change through039

sequences of actions or events—remains an open040

challenge (Fagnou et al., 2024; Kim and Schus-041

ter, 2023; Toshniwal et al., 2022). This limitation042

becomes particularly apparent in tasks requiring 043

integration of information across multiple modali- 044

ties, an increasingly important frontier in computa- 045

tional linguistics as language processing systems 046

are asked to reason about content that combines 047

text with other forms of communication like im- 048

ages and video. 049

Our work examines this challenge through the 050

lens of multimodal entity state tracking, where 051

changes to entity states must be understood from 052

both textual descriptions and visual observations. 053

This setting provides a natural extension to classi- 054

cal NLP problems like discourse processing and 055

situated language understanding, while also con- 056

necting to emerging research in multimodal dia- 057

logue and human-AI interaction. We focus specifi- 058

cally on scenarios where language models must rea- 059

son about world-state changes described through 060

a combination of text and images. Consider the 061

task of understanding assembly instructions that 062

combine written steps with supporting diagrams: 063

while text might specify "Attach panel A to the 064

base using the provided screws," accompanying 065

images show the precise alignment and orientation. 066

Accurate language understanding in such contexts 067

requires maintaining a coherent mental model that 068

integrates both linguistic and visual information 069

about how entities’ states evolve. 070

To systematically evaluate models’ capabilities 071

in this multimodal language understanding set- 072

ting, we introduce two complementary benchmarks: 073

multimodal Chess and the Shell Game. Through 074

these domains, we assess how effectively current 075

language models can track entity states when up- 076

dates are conveyed through both text and images. 077

Our analysis reveals substantial disparities in how 078

models process text-based and image-based entity- 079

state updates, highlighting fundamental limitations 080

in their multimodal language understanding. 081

While Chess and the Shell Game provide struc- 082

tured testbeds for evaluating entity tracking, real- 083
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(a) Chess State (b) Chess Action (c) Shell Game State (d) Shell Game Action

Figure 1: Illustration of the two domains used in this work. (a) An example Chess board state. (b) The chess move
(action) rendered as an image. (c) An initial shell game state with the blue ball under a shell. (d) Image action
representing shells at positions one and three being swapped.

world applications often involve more ambiguous084

and dynamic environments. However, by isolating085

state-tracking performance in controlled settings,086

we establish a clear baseline for assessing multi-087

modal reasoning, one that provides a straightfor-088

ward means of evaluation and can scale in difficulty089

with minimal changes.090

We hypothesize that current language models091

struggle with multimodal entity tracking not due to092

low-level perceptual failures but because they lack093

representations (learned or otherwise engineered)094

for maintaining entity coherence across sequential095

visual observations. This suggests a fundamental096

limitation in how these models integrate and update097

state representations from different modalities.098

We make the following contributions:099

• We introduce the multimodal entity tracking100

benchmark (MET-Bench) that extends tradi-101

tional NLP entity tracking evaluation to the102

multimodal setting for two domains: multi-103

modal Chess and Shell Game.104

• We demonstrate that current models, despite105

strong performance on pure text tasks, strug-106

gle to maintain accurate entity representations107

when processing mixed text and image inputs.108

• Through probing experiments, we show that109

these limitations stem from higher-level rea-110

soning challenges rather than low-level per-111

ception issues.112

• We evaluate various approaches to improving113

multimodal entity tracking, finding that tech-114

niques emphasizing explicit reasoning outper-115

form traditional NLP methods like fine-tuning116

when generalizing to novel domains.117

2 Background 118

We formulate the problem of multimodal entity 119

tracking as a sequential state estimation task, where 120

an agent must infer the final state of a system given 121

an initial state and a series of observed actions. 122

Formally, at each time step t, the environment 123

is in state St, and transitions occur according to 124

an action sequence A = (a1,a2, . . . ,aT ). The 125

agent receives observations At corresponding to 126

each action, which may be textual (Atext
t ) or visual 127

(Aimage
t ). The objective is to infer the final state, 128

ST = f(S0,A1,A2, . . . ,AT ), 129

where f is the function modeling entity state up- 130

dates. 131

MET-Bench represents the initial and final states 132

of each domain as text but evaluate the models’ 133

ability to track entity state changes through images. 134

This approach isolates the multimodal entity track- 135

ing challenge by ensuring that models begin and 136

end with well-defined textual representations while 137

processing state transitions visually. By doing so, 138

we assess their capacity to maintain coherent entity 139

representations across modalities while minimiz- 140

ing confounding errors from perceptual failures, 141

which remain a known limitation of current vision- 142

language models (Sharma et al., 2024). 143

2.1 Chess Domain 144

Chess is a well-studied domain for testing entity 145

tracking of deep learning models (Toshniwal et al., 146

2022). The state St represents an 8×8 board con- 147

figuration expressed in Forsyth–Edwards Notation 148

(FEN) notation, actions correspond to legal chess 149

moves from real games, and action observations 150

consist of either symbolic (UCI notation) or visual 151

(board images) descriptions of moves. We likewise 152
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adopt chess as an entity tracking testbed where153

the task is to maintain a correct representation of154

the board state across a sequence of moves. This155

distinction foregrounds how well a model can inte-156

grate and track piece locations as they change over157

time in potentially complicated board configura-158

tions.159

Utilizing real Chess games from the Millionbase160

dataset1 used in Toshniwal et al. (2022), we gener-161

ate sequences of states and actions (moves) using162

standard chess notation: Universal Chess Interface163

(UCI) for actions and FEN for board states.164

• Text-Encoded Moves: Each action is provided165

as a short UCI textual description (e.g., “e2e4”166

for moving a piece from e2 to e4).167

• Image-Encoded Moves: Each action is accom-168

panied by a rendered image that serves as a169

visual representation of the move (see Fig. 1).170

In both cases, the final output is the FEN-171

encoded location of each piece on the board after172

a sequence of moves. The dataset includes multi-173

ple game trajectories of varying length, capturing a174

variety of piece types and board states.175

2.2 Shell Game Domain176

The second domain in MET-Bench is the Shell177

Game, a classic demonstration of hidden-state178

tracking. A ball is placed under one of three cups179

(or shells), which are then swapped pairwise in180

succession. The goal is tracking which cup cur-181

rently hides the ball as shells are swapped. The182

state St tracks the hidden position of a ball under183

three shells, actions correspond to swaps between184

pairs of shells. Other works have explored shell-185

game-like domains with varying levels of added186

complexity (Li et al., 2021; Long et al., 2016; Kim187

and Schuster, 2023).188

This domain has a simpler entity-state and action189

space than Chess. However, while many frontier190

models have been trained on UCI/FEN encoded191

chess games, the Shell Game is, to the best of our192

knowledge, not present in the training data of these193

models. There may however be analogous tasks in194

the pre-training data.195

We simulate repeated Shell Game swaps to cre-196

ate a set of Shell Game trajectories. Swap actions197

are either:198

• Text-Encoded Swap: Denoted as “x swap199

y”, where {x, y} are in {1, 2, 3}.200

1https://rebel13.nl/rebel13/rebel%2013.html

• Image-Encoded Swap: An image depicting 201

the shells being swapped, with the ball visu- 202

ally hidden (see Fig. 1). 203

The ground truth entity state after the game fin- 204

ishes is a single number indicating the final shell 205

position of the ball. 206

2.3 Models 207

We use MET-Bench to evaluate the limitations of 208

frontier models, including vision-language mod- 209

els (VLMs) which accept images and text as input, 210

and newer reasoning models like OpenAI’s o1 that 211

are trained using reinforcement learning and utilize 212

test-time search algorithms to improve their rea- 213

soning abilities on domains like mathematics and 214

coding. A full list of models and their capabilities 215

is shown in Appendix A, Table 5. 216

3 Methods 217

Role Messages

User You are a helpful assistant that
tracks chess moves in a game and
produces the final FEN. The initial
state is:
rnbqkbnr/pppppppp/8/8/8/8/ PPPPPPPP/RNBQKBNR w

KQkq - 0 1

Here are the moves played:
e2e4

e7e5

Now what is the final FEN? Only output
the FEN.

Assistant rnbqkbnr/pppp1ppp/8/4p3/4P3/

8/PPPP1PPP/RNBQKBNR w KQkq - 2 2

Figure 2: An example zero-shot user–assistant exchange
in the Chess domain, showing the initial board state as
FEN, two UCI moves (e2e4, e7e5) and the final state.
For image actions, the UCI moves are replaced with
their visual representations and a description of how
to interpret these images. The FEN is line-broken for
readability.

We utilize the standard chat-based schema ex- 218

posed by current frontier models that consists of 219

interleaved user-provided and assistant (model) pro- 220

vided messages. Figures 2 shows the prompting 221

strategy used for the Chess domain. Similarly, Ap- 222

pendix A, 6 shows the prompting strategy used for 223

the Shell Game domain. Text actions are repre- 224

sented using simple notation on which the models 225

have been trained, UCI for Chess and a simple 226

domain-specific-language for Shell Game. 227

In the case of image-action input, the text actions 228

are replaced with their image-rendered versions as 229
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Base64 encoded PNG images and a text description230

of how to interpret the image-actions is provided.231

Fig. 1 shows the image representations used for the232

Chess and Shell Game actions. These image rep-233

resentations were created through visual-prompt234

engineering to maximize the classification accu-235

racy of actions depicted. Various common image236

representations were explored including arrows,237

bounding boxes, and symbolic markers. The image238

depiction of the game actions is explained to the239

language model every time images are provided240

using the prompts in Appendix A, Figures 7 & 8.241

4 Experiments242

We perform experiments across a wide range of243

models and settings to evaluate different aspects244

of frontier-model entity-tracking performance. For245

all experiments, the models are sampled with a246

temperature of zero.247

4.1 Tracking Entities with Text and Image248

Actions249

We evaluate difference in accuracy when tracking250

images from text and image actions in the zero-shot,251

few-shot, and chain-of-thought settings. These re-252

sults are presented in Section 5.1.253

Zero-shot254

Chess In the Chess domain, we evaluate on a set255

of 100 games selected at random from the test set,256

each with a sequence length of ten actions. The257

model must predict the FEN string for the final258

state. If the FEN string contains syntax errors such259

that it cannot be parsed, the accuracy for that in-260

stance is zero. We report the per-square accuracy261

of the predicted board, that is the ratio of correctly262

predicted pieces (or absence of a piece) to the total263

number of board tiles. The ‘Game Start’ baseline is264

the accuracy of predicting the initial board config-265

uration. After only ten actions, most of the board266

configuration remains unchanged, so this is a strong267

baseline.268

Shell Game We evaluate Shell Game using a set269

of 500 games generated at random, each with a270

sequence length of five actions. The final state271

is a single number n ∈ {1, 2, 3} that gives the272

position of the ball, and we measure the accuracy273

of predicting it. The naive baseline picks a position274

uniformly at random.275

Few-Shot and Chain-of-Thought 276

In these settings, the evaluation and procedure re- 277

main largely unchanged from the zero-shot Chess. 278

For the few-shot experiments, N = 5 examples 279

are selected at random from the training set and 280

prepended to the test example. The few-shot exam- 281

ples have the same number of actions as the test- 282

set examples. To evaluate the effect of chain-of- 283

thought reasoning, we prompt the model to ‘think 284

step by step before producing a final answer.’ 285

4.2 Sequence-Length Variation 286

The sequence length of the actions is varied to 287

quantify the effect of compounding errors on the 288

models. These sequences range from zero to 100 289

actions in both the image and text action modality. 290

This serves to quantify the relative drop-off in per- 291

formance among models in the zero-shot setting. 292

These results are presented in Section 5.2. 293

4.3 Image-Action Classification 294

We perform an experiment to demonstrate that 295

VLMs have the ability to accurately interpret the ac- 296

tions depicted in the image-action representations. 297

Figures 7 & 8 in Appendix A show the prompting 298

strategy used to get a VLM to predict (zero-shot) a 299

text action from an image action. We perform this 300

evaluation on a test set of 1000 image depictions 301

of actions for each game. The results are presented 302

in Section 5.3. 303

4.4 Cascaded Inference 304

Using the text actions predicted from the images in 305

the image-action classification task, we devise an 306

ablation to test the effect of cascading (performing 307

multimodal inference in two steps) in the zero-shot 308

setting. Given a sequence of image-based obser- 309

vations A
image
t , a vision-language model (VLM) 310

first predicts the corresponding text-based action 311

sequence Âtext = g(Aimage), where g maps images 312

to text using the procedure in Section 4.3. The text 313

actions are then used for zero-shot inference to es- 314

timate the final state as ST = f(S0, Â
text). This 315

removes the need for the model to perform entity 316

tracking directly in the image modality, isolating 317

the effect of perceptual failures. These results are 318

presented in Section 5.4. 319

4.5 Fine-Tuning Experiments 320

We fine-tune frontier OpenAI models using their 321

fine-tuning API on a small training set. We evaluate 322

these in the Chess and Shell Game domains using 323
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CHESS TEXT IMAGE

BASELINE
GAME START 74.4 74.4

ZERO-SHOT
CLAUDE 3.5 SONNET 96.8 66.2
MINIMAX-VL-01 86.3 65.8
GEMINI-2.0-FLASH 93.3 74.7
GPT-4O MINI 68.3 60.6
GPT-4O 89.6 73.3

FEW-SHOT (N=5)
CLAUDE 3.5 SONNET 99.6 77.9
MINIMAX-VL-01 88.0 75.9
GEMINI-2.0-FLASH 96.6 78.7
GPT-4O MINI 75.1 74.9
GPT-4O 94.9 77.7

CHAIN-OF-THOUGHT
CLAUDE 3.5 SONNET 97.9 68.4
MINIMAX-VL-01 62.7 58.0
GEMINI-2.0-FLASH 93.3 74.5
GPT-4O MINI 72.0 69.6
GPT-4O 91.8 74.9

REASONING
O1-MINI 65.1 -
O3-MINI 99.6 -
O1 98.2 83.5

(a) Chess with ten moves in each sequence.

SHELL GAME TEXT IMAGE

BASELINE
RANDOM 33.3 33.3

ZERO-SHOT
CLAUDE 3.5 SONNET 34.4 36.2
MINIMAX-VL-01 34.4 35.2
GEMINI-2.0-FLASH 30.0 33.4
GPT-4O MINI 30.6 32.8
GPT-4O 36.0 32.4

FEW-SHOT (N=5)
CLAUDE 3.5 SONNET 34.0 30.6
MINIMAX-VL-01 36.4 32.0
GEMINI-2.0-FLASH 37.0 31.4
GPT-4O MINI 34.4 31.2
GPT-4O 37.2 31.0

CHAIN-OF-THOUGHT
CLAUDE 3.5 SONNET 97.4 94.2
MINIMAX-VL-01 92.6 32.8
GEMINI-2.0-FLASH 76.8 33.8
GPT-4O MINI 84.4 35.0
GPT-4O 99.8 84.2

REASONING
O1-MINI 99.8 -
O3-MINI 100.0 -
O1 100.0 92.8

(b) Shell Game with five swap moves in each sequence.

Table 1: Entity tracking accuracy in Chess and Shell Game for text and image actions. In the Few-Shot setting N = 5
in-context examples are used. Methods and models which employ explicit reasoning perform best (chain-of-thought
and reasoning models).

both image and text modalities. For Chess, we324

select a random set of 100 training examples of325

sequence length ten. For Shell Game we use 20326

training examples of sequence length 3. Results are327

available in Section A.2. Hyperparameters were328

determined through grid search and are available329

in Appendix A.2, Table 6.330

4.6 Mixed-Modality Experiments331

We perform an ablation where the image-action and332

text-action modalities are mixed. At each action333

step, one action modality is randomly selected with334

a probability varying from 100% text actions to335

100% image actions. This serves to quantify the336

effect of forcing the model to reason over multiple337

input modalities simultaneously. These results are338

presented in Section A.1.339

5 Results340

5.1 Tracking in Text Outperforms Images341

Chess Table 1a reports the accuracy for text and342

image actions in the chess domain. Performance343

in the text modality is significantly better than in344

the image modality. In the zero-shot setting, the 345

best-performing text model, Claude 3.5 Sonnet, 346

achieves an impressive 96.8% accuracy, while its 347

image-based counterpart drops sharply to 66.2%. 348

A similar trend holds across models, indicating that 349

current models can perform entity tracking in text 350

but fail to integrate visual updates as effectively. 351

Both in-context learning with few-shot prompt- 352

ing and chain-of-thought reasoning lead to perfor- 353

mance improvements. In the image modality, the 354

accuracy is not significantly greater than the naive 355

baseline. Only the o1 reasoning model achieves an 356

accuracy greater than 80% in the image modality. 357

Shell Game Table 1b reports the accuracy for 358

text and image actions for Shell Game. The results 359

follow a pattern similar to that of Chess, with text- 360

based tracking outperforming image-based track- 361

ing. However, unlike in Chess, the performance in 362

the zero-shot setting is close to random. But the 363

best model, o1, attains accuracies of 100.0% and 364

92.8% for the text and image modalities, respec- 365

tively. 366

Few-shot prompting provides only marginal im- 367
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(a) Chess zero-shot accuracy with text actions.
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(b) Chess zero-shot accuracy with image actions.

Figure 3: In the text action setting, the reasoning models, o1 and o3-mini, maintain the highest accuracy at longer
sequence lengths. o1-mini and the other models begin to output invalid and inaccurate board representations. All
models struggle to maintain accurate board representations in the image action setting, with o1 performing the best.

provements, but chain-of-thought gives large per-368

formance increases. GPT-4o’s accuracy jumps369

from 36.0% to 99.8% in text, and from 32.4% to370

84.2% in image tracking. These results suggest that371

when guided to decompose the task step-by-step,372

models can reason more effectively using image373

inputs, a finding that complements the results of374

performing cascaded inference in Section 5.4.375

5.2 Reasoning Aids Long Sequence Accuracy376

Chess Figure 3a plots model accuracy against377

increasing sequence lengths of text actions. The378

models are evaluated in the zero-shot setting for se-379

quence lengths of zero to 100 text actions. Reason-380

ing models like o1 and o3-mini are able to handle381

longer sequence lengths with a smaller decrease in382

accuracy. However, o1-mini performs worse than383

the other models as it produces more invalid FEN384

board representations at longer sequence lengths.385

In contrast, the non-reasoning models experience386

sharp decreases in accuracy after only a few ac-387

tions. Figure 3b plots model accuracy against in-388

creasing sequence lengths of image actions. The389

models are evaluated in the zero-shot setting for se-390

quence lengths of zero to 20 image actions. While391

the reasoning models attain higher accuracies, the392

performance differences are smaller than in the393

text-action setting.394

Shell Game In the text modality in Figure 4a, the395

reasoning models o1, o1-mini, and o3-mini attain396

the highest accuracies. o1 performs perfectly at397

a sequence length of 50 actions, where the non-398

reasoning models’ performance is significantly de-399

MODEL START END OVERALL

CHESS
GPT-4O-MINI 62.1 55.2 41.0
GPT-4O 97.3 97.0 94.5

SHELL GAME
GPT-4O-MINI 100.0 100.0 100.0
GPT-4O 100.0 100.0 100.0

Table 2: Percent image-action classification accuracy
for various models. We report the accuracy of predicting
the action start, end, and overall/UCI action for both
Chess and Shell Game on 1,000 image actions.

graded. In the image modality results in Figure 400

4b, o1 performs better than the other models, but 401

sees a rapid decrease in accuracy with sequence 402

lengths longer than five actions. By 20 actions, the 403

performance of all models has degraded to random. 404

The superior performance of reasoning models 405

like o1 suggests that structured inference mecha- 406

nisms, such as test-time search or chain-of-thought, 407

are crucial for maintaining coherent entity states 408

over long sequences. This aligns with prior findings 409

that models trained on structured reasoning tasks 410

(e.g., mathematics, coding) develop stronger im- 411

plicit state-tracking capabilities (Kim et al., 2024), 412

whereas standard vision-language models struggle 413

with entity persistence beyond short contexts. 414

5.3 Models Understand Image Actions 415

Table 2 shows the performance of GPT-4o and GPT- 416

4o-mini on classifying the text action represented 417

by each image action. For Chess, the action ‘start’ 418

is the square of the piece being moved, and ‘end’ is 419
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(a) Shell Game zero-shot accuracy with text actions.
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(b) Shell Game zero-shot accuracy with image actions.

Figure 4: In the text action setting, the reasoning models o1, o1-mini, and o3-mini achieve the highest performance
over long action sequences, but performance degrades for all models as sequence length increases. In the image
action setting, o1 performs the best, but achieves an accuracy no better than guessing the starting state by 20 actions.

CASCADED

METHOD CHESS SHELL

BASELINE
GAME START 74.4 33.3

ZERO-SHOT
GPT-4O MINI 63.0 28.0
GPT-4O 89.8 34.0

Table 3: Cascaded entity tracking accuracy for Chess
and Shell (Image → Text). In cascaded inference, the
model is first used to map each image action to the text
representation of the action. Then model is prompted
to perform the entity tracking task as in the text-action
setting.

the destination square. For Shell Game, the ‘start’420

is the first shell to be swapped and ‘end’ is the sec-421

ond. ‘Overall’ is the accuracy of classifying the422

entire action (start and end) correctly. While GPT-423

4o-mini struggles to recognize actions in chess,424

GPT-4o achieves an accuracy of 94.5%. Both mod-425

els attain perfect accuracy on the simpler Shell426

Game domain. This indicates that perception of the427

image-actions is not the fundamental limiting fac-428

tor for effective entity tracking with image inputs.429

A potential concern is whether the observed fail-430

ures stem from poor image representation rather431

than reasoning deficiencies. However, our cas-432

caded inference experiments (Section 5.4) demon-433

strate that when models first translate image ac-434

tions into text, they achieve near-text-level accu-435

racy. This suggests that models can correctly parse436

image-based actions but struggle with integrating437

them into coherent state updates, a limitation in438

reasoning rather than perception. 439

5.4 Cascading Matches Text-Only Tracking 440

Table 3 shows the accuracy of cascaded inference in 441

the zero-shot setting for GPT-4o and GPT-4o-mini. 442

In this setting, the image actions are first translated 443

into text actions, and then run through the text- 444

based entity tracking pipeline. The performance 445

in the cascaded setting is similar to the text-action 446

performance, showing that the model has the task- 447

knowledge needed to perform entity tracking in 448

both domains, but cannot reason effectively in the 449

image modality. 450

6 Discussion 451

Our evaluation of frontier model performance 452

on MET-Bench provides several insights into the 453

current state and remaining challenges of mul- 454

timodal entity tracking. We demonstrate a sig- 455

nificant performance gap between text-based and 456

image-based entity tracking across all evaluated 457

models, with even state-of-the-art vision-language- 458

reasoning models struggling to maintain accurate 459

entity states when processing visual inputs. This 460

disparity persists across both the Chess and Shell 461

Game domains, suggesting a fundamental limita- 462

tion in current architectures’ ability to reason about 463

entity states through visual observations. 464

This finding is particularly noteworthy given that 465

our image-action classification results (Table 2) 466

demonstrate that models can accurately perceive 467

and classify individual visual actions. The gap 468

between perception and reasoning suggests that 469
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the challenge lies not in processing visual inputs,470

but in maintaining and updating coherent entity471

information across sequential visual observations.472

Our cascaded inference experiments provide fur-473

ther evidence for this interpretation. When models474

first translate visual inputs to text before perform-475

ing entity tracking, they achieve performance com-476

parable to pure text-based tracking. This indicates477

that the models possess the relevant task knowl-478

edge and reasoning capabilities, but struggle to479

apply them directly in the visual domain.480

Further, the effectiveness of chain-of-thought481

prompting, particularly in the Shell Game domain482

where it improved GPT-4o’s accuracy from 36.0%483

to 99.8% for text and 32.4% to 84.2% for images,484

highlights the importance of explicit reasoning for485

entity tracking. This improvement indicates that486

current models can perform complex entity track-487

ing when guided to decompose the task into smaller488

steps, even in novel domains not present in their489

training data. However, the fact that such prompt-490

ing was necessary suggests that models do not im-491

plement robust tracking, particularly in multimodal492

settings. Lastly, the performance of specialized493

reasoning models like o1 and o3-mini on longer se-494

quences demonstrates the potential of architectures495

explicitly trained for sequential reasoning to main-496

tain coherent entity states despite the challenges of497

accumulating errors over extended sequences.498

7 Related Work499

Entity tracking has been extensively studied in tex-500

tual domains, with a focus on probing and improv-501

ing language models’ abilities to maintain repre-502

sentations of entity states. For instance, Toshniwal503

et al. (2022) evaluates chess as an entity tracking504

domain, employing fine-tuned models (Radford505

et al., 2019) to assess performance. Similarly, Kim506

and Schuster (2023) examine the impact of model507

size and fine-tuning on entity tracking in textual508

settings similar to our Shell Game domain. Tandon509

et al. (2020) construct a benchmark for understand-510

ing entity state changes in procedural texts. Shirai511

et al. (2022) construct the Visual Recipe Flow cor-512

pus and evaluate the ability of multimodal embed-513

ding models to properly sequence images depicting514

recipe states. In contrast, our work requires predict-515

ing entity state changes from actions specified in516

images and involves larger state spaces.517

Several studies explore the implicit representa-518

tions of entity states in language models. Li et al.519

(2021) and Long et al. (2016) use semantic probing 520

to reveal that Transformer-based models (Vaswani 521

et al., 2017) capture entity state representations im- 522

plicitly during textual reasoning. Building on this, 523

Prakash et al. (2024) demonstrate that fine-tuning 524

language models for entity tracking tasks enhances 525

pre-existing internal mechanisms rather than learn- 526

ing entirely new representations. Li et al. (2023) 527

find that Transformers trained on Othello games 528

form internal representations of the game state. 529

Efforts to improve textual entity tracking beyond 530

domain-specific fine-tuning include Fagnou et al. 531

(2024), which establishes theoretical limitations 532

of the Transformer architecture in tracking enti- 533

ties. They propose a novel attention mechanism 534

to enhance entity tracking in Transformers. Gupta 535

and Durrett (2019) fine-tunes small Transformer- 536

based models for tracking entity state in instruc- 537

tional texts. Kim et al. (2024) investigates how 538

code pretraining improves language models’ abil- 539

ities to track entities in text, while Yoneda et al. 540

(2024) introduce Stalter, a prompting method de- 541

signed to maintain accurate state representations in 542

text-based robotics planning. 543

These works focus on entity tracking as a uni- 544

modal, text-based reasoning task. While unimodal 545

approaches have achieved substantial progress, 546

there remains a gap in evaluating models’ ability to 547

integrate multimodal inputs for entity tracking. Our 548

work extends these evaluations to the multimodal 549

setting and quantifies the performance improve- 550

ment of reasoning models for entity tracking. 551

8 Conclusion 552

Our findings suggest that the primary bottleneck in 553

multimodal entity tracking is not visual recognition 554

but sequential reasoning over visual updates. Un- 555

like text-based representations, which align with 556

the models’ training paradigms, visual updates re- 557

quire implicit state reconstruction—a task that cur- 558

rent architectures do not perform reliably. Future 559

work should explore the effect of additional visual- 560

reasoning post-training, explicit memory structures, 561

or hybrid symbolic representations to mitigate this 562

gap. Additional research directions include in- 563

vestigating the role of entity tracking in world- 564

modeling, narrative understanding, and expanding 565

MET-Bench to include more complex domains be- 566

yond games. We believe addressing these chal- 567

lenges will be crucial for developing AI systems 568

capable of robust reasoning for real-world tasks. 569

8



9 Limitations570

Our benchmark is restricted to two synthetic do-571

mains—Chess and the Shell Game. While these572

domains are well-structured and offer a clear frame-573

work for assessing entity state tracking, they may574

not fully capture the complexity of real-world mul-575

timodal reasoning tasks that require entity tracking.576

Our study highlights a substantial performance577

gap between text-based and image-based entity578

tracking, yet the exact causes of this disparity re-579

main unclear. While our cascaded inference ex-580

periments suggest that models struggle to reason581

directly over visual updates rather than simply per-582

ceiving them, further investigation is needed to583

pinpoint the underlying source of the problem and584

whether it’s possible to explicitly ameliorate it.585

Additionally, our fine-tuning experiments586

demonstrate that performance can be improved587

with domain-specific adaptation, but we do not588

investigate the trade-offs between fine-tuning and589

generalization across unseen multimodal datasets.590

Understanding whether these improvements trans-591

fer to novel multimodal reasoning tasks is an im-592

portant avenue for future work.593

Ethical Considerations594

Vision-language models may inherit biases from595

their training data or other aspects of their develop-596

ment, leading to disparities in performance across597

different languages, cultures, or other categories598

that intersect with textual and visual representa-599

tions. The evaluations in this work can be used to600

improve the capabilities of frontier models, which601

if deployed in contexts requiring multimodal entity602

tracking, could further expose end-users to the bi-603

ases present in this work including our choice of604

game domains and language.605
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A Appendix767

A.1 Models Struggle to Integrate Mixed768

Modalities769
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Figure 5: Chain-of-thought entity tracking accuracy for
Chess and Shell Game with GPT-4o. The data splits
range from 100% text-encoded actions to 100% image-
encoded actions. The plot illustrates the change in accu-
racy as actions shift between modalities.

To examine how well models can integrate770

mixed-modality information, we evaluate perfor-771

mance as we vary the proportion of text and image-772

based action representations. As shown in Figure 5,773

for Chess performance degrades smoothly as the774

fraction of image actions increases, rather than ex-775

hibiting an abrupt collapse. However for Shell776

Game, the opposite is true and mixes of text and777

image actions are challenging for the model to rea-778

son over.779

A.2 Fine-Tuning Improves Multimodal Entity780

Tracking781

FINE-TUNED TEXT IMAGE

CHESS
GPT-4O MINI 89.2 -
GPT-4O 97.0 86.4

SHELL GAME (S=3)
GPT-4O MINI 32.0 -
GPT-4O 74.0 32.0

Table 4: Fine-tuned model entity tracking accuracy for
the Chess and Shell Game domains (Text actions and
Image actions).GPT-4o-mini does not support image
finetuning. A training set of 100 action sequences of
length ten were used for Chess and 20 action sequences
of length three and five for Shell Game.

Fine-tuning using the OpenAI fine-tuning API782

substantially improves model performance across783

both text and image modalities, as shown in Table 4.784

In Chess, fine-tuned models outperform even the 785

strongest zero-shot reasoning models, achieving 786

97.0% accuracy in the text domain and a signif- 787

icant boost to 86.4% in the image domain. This 788

suggests that even with a relatively small dataset, 789

fine-tuning allows the model to learn entity track- 790

ing representations that generalize better in both 791

modalities. Notably, fine-tuning leads to a larger 792

improvement in the image modality than in the text 793

modality. This reinforces the idea that pretrained 794

models already encode strong textual reasoning ca- 795

pabilities, whereas multimodal reasoning requires 796

additional adaptation. 797

In contrast, improvements on a simplified ver- 798

sion of Shell Game with only three moves are min- 799

imal in case of image-encoded actions. The Shell 800

Game task is not present in the training data and 801

it’s harder for the model to generalize, even when 802

exposed to a large fraction of the possible games of 803

the given length. This may indicate that the Shell 804

Game domain is simply too challenging for the 805

model to learn in both the image and text settings 806

from a limited number of examples. A more com- 807

plex training curriculum involving fine-tuning over 808

multiple game lengths may be required. 809

Model Name Image Reasoning

Claude 3.5 Sonnet ✓
(Anthropic, 2024)
Gemini-2.0-Flash ✓
(Hassabis and Kavukcuoglu, 2024)
GPT-4o mini ✓
(OpenAI, 2024a)
GPT-4o ✓
(OpenAI, 2024b)
Minimax-VL-01 ✓
(MiniMax et al., 2025)
o1-mini ✓
(OpenAI, 2024c)
o1 ✓ ✓
(OpenAI, 2024d)
o3-mini ✓
(OpenAI, 2025)

Table 5: Comparison of capabilities of language models
evaluated using the MET benchmark. All evaluated
models support text input and output. The total API cost
of experiments run is $2340.00.

A.3 Models 810

The models evaluated using MET-Bench are listed 811

in Table 5. 812

Minimax-VL-01 This model is released under 813

the license: https://github.com/MiniMax-AI/ 814

MiniMax-01/blob/main/LICENSE. The model is 815

11

https://github.com/MiniMax-AI/MiniMax-01/blob/main/LICENSE
https://github.com/MiniMax-AI/MiniMax-01/blob/main/LICENSE
https://github.com/MiniMax-AI/MiniMax-01/blob/main/LICENSE


CONFIGURATION EPOCHS LRM BATCH

CHESS
TEXT:

GPT-4O-MINI 3 1.8 1
GPT-4O 3 2 1

IMAGE:
GPT-4O 3 2 1

SHELL GAME
TEXT:

GPT-4O-MINI 3 1.8 1
GPT-4O 3 2 1

IMAGE:
GPT-4O 5 2 1

Table 6: Hyperparameters used for fine-tuning across
domains and modalities. The training epochs, learning
rate multiplier (LRM), and batch size are reported.

Role Messages

User The shell game is a classic game where
a ball is hidden under one of three
shells. You are a helpful assistant
that tracks the position of the ball.
The ball starts under shell 2. Here
are the moves played:
1 swap 3

2 swap 3

Now what is the final position of the
ball? Only output the number 1, 2, or
3.

Assistant 3

Figure 6: An example zero-shot user–assistant exchange
in the Shell Game domain, illustrating how the system
tracks swaps to determine the ball’s final shell.

465 billion parameters and is trained on a “diverse816

[dataset] incorporating diverse sources including817

academic literature, books, web content, and pro-818

gramming code” and post-training dataset encom-819

passing many multimodal and NLP tasks of 512820

billion tokens (MiniMax et al., 2025).821

A.3.1 Proprietary Models822

These models have limited information about their823

training and development. Like Minimax-VL-01,824

these models are likely trained on diverse, web-825

scale corpora spanning many domains and tasks.826

We provide links to the current terms of their use.827

Claude 3.5 Sonnet https://www.anthropic.828

com/legal/consumer-terms.829

Gemini-2.0-Flash https://ai.google.dev/830

gemini-api/terms831

GPT-4o mini, GPT-4o, o1, o1-mini, o3-mini832

https://openai.com/policies/833

Role Messages

User You are a helpful assistant that
interprets image-based actions in
chess.
Here is an image representing a move:
[Image Input]
In UCI notation, what move does the
arrow on the chessboard represent?
The move is from the green square to
the red square. (e.g., ‘e2e4’). Only
output the move and nothing else.

Assistant e2e4

Figure 7: An example user–assistant exchange in the
Chess domain, where the assistant identifies the move
represented in the image.

Role Messages

User You are a helpful assistant that
interprets image-based actions in the
shell game.
Here is an image representing a swap:
[Image Input]
In shell game notation, which shells
are being swapped in the image?
Shells are labeled ‘1’, ‘2’, ‘3’ and
the shells being swapped have their
numbers highlighted in green. Only
output a dash-separated pair like ‘1
swap 3’ and nothing else.

Assistant 1 swap 3

Figure 8: An example user–assistant exchange in the
Shell Game domain, where the assistant identifies the
shell swap represented in the image.

A.4 Datasets 834

The Chess dataset is adapted from Toshniwal 835

et al. (2022) which is adapted from the Million- 836

Base dataset, available for download at https: 837

//rebel13.nl/rebel13/rebel%2013.html. To 838

the best of our knowledge, no license or terms 839

of use are currently listed for either the original 840

MillionBase dataset or dataset of Toshniwal et al. 841

(2022). Our usage of this dataset is consistent with 842

the description of its use by Toshniwal et al. (2022). 843

MET-Bench is intended for evaluating and im- 844

proving the ability of VLMs to perform entity track- 845

ing. It is released under the MIT License. 846
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