
New metrics and search algorithms for weighted causal DAGs

Davin Choo * 1 Kirankumar Shiragur * 2

Abstract
Recovering causal relationships from data is an
important problem. Using observational data, one
can typically only recover causal graphs up to a
Markov equivalence class and additional assump-
tions or interventional data are needed for com-
plete recovery. In this work, under some standard
assumptions, we study causal graph discovery via
adaptive interventions with node-dependent inter-
ventional costs. For this setting, we show that
no algorithm can achieve an approximation guar-
antee that is asymptotically better than linear in
the number of vertices with respect to the veri-
fication number; a well-established benchmark
for adaptive search algorithms. Motivated by this
negative result, we define a new benchmark that
captures the worst-case interventional cost for any
search algorithm. Furthermore, with respect to
this new benchmark, we provide adaptive search
algorithms that achieve logarithmic approxima-
tions under various settings: atomic, bounded size
interventions and generalized cost objectives.

1. Introduction
Causal discovery is a fundamental problem that has found
applications in a wide range of fields, including biol-
ogy/medicine/genetics (King et al., 2004; Cho et al., 2016;
Tian, 2016; Sverchkov & Craven, 2017; Rotmensch et al.,
2017; Pingault et al., 2018; de Campos et al., 2019), epidemi-
ology, philosophy (Reichenbach, 1956; Woodward, 2005;
Eberhardt & Scheines, 2007), and econometrics (Hoover,
1990; Rubin & Waterman, 2006). In most of these applica-
tions, directed acyclic graphs (DAGs) are used to represent
the causal relationships and the goal is to recover the under-
lying causal graph from data. It is well known that using
observational data, the causal structure can only be learned

*Equal contribution 1School of Computing, National University
of Singapore 2Broad Institute of MIT and Harvard. Correspon-
dence to: Davin Choo <davin@u.nus.edu>, Kirankumar Shiragur
<shiragur@stanford.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

up to its Markov equivalence class (MEC) and additional
assumptions or interventional data is required for the recov-
ery of the ground truth causal graph. Here, we focus our
attention on causal discovery using interventions.

There is a rich literature on causal discovery from inter-
ventional data, which can be broadly classified into two
categories: adaptive (Shanmugam et al., 2015; Greenewald
et al., 2019; Squires et al., 2020; Choo et al., 2022; Choo
& Shiragur, 2023) versus non-adaptive (Eberhardt et al.,
2005; 2006; Eberhardt, 2010; Hu et al., 2014) approaches.
Given an essential graph, non-adaptive algorithms have to
decide beforehand a collection of interventions such that any
plausible causal graph can be recovered while adaptive algo-
rithms can decide on interventions sequentially while using
information gleaned from past interventions. Adaptive al-
gorithms are powerful and in some cases, the interventional
cost of an optimal adaptive algorithm is exponentially better
than any non-adaptive algorithms1. While the non-adaptive
setting is pretty well understood even in the most general
setting of node dependent vertex costs, researchers have
only recently made progress on the adaptive front in the
special case of unit vertex costs. Unfortunately, unit ver-
tex costs fail to capture many real world scenarios where
performing interventions can have varying costs (e.g. it is
less costly to force someone to sleep eight hours than to
force someone to run ten miles), are unethical (e.g. force
someone to smoke), or even practically impossible. See
(King et al., 2004; Sverchkov & Craven, 2017; Ness et al.,
2018; Lindgren et al., 2018) for more applications of causal
learning in settings where interventions have different costs.

Problem setup Motivated by the power of adaptivity and
broad applicability of varying costs, in this work, we study
causal discovery via adaptive interventions with the goal of
recovering the true underlying causal graph given the ob-
servational MEC while minimizing the total interventional
cost when vertices may have differing interventional cost.

Under standard assumptions of causal sufficiency, faithful-
ness and infinite sample regime, in addition to the search
problem defined above, recent works (Squires et al., 2020;
Choo et al., 2022; Choo & Shiragur, 2023) have also stud-

1For tree causal graphs, an adaptive algorithm only needs
O(logn) interventions to recover it while non-adaptive algorithms
require Ω(n) interventions in some cases. See Appendix A.1.

1

New metrics and search algorithms for weighted causal DAGs

ied a related fundamental problem for the adaptive setting
known as the verification problem. Given a MEC of an
unknown ground truth causal graph G∗ and a graph G from
the MEC, the goal of the verification problem is determine
whether G is G∗. By plugging in G with G∗ in the ver-
ification problem, we see that the optimal solution to the
verification is a natural lower bound for the search problem.
We denote the minimum size and minimum cost solutions to
the verification problem as ν(G∗) and ν(G∗) respectively.

For the special case of unit cost at each vertex, where
ν(G∗) = ν(G∗), (Choo et al., 2022) recently gave an adap-
tive search algorithm that recovers G∗ by performing at
most O(log n · ν(G∗)) atomic interventions2, which is only
a logarithmic factor worse than necessary. Furthermore,
they also argue that no algorithm can achieve an asymptoti-
cally better approximation ratio than O(log n) with respect
to the ν(G∗) for all the causal graphs G∗. In light of these
results, it is natural to ask if such results also hold when
vertices have different interventional costs.

While efficient algorithms for the verification and non-
adaptive search problems with varying vertex costs, and
adaptive search problem for unit vertex costs are known,
to the best of our knowledge, there is no existing efficient
adaptive search algorithm for varying vertex costs. Existing
approaches for the unweighted setting do not extend to the
weighted setting due to two major difficulties: proving lower
bounds for the benchmark, and designing algorithms that
are competitive with it. For the lower bound, existing meth-
ods only have guarantees with respect to the clique numbers
of chain components and are oblivious to individual vertex
costs. On the other hand, existing adaptive search algo-
rithms do not account for vertex weights3. In fact, we can
even show that the previously considered benchmark of the
verification number is no longer meaningful in the context
of weighted causal graphs. More formally, we prove that
no algorithm (even with infinite computational power) can
achieve an asymptotically better approximation than O(n)
with respect to the verification cost ν(G∗) for all ground
truth causal graphs on n nodes. Therefore, ν(G∗) is too
strong and an unreasonable benchmark4 to compare against
in the weighted setting. Motivated by this negative result,

2Interventions that only involve a single vertex each.
3For instance, the algorithm of (Choo et al., 2022) searches

for clique separators and intervenes on all the vertices in these
clique separators. However, we show that (see Theorem 4.1) one
cannot always intervene on the costliest vertex in a clique if we
hope to have any theoretical guarantees; this is reflected in one of
our algorithmic subroutines (see Algorithm 2).

4A recent work on subset verification and search (Choo & Shi-
ragur, 2023) also remarked that comparing against an algorithm
that knows G∗ can be overly pessimistic, and suggested that one
should “compare against the “best” algorithm that does not know
G∗”. This is consistent with our formulation of taking the maxi-
mum over all DAGs within the same Markov equivalence class.

we propose the following new benchmark

νmax(G∗) = max
G∈[G∗]

ν(G)

which captures the intuition that any algorithm has to grap-
ple with the worst-case causal graph in the given MEC5.
Using this new benchmark, we then provide adaptive search
algorithms that are competitive against the νmax(G∗).

Our main contributions are summarized as follows:

1. We argue that ν(G∗) is not a good benchmark.

2. Define a new benchmark νmax(G∗) that captures the
worst case interventional cost for any search algorithm.

3. Provide an adaptive search algorithm that is O(log2 n)
competitive to νmax(G∗) in the atomic setting.

4. Extend our search results to bounded size interven-
tions and for a generalized cost function that explicitly
trade-offs the number and cost of interventions, with
νmax(G∗) and νmax(G∗) being special cases.

Outline of paper We give preliminaries and related work
in Section 2. Results are stated in Section 3 and we provide
a proof sketch of these results in Section 4. Some empirical
results are shown in Section 5 and source code is provided
in the supplementary materials. Full proofs and further
experimental details are provided in the appendix.

2. Preliminaries
We write {1, . . . , n} as [n] and hide absolute constant mul-
tiplicative factors in n using standard asymptotic notations.
For any set A, we denote its powerset by 2A. Throughout,
we denote the (unknown) ground truth DAG by G∗.

Graph preliminaries
Let G = (V,E) be a graph on |V | = n vertices. We
use V (G), E(G) and A(G) ⊆ E(G) to denote its vertices,
edges, and oriented arcs respectively. G is said to be directed
or fully oriented if A(G) = E(G), and partially oriented
otherwise. For u, v ∈ V , we write u ∼ v if these vertices are
connected and u ̸∼ v otherwise. We use u → v or u ← v
to specify the arc directions. For any subset V ′ ⊆ V and
E′ ⊆ E, G[V ′] and G[E′] denote the vertex-induced and
edge-induced subgraphs respectively. Consider a vertex v ∈
V in a directed graph, let Pa(v),Anc(v),Des(v) denote
the parents, ancestors and descendants of v respectively.

The skeleton skel(G) of a (partially oriented) graph G refers
to the underlying graph where all edges are made undirected.
A v-structure refers to three distinct vertices u, v, w ∈ V

5Our benchmark differs from the notion of separating systems
studied in the non-adaptive search literature. See Appendix A.2.

2

New metrics and search algorithms for weighted causal DAGs

such that u→ v ← w and u ̸∼ w. The cycle is directed if
at least one of the edges is directed and all directed arcs are
in the same direction along the cycle. A partially directed
graph is a chain graph if it contains no directed cycle. In the
undirected graph G[E \ A] obtained by removing all arcs
from a chain graph G, each connected component is called
a chain component. We use CC(G) to denote the set of
chain components, where each H ∈ CC(G) is a subgraph
of G and V = ∪̇H∈CC(G)V (H). For any partially directed
graph, an acyclic completion or consistent extension refers
to an assignment of edge directions to unoriented edges such
that the resulting fully directed graph has no directed cycles;
we say that a DAG G is consistent with a partially directed
graph H if G is an acyclic completion of H .

DAGs are fully oriented chain graphs, where vertices repre-
sent random variables and the joint probability density f fac-
torizes according to the Markov property: f(v1, . . . , vn) =∏n

i=1 f(vi | Pa(v)). We can associate a (not necessar-
ily unique) valid permutation π : V → [n] to any (par-
tially directed) DAG such that oriented arcs (u, v) satisfy
π(u) < π(v) and unoriented arcs {u, v} can be oriented as
u→ v without forming directed cycles when π(u) < π(v).
A DAG is called a moral DAG if it has no v-structures, in
which case its essential graph is just its skeleton. Moral
DAGs have a unique source node (a node without incoming
arcs), and any subgraph of it is also a moral DAG.

For any DAG G, we denote its Markov equivalence class
(MEC) by [G] and essential graph by E(G). DAGs in the
same MEC [G] have the same skeleton and essential graph
E(G) is a partially directed graph such that an arc u→ v is
directed if u→ v in every DAG in MEC [G], and an edge
u ∼ v is undirected if there exists two DAGs G1, G2 ∈ [G]
such that u → v in G1 and v → u in G2. It is known that
two graphs are Markov equivalent if and only if they have
the same skeleton and v-structures (Verma & Pearl, 1990;
Andersson et al., 1997). An arc u → v is a covered edge
(Chickering, 1995) if Pa(u) = Pa(v) \ {u}.

We now give a definition and result for graph separators.

Definition 2.1 (α-separator and α-clique separator, Defini-
tion 19 from (Choo et al., 2022)). Let A,B,C be a partition
of the vertices V of a graph G = (V,E). We say that C
is an α-separator if no edge joins a vertex in A with a ver-
tex in B and |A|, |B| ≤ α · |V |. We call C is an α-clique
separator if it is an α-separator and a clique.

Theorem 2.2 ((Gilbert et al., 1984), instantiated for un-
weighted graphs). Let G = (V,E) be a chordal graph with
|V | ≥ 2 and p vertices in its largest clique. There exists
a 1/2-clique-separator C involving at most p− 1 vertices.
The clique C can be computed in O(|E|) time.

Interventions and verifying sets
An intervention S ⊆ V is an experiment where all variables

s ∈ S are forcefully set to some value, independent of the
underlying causal structure. An intervention is atomic if
|S| = 1 and bounded if |S| ≤ k for some k > 0; obser-
vational data is a special case where S = ∅. The effect of
interventions is formally captured by Pearl’s do-calculus
(Pearl, 2009). We call any I ⊆ 2V a intervention set. An
ideal intervention on S ⊆ V in G induces an interventional
graph GS where all incoming arcs to vertices v ∈ S are
removed (Eberhardt et al., 2005). It is known that inter-
vening on S allows us to infer the edge orientation of any
edge cut by S and V \ S (Eberhardt, 2007; Hyttinen et al.,
2013; Hu et al., 2014; Shanmugam et al., 2015; Kocaoglu
et al., 2017). For ideal interventions, an I-essential graph
EI(G) of G is the essential graph representing the Markov
equivalence class of graphs whose interventional graphs for
each intervention is Markov equivalent to GS for any inter-
vention S ∈ I. In Appendix C, we give some well-known
properties about interventional essential graphs. Here, we
highlight one such result that we will later use: intervening
on a node v in a moral DAG will orient any arcs u → w
where u is an ancestor of v and w is a descendant of v.
Lemma 2.3 (Lemma 34 of (Choo & Shiragur, 2023)). Let
G = (V,E) be a moral DAG. Intervening on vertex w
orients all edges u→ v with w ∈ Des(u) ∩ Anc(v).

A verifying set I for a DAG G ∈ [G∗] is an intervention
set that fully orients G from E(G∗), possibly with repeated
applications of Meek rules (see Appendix B). In other words,
for any graph G = (V,E) and any verifying set I of G, we
have EI(G)[V ′] = G[V ′] for any subset of vertices V ′ ⊆ V .
Furthermore, if I is a verifying set for G, then I ∪ S is also
a verifying set for G for any additional intervention S ⊆ V .
Definition 2.4 (Minimum size/cost verifying set). Let w be
a weight function on intervention sets. An intervention set
I is called a verifying set for a DAG G∗ if EI(G∗) = G∗. I
is a minimum size (resp. cost) verifying set if EI′(G∗) ̸= G∗

for any |I ′| < |I| (resp. for any w(I ′) < w(I)).

For DAG G and upper bound k ≥ 1, the minimum veri-
fication number νk(G) and the minimum verification cost
νk(G) denote the size/cost of the minimum size/cost veri-
fying set respectively. Note that atomic interventions are a
special case of bounded size interventions with k = 1.

Similar to (Kocaoglu et al., 2017; Ghassami et al., 2018;
Lindgren et al., 2018; Addanki et al., 2020), we consider ad-
ditive vertex costs where each v ∈ V has an associated inter-
vention cost w(v) in this work. The cost of an intervention
S ⊆ V is simply the sum of the vertices involved and the
cost of an intervention set I ⊆ 2V is the sum of the interven-
tion costs, i.e. w(I) =

∑
S∈I w(S) =

∑
S∈I

∑
v∈S w(v).

Since treating a bounded size intervention as k individual
atomic interventions can only recover more information,
we aim to optimize the following generalized cost func-
tion to explicitly trade-off between the cost and size of the

3

New metrics and search algorithms for weighted causal DAGs

intervention set:

max
G∈[G∗]

min
I is a bounded
size verifying

set for G

α ·w(I)+β · |I| where α, β ≥ 0 (1)

Fix any integer k ≥ 1 and DAG G ∈ [G∗]. Minimizing
Equation (1) yields νk(G) when α = 1 and β = 0 and
νk(G) when α = 0 and β = 1. Prior work (Choo et al.,
2022) studied the version of Equation (1) without the maxi-
mization over all DAGs in the Markov equivalence class for
the verification problem, but not the search problem.

For any bounded size verification set I ⊆ 2V , we write
cost(I, α, β, k) = α · w(I) + β · |I| to denote its
cost relative to Equation (1). For any deterministic adap-
tive search algorithm A that produces intervention set I
for causal graph G∗, we define cost(A,G∗, α, β, k) =
cost(I, α, β, k). For any randomized adaptive search algo-
rithms, cost(A,G∗, α, β, k) refers to expected cost, where
the expectation is over all the internal random choices made
by A. When restricting to atomic interventions with k = 1,
we simply write cost(I, α, β) and cost(A,G∗, α, β).

2.1. Related work in causal graph discovery

(Hyttinen et al., 2013) was the first to apply the notion of sep-
arating systems from the combinatorics literature to causal
discovery via non-adaptive atomic interventions. This was
later extended to interventions of bounded size in the adap-
tive setting by (Hu et al., 2014; Shanmugam et al., 2015).
Meanwhile, (Ghassami et al., 2018) studied the problem
of maximizing the number of oriented edges given a fixed
budget of non-adaptive atomic interventions.

There has been a flurry of works that explored adaptive
search algorithms to fully orient a given essential graph
while minimizing the number of interventions used (He
& Geng, 2008; Hu et al., 2014; Shanmugam et al., 2015;
Kocaoglu et al., 2017; Lindgren et al., 2018; Greenewald
et al., 2019; Squires et al., 2020; Choo et al., 2022). More
recently, (Choo & Shiragur, 2023) studied the problem of
adaptive subset search problem where one is only interested
in learning the orientations of a subset of target edges.

In the context of weighted interventions, one of the earliest
works in the setting of additive vertex costs is (Kocaoglu
et al., 2017), where they show how to compute minimum
cost non-adaptive bounded size interventions in polynomial
time. When the maximum number of interventions is fixed
and one has to find the minimum cost intervention set, (Lind-
gren et al., 2018) showed that it is NP-hard and provided a
constant factor approximation algorithm.

For lower bounds, prior works such as (Squires et al., 2020;
Porwal et al., 2022; Choo et al., 2022) studied bounds for
the verification number, where (Choo et al., 2022) even-
tually gave a complete characterization of ν1(G∗) via the

minimum vertex cover of the covered edges of G∗.

In the presence of latents (i.e. causal insufficiency), a com-
mon causal graph discovery objective is to recover an ances-
tral graph (Richardson & Spirtes, 2002) instead of a DAG.
(Addanki et al., 2020) recently studied this problem using
non-adaptive interventions under additive vertex costs.

3. Results
Here we state all our main results of the paper. Our first
result suggests that comparing against ν1(G∗) may be too
pessimistic for weighted causal graphs as we show that one
cannot outperform an approximation of |V (G∗)| = n in the
worst case. Theorem 3.1 is information-theoretic and holds
even for algorithms that have infinite computation power.

Theorem 3.1. For any adaptive search algorithm A, de-
terministic or randomized, there exists a weighted causal
graph G∗ such that cost(A,G∗, 1, 0) ∈ Ω(n · ν1(G∗)).

Recently, in the context of adaptive subset search on un-
weighted causal graphs, (Choo & Shiragur, 2023) showed
that comparing against ν1(G∗) in the presence of an adap-
tive adversary6 leads to pessimistic bounds. Instead, they
propose to compare against a benchmark that does not know
G∗. Independently motivated by Theorem 3.1, we propose
the following natural benchmark metric that to compare
search algorithms against:

νmax
k (G∗) = max

G∈[G∗]
νk(G) for any integer k ≥ 1 (2)

As discussed in the introduction, our new benchmark
captures the worst case cost for any optimal algorithm
over the DAGs corresponding to a given essential graph.
That is, maxG∈[G∗] cost(ALG, G, 1, 0, k) ≥ νmax

k (G∗) ≥
νk(G

∗) for any fixed adaptive search algorithm ALG. This
benchmark also resolves the earlier raised concerns in (Choo
& Shiragur, 2023) of “comparing against the “best” algo-
rithm that does not know G∗”.

We next present an adaptive algorithm that is competitive
with respect to Equation (2) when searching over weighted
causal graphs using adaptive interventions.

Theorem 3.2. Fix an essential graph E(G∗) corresponding
to an unknown weighted causal DAG G∗. Algorithm 1
is a deterministic and adaptive algorithm that computes
an atomic intervention set I such that EI(G∗) = G∗ and
w(I) ∈ O

(
log2(n) · νmax

1 (G∗)
)
. Ignoring the time spent

implementing the actual interventions, Algorithm 1 runs in

6An adaptive adversary observes the interventions made by
an adaptive algorithm and is allowed to “change its mind” by
choosing the ground truth DAG among the set of all DAGs that
are consistent with the already revealed information. We remark
that Theorem 3.1 holds even in the presence of a non-adaptive
adversary, and thus is a stronger result in this aspect.

4

New metrics and search algorithms for weighted causal DAGs

O(n·log2(n)·d·m) time, where d and m are the degeneracy
and number of edges of skel(E(G∗)) respectively.

Theorem 3.2 is the first competitive adaptive algorithm for
the weighted setting. We later show that one can combine
Algorithm 1 with a simple algorithm in a black-box manner
to get w(I) ∈ O(min{n · ν(G∗), log2(n) · νmax

1 (G∗)}).
The closest comparable result for weighted graph search
is the non-adaptive search algorithm of (Lindgren et al.,
2018) discussed in Section 2.1. However, note that the size
of a separating system in the non-adaptive setting can be
much larger than νmax

1 (G∗) even when all vertices have unit
weight: in the case where the essential graph is a path on n
vertices, νmax

1 (G∗) = νmax
1 (G∗) = 1 while any separating

system on this path has size Ω(n); see Appendix A.2.

By tweaking the algorithm of Theorem 3.2 appropriately,
our next result provides competitive guarantees with respect
to the generalized cost function Equation (1).

Theorem 3.3. Fix an essential graph E(G∗) correspond-
ing to an unknown weighted causal DAG G∗. Suppose I∗1
and I∗k are an atomic and bounded size verifying sets min-
imizing Equation (1) such that cost(I∗1 , α, β, 1) = OPT1

and cost(I∗k , α, β, k) = OPTk. Then, Algorithm 3 runs
in polynomial time and computes a bounded size interven-
tion set I in a deterministic and adaptive manner such that
EI(G∗) = G∗, and
1. cost(I, α, β, 1) ∈ O

(
log2 n · OPT1

)
2. cost(I, α, β, k) ∈ O (log n · (log n+ log k) · OPTk).

We remark that Algorithm 1 is a special case of Algorithm 3
(given in Appendix D) with α = 1, β = 0, and k = 1.

Why study bounded size interventions?
One may be able to reduce the number of interventions
performed if one is allowed to intervene on more than one
vertex per intervention. For instance, to fully recover the
orientations of a clique on n nodes, it is known that Ω(n)
atomic interventions are required. However, if bounded size
interventions are allowed, the lower bound is only Ω(n/k)
and Õ(n/k) interventions suffice (Shanmugam et al., 2015).
As interventions take up actual wall-clock time and adaptiv-
ity demands sequentiality in the decision process, the ability
to perform bounded size interventions (ideally in parallel)
is particularly important for time-sensitive scenarios.

Significance of our new metric νmax(G∗)
As the previous benchmark of ν(G∗) is overly pessimistic,
many algorithms will “look the same” (albeit all with terri-
ble competitive ratios) when compared against ν(G∗) and
it is natural to ask if there is a meaningful comparison
that differentiates them. The new benchmark νmax(G∗)
serves this purpose: an algorithm that is more competitive
to νmax(G∗) would have better worst-case guarantees. In-
tuitively, νmax(G∗) shifts the comparisons away from an
idealistic “how much will an oracle that knows G∗ pay?” to

a weaker “how much will the best possible algorithm that
only knows [G∗] pay?”. The latter question is more realis-
tic/reasonable, and as we have argued, more meaningful in
problem instances where vertices have differing costs.

Many adaptive search algorithms guarantee an Õ(n) ap-
proximation to ν(G∗) which only implies an Õ(n) approx-
imation to νmax(G∗), while Algorithm 1 provably obtains
a logarithmic competitive ratio to νmax(G∗). For instance,
the following naive algorithm incurs a cost ofO(n · ν(G∗)),
but does not yield meaningful guarantees against νmax(G∗):
intervene on vertices one-by-one in an ascending weight
ordering until the entire graph is oriented. The proof of
O(n · ν(G∗)) is straightforward: the weight w(vfinal) of
the final intervened vertex vfinal is a lower bound for ν(G∗),
and we intervened at most n vertices, each of cost lower
than w(vfinal), before vfinal. In Appendix E, we formally
show how to combine the this naive algorithm with our al-
gorithms of Theorem 3.2 and Theorem 3.3 in a black-box
manner to retain the guarantees against νmax(G∗) whilst
simultaneously ensuring that at most O(n · ν(G∗)) cost is
incurred. The high-level idea is to simulate both algorithms
in parallel until the causal graph is recovered.

4. Techniques
Here, we give some high-level technical ideas behind our
algorithmic results (Theorem 3.2 and Theorem 3.3). We
first describe how to lower bound the benchmark νmax be-
fore giving our atomic adaptive algorithm (Algorithm 1).
Then, we explain how to tweak Algorithm 1 to handle the
generalized cost function with bounded size interventions.

4.1. Lower bounding the benchmark

For any interventional essential graph, we know that inter-
ventions within a chain component do not help to recover
arcs within another chain component (Hauser & Bühlmann,
2014). Using this fact along with the proof strategy of (Choo
et al., 2022) for lower bounding ν1(G

∗), we can show the
following lower bound for νmax

1 (G∗).
Theorem 4.1. For any DAG G∗ and its essential graph
E(G∗), we have

νmax
1 (G∗) ≥ max

I⊆V


∑

H∈CC(EI(G
∗))

|V (H)|≥2

max
{
ζ
(1)
I,H , ζ

(2)
I,H

}
where we maximize over atomic intervention sets I ⊆ V ,

ζ
(1)
I,H =

1

2
· max

clique C∈H

{
w(V (C))− max

v∈V (C)
{w(v)}

}
and

ζ
(2)
I,H =

1

2
· max
v∈V (H)

{
min {w(v), γH,v}

}
5

New metrics and search algorithms for weighted causal DAGs

v1 v2 . . . v|C| v1 v2 . . . v|C|

Figure 1. Consider clique C involving vertices v1, v2, . . . , v|C|
with w(v1) ≥ w(v2) ≥ . . . ≥ w(v|C|). By Lemma 4.2, there
exists a DAG consistent with this essential graph by choosing any
vertex ordering of our choice within C (see right figure). Covered
edges {v1 → v2, v2 → v3, . . . , v|C|−1 → v|C|} are dashed.

where γH,v =
∑t

i=1 max clique Ci:
V (Ci)⊆Vi∩NH(v)

{w(V (Ci))}

with V1, . . . , Vt ⊆ V (H) being vertex sets of the t ≥ 1
disjoint connected components in H[V (H) \ {v}].

The two cases of Theorem 4.1 are pictorially illustrated
by Figure 1 and Figure 2 respectively: we lower bound
the ζ(1) and ζ(2) terms via the minimum cost vertex cover
of the covered edges constructed in each figure. In ζ(1),
w(V (C)) − maxv∈V (C) w(v) corresponds to the sum of
the weight of all clique vertices except the costliest one.
In ζ(2), we check whether it is cheaper to intervene on a
particular vertex v or a clique in each connected component
“dangling” from v. The proof for both cases relies on being
able to pick a “worst case ordering” on the vertices that are
consistent with the given essential graph EI(G∗).

To argue that we can always fix such an ordering of our
choice, we combine a “patching” result of (Choo & Shi-
ragur, 2023) (see the second point of Theorem C.4) with
the “maximal clique picking” procedure of (Wienöbst et al.,
2021b) from the literature of MEC size counting. Informally,
(Wienöbst et al., 2021b) showed that all possible DAGs con-
sistent with any given essential graph can be generated by
repeating procedure: Picking a maximal clique C to be the
prefix maximal clique; orient all incident edges out of C;
apply Meek rules until convergence; repeat.

Lemma 4.2. Fix an interventional essential graph EI(G∗)
corresponding to an arbitrary moral DAG G∗ and interven-
tion set I ⊆ 2V . For any clique C (not necessarily maximal)
in any chain component of EI(G∗) and any permutation or-
dering π on the vertices V (C) of C, there exists a DAG
G consistent with EI(G∗) such that u → v if and only if
π(u) < π(v) for any two clique vertices u, v ∈ V (C).

Roughly speaking, given a (not necessarily maximal) clique
C ′ and an ordering π, Lemma 4.2 follows by first picking a
maximal clique containing C ′ to be the prefix via “maximal
clique picking”, and then picking the vertices within C ′ one
by one according to π via “patching”.

Since vertex costs are additive and intervening on vertices in
each bounded intervention set atomically can only recover
more information about the causal graph, our next result
provide lower bounds of the benchmark for bounded size

v

H2 Ht
. . .

H1

C1

v

H2 Ht
. . .

s1

? ?

H1

C1

Figure 2. Consider the chain component H with vertex v and “dan-
gling” connected components H1, H2, . . . , Ht in H[V (H)\{v}].
Suppose C1 is the costliest clique within H[V (H1)∩NH(v)]. By
Lemma 4.2, there exists a DAG consistent with this essential graph
by letting v be the prefix within H and then letting C1 be the prefix
within H1 and choosing any vertex ordering of our choice within
C1 (see right figure). Covered edges are dashed. For any connected
component Hi with source node si, the arc v → si is a covered
edge while v → u is not a covered edge, for u ∈ V (Hi) \ {si}.

interventions with its atomic counterpart.

Theorem 4.3. For any DAG G∗ and integer k ≥ 1,
νmax
k (G∗) ≥ νmax

1 (G∗) and νmax
k (G∗) ≥ ⌈νmax

1 (G∗)/k⌉.

4.2. A competitive adaptive search algorithm

Here, we present an adaptive search algorithm (Algorithm 1)
that is competitive with respect to the lower bounds we
presented in the previous section and proves Theorem 3.2. A
known result of (Choo & Shiragur, 2023) (see Theorem C.4)
allows us to ignore all oriented arcs in an interventional
essential graph, without loss of generality, we can always
assume that the underlying causal graph is a moral DAG.
Given an essential graph of a moral DAG, Algorithm 1
adaptively computes and outputs an atomic intervention set
with cost competitive to νmax

1 (G∗).

On a high level, Algorithm 1 is rather similar to the algo-
rithm of (Choo et al., 2022): both algorithms repeatedly
apply Theorem 2.2 to compute 1/2-clique separators KH so
that we can break up the chain components and recurse on
smaller sized chain components. Such an approach is useful
because the lower bound of Theorem 4.1 ensures that the
interventions done in each disjoint chain component can be
summed up together to compare against νmax

1 (G∗).

Unfortunately, we cannot fully intervene on all vertices in
the clique separators unlike the unweighted adaptive search
algorithm of (Choo et al., 2022). In the weighted setting, the
costliest vertex vH in a clique separator KH may be enor-
mous cost7 and the first case of Theorem 4.1 only guarantees

7In the extreme case, consider the example where w(vH) ≫

6

New metrics and search algorithms for weighted causal DAGs

Algorithm 1 Atomic weighted adaptive search.
1: Input: Essential graph E(G∗) of a moral DAG G∗ and

weight function w : V → R.
2: Output: Atomic intervention set I s.t. EI(G∗) = G∗.
3: Initialize i = 0 and I0 = ∅.
4: while EIi(G

∗) still has unoriented edges do
5: Initialize Ji ← ∅
6: for H ∈ CC(EIi

(G∗)) of size |H| ≥ 2 do
7: Find 1/2-clique separator KH via Theorem 2.2.
8: Let S = {{v} : v ∈ V (KH)) \ {vH}} be

an atomic intervention set without the costliest
vertex vH = argmaxv∈V (KH) w(v).

9: Intervene on S and add S to Ji.
10: Let ZvH ∈ CC(EIi∪S(G

∗)) be the chain
component containing vH after intervening on S.

11: if vH is not singleton in ZvH then
12: Add output of ResolveDangling to Ji.
13: Update Ii+1 ← Ii ∪ Ji and i← i+ 1.
14: Return Ii

that we can remain competitive by intervening on all but vH .
As there may be connected components “dangling off vH”,
we invoke ResolveDangling (Algorithm 2) to ensure
that the partites induced by the 1/2-clique separators will
indeed be separated while we use the second case of Theo-
rem 4.1 to bound the cost of interventions used8. Denoting
an iteration of the while loop in Algorithm 1 as a phase, we
show the following two lemmas about Algorithm 1 whose
combinations directly yields Theorem 3.2.

Lemma 4.4. Algorithm 1 terminates after O(log n) phases.

Lemma 4.5. Each phase in Algorithm 1 incurs a cost of
O(log(n) · νmax

1 (G∗)).

The first logarithmic factor in Lemma 4.4 is due to the
halving of the size of the chain components in each phase
while the second logarithmic factor in Lemma 4.5 is due
to the subroutine ResolveDangling, which tries to find
a prefix clique in each dangling component. The descrip-
tion of the subroutine ResolveDangling is provided
in Algorithm 2 and the guarantees of this subroutine are
summarized in the following lemma.

Lemma 4.6. Fix an interventional essential graph EI′(G∗)
corresponding to an unknown weighted causal moral DAG
G∗ and some intervention I ′ ⊆ 2V . Let H be a chain com-
ponent of EI′(G∗) containing a vertex v ∈ V (H). Then, Al-
gorithm 2 returns an atomic intervention set I such that all∑

v∈V \{vH} w(v). In this example, intervening on everything but
vH in an atomic fashion trivially recovers any DAG in [G∗], i.e.
νmax
1 (G∗) ≤

∑
v∈V \{vH} w(v) ≪ w(vH).

8If the computed clique separator in Step 8 of Algorithm 1
involves only 1 node, S = ∅ and we break up the partites via
ResolveDangling (Algorithm 2).

Algorithm 2 ResolveDangling
1: Input: Interventional essential graph EI′(G∗) for some

intervention I ′ ⊆ 2V , weight function w : V → R,
and a chain component H of EI′(G∗) that contains
vertex v ∈ V (H) with t disjoint connected components
H1, . . . ,Ht in H[V (H) \ {v}].

2: Output: Atomic intervention set I such that all the
outgoing edges of v within H are oriented in EI∪I′(H).

3: Initialize I ← ∅.
4: if w(v) ≤

∑t
i=1 maxclique C in Hi ∩ NH(v) w(C) do

5: Intervene on v; Set I ← I ∪ {{v}}.
6: else
7: for i ∈ {1, . . . , t} do
8: Initialize V ′ ← V (Hi) ∩NH(v).
9: while skel(EI∪I′(G∗))[V ′] is not a clique do

10: Find a 1/2-clique separator K of Hi[V
′].

11: Intervene on K atomically; Add V (K) to I.
12: By Lemma 4.7, find the chain component Q

with only incoming arcs into K (if it exists).
13: if Q exists then Set V ′ ← V (Q).
14: else Set V ′ ← ∅. break
15: Intervene on V ′ atomically; Set I ← I ∪ V ′.
16: Return I

the outgoing edges of v within H are oriented in EI′∪I(H)
and w(I) ∈ O(log n · νmax

1 (G∗)).

In the remainder, we briefly discuss the technical idea be-
hind Algorithm 2. Let π be an arbitrary consistent ordering
of vertices corresponding to the unknown underlying DAG
G∗. Suppose there are t disjoint connected components
H1, . . . ,Ht after removing vH , then the cost incurred by
Algorithm 2 is made competitive by using the second case
of Theorem 4.1. See Figure 3 for an illustration. If w(vH) is
at most the sum of weights of the heaviest clique across all
{Hi ∩NH(v)}i∈[t], then we can simply intervene on vH to
disconnect the partites. Otherwise, within each disjoint con-
nected component Hi, we will search for and intervene on
the source vertex ui = argminu∈V (Hi)∩NH(v) π(u) within
each Hi. As we will search for ui using 1/2-clique separa-
tors, Lemma 4.7 guarantees we find it inO(log n) iterations.

Lemma 4.7. Let EI(G) be the interventional essential
graph of a moral DAG G = (V,E) with respect to interven-
tion set I ⊆ V . Fix any chain component H ∈ CC(EI(G))
and vertex v ∈ V (H). If v is the source node of H , then
there are no chain components of EI∪{v}(H) with only in-
coming arcs into v in G. Otherwise, if v is not the source
node of H , then there is exactly one chain component of
EI∪{v}(H) with only incoming arcs into v in G. Further-
more, without further interventions, we can decide if such a
chain component exist (and find it) in polynomial time.

Consider an arbitrary connected component Hi amongst

7

New metrics and search algorithms for weighted causal DAGs

vH
u1

u2 u3

u4

C

A B

H1

H2 H3

H4

Figure 3. Consider the moral DAG G∗ above where C is a 1/2-
clique separator with vertices in A = V (H1) ∪ V (H2) and B =
V (H3) ∪ V (H4), and vH is the costliest vertex in C. If we were
to intervene on every single vertex in C, as per the algorithm of
(Choo et al., 2022), then the partites A and B will be disconnected.
However, vH may be very costly and Theorem 4.1 only gives
approximation guarantees when intervening on I = V (C)\{vH}.
Since the incident edges of vH may remain unoriented in EI(G

∗),
the partites may still be connected, e.g. the arcs u2 → vH → u3

remain unoriented in EI(G
∗). We say that connected components

H1, H2, H3, and H4 are “dangling” from vH in EI(G
∗). By

Lemma 2.3, it suffices to intervene on all the source vertices ui in
each Hi, and thus ResolveDangling searches for ui amongst
the neighbors of vH in each Hi (the blue ellipses).

H1, . . . ,Ht with source vertex ui. If π(vH) < π(ui),
Lemma 2.3 tells us that intervening on ui will orient all
vH → z arcs for z ∈ Hi which disconnects Hi from
vH , and thus from other components Hj . Meanwhile, if
π(vH) > π(ui), then there is an arc from Hi to vH . Note
that intervening on ui may not disconnect Hi from vH , but
it will disconnect Hi from the other components9. Nonethe-
less, we can still conclude that the resulting connected com-
ponent has size at most halved since Hi was part of a partite
resulting from a 1/2-clique separator – it may include at
most an additional vertex vH but will not include ui (since
we intervene on ui). We prove this formally in the appendix.

4.3. Handling the generalized cost objective

To handle the generalized cost objective of Equation (1),
we make three algorithmic tweaks to the algorithms pre-
sented in the previous section. Firstly, we change the con-
dition of Line 4 in Algorithm 2 to account for the α-β
trade-off in Equation (1). Secondly, to compute bounded

9Without loss of generality, suppose π(u1) =
mini∈{1,...,t} π(ui) and π(vH) > π(u1). Orienting the
arc u1 → vH triggers Meek rule R1 to orient all vH → z arcs for
z ̸∈ H1, thus disconnecting the Hi’s from each other.

size interventions to follow orient a clique, we apply the
labelling scheme of Lemma 4.8 to use bounded sized in-
terventions when intervening on cliques via the subroutine
CliqueIntervention (Algorithm 5) with guarantees
given in Lemma 4.9. Finally, when searching for a prefix
clique in the while-loop Algorithm 2, if one directly applies
CliqueIntervention on each clique separator KHi

,
then one can show an O(log2 n · log k) approximation. To
obtain anO(log n ·(log n+log k)) approximation, we show
that it suffices to partition V (KHi) into groups of size at
most k and intervening on them. Note that this will not nec-
essarily orient all internal edges of V (KHi

) but is sufficient
for the purposes of locating a prefix clique.

Lemma 4.8 ((Shanmugam et al., 2015)). Let (n, k, a) be
parameters where k ≤ n/2. There is a polynomial time
labeling scheme that produces distinct ℓ length labels for
all elements in [n] using letters from the integer alphabet
{0} ∪ [a] where ℓ = ⌈loga n⌉. In every digit (or position),
any integer letter is used at most ⌈n/a⌉ times. This labelling
scheme is a separating system: for any i, j ∈ [n], there
exists some digit d ∈ [ℓ] where the labels of i and j differ.

Lemma 4.9. Given a set of clique vertices V (C) ⊆ V and
integer k ≥ 1, Algorithm 5 returns a set S ⊆ 2V (C) such
that each partite in S has at most k vertices. When k = 1,
|S| = |V (C)| and each vertex appears exactly once in S.
When k > 1, |S| ∈ O(log k · |V (C)|/k) and each vertex
appears at most O(log k) times in S.

In terms of analysis, to lower bound Equation (1), we indi-
vidually lower bound the cost and size terms. For instance,

max
G∈[G∗]

min
I is a bounded
size verifying

set for G

α · w(I) + β · |I|

≥ max
G∈[G∗]

min
I is a bounded
size verifying

set for G

α · w(I) = α · νmax
k (G∗) .

Similarly, β · νmax
k (G∗) is also a lower bound. Then, we

can further use Theorem 4.3 to lower bound νmax
k (G∗)

and νmax
k (G∗) via νmax

1 (G∗) and νmax
1 (G∗) respectively.

The additional log k term for non-atomic interventions oc-
curs because of the multiplicity of vertices in the output of
CliqueIntervention (see Lemma 4.9).

In summary, our tweaked algorithm for the generalized cost
objective has O(log n) phases, similar to Algorithm 1, and
we incur a cost of O((log n+ log k) · OPTk) in each phase.
A description of the tweaked algorithm and a more detailed
analysis of it is provided in the appendix.

5. Experiments
Since ALG (Algorithm 1) is a special case of
ALG-GENERALIZED (Algorithm 3) when α = 0,

8

New metrics and search algorithms for weighted causal DAGs

(a) Type 1, α = 0, β = 1 (b) Type 1, α = 1, β = 1

(c) Type 2, α = 0, β = 1 (d) Type 2, α = 1, β = 1

Figure 4. Experimental results for atomic interventions (log scale)

β = 1, and k = 1, we implement and benchmark
ALG-GENERALIZED. Modifying the synthetic experi-
mental setup of (Squires et al., 2020; Choo et al., 2022;
Choo & Shiragur, 2023) for weighted causal graphs, we
ran experiments for α ∈ {0, 1} and β = 1 on two different
types of weight classes for a graph on n vertices and
measured generalized costs incurred:

Type 1. Vertex weights are i.i.d. sampled from an exponen-
tial distribution exp(n2) with parameter n2 to simulate the
setting where there is a spread in the costs of the vertices.
Type 2. A random p = 0.1 fraction of vertices are assigned
weight n2 while the others are assigned weight 1 to simulate
the setting with a few randomly chosen high cost vertices.

Figure 4 shows a subset of our experiments; see Appendix G
for more experimental details and results, where we also
investigate the impact of size for bounded size interventions.

Qualitative discussion of experimental results

The Y-axis measures the generalized cost α ·w(I) + β · |I|,
for intervention set I ⊆ 2V . Ignoring the magnitude of
Y-axis values, fixing either α or β while scaling the other
recovers any possible observable trend. For atomic interven-
tions, (α, β) = (0, 1) recovers the unweighted setting and
Figure 4 illustrates the effects of α = 0 versus α = 1.

When α = 0, the generalized cost function is simply the
number of interventions used that the other state-of-the-art
methods were designed for. Here, ALG-GENERALIZED
incurs a similar cost despite having additional overheads to
ensure theoretical guarantees for general α ≥ 0.

For α > 0, the generalized cost function is affected by
the vertex weights, and ALG-GENERALIZED incurs no-
ticeably less cost than the others already when α = 1 (note:

log scale). This gap will only increase as we increase the
value of α to make the generalized cost put more weightage
on the total additive vertex cost of the intervention I.

As our experimental instances were randomly generated,
it does look like existing algorithms, such as (Choo et al.,
2022), is competitive with our weight-sensitive algorithm
ALG-GENERALIZED on such random instances, even
though they are oblivious to vertex weights. However, we
can easily create many instances where these algorithms
performs arbitrarily worse. For instance, consider the star
graph G∗ on n nodes where the leaves have weight 1 and the
centroid has weight w ≫ n; imagine w = n10000. On G∗,
(Choo et al., 2022) will intervene on the centroid, incurring
w while ALG-GENERALIZED will never intervene on the
centroid and in the worst case intervene on all the leaves
(paying at most n− 1) to fully orient G∗ from E(G∗).

ALG-GENERALIZED has a similar running time10 as the
other state-of-the-art algorithms across all experiments.

6. Conclusion and future directions
In our work, we make standard assumptions of causal suf-
ficiency, faithfulness, and infinite sample regime. As these
assumptions may be too strong in some practical settings,
one should view our work as providing theoretical foun-
dations to the feasibility of the weighted search problem
(i.e. what can be done in an optimistic setting) and it is
of paramount practical importance to weaken/remove such
assumptions in future work. In addition, we also state some
possible future directions that we think are interesting:

1. Understand the optimal approximation ratio of our new
benchmark νmax(G∗) = maxG∈[G∗] ν(G).

2. Design subset search algorithms à la (Choo & Shiragur,
2023) that are competitive with respect to νmax(G∗),
for both unweighted and weighted settings.

3. Provide an efficient algorithm to compute νmax(G∗).
We remark that, for a given G∗, efficient computation
of ν1(G∗) and ν1(G

∗) are known (Choo et al., 2022).

Acknowledgements
This research/project is supported by the National Research
Foundation, Singapore under its AI Singapore Programme
(AISG Award No: AISG-PhD/2021-08-013). Part of this
work was done while the authors were visiting the Simons
Institute for the Theory of Computing. We would like to
thank Saravanan Kandasamy, Jiaqi Zhang, and the ICML
reviewers for valuable feedback and discussions.

10ALG-GENERALIZED is faster than all benchmarked algo-
rithms except (Choo et al., 2022). This is expected as both are
based on 1/2-clique separators but ALG-GENERALIZED has ad-
ditional computational overheads to handle dangling components.

9

New metrics and search algorithms for weighted causal DAGs

References
Addanki, R., Kasiviswanathan, S., McGregor, A., and

Musco, C. Efficient Intervention Design for Causal Dis-
covery with Latents. In International Conference on
Machine Learning, pp. 63–73. PMLR, 2020.

Andersson, S. A., Madigan, D., and Perlman, M. D. A char-
acterization of Markov equivalence classes for acyclic
digraphs. The Annals of Statistics, 25(2):505–541, 1997.

Chickering, D. M. A Transformational Characterization
of Equivalent Bayesian Network Structures. In Proceed-
ings of the Eleventh Conference on Uncertainty in Artifi-
cial Intelligence, UAI’95, pp. 87–98, San Francisco, CA,
USA, 1995. Morgan Kaufmann Publishers Inc. ISBN
1558603859.

Cho, H., Berger, B., and Peng, J. Reconstructing Causal
Biological Networks through Active Learning. PLoS
ONE, 11(3):e0150611, 2016.

Choo, D. and Shiragur, K. Subset verification and search
algorithms for causal DAGs. In International Conference
on Artificial Intelligence and Statistics, 2023.

Choo, D., Shiragur, K., and Bhattacharyya, A. Verification
and search algorithms for causal DAGs. Advances in
Neural Information Processing Systems, 35, 2022.

de Campos, L. M., Cano, A., Castellano, J. G., and Moral, S.
Combining gene expression data and prior knowledge for
inferring gene regulatory networks via Bayesian networks
using structural restrictions. Statistical Applications in
Genetics and Molecular Biology, 18(3), 2019.

Eberhardt, F. Causation and Intervention. Unpublished
doctoral dissertation, Carnegie Mellon University, pp.
93, 2007.

Eberhardt, F. Causal Discovery as a Game. In Causality:
Objectives and Assessment, pp. 87–96. PMLR, 2010.

Eberhardt, F. and Scheines, R. Interventions and Causal
Inference. Philosophy of science, 74(5):981–995, 2007.

Eberhardt, F., Glymour, C., and Scheines, R. On the number
of experiments sufficient and in the worst case necessary
to identify all causal relations among N variables. In Pro-
ceedings of the Twenty-First Conference on Uncertainty
in Artificial Intelligence, pp. 178–184, 2005.

Eberhardt, F., Glymour, C., and Scheines, R. N-1 Experi-
ments Suffice to Determine the Causal Relations Among
N Variables. In Innovations in machine learning, pp.
97–112. Springer, 2006.

Ghassami, A., Salehkaleybar, S., Kiyavash, N., and Barein-
boim, E. Budgeted Experiment Design for Causal Struc-
ture Learning. In International Conference on Machine
Learning, pp. 1724–1733. PMLR, 2018.

Gilbert, J. R., Rose, D. J., and Edenbrandt, A. A Separator
Theorem for Chordal Graphs. SIAM Journal on Algebraic
Discrete Methods, 5(3):306–313, 1984.

Greenewald, K., Katz, D., Shanmugam, K., Magliacane, S.,
Kocaoglu, M., Boix-Adserà, E., and Bresler, G. Sample
Efficient Active Learning of Causal Trees. Advances in
Neural Information Processing Systems, 32, 2019.

Hauser, A. and Bühlmann, P. Two Optimal Strategies for
Active Learning of Causal Models from Interventions.
International Journal of Approximate Reasoning, 55(4):
926–939, 2014.

He, Y.-B. and Geng, Z. Active Learning of Causal Net-
works with Intervention Experiments and Optimal De-
signs. Journal of Machine Learning Research, 9:2523–
2547, 2008.

Hoover, K. D. The logic of causal inference: Econometrics
and the Conditional Analysis of Causation. Economics &
Philosophy, 6(2):207–234, 1990.

Hu, H., Li, Z., and Vetta, A. Randomized Experimental
Design for Causal Graph Discovery. Advances in Neural
Information Processing Systems, 27, 2014.

Hyttinen, A., Eberhardt, F., and Hoyer, P. O. Experiment
Selection for Causal Discovery. Journal of Machine
Learning Research, 14:3041–3071, 2013.

King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. G. K.,
Bryant, C. H., Muggleton, S. H., Kell, D. B., and Oliver,
S. G. Functional genomic hypothesis generation and
experimentation by a robot scientist. Nature, 427(6971):
247–252, 2004.

Kocaoglu, M., Dimakis, A., and Vishwanath, S. Cost-
Optimal Learning of Causal Graphs. In International Con-
ference on Machine Learning, pp. 1875–1884. PMLR,
2017.

Koller, D. and Friedman, N. Probabilistic graphical models:
principles and techniques. MIT press, 2009.

Lindgren, E. M., Kocaoglu, M., Dimakis, A. G., and Vish-
wanath, S. Experimental Design for Cost-Aware Learning
of Causal Graphs. Advances in Neural Information Pro-
cessing Systems, 31, 2018.

Meek, C. Causal Inference and Causal Explanation with
Background Knowledge. In Proceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence,

10

New metrics and search algorithms for weighted causal DAGs

UAI’95, pp. 403–410, San Francisco, CA, USA, 1995.
Morgan Kaufmann Publishers Inc. ISBN 1558603859.

Ness, R. O., Sachs, K., Mallick, P., and Vitek, O. A Bayesian
Active Learning Experimental Design for Inferring Sig-
naling Networks. Journal of Computational Biology: a
Journal of Computational Molecular Cell Biology, 25(7):
709–725, 2018.

Pearl, J. Causality: Models, Reasoning and Inference. Cam-
bridge University Press, USA, 2nd edition, 2009. ISBN
052189560X.

Pingault, J.-B., O’reilly, P. F., Schoeler, T., Ploubidis, G. B.,
Rijsdijk, F., and Dudbridge, F. Using genetic data to
strengthen causal inference in observational research. Na-
ture Reviews Genetics, 19(9):566–580, 2018.

Porwal, V., Srivastava, P., and Sinha, G. Almost Optimal
Universal Lower Bound for Learning Causal DAGs with
Atomic Interventions. In International Conference on
Artificial Intelligence and Statistics, 2022.

Reichenbach, H. The Direction of Time, volume 65. Univer-
sity of California Press, 1956.

Richardson, T. and Spirtes, P. Ancestral graph markov
models. The Annals of Statistics, 30(4):962–1030, 2002.

Rotmensch, M., Halpern, Y., Tlimat, A., Horng, S., and
Sontag, D. Learning a Health Knowledge Graph from
Electronic Medical Records. Scientific reports, 7(1):1–11,
2017.

Rubin, D. B. and Waterman, R. P. Estimating the Causal Ef-
fects of Marketing Interventions Using Propensity Score
Methodology. Statistical Science, pp. 206–222, 2006.

Shanmugam, K., Kocaoglu, M., Dimakis, A. G., and Vish-
wanath, S. Learning Causal Graphs with Small Inter-
ventions. Advances in Neural Information Processing
Systems, 28, 2015.

Squires, C., Magliacane, S., Greenewald, K., Katz, D., Ko-
caoglu, M., and Shanmugam, K. Active Structure Learn-
ing of Causal DAGs via Directed Clique Trees. Advances
in Neural Information Processing Systems, 33:21500–
21511, 2020.

Sverchkov, Y. and Craven, M. A review of active learning
approaches to experimental design for uncovering bio-
logical networks. PLoS computational biology, 13(6):
e1005466, 2017.

Tian, T. Bayesian Computation Methods for Inferring Reg-
ulatory Network Models Using Biomedical Data. Trans-
lational Biomedical Informatics: A Precision Medicine
Perspective, pp. 289–307, 2016.

Verma, T. and Pearl, J. Equivalence and Synthesis of Causal
Models. In Proceedings of the Sixth Annual Confer-
ence on Uncertainty in Artificial Intelligence, UAI ’90,
pp. 255–270, USA, 1990. Elsevier Science Inc. ISBN
0444892648.

Wienöbst, M., Bannach, M., and Liśkiewicz, M. Extendabil-
ity of Causal Graphical Models: Algorithms and Compu-
tational Complexity. In Uncertainty in Artificial Intelli-
gence, pp. 1248–1257. PMLR, 2021a.

Wienöbst, M., Bannach, M., and Liśkiewicz, M.
Polynomial-Time Algorithms for Counting and Sampling
Markov Equivalent DAGs. In Proccedings of the 35th
Conference on Artificial Intelligence, AAAI, 2021b.

Woodward, J. Making Things Happen: A Theory of Causal
Explanation. Oxford University Press, 2005.

Yao, A. C.-C. Probabilistic computations: Toward a unified
measure of complexity. In 2013 IEEE 54th Annual Sympo-
sium on Foundations of Computer Science, pp. 222–227.
IEEE Computer Society, 1977.

11

New metrics and search algorithms for weighted causal DAGs

A. Adaptive versus non-adaptive interventions
Separating systems are the central mathematical objects for non-adaptive intervention design. Roughly speaking, a separating
system on a set of elements is a collection of subsets such that for every pair of elements from the set, there exists at least
one subset which contains exactly one element from the pair.

Instead of all pairs of elements, let us consider the (typically smaller) G-separating system for a given graph G. It is known
(Kocaoglu et al., 2017) that the optimal non-adaptive intervention set to learn a moral DAG G∗ is a skel(G∗)-separating
system.
Definition A.1 (G-separating system; Definition 3 of (Kocaoglu et al., 2017)). Given an undirected graph G = (V,E), a set
of subsets I ⊆ 2V is a G-separating system if for every edge {u, v}inE, there exists I ∈ I such that either (u ∈ Ii and
v ̸∈ Ii) or (u ̸∈ Ii and v ∈ Ii).
Theorem A.2 (Theorem 1 of (Kocaoglu et al., 2017)). For any undirected graph G, an intervention set I learns every
causal graph D with skel(D) = G if and only if I is a G-separating system.

Path example Consider an essential graph which is an undirected path on n vertices. There are n possible DAGs
corresponding to this Markov equivalence class, each of which can be uniquely identified by picking one of the vertices as a
source and orienting all edges away from it. By Theorem A.2, we see that Ω(n) atomic interventions are necessary.

A.1. Adaptive can be exponentially stronger

Consider an essential graph which is an undirected path on n vertices described above where we know that one has intervene
on at least Ω(n) vertices using non-adaptive atomic interventions. If we allow adaptive interventions, O(log n) atomic
interventions suffice by simulating binary search: intervene on the “center” vertex to uncover its incident edge orientations;
orient one half using Meek rule R1; repeat.

A.2. New benchmark is different from separating system

Recall our newly proposed metric: νmax
k (G∗) = maxG∈[G∗] νk(G) for any integer k ≥ 1.

Consider an essential graph which is an undirected path on n vertices described above where we know that one has
intervene on at least Ω(n) vertices using non-adaptive atomic interventions. Under our newly proposed metric, νmax

1 (G∗) =
νmax
1 (G∗) = 1 since intervening on the source vertex always suffices to fully orient the entire DAG.

B. Meek rules
Remark This section of well-known facts is adapted from the appendices of (Choo et al., 2022; Choo & Shiragur, 2023).

Meek rules are a set of 4 edge orientation rules that are sound and complete with respect to any given set of arcs that has a
consistent DAG extension (Meek, 1995). Given any edge orientation information, one can always repeatedly apply Meek
rules till a fixed point to maximize the number of oriented arcs.
Definition B.1 (Consistent extension). A set of arcs is said to have a consistent DAG extension π for a graph G if there
exists a permutation on the vertices such that (i) every edge {u, v} in G is oriented u→ v whenever π(u) < π(v), (ii) there
is no directed cycle, (iii) all the given arcs are present.
Definition B.2 (The four Meek rules (Meek, 1995), see 5 for an illustration).

R1 Edge {a, b} ∈ E \A is oriented as a→ b if ∃ c ∈ V such that c→ a and c ̸∼ b.

R2 Edge {a, b} ∈ E \A is oriented as a→ b if ∃ c ∈ V such that a→ c→ b.

R3 Edge {a, b} ∈ E \A is oriented as a→ b if ∃ c, d ∈ V such that d ∼ a ∼ c, d→ b← c, and c ̸∼ d.

R4 Edge {a, b} ∈ E \A is oriented as a→ b if ∃ c, d ∈ V such that d ∼ a ∼ c, d→ c→ b, and b ̸∼ d.

There exists an algorithm (Algorithm 2 of (Wienöbst et al., 2021a)) that runs in O(d · |E|) time and computes the closure
under Meek rules, where d is the degeneracy of the graph skeleton11.

11A d-degenerate graph is an undirected graph in which every subgraph has a vertex of degree at most d. Note that the degeneracy of a

12

New metrics and search algorithms for weighted causal DAGs

a b

c

a b

c
R1

a b

c

a b

c
R2

d

a c

b d

a c

b

R3

a

d c

b a

d c

b

R4

Figure 5. An illustration of the four Meek rules

C. Additional known results
Lemma C.1 (Yao’s lemma (Yao, 1977)). Let A be the space of all possible deterministic algorithms over probability
distribution p, and X be the space of problem inputs over probability distribution q. Denote probability distributions over A
and X by pa and qx respectively. Then,

max
x∈X

Ep[c(A, x)] ≥ min
a∈A

Eq[c(a,X)]

In other words, Lemma C.1 tells us that in order to lower bound the cost of any randomized algorithm, it suffices to find a
“bad” input distribution such that any deterministic incurs a high cost.

Lemma C.2 (Modified lemma 1 of (Hauser & Bühlmann, 2014); Appendix B of (Choo et al., 2022)). Let I ⊆ 2V be an
intervention set. Consider the I-essential graph EI(G∗) of some DAG G∗ and let H ∈ CC(EI(G∗)) be one of its chain
components. Then, for any additional interventional set I ′ ⊆ 2V such that I ∩ I ′ = ∅, we have

EI∪I′(G∗)[V (H)] = E{S∩V (H) : S∈I′}(G
∗[V (H)]).

Lemma C.3 (Lemma 21 of (Choo et al., 2022)). Fix an essential graph E(G∗) and G ∈ [G∗]. Then,

ν1(G) ≥ max
I⊆V

∑
H∈CC(EI(G∗))

⌊
ω(H)

2

⌋

Theorem C.4 ((Choo & Shiragur, 2023)). For any intervention set I ⊆ 2V , define R(G, I) = A(EI(G)) ⊆ E as the set of
oriented arcs in the I-essential graph of a DAG G and define GI = G[E \R(G, I)] as the fully directed subgraph DAG
induced by the unoriented arcs in G, where G∅ is the graph obtained after removing all the oriented arcs in the observational
essential graph due to v-structures. Then, for any DAG G = (V,E) and intervention sets A,B ⊆ 2V ,

1. “Suffices to study moral DAGs”: R(G,A ∪ B) = R(GA,B) ∪̇ R(GB,A) ∪̇ (R(G,A) ∩R(G,B))

2. “Patching”: Any acyclic completion of E(GA) can be combined with R(G,A) to obtain a valid DAG that belongs to
both E(G) and EA(G).

The first point of Theorem C.4 justifies why it suffices to only study verification and adaptive search via ideal interventions
on moral DAGs: since R(G, I) = R(G∅, I) ∪̇ R(G, ∅), any oriented arcs in the observational graph can be removed before
performing any interventions as the optimality of the solution is unaffected.

The second point of Theorem C.4 tells us one can freely orient any chain component within any interventional essential
graph and still be able to find a consistent DAG within the equivalence class. This is useful in the lower bound analysis of
our proposed benchmark later.

Definition C.5 (Separation of covered edges; Definition 8 of (Choo et al., 2022)). We say that an intervention S ⊆ V
separates a covered edge u ∼ v if |{u, v} ∩ S| = 1. That is, exactly one of the endpoints is intervened by S. We say that an
intervention set I separates a covered edge u ∼ v if there exists S ∈ I that separates u ∼ v.

Theorem C.6 (Theorem 9 of (Choo et al., 2022)). An intervention set I is an atomic verifying set for DAG G if and only if
I separates every covered edges of G.

Theorem C.7 (Theorem 12 of (Choo et al., 2022)). For any DAG G and integer k ≥ 1, νk(G) ≥ ⌈ν1(G)/k⌉.
graph is typically smaller than the maximum degree of the graph.

13

New metrics and search algorithms for weighted causal DAGs

Theorem C.8 (Proposition 3 of (Eberhardt et al., 2006); Theorem 4 of (Shanmugam et al., 2015); Lemma 17 of (Choo
et al., 2022)). If a DAG G is a clique on n ≥ 3 vertices v1, v2, . . . , vn with π(v1) < π(v2) < . . . < π(vn), then
v1 → v2, . . . , vn−1 → vn are covered edges of G. Using atomic interventions to orient G, n− 1 adaptive interventions are
necessary in the worst case. Using interventions involving at most k ≥ 1 vertices each to orient G, n

2k randomized adaptive
interventions are necessary. In any case, to orient G, the total number of variables being intervened upon is at least n/2.

Note that Theorem C.8 holds even if the clique is just a subgraph of a larger causal DAG as long as there is no non-clique
vertex u such that π(vi) < π(u) < π(vj) and vi → u → vj for any two clique vertices vi and vj with i < j. Within the
proofs of Theorem 4.1 and Theorem D.3, we rely on this observation in combination with Lemma 4.2, which make the
clique a prefix within an ordering of interest. This allows us to lower bound our benchmark since our benchmark cares about
the worst case ordering.

The next result of (Wienöbst et al., 2021b) is used together with Theorem C.4 to argue that we can always pick an unoriented
clique (not necessarily maximal) to be the prefix of a given interventional essential graph.

Definition C.9 (Acyclic moral orientation). An acyclic moral orientation is a complete orientation of a partially directed
DAG such that it does not create a new v-structure.

Lemma C.10 (Maximal clique picking; (Wienöbst et al., 2021b)). Every acyclic moral orientation of an undirected graph
can be represented by a topological ordering which starts with a maximal clique.

The next result is a lemma in the appendix of (Choo & Shiragur, 2023) that is used to prove Lemma 2.3. We will later use it
to prove a generalization of Lemma 2.3 that holds for bounded size interventions.

Lemma C.11. Let G = (V,E) be a moral DAG. If u→ v in G, then u→ w in G for any two vertices u, v ∈ V and for all
w ∈ Des(u) ∩ Anc(v).

D. Handling the generalized cost objective
As discussed in Section 4.3, we make algorithmic tweaks to account for Equation (1) and bounded size interventions: see
the blue lines in ALG-GENERALIZED (Algorithm 3) and ResolveDanglingGeneralized (Algorithm 4).

Algorithm 3 ALG-GENERALIZED. A weighted adaptive search competitive with respect to Equation (1).
1: Input: Essential graph E(G∗) of a moral DAG G∗, weight function w : V → R, and integer k ≥ 1.
2: Output: Bounded size intervention set I such that EI(G∗) = G∗.
3: Initialize i = 0 and I0 = ∅.
4: while EIi

(G∗) still has unoriented edges do
5: Initialize Ji ← ∅
6: for H ∈ CC(EIi

(G∗)) of size |H| ≥ 2 do
7: Find 1/2-clique separator KH via Theorem 2.2.
8: Denote vH as the costliest vertex vH = argmaxv∈V (KH) w(v).
9: Let S be the intervention set output by CliqueIntervention on the subclique V (KH) \ {vH} without vH .

10: Intervene on S and add S to Ji.
11: Let ZvH ∈ CC(EIi∪Ji

(G∗)) be the chain component containing vH after intervening on S.
12: if vH is not singleton in ZvH then
13: Add output of ResolveDanglingGeneralized to Ji.
14: end if
15: Update Ii+1 ← Ii ∪ Ji and i← i+ 1.
16: end for
17: end while
18: Return Ii

The correctness of Algorithm 4 relies on Lemma 4.7 Lemma D.1, and Lemma D.2. Note that Algorithm 4 does not attempt
to fully orient the edges within the 1/2-clique separator while searching for a prefix clique of size at most k. Since we
are not guaranteed to know the source node of K so we cannot hope to directly apply Lemma 4.7, and thus we need to
prove generalized version of Lemma D.2 to justify why ResolveDanglingGeneralized terminates after O(log n)
iterations. In fact, Lemma 4.7 is the special case where the clique K is a single vertex.

14

New metrics and search algorithms for weighted causal DAGs

Algorithm 4 ResolveDanglingGeneralized. A subroutine for ALG-GENERALIZED.
1: Input: Interventional essential graph EI′(G∗) for some intervention I ′ ⊆ 2V , weight function w : V → R, a

chain component H of EI′(G∗) that contains vertex v ∈ V (H) with t disjoint connected components H1, . . . ,Ht in
H[V (H) \ {v}], and an integer k ≥ 1.

2: Output: Bounded size intervention set I such that the t components are mutually disjoint in EI∪I′(H).
3: Initialize I ← ∅.
4: if α · w(v) + β ≤

∑t
i=1 maxclique C in Hi ∩ NH(v) α · w(C) + β · |V (C)| then

5: Intervene on v and set I ← {{v}}.
6: else
7: for i ∈ {1, . . . , t} do
8: Initialize V ′ ← V (Hi) ∩NH(v).
9: while skel(E(G∗))[V ′] is not a clique, or |V ′| > k do

10: Find a 1/2-clique separator K of Hi[V
′] using Theorem 2.2.

11: Arbitrarily partition the vertices of K into sets S1, . . . , S⌈|V (K)|/k⌉ ⊆ V , each involving at most k vertices.
12: Intervene on the vertices in the sets S = {S1, . . . , S⌈|V (K)|/k⌉} and add S1, . . . , S⌈|V (K)|/k⌉ to I.
13: By Lemma D.1, identify Ssource ∈ S which is the set containing the source node of K.
14: By Lemma D.2, determine if there exists a chain component Q with only incoming arcs to Ssource. If so, find it.
15: if Q exists then
16: Restrict V ′ to V (Q).
17: else
18: Set V ′ ← V (Ssource).
19: end if
20: end while
21: Let S be the intervention set output by CliqueIntervention on the clique Hi[V

′] involving at most k
vertices.

22: Intervene on S and add S to I.
23: end for
24: end if
25: Return I

Lemma D.1. Consider any arbitrary directed clique G = (V,E) and any integer k ≥ 1. Without loss of generality,
V = {v1, . . . , vn} and π(v1) < . . . < π(vn), i.e. v1 is the source of G. Suppose we arbitrarily partition the vertex set into
sets S = {S1, . . . , S⌈n/k⌉}, each of size at most k. Then, the set Ssource ∈ S containing v1 is the unique set in S that has a
vertex without any incoming arcs from the other sets.

Lemma D.2. Let EI(G) be the interventional essential graph of a moral DAG G = (V,E) with respect to intervention set
I ⊆ 2V . Fix any chain component H ∈ CC(EI(G)) and let K be an arbitrary clique in H . If K contains the source node
of H , then there are no chain components of EI∪{V (K)}(H) with only incoming arcs into K in G. Otherwise, if K does not
contain the source node of H , then there is exactly one chain component of EI∪{V (K)}(H) with only incoming arcs into K
in G. Furthermore, without further interventions, we can decide if such a chain component exist (and find it) in polynomial
time.

To obtain bounded size interventions for intervening on cliques, we invoke Lemma 4.8 through the subroutine
CliqueIntervention (Algorithm 5). Lemma 4.9 states the guarantees of CliqueIntervention.

Lemma 4.9. Given a set of clique vertices V (C) ⊆ V and integer k ≥ 1, Algorithm 5 returns a set S ⊆ 2V (C) such that
each partite in S has at most k vertices. When k = 1, |S| = |V (C)| and each vertex appears exactly once in S. When
k > 1, |S| ∈ O(log k · |V (C)|/k) and each vertex appears at most O(log k) times in S.

Analogous to Theorem 4.1 and Lemma 4.6, we prove Theorem D.3 and Lemma D.4 for our tweaked algorithm with respect
to the generalized cost Equation (1).

Theorem D.3. Fix an essential graph E(G∗) corresponding to an unknown weighted causal DAG G∗. Suppose I∗1 and
I∗k are an atomic and bounded size intervention sets minimizing Equation (1) such that EI∗

1
(G∗) = EI∗

k
(G∗) = G∗,

15

New metrics and search algorithms for weighted causal DAGs

Algorithm 5 CliqueIntervention. A labelling subroutine based on Lemma 4.8.
1: Input: A set of clique vertices C ⊆ V , integer k ≥ 1.
2: Output: Partition S of C.
3: if k = 1 then
4: Define I = {{v} : v ∈ C}
5: else
6: Define k′ = min{k, |C|/2}, a = ⌈|C|/k′⌉ ≥ 2, and ℓ = ⌈loga |C|⌉. Compute labelling scheme on C with (|C|, k, a)

via Lemma 4.8 and define I = {Sx,y}x∈[ℓ],y∈[a], where Sx,y ⊆ Q is the subset of vertices whose xth letter in the
label is y.

7: end if
8: Return I

cost(I∗1 , α, β, 1) = OPT1, and cost(I∗k , α, β, k) = OPTk. Then, maximizing over intervention sets I ⊆ V , we have

OPT1 ≥ max
I⊆2V

I atomic


∑

H∈CC(EI(G
∗))

|V (H)|≥2

max
{
ζ
(3)
I,H , ζ

(4)
I,H

} and OPTk ≥ max
I⊆2V

I bounded size


∑

H∈CC(EI(G
∗))

|V (H)|≥2

max
{
ζ
(5)
I,H , ζ

(6)
I,H

}
where

ζ
(3)
I,H =

1

2
· max

clique C∈H

{
α ·
(
w(V (C))− max

v∈V (C)
{w(v)}

)
+ β · |V (C)|

}
,

ζ
(4)
I,H =

1

2
· max
v∈V (H)

min

α · w(v) + β,

t∑
i=1

max
clique Ci:

V (Ci)⊆Vi∩NH(v)

{α · w(V (Ci)) + β · |V (Ci)|}


 ,

ζ
(5)
I,H =

1

2
· max

clique C∈H

{
α ·
(
w(V (C))− max

v∈V (C)
{w(v)}

)
+

β

k
· |V (C)|

}
,

ζ
(6)
I,H =

1

2
· max
v∈V (H)

min

α · w(v) + β

k
,

t∑
i=1

max
clique Ci:

V (Ci)⊆Vi∩NH(v)

{
α · w(V (Ci)) +

β

k
· |V (Ci)|

}
 ,

and V1, . . . , Vt ⊆ V (H) are vertex sets of the t ≥ 1 disjoint connected components in H[V (H) \ {v}] in ζ
(4)
I,H and ζ

(6)
I,H .

Lemma D.4. Fix an interventional essential graph EI′(G∗) corresponding to an unknown weighted causal moral DAG G∗

and some intervention I ′ ⊆ 2V . Suppose I∗1 and I∗k are atomic and bounded size intervention sets minimizing Equation (1)
such that EI∗

1
(G∗) = EI∗

k
(G∗) = G∗, cost(I∗1 , α, β, 1) = OPT1, and cost(I∗k , α, β, k) = OPTk. Let H be a chain

component of EI′(G∗) containing a vertex v ∈ V (H). Then,

• When k = 1, Algorithm 4 returns an atomic intervention set I such that connected components in H[V (H) \ {v}] are
mutually disjoint in EI(H) and cost(I, α, β, 1) ∈ O(log n · OPT1).

• When k > 1, Algorithm 4 returns a bounded size intervention set I such that connected components in H[V (H) \ {v}]
are mutually disjoint in EI(H) and cost(I, α, β, k) ∈ O((log n+ log k) · OPTk).

Denote an iteration of the while loop in Algorithm 1 as a phase. Since Algorithm 1 and Algorithm 3 are essentially the
same in terms of how they recurse on smaller chain components of at most half the size in each phase, we can also obtain
Lemma D.5.
Lemma D.5. ALG-GENERALIZED (Algorithm 3) terminates after O(log n) phases.

Using Theorem D.3, we can also obtain Lemma D.6.
Lemma D.6. Suppose I∗1 and I∗k are an atomic and bounded size verifying sets respectively for G∗ that minimizes
Equation (1) with cost(I∗1) = OPT1 and cost(I∗k) = OPTk. Each phase in ALG-GENERALIZED (Algorithm 3) incurs
a cost of O(log n · OPT1) when k = 1 and O ((log n+ log k) · OPTk) when k > 1.

16

New metrics and search algorithms for weighted causal DAGs

Algorithm 6 Naive weighted adaptive search.
1: Input: Essential graph E(G∗) of a moral DAG G∗ and weight function w : V → R.
2: Output: Atomic intervention set I s.t. EI(G∗) = G∗.
3: Sort the vertices in non-decreasing weight ordering.
4: while EIi

(G∗) still has unoriented edges do
5: Intervene on the next cheapest unintervened vertex and add it to I.
6: end while
7: Return Ii

Then, Theorem 3.3 follows directly by combining Lemma D.5 and Lemma D.6.

See Appendix F for the full proofs of Lemma 4.9, Theorem D.3, Lemma D.5, and Lemma D.6.

E. Blackbox combination of algorithms
In this section, we describe a deterministic naive algorithm (Algorithm 6) which provably incurs a cost of O(n · ν(G∗)) and
show how to combine this algorithm in a blackbox manner with any other deterministic algorithm to augment it with the
provable guarantee of incurring a cost of at most O(n · ν(G∗)).

Lemma E.1. Fix an essential graph E(G∗) corresponding to an unknown weighted causal DAG G∗. Algorithm 6 is a
deterministic and adaptive algorithm that computes an atomic intervention set I in polynomial time such that EI(G∗) = G∗

and w(I) ∈ O (n · ν1(G∗)).

Proof. The weight w(vfinal) of the final intervened vertex vfinal is a lower bound for ν(G∗). Meanwhile, we intervened at
most n vertices before vfinal, each of which has cost lower than w(vfinal).

Theorem E.2. Fix an essential graph E(G∗) corresponding to an unknown weighted causal DAG G∗. Let A be a
deterministic algorithm that that computes an atomic intervention set I in polynomial time such that EI(G∗) = G∗ and
w(I) ∈ O(C). Then, there is a deterministic and adaptive algorithm that computes an atomic intervention set I in
polynomial time such that EI(G∗) = G∗ and w(I) ∈ O (min{C, n · ν1(G∗)}).

Proof. Let Anaive denote Algorithm 6. We will run both A and Anaive in parallel with a budget constraint (that doubles
whenever it is exhausted) until we fully orient the causal graph.

More precisely, our new algorithm Anew is defined as follows:

1. We initialize a budget of B = minv∈V w(v) to the minimum vertex cost. Without loss of generality, we may assume
that B > 0 by first intervening on all vertices with 0 cost.

2. “Simulate” A until the total accumulated cost is at most B. If the graph is fully oriented at any point in time, terminate.

3. “Simulate” Anaive until the total accumulated cost is at most B. If the graph is fully oriented at any point in time,
terminate.

4. Double the value of B (or increase it to the next weight so that there is no “empty iteration”) and return to step 2.

By “simulate”, we mean that we accumulate the cost of vertices but only intervene on vertices that has not been intervened
on previously. We can do this because A and Anaive are deterministic.

Since Anew only terminates whenever either A or Anaive succeeds in fully orienting the causal graph, Anew will correctly
fully orient any input graph. Note that we always have B ∈ O(C) and B ∈ O(n · ν1(G∗)) at any point of the modified
algorithm whenever neither algorithm terminated. Since we always double the budget (any constant factor multiplication
works), the above asymptotic upper bound also holds for Bfinal, where Bfinal is the final value of B when the algorithm
terminates. Furthermore, the cost of Anew is at most 2 · Bfinal since we pay at most Bfinal for running A and at most
Bfinal for running Anaive.

17

New metrics and search algorithms for weighted causal DAGs

Anew runs in polynomial time because value of B changes at most O
(
min

{
n, log maxv∈V w(v)

minv∈V w(v)

})
times and each simula-

tion of A and Anaive runs in polynomial time.

Remark about implementation Both A and Anaive are actually intervening on the same causal graph, and Anew does not
actually discard information gained from A when simulating Anaive (and vice versa). This may actually help the algorithm
to terminate faster (at a lower cost) than running A or Anaive independently.

F. Deferred proofs
F.1. Why ν1(G

∗) is not an ideal benchmark

Theorem 3.1. For any adaptive search algorithm A, deterministic or randomized, there exists a weighted causal graph G∗

such that cost(A,G∗, 1, 0) ∈ Ω(n · ν1(G∗)).

Proof. Let G∗ = (V,E,w) be a weighted causal directed tree where |V | = n and skel(G∗) is a star graph in which n− 1
vertices have degree 1 (non-center nodes) and a single vertex has degree n – 1 (center node). The weights of the nodes are
given as follows,

w(v) =

{
n− 1 v is a center
1 otherwise .

We let one of the n− 1 non-center nodes be the root of G∗. As intervening on the root suffices to fully orient G∗ from its
essential graph E(G∗), we see that ν1(G∗) = 1.

Observe that any adaptive search algorithm that intervenes on the center of the star immediately incurs n−1 ∈ Ω(n·ν1(G∗)).
Meanwhile, intervening on any leaf vertex that is not the root will only orient the single edge incident to it so n−1 non-center
node interventions are needed in the worst case, incurring a cost of Ω(n · ν1(G∗)).

For randomized algorithms, we will use Yao’s lemma (Lemma C.1): the expected worst case performance of a randomized
algorithm is at least as much the expected performance of the best deterministic algorithm over some distribution of inputs.

Consider the distribution of G∗ by uniformly picking the root amongst the leaves. Any deterministic algorithm A can be
uniquely mapped to a sequence σA of vertices that it will intervene on, until E(G∗) is fully oriented. Since the center is
never the root in our distribution, any algorithm A that intervene on the center within its first n− 1 choices strictly perform
worse than the alternative algorithm A′ that shifts the choice of intervening to the last vertex, i.e. if σA(j) is the center, then

σA′(i) =


σA(i) if i < j

σA(i+ 1) if j ≤ i < n− 1

center if i = n

Then, for any algorithm A that does not intervene on the center within its first n− 1 choices, we see that the intervention set
I produced by A has expected cost

E[w(I)] = 1

n− 1
· (1 + 2 + 3 + . . .+ (n− 1)) ∈ Ω(n · ν1(G∗))

F.2. Lower bounding the benchmark

As Theorem 4.1 relies on Lemma 4.2, we will prove Lemma 4.2 first.

Lemma 4.2. Fix an interventional essential graph EI(G∗) corresponding to an arbitrary moral DAG G∗ and intervention
set I ⊆ 2V . For any clique C (not necessarily maximal) in any chain component of EI(G∗) and any permutation ordering
π on the vertices V (C) of C, there exists a DAG G consistent with EI(G∗) such that u→ v if and only if π(u) < π(v) for
any two clique vertices u, v ∈ V (C).

Proof. Let H be the chain component containing the clique C of interest. By Theorem C.4, we can orient H independently
of all other chain components and still obtain a DAG that is consistent with EI(G∗).

18

New metrics and search algorithms for weighted causal DAGs

Let C ′ be a maximal clique that includes C. By Lemma C.10, there is an acyclic moral orientation of H such that the
vertices of C ′ appear before all other vertices in H . Let this acyclic moral orientation be the DAG H ′. Then, we see that
the interventional essential graph EV (H)\V (C′)(H

′) by intervening on every single vertex outside of C ′ has only one chain
component, which is precisely the clique C ′. By Theorem C.4, we can orient C ′ independently and still obtain a DAG that
is consistent with EI(G∗). So, we can order all vertices in V (C ′) \ V (C) after the vertices in V (C) and order the vertices
within C according to the given desired ordering π.

Theorem 4.1. For any DAG G∗ and its essential graph E(G∗), we have

νmax
1 (G∗) ≥ max

I⊆V


∑

H∈CC(EI(G
∗))

|V (H)|≥2

max
{
ζ
(1)
I,H , ζ

(2)
I,H

}
where we maximize over atomic intervention sets I ⊆ V ,

ζ
(1)
I,H =

1

2
· max

clique C∈H

{
w(V (C))− max

v∈V (C)
{w(v)}

}
and

ζ
(2)
I,H =

1

2
· max
v∈V (H)

{
min {w(v), γH,v}

}
where γH,v =

∑t
i=1 max clique Ci:

V (Ci)⊆Vi∩NH(v)

{w(V (Ci))} with V1, . . . , Vt ⊆ V (H) being vertex sets of the t ≥ 1 disjoint

connected components in H[V (H) \ {v}].

Proof. Fix an underlying causal graph G∗ and consider an arbitrary atomic intervention set I ⊆ V . We will prove for I and
then the claim follows by taking a maximization over all possible atomic intervention sets. We will prove the two cases
separately by mirroring parts of the proof of Lemma C.3 in how we invoke Lemma C.2.

Fix an arbitrary atomic intervention set I ⊆ V and consider an arbitrary DAG G̃ that is consistent with EI(G∗). That is,
skel(G̃) = skel(EI(G∗)) and all the oriented edges in EI(G∗) appear in the same direction in G̃. Fix a chain component
H ∈ CC(EI(G̃)) and let I ′ ⊆ V be any atomic verifying set of G̃, that is, EI′(G̃) = G̃ and EI′(G̃)[V (H)] = G̃[V (H)].
Note that,

E(I′\I)∩V (H)(G̃[V (H)]) = EI∪(I′\I)(G̃)[V (H)] = EI′(G̃)[V (H)] = G̃[V (H)]

where the first equality is due to Lemma C.2 and the last equality is because I ′ is a verifying set of G̃. So, (I ′ \ I) ∩ V (H)

is a verifying set for G̃[V (H)], and so is I ′ ∩ V (H). Thus, by minimality of ν1, we have

ν1(G̃[V (H)]) ≤ w(I ′ ∩ V (H)) (3)

for any atomic verifying set I ′ ⊆ V of G̃.

We now independently lower bound ν1(G̃[V (H)]) by ζ
(1)
I,H and ζ

(2)
I,H . To do so, we will construct a DAG G̃ that is

consistent with the interventional essential graph EI(G∗) by making vertices of some unoriented clique the prefix of its
chain component by using Lemma 4.2, and then invoking Equation (3) to lower bound the interventional cost in each chain
component H . Note that when we fix the ordering of vertices within a chain component, it does not affect the ordering of
the vertices outside of that chain component.

Lower bounding via ζ
(1)
I,H : For each connected component H ∈ CC(EI(G∗)), fix an arbitrary clique C in H . Suppose

the vertices in C are v1, . . . , v|C| with w(v1) ≥ . . . ≥ w(v|C|). By Lemma 4.2, there exists a valid orientation π of
H such that all the vertices in C appear at the start of the ordering. For any such ordering π, the covered edges are
vπ(1) → vπ(2) → . . . → vπ(|C|) and we know that any atomic verifying set must include a minimum vertex cover of
these covered edges due to Theorem C.6. Let G̃ be one such DAG which imposes the descending weight ordering π on
the vertices within H , i.e. w(vπ(i)) = w(vi). Consider the set of disjoint alternating covered edges π−1(1) → π−1(2),
π−1(3)→ π−1(4), and so on. Amongst these disjoint alternating covered edges, at least one endpoint must be intervened
upon, incurring a cost of at least

∑
even i w(vi). That is, ν1(G̃[V (H)]) ≥

∑
even i w(vi).

19

New metrics and search algorithms for weighted causal DAGs

Since w(v1) ≥ . . . ≥ w(v|C|), we see that

w(C) = w(v1) +
∑
even i

w(vi) +
∑
odd i
i ≥ 3

w(vi) ≤ w(v1) +
∑
even i

w(vi) +
∑
odd i
i ≥ 3

w(vi−1) ≤ w(v1) + 2 ·
∑
even i

w(vi) .

Therefore,

ν1(G̃[V (H)]) ≥
∑
even i

w(vi) ≥
1

2
· (w(V (C))− w(v1)) .

By maximizing amongst the cliques within H , we see that ν1(G̃[V (H)]) ≥ ζ
(1)
I,H .

Lower bounding via ζ
(2)
I,H :

For each connected component H ∈ CC(EI(G∗)), fix an arbitrary vertex v in H . To bound γH,v, it suffices to consider
arbitrary cliques Ci in each disjoint connected components in H[V \ {v}], and then taking the maximum.

Consider a minimum cost atomic verifying set I of G̃[V (H)] with w(I) = ν1(G̃[V (H)]).

Case 1: v ∈ I. Then, ν1(G̃[V (H)]) ≥ w(v) ≥ w(v)
2 ≥ 1

2 ·min
{
w(v),

∑t
i=1 w(V (Ci))

}
.

By maximizing amongst the cliques within each connected component, we see that ν1(G̃[V (H)]) ≥ ζ
(2)
I,H .

Case 2: v ̸∈ I.

By Lemma 4.2, there exists DAGs consistent with E(G∗) that can be generated by letting v be the first prefix vertex in
E(G∗), followed by vertices in descending weight ordering within each clique Ci, across all t components. Let G̃ be
one such DAG and suppose the vertices in clique Ci = {ui,1, . . . , ui,|Ci|} have weights w(ui,1) ≥ . . . w(ui,|Ci|) and
π(v) < π(ui,1) < . . . < π(ui,|Ci|). We see that the set {v → ui,1, ui,1 → ui,2, . . . , ui,|Ci|−1 → ui,|Ci|}ti=1 are all covered
edges of G̃. By Theorem C.6, any verification set must include a minimum vertex cover of these edges. In particular, since
v ̸∈ I, we must have {ui,1}ti=1 ⊆ I.

Let A ⊆ E(G∗) be the covered edges of G̃. From above, we know that {v → ui,1, ui,1 → ui,2, . . . , ui,|Ci|−1 →
ui,|Ci|}ti=1 ⊆ A. Define B = A \ {v → ui,1, ui,1 → ui,2}ti=1 as the remaining covered edges in the above discussion
after removing edges covered by {ui,1}ti=1. That is, conditioned on not using v, A’s minimum cost vertex cover has cost∑t

i=1 w(ui,1) plus the cost B’s minimum cost vertex cover.

For each clique Ci = {ui,1, . . . , ui,|Ci|} amongst the disjoint cliques, consider the set of disjoint alternating covered edges
ui,2 → ui,3, ui,4 → ui,5, and so on. Amongst these disjoint alternating covered edges, at least one endpoint must be chosen
for any vertex cover of B, incurring a cost of at least

∑
odd i
i ≥ 3

w(ui,j).

Since w(ui,1) ≥ . . . ≥ w(ui,|Ci|), we see that

w(V (Ci)) = w(ui,1) + w(ui,2) +
∑
even i
i ≥ 4

w(ui,j) +
∑
odd i
i ≥ 3

w(ui,j) ≤ 2 ·

w(ui,1) +
∑
odd i
i ≥ 3

w(ui,j)

 .

So, the minimum cost vertex cover of B is at least 1
2

∑t
i=1(w(V (Ci))− 2 · w(ui,1)) and

ν1(G̃[V (H)]) ≥
t∑

i=1

w(ui,1) +
1

2

t∑
i=1

(w(V (Ci))− 2 · w(ui,1))

≥ 1

2

t∑
i=1

w(V (Ci))

≥ 1

2
·min

{
w(v),

t∑
i=1

w(V (Ci))

}
.

20

New metrics and search algorithms for weighted causal DAGs

By maximizing amongst the cliques within each connected component, we see that ν1(G̃[V (H)]) ≥ ζ
(2)
I,H .

Putting together:

Since I∗ is the minimum cost verifying set,

νmax
1 (G∗) = max

G∈[G∗]
ν1(G) ≥ ν1(G̃) = w(I∗)

(∗)
≥

∑
H∈CC(EI(G

∗))
|V (H)|≥2

w(I∗ ∩ V (H)) ≥
∑

H∈CC(EI(G
∗))

|V (H)|≥2

ν1(G̃[V (H)]) ≥
∑

H∈CC(EI(G
∗))

|V (H)|≥2

max{ζ(1)I,H , ζ
(2)
I,H}

where the inequality (∗) is because some edges may have already been oriented by I.

Finally, the claim follows by taking the maximum over all possible atomic interventions I ⊆ V .

Theorem 4.3. For any DAG G∗ and integer k ≥ 1, νmax
k (G∗) ≥ νmax

1 (G∗) and νmax
k (G∗) ≥ ⌈νmax

1 (G∗)/k⌉.

Proof. Proof for νmax
k (G∗) ≥ νmax

1 (G∗):

Observe that intervening on all vertices in a bounded size intervention one-by-one in an atomic fashion will not increase the
cost and can only recover more information about the causal graph. Let us formalize this: Suppose I∗k ⊆ 2V is a minimum
cost bounded size verifying set. Define I = ∪S∈I∗

k
S as an atomic intervention set that involves all vertices in I∗k exactly

once. So, by construction, w(I) ≤ w(I∗k). By Theorem C.6, we know that I∗k must separate all covered edges of G∗.
Meanwhile, by construction, I also separates all covered edges of G∗ while having w(I) ≤

∑
S∈I∗

k

∑
v∈S w(v) = w(I∗k).

Thus, νmax
1 (G∗) ≤ νmax

k (G∗).

Proof for νmax
k (G∗) ≥ νmax

1 (G∗):

Observe that

νmax
k (G∗) = max

G∈[G∗]
νk(G) ≥ max

G∈[G∗]
⌈ν1(G)/k⌉ =

⌈
max

G∈[G∗]
ν1(G)/k

⌉
= ⌈νmax

1 (G∗)/k⌉

where the inequality is due to Theorem C.7.

F.3. A competitive adaptive search algorithm

Lemma 4.6. Fix an interventional essential graph EI′(G∗) corresponding to an unknown weighted causal moral DAG
G∗ and some intervention I ′ ⊆ 2V . Let H be a chain component of EI′(G∗) containing a vertex v ∈ V (H). Then,
Algorithm 2 returns an atomic intervention set I such that all the outgoing edges of v within H are oriented in EI′∪I(H)
and w(I) ∈ O(log n · νmax

1 (G∗)).

Proof. Since the underlying graph is a moral DAG, intervening on v or {argminu∈V (Hi)∩NH(v) π(u)}i∈[t] ensures that
all the outgoing edges of v in H are oriented (Lemma 2.3). Suppose ui = argminu∈V (Hi)∩NH(v) π(u). If π(v) >

mini∈{1,...,t} π(ui), then intervening on u1, . . . , ut will disconnect12 Hi’s from each other13. Otherwise, if π(v) <
mini∈{1,...,t} π(ui), Lemma 2.3 tells us that intervening on ui will orient all v → z arcs for z ∈ Hi. In both cases, we orient
all the outgoing edges of v within H .

The if-case of ResolveDangling directly intervenes on v while the else-case of ResolveDangling repeatedly
recurses on a connected subgraph of Hi[V

′], towards the source ui. Since KHi
is a 1/2-clique separator of Hi at each

iteration, the size of V ′ is at least halved in each iteration of the while-loop, and there will be at most O(log n) iterations.
By the ζ(2) term of Theorem 4.1, we see that for each iteration, the cost of finding all the {ui}i∈[t] has a cost at most
2 · νmax

1 (G∗). Put together, we see that w(I) ∈ O(log n · νmax
1 (G∗)).

12Every path between Hi and Hj , for i ̸= j will involve an oriented arc. Such arcs will be removed when considering chain components,
disconnecting the path.

13Without loss of generality, suppose π(u1) = mini∈{1,...,t} π(ui). Orienting the arc u1 → vH triggers Meek rule R1 to orient all
v → z arcs for z ̸∈ H1, thus disconnecting Hi’s from each other.

21

New metrics and search algorithms for weighted causal DAGs

Lemma 4.7. Let EI(G) be the interventional essential graph of a moral DAG G = (V,E) with respect to intervention set
I ⊆ V . Fix any chain component H ∈ CC(EI(G)) and vertex v ∈ V (H). If v is the source node of H , then there are no
chain components of EI∪{v}(H) with only incoming arcs into v in G. Otherwise, if v is not the source node of H , then
there is exactly one chain component of EI∪{v}(H) with only incoming arcs into v in G. Furthermore, without further
interventions, we can decide if such a chain component exist (and find it) in polynomial time.

Proof. Apply Lemma D.2 with K = {v}.

Lemma 4.4. Algorithm 1 terminates after O(log n) phases.

Proof. In each phase, we are essentially breaking up the graph into small subgraphs using Theorem 2.2 where the size of
the chain components decreases by a factor of two.

Note that we do not intervene on all the vertices in the clique separator KH , but only intervene on V (KH) \ {vH}. So, we
need to argue that partites A and B (with respect to the 1/2-clique separator KH) are disconnected before we recurse in the
next phase. To do so, we use Lemma 4.6: invoking ResolveDangling on (ZvH , w, vH) ensures that all outgoing edges
from vH will be oriented, so we obtain two disconnected chain component partites A and B.

Since the maximum chain component size initially at most n and is always halved after a phase, Algorithm 1 terminates
after O(log n) phases.

Lemma 4.5. Each phase in Algorithm 1 incurs a cost of O(log(n) · νmax
1 (G∗)).

Proof. By the ζ(1) term of Theorem 4.1, intervening on V (KH) \ {vH} across all chain components H ∈ CC(EIi(G
∗))

incurs a cost of at most 2 · νmax
1 (G∗). By Lemma 4.6, ResolveDangling incurs returns intervention set I of weight

w(I) ∈ O(log n · νmax
1 (G∗)).

Theorem 3.2. Fix an essential graph E(G∗) corresponding to an unknown weighted causal DAG G∗. Algorithm 1
is a deterministic and adaptive algorithm that computes an atomic intervention set I such that EI(G∗) = G∗ and
w(I) ∈ O

(
log2(n) · νmax

1 (G∗)
)
. Ignoring the time spent implementing the actual interventions, Algorithm 1 runs in

O(n · log2(n) · d ·m) time, where d and m are the degeneracy and number of edges of skel(E(G∗)) respectively.

Proof. Direct consequence of combining Lemma 4.4 and Lemma 4.5.

To analyze the running time, let us consider the running time of the subroutines:

• Algorithm 1 has O(log n) phases where each phase may execute the ResolveDangling subroutine.

• There are at most t ≤ n components within the ResolveDangling subroutine and the while loops terminates after
O(log n) iterations.

• Throughout, computing clique separators can be done in O(m) time (Theorem 2.2, (Gilbert et al., 1984)).

• Throughout, executing Meek rules after performing an intervention can be done in O(d · m) time (Appendix B,
(Wienöbst et al., 2021a)).

• Within the ResolveDangling subroutine, finding the chain component Q can be done in O(m) time.

Thus, Algorithm 1 runs in O(n · log2(n) · d ·m) time. Since d ≤ n and m ≤ n2, the overall running time is polynomial in
n.

F.4. Handling the generalized cost objective

Lemma D.1. Consider any arbitrary directed clique G = (V,E) and any integer k ≥ 1. Without loss of generality,
V = {v1, . . . , vn} and π(v1) < . . . < π(vn), i.e. v1 is the source of G. Suppose we arbitrarily partition the vertex set into
sets S = {S1, . . . , S⌈n/k⌉}, each of size at most k. Then, the set Ssource ∈ S containing v1 is the unique set in S that has a
vertex without any incoming arcs from the other sets.

22

New metrics and search algorithms for weighted causal DAGs

Proof. By definition of a source node, all edges in G will point away from v1. Meanwhile, since G is a clique, every other
vertex vi will have an arc v1 → vi. So, Ssource is the unique set in S that has a vertex without any incoming arcs from the
other sets.

To prove Lemma D.2, we rely on the next lemma (Lemma F.1) which generalizes Lemma 2.3: the latter is the special case of
the former where S is a single vertex. Given a moral DAG, Lemma 2.3 of (Choo & Shiragur, 2023) tells us that intervening
on a single vertex w will split up the graph into separate chain components such that all ancestors of w will belong in a
single chain component. Lemma F.1 generalizes this fact to the setting of bounded size interventions.

Lemma F.1. Let G = (V,E) be a moral DAG and π be an arbitrary consistent ordering of G. Intervening on vertex set
S = {s1, s2, . . . , sk} ⊆ V orients all edges u→ v with s1 ∈ Des(u) ∩ Anc(v), where π(s1) < π(s2) < . . . < π(sk).

Proof. Note that u ̸∈ S as s1 ∈ Des(u), but v could possibly be a vertex in S.

By Lemma C.11, we know that there are arcs u→ w for all w ∈ Des(u) ∩ Anc(v).

Let
si = argmax

z∈S;
z∈Des(u)∩(Anc(v)∪{v})

{π(z)}

be a vertex in S that lies between u and v, with the largest ordering. The vertex si is well-defined because s1 ∈
Des(u) ∩ Anc(v) ⊆ Des(u) ∩ (Anc(v) ∪ {v}).

If si = v, then u→ v is trivially oriented when we intervene on S because u ̸∈ S. In the rest of the proof, we may assume
that si ̸= v, i.e. si ∈ Anc(v). Let

w = argmax
z∈Des(si)∩(Anc(v)∪{v});

(si→z)∈E

{π(z)}

denote the vertex with incoming arc from si and ancestral to v, with the largest ordering. The vertex w is well-defined
because si ∈ Anc(v) and thus there is a sequence of directed arcs from si to v. Note that w could be v and w ̸∈ S by
maximality of si.

When we intervene on S, we recover all arc directions incident to si, except maybe the arcs internal within S. In particular,
we will recover the arcs u→ si and si → w.

If w = v, then Meek rule R2 recovers u→ w = v via u→ si → w ∼ u.

Otherwise, if w ̸= v, then let w = w0 → w1 → . . . → wℓ = v be the sequence of directed arcs from w to v in G. By
maximality of w, there is no arc from si to any of the vertices {w1, . . . , wℓ}. So, by repeatedly applying Meek R1, we
recover

• w0 → w1 via si → w0 ∼ w1

• w1 → w2 via w0 → w1 ∼ w2

• . . .

• wℓ−1 → wℓ via wℓ−2 → wℓ−1 ∼ wℓ

Furthermore, we know that the arcs u→ w0, u→ w1, . . . u→ wℓ exist due to Lemma C.11. So, by repeatedly applying
Meek R2, we recover

• u→ w0 via u→ si → w0 ∼ u

• u→ w1 via u→ w0 → w1 ∼ u

• . . .

• u→ wℓ via u→ wℓ−1 → wℓ ∼ u

23

New metrics and search algorithms for weighted causal DAGs

That is, the arc u→ wℓ = v will be oriented.

Lemma D.2. Let EI(G) be the interventional essential graph of a moral DAG G = (V,E) with respect to intervention set
I ⊆ 2V . Fix any chain component H ∈ CC(EI(G)) and let K be an arbitrary clique in H . If K contains the source node
of H , then there are no chain components of EI∪{V (K)}(H) with only incoming arcs into K in G. Otherwise, if K does not
contain the source node of H , then there is exactly one chain component of EI∪{V (K)}(H) with only incoming arcs into K
in G. Furthermore, without further interventions, we can decide if such a chain component exist (and find it) in polynomial
time.

Proof. Let us denote Hsource as the source node of H and Ksource as the source node of K.

Case 1: Ksource = Hsource

Suppose, for a contradiction, that there was a chain component in EI∪{V (K)}(H) with incoming arcs into K in G. Since
G is moral, this chain component must have an edge with Ksource. However, since Ksource = Hsource, this arc must be
outgoing from Ksource. Contradiction.

Case 2: Ksource ̸= Hsource, i.e. Ksource ∈ Des(Hsource)

Recall that chain components do not have oriented arcs, so H must be moral. Since K is a clique in the chain component
H , there was an unoriented directed path from Hsource → u1 → . . . → ulast → Ksource before intervening on K.
Since Meek rules can only orient arcs with an endpoint that is a descendant of vertices in K, we see that the arcs
Hsource → u1 → . . .→ ulast remain unoriented after intervening on K.

Claim 2.1: There exists one such chain component. Let A be the chain component containing Hsource after intervening
on K. From the above discussion, A has an arc into K in G, namely ulast → Ksource. For A to have any incoming arcs
from K, A must contain some descendant of Ksource. However, by Lemma F.1, any arc joining an ancestor and descendant
of Ksource would be oriented, thus ancestors and descendants of Ksource will belong in different chain components in
EI∪{V (K)}(H). Thus, A only has incoming arcs into K in G.

Claim 2.2: There does not exist two such chain components. Suppose, for a contradiction, that there is another chain
components B in EI∪{V (K)}(H) with incoming arcs into K in G. Since G is moral, B must have an edge into Ksource,
say b→ Ksource. Again, since G is moral, there must be an edge between b and ulast. Since Meek rules can only orient
arcs with an endpoint the arc b ∼ ulast remains unoriented after intervening on K, so A and B are actually the same chain
component. Contradiction.

Running time We can enumerate over all chain components of H and checking each edge at most twice in order to
determine whether there is a chain component in EI∪{V (K)}(H) with incoming arcs into K in G, and if so find it.

Lemma 4.9. Given a set of clique vertices V (C) ⊆ V and integer k ≥ 1, Algorithm 5 returns a set S ⊆ 2V (C) such that
each partite in S has at most k vertices. When k = 1, |S| = |V (C)| and each vertex appears exactly once in S. When
k > 1, |S| ∈ O(log k · |V (C)|/k) and each vertex appears at most O(log k) times in S.

Proof. By construction and Lemma 4.8, each partite in S has at most k vertices.

When k = 1, the output |S| = |V (C)| and each vertex appears exactly once in S.

When k > 1, the output |S| ≤
⌈
|V (C)|

k′

⌉
·
⌈
log⌈ |V (C)|

k′ ⌉ |V (C)|
⌉

and each vertex appears
⌈
log⌈ |V (C)|

k′ ⌉ |V (C)|
⌉

times

in S, where k′ = min{k, |V (C)|/2} > 1. Since k′ ≤ k, we have
⌈
|V (C)|

k′

⌉
∈ O

(
|V (C)|

k

)
. So, it remains to bound⌈

log⌈ |V (C)|
k′ ⌉ |V (C)|

⌉
.

When 1 < k ≤ |V (C)|
2 , we see that k′ = k. So,

⌈
log⌈ |V (C)|

k′ ⌉ |V (C)|
⌉
=
⌈
log⌈ |V (C)|

k ⌉ |V (C)|
⌉
=

 log |V (C)|

log
⌈
|V (C)|

k

⌉
 ∈ O(log k)

24

New metrics and search algorithms for weighted causal DAGs

For the final asymptotic inclusion, consider the following argument with log being base 2 and 1 < k ≤ x/2:

log x

log(x/k)
≤ log k + 1

⇐⇒ log x ≤ log k · log(x/k) + log(x/k)

⇐⇒ log k ≤ log k · log(x/k)
⇐⇒ 1 ≤ log(x/k)

⇐⇒ 2 ≤ x/k

When k > |V (C)|
2 , we see that k′ = |V (C)|

2 . So,⌈
log⌈ |V (C)|

k′ ⌉ |V (C)|
⌉
= ⌈log2 |V (C)|⌉ ≤ ⌈log2 2k⌉ ∈ O(log k)

The claim follows since we always have ⌈
log⌈ |V (C)|

k′ ⌉ |V (C)|
⌉
∈ O(log k)

Theorem D.3. Fix an essential graph E(G∗) corresponding to an unknown weighted causal DAG G∗. Suppose I∗1 and
I∗k are an atomic and bounded size intervention sets minimizing Equation (1) such that EI∗

1
(G∗) = EI∗

k
(G∗) = G∗,

cost(I∗1 , α, β, 1) = OPT1, and cost(I∗k , α, β, k) = OPTk. Then, maximizing over intervention sets I ⊆ V , we have

OPT1 ≥ max
I⊆2V

I atomic


∑

H∈CC(EI(G
∗))

|V (H)|≥2

max
{
ζ
(3)
I,H , ζ

(4)
I,H

} and OPTk ≥ max
I⊆2V

I bounded size


∑

H∈CC(EI(G
∗))

|V (H)|≥2

max
{
ζ
(5)
I,H , ζ

(6)
I,H

}
where

ζ
(3)
I,H =

1

2
· max

clique C∈H

{
α ·
(
w(V (C))− max

v∈V (C)
{w(v)}

)
+ β · |V (C)|

}
,

ζ
(4)
I,H =

1

2
· max
v∈V (H)

min

α · w(v) + β,

t∑
i=1

max
clique Ci:

V (Ci)⊆Vi∩NH(v)

{α · w(V (Ci)) + β · |V (Ci)|}


 ,

ζ
(5)
I,H =

1

2
· max

clique C∈H

{
α ·
(
w(V (C))− max

v∈V (C)
{w(v)}

)
+

β

k
· |V (C)|

}
,

ζ
(6)
I,H =

1

2
· max
v∈V (H)

min

α · w(v) + β

k
,

t∑
i=1

max
clique Ci:

V (Ci)⊆Vi∩NH(v)

{
α · w(V (Ci)) +

β

k
· |V (Ci)|

}
 ,

and V1, . . . , Vt ⊆ V (H) are vertex sets of the t ≥ 1 disjoint connected components in H[V (H) \ {v}] in ζ
(4)
I,H and ζ

(6)
I,H .

Proof. The proof is similar to Theorem 4.1 but we specialize the bounds to take into account of Equation (1).

Common argument

Fix an arbitrary intervention set I ⊆ 2V . We will prove the two cases separately by mirroring parts of the proof of
Lemma C.3 in how we invoke Lemma C.2.

Consider an arbitrary DAG G̃ ∈ [G∗]. Let I ′ ⊆ V be any atomic verifying set of G̃ and fix a chain component
H ∈ CC(EI(G∗)). That is, suppose EI′(G∗) = G̃ and EI′(G∗)[V (H)] = G̃[V (H)]. Then,

E(I′\I)∩V (H)(G̃[V (H)]) = EI∪(I′\I)(G̃)[V (H)] = EI′(G̃)[V (H)] = G̃[V (H)]

25

New metrics and search algorithms for weighted causal DAGs

where the first equality is due to Lemma C.2 and the last equality is because I ′ is a verifying set of G̃. So, (I ′ \ I) ∩ V (H)

is a verifying set for G̃[V (H)], and so is I ′ ∩ V (H). Thus, by minimality of ν1 and νk, we have

ν1(G̃[V (H)]) ≤ |I ′ ∩ V (H)| and ν1(G̃[V (H)]) ≤ w(I ′ ∩ V (H)) (4)

for any atomic verifying set I ′ ⊆ V of G̃.

Repeating the exact same argument for bounded size verifying sets, we have

νk(G̃[V (H)]) ≤ |I ′ ∩ V (H)| and νk(G̃[V (H)]) ≤ w(I ′ ∩ V (H)) (5)

for any bounded size verifying set I ′ ⊆ 2V of G̃.

We now independently lower bound via ζ
(3)
I,H , ζ(4)I,H , ζ(5)I,H , and ζ

(6)
I,H by using Lemma 4.2: in any interventional essential

graph, we can always pick a consistent ordering by making any unoriented clique the prefix of its chain component.

Case A: Lower bounding via ζ
(3)
I,H when k = 1:

Fix an arbitrary clique C in H . Suppose the vertices in C are v1, . . . , v|C| with w(v1) ≥ . . . ≥ w(v|C|). By Lemma 4.2,
there exists a valid orientation π of H such that all the vertices in C appear at the start of the ordering. For any such
ordering π, the covered edges are vπ(1) → vπ(2) → . . .→ vπ(|C|) and we know that any atomic verifying set must include a
minimum vertex cover of these covered edges due to Theorem C.6.

Fix the ordering π where w(vπ(i)) = w(vi) and let the DAG G̃ ∈ [G∗] correspond to this ordering, i.e. π is in descending
weight ordering. Consider the set of disjoint alternating covered edges π−1(1)→ π−1(2), π−1(3)→ π−1(4), and so on.
Amongst these disjoint alternating covered edges, at least one endpoint must be intervened upon, incurring a cost of at least∑

even i w(vi). That is, ν1(G̃) ≥
∑

even i w(vi). From the proof of Theorem 4.1, we know that

ν1(G̃[V (H)]) ≥ 1

2
·
(
w(V (C))− max

v∈V (C)
w(v)

)
.

Meanwhile, Theorem C.8 tells us that orienting C requires at least |V (C)|/2 atomic interventions even if we allow
randomization and adaptivity. So,

ν1(G̃[V (H)]) ≥ |V (C)|/2 .

Therefore, for any atomic verifying set I of G̃[V (H)],

α · w(I) + β · |I| ≥ α · ν1(G̃[V (H)]) + β · ν1(G̃[V (H)])

≥ α ·
(
1

2
·
(
w(V (C))− max

v∈V (C)
w(v)

))
+ β · (|V (C)|/2)

=
1

2
·
{
α ·
(
w(V (C))− max

v∈V (C)
w(v)

)
+ β · |V (C)|

}
.

By maximizing amongst the cliques within H , we see that α · w(I) + β · |I| ≥ ζ
(3)
I,H .

Case B: Lower bounding via ζ
(4)
I,H when k = 1:

It suffices to prove this for arbitrary cliques Ci in each disjoint connected components in H[V \ {v}], and then taking the
maximum. Consider a minimum cost atomic verifying set I of G̃[V (H)].

Case 1: v ∈ I. Then,

α · w(I) + β · |I| ≥ α · ν1(G̃[V (H)]) + β · ν1(G̃[V (H)])

≥ α · w(v) + β

≥ 1

2
·

{
α · w(v) + β,

t∑
i=1

α · w(V (Ci)) + β · |V (Ci)|

}

26

New metrics and search algorithms for weighted causal DAGs

By maximizing amongst the cliques within each connected component, we see that α · w(I) + β · |I| ≥ ζ
(4)
I,H .

Case 2: v ̸∈ I.

By Lemma 4.2, there exists DAGs consistent with E(G∗) that can be generated by letting v be the first prefix vertex in
E(G∗), followed by vertices in descending weight ordering within each clique Ci, across all t components. Let G̃ be
one such DAG and suppose the vertices in clique Ci = {ui,1, . . . , ui,|Ci|} have weights w(ui,1) ≥ . . . w(ui,|Ci|) and
π(v) < π(ui,1) < . . . < π(ui,|Ci|). We see that the set {v → ui,1, ui,1 → ui,2, . . . , ui,|Ci|−1 → ui,|Ci|}ti=1 are all covered
edges of G̃. By Theorem C.6, any verification set must include a minimum vertex cover of these edges. In particular, since
v ̸∈ I, we must have {ui,1}ti=1 ⊆ I.

Conditioned on not using v, we know, from the proof of Theorem 4.1, that

ν1(G̃[V (H)]) ≥ 1

2
·

t∑
i=1

w(V (Ci)) .

Meanwhile, Theorem C.8 tells us that orienting all the Ci’s require at least
∑t

i=1 |V (Ci)|/2 atomic interventions, even if
we allow randomization and adaptivity. So,

ν1(G̃[V (H)]) ≥ 1

2
·

t∑
i=1

|V (Ci)| .

Therefore,

α · w(I) + β · |I| ≥ α · ν1(G̃[V (H)]) + β · ν1(G̃[V (H)])

≥ α ·

(
1

2
·

t∑
i=1

w(V (Ci))

)
+ β ·

(
1

2
·

t∑
i=1

|V (Ci)|

)

=
1

2
·

(
α ·

t∑
i=1

w(V (Ci)) + β · |V (Ci)|

)

By maximizing amongst the cliques within each connected component, we see that α · w(I) + β · |I| ≥ ζ
(4)
I,H .

Case C: Lower bounding via ζ
(5)
I,H when k > 1:

We use the exact same proof outline as ζ(3)I,H while invoking Theorem 4.3. This gives the following inequalities:

νk(G̃[V (H)]) ≥ ν1(G̃[V (H)]) ≥ 1

2
·
(
w(V (C))− max

v∈V (C)
w(v)

)
.

and

νk(G̃[V (H)]) ≥

⌈
ν1(G̃[V (H)])

k

⌉
≥
⌈
|V (C)|
2k

⌉
.

Therefore, for any bounded size verifying set I of G̃[V (H)],

α · w(I) + β · |I| = 1

2
·
{
α ·
(
w(V (C))− max

v∈V (C)
w(v)

)
+ β · |V (C)|

k

}
.

By maximizing amongst the cliques within H , we see that α · w(I) + β · |I| ≥ ζ
(5)
I,H .

Case D: Lower bounding via ζ
(6)
I,H when k > 1:

We use the exact same proof outline as ζ(4)I,H while invoking Theorem 4.3. Let I be an arbitrary bounded size verifying set
of G̃[V (H)].

27

New metrics and search algorithms for weighted causal DAGs

Conditioned on using v, we trivially get α · w(I) + β · |I| ≥ α · w(v) + β like before. By maximizing amongst the cliques
within H , we see that α · w(I) + β · |I| ≥ ζ

(6)
I,H .

Meanwhile, conditioned on not using v, we get the following inequalities:

νk(G̃[V (H)]) ≥ ν1(G̃[V (H)]) ≥ 1

2
·

t∑
i=1

w(V (Ci)) .

and

νk(G̃[V (H)]) ≥

⌈
ν1(G̃[V (H)])

k

⌉
≥

⌈
1

2
·

t∑
i=1

|V (Ci)|
k

⌉
≥ 1

2
·

t∑
i=1

|V (Ci)|
k

.

Therefore,

α · w(I) + β · |I| = 1

2
·

{
α ·

t∑
i=1

w(V (Ci)) + β · |V (Ci)|
k

}
.

By maximizing amongst the cliques within H , we see that α · w(I) + β · |I| ≥ ζ
(6)
I,H .

Putting together

For k = 1, recall that I∗1 ⊆ V is the atomic intervention set optimizing Equation (1) such that EI∗
1
(G∗) = G∗. So,

OPT1 = α · w(I∗1) + β · |I∗1 |
(∗)
≥

∑
H∈CC(EI(G

∗))
|V (H)|≥2

α · w(I∗1 ∩ V (H)) + β · |I∗1 ∩ V (H)|

≥
∑

H∈CC(EI(G
∗))

|V (H)|≥2

α · ν1(G̃[V (H)]) + β · ν1(G̃[V (H)])

≥
∑

H∈CC(EI(G
∗))

|V (H)|≥2

max{ζ(3)I,H , ζ
(4)
I,H}

where the inequality (∗) is because some edges may have already been oriented by I and the last two inequalities follow
from arguments in cases A and B. Finally, the claim follows by taking the maximum over all possible atomic interventions
I ⊆ V .

For k > 1, recall that I∗k ⊆ 2V is the bounded size intervention set optimizing Equation (1) such that EI∗
k
(G∗) = G∗. So,

OPTk =
∑
S∈I∗

k

α · w(S) + β · |S|

(∗)
≥

∑
H∈CC(EI(G

∗))
|V (H)|≥2

∑
S∈I∗

k

α · w(S ∩ V (H)) + β · |S ∩ V (H)|

≥
∑

H∈CC(EI(G
∗))

|V (H)|≥2

α · νk(G̃[V (H)]) + β · νk(G̃[V (H)])

≥
∑

H∈CC(EI(G
∗))

|V (H)|≥2

max{ζ(5)I,H , ζ
(6)
I,H}

where the inequality (∗) is because some edges may have already been oriented by I and the last two inequalities follow from
arguments in cases C and D. Finally, the claim follows by taking the maximum over all possible bounded size interventions
I ⊆ 2V .

28

New metrics and search algorithms for weighted causal DAGs

Lemma D.4. Fix an interventional essential graph EI′(G∗) corresponding to an unknown weighted causal moral DAG G∗

and some intervention I ′ ⊆ 2V . Suppose I∗1 and I∗k are atomic and bounded size intervention sets minimizing Equation (1)
such that EI∗

1
(G∗) = EI∗

k
(G∗) = G∗, cost(I∗1 , α, β, 1) = OPT1, and cost(I∗k , α, β, k) = OPTk. Let H be a chain

component of EI′(G∗) containing a vertex v ∈ V (H). Then,

• When k = 1, Algorithm 4 returns an atomic intervention set I such that connected components in H[V (H) \ {v}] are
mutually disjoint in EI(H) and cost(I, α, β, 1) ∈ O(log n · OPT1).

• When k > 1, Algorithm 4 returns a bounded size intervention set I such that connected components in H[V (H) \ {v}]
are mutually disjoint in EI(H) and cost(I, α, β, k) ∈ O((log n+ log k) · OPTk).

Proof. The proof strategy exactly follows Lemma 4.6 except we have to account for the subroutine call to
CliqueIntervention via Lemma 4.9.

Since the underlying graph is a moral DAG, intervening on v or argminu∈(∪t
i=1V (H1))∩NH(v) π(u) ensures that the partites

will indeed become separated. Suppose ui = argminu∈V (Hi)∩NH(v) π(u). If π(vH) > mini∈{1,...,t} π(ui), then interven-
ing on u1, . . . , ut will disconnect14 Hi’s from each other15. Otherwise, if π(vH) < mini∈{1,...,t} π(ui), Lemma 2.3 tells us
that intervening on ui will orient all vH → z arcs for z ∈ Hi.

The if-case of ResolveDanglingGeneralized directly intervenes on v while the else-case of
ResolveDanglingGeneralized repeatedly recurses on a connected subgraph of Hi[V

′], towards the source
argminu∈(∪t

i=1V (H1))∩NH(v) π(u). Since the size of V ′ is at least halved in each iteration of the while-loop, it can have at
most O(log n) iterations.

Note that, in each iteration (out of O(log n) iterations) of ResolveDanglingGeneralized except the last one, we
partition the clique seperators into sets of size at most k and intervene on them. Suppose S ⊆ I is the intervention set output
of that iteration, by Theorem D.3 the cost of this step, that is cost(S, α, β, k) ∈ O(OPTk) for all k ≥ 1. In the last step
of our prcoedure ResolveDanglingGeneralized, we invoke CliqueIntervention and in the remainder of the
proof we bound the cost incurred by this subroutine.

Accounting for CliqueIntervention subroutine calls

Suppose S ⊆ I is the intervention set output of CliqueIntervention on some clique C in the last step.

When k = 1, we know from Lemma 4.9 that |S| = |V (C)| and each vertex appears exactly once in S. By ζ(4) term of
Theorem D.3, cost(S, α, β, 1) ∈ O(OPT1). So, across all O(log n) iterations, cost(I, α, β, 1) ∈ O(log n · OPT1).

When k > 1, we know from Lemma 4.9 that |S| ∈ O(log k · |V (C)|/k) and each vertex appears at most O(log k) in
S. By ζ(6) term of Theorem D.3, cost(S, α, β, k) ∈ O(log k · OPTk), where the O(log k) multiplicity of each vertex
occurrence increases the α term while the O(log k) multiplicative factor size overhead increases the β term. As we invoke,
CliqueIntervention only in the last step and as we incur only a cost of O(OPTk) in all the remaining steps, our total
cost across all O(log n) iterations is, cost(I, α, β, k) ∈ O(log n · OPTk + log k · OPTk). We conclude the proof.

Lemma D.5. ALG-GENERALIZED (Algorithm 3) terminates after O(log n) phases.

Proof. The proof exactly follows Lemma 4.4 except we use ResolveDanglingGeneralized instead of
ResolveDangling to ensure that the partites A and B (with respect to 1/2-clique separator KH) are separated be-
fore we recurse in the next phase. For completeness, we repeat the entire argument below.

In each phase, we are essentially breaking up the graph into small subgraphs using Theorem 2.2 where the size of the chain
components decrease by a factor of two.

Note that we do not intervene on all the vertices in the clique separator KH , but only intervene on V (KH) \ {vH} on line 8,
we need to argue that partites A and B (with respect to the 1/2-clique separator KH) are separated before we recurse in

14Every path between Hi and Hj , for i ̸= j will involve an oriented arc. Such arcs will be removed when considering chain components,
disconnecting the path.

15Without loss of generality, suppose π(u1) = mini∈{1,...,t} π(ui). Orienting the arc u1 → vH triggers Meek rule R1 to orient all
v → z arcs for z ̸∈ H1, thus disconnecting Hi’s from each other.

29

New metrics and search algorithms for weighted causal DAGs

the next phase. Lemma D.4 ensures that ResolveDanglingGeneralized on (ZvH
, w, vH) separates any connected

components that may be “dangling” from vH after intervening on V (KH) \ {vH}.

Since the maximum chain component size initially at most n and is always halved after a phase, Algorithm 3 terminates
after O(log n) phases.

Lemma D.6. Suppose I∗1 and I∗k are an atomic and bounded size verifying sets respectively for G∗ that minimizes
Equation (1) with cost(I∗1) = OPT1 and cost(I∗k) = OPTk. Each phase in ALG-GENERALIZED (Algorithm 3) incurs
a cost of O(log n · OPT1) when k = 1 and O ((log n+ log k) · OPTk) when k > 1.

Proof. Fix an arbitrary phase i with an intermediate interventional essential graph EI(G∗). Suppose that Ji ⊆ 2V is the
intervention set computed by ALG-GENERALIZED in phase i. By construction, Ji is made up by at most two calls from
CliqueIntervention – one from line 9 and one within ResolveDanglingGeneralized.

Case k = 1: By the ζ(3) term of Theorem D.3, a function call to CliqueIntervention from line 9 incurs a cost of
O(OPT1). By Lemma D.4, ResolveDanglingGeneralized incurs a cost of O(log n · OPT1).

Case k > 1: By the ζ(5) term of Theorem D.3, a function call to CliqueIntervention from line 9 incurs a cost of
O(OPTk). By Lemma D.4, ResolveDanglingGeneralized incurs a cost of O((log n+ log k) · OPTk).

Theorem 3.3. Fix an essential graph E(G∗) corresponding to an unknown weighted causal DAG G∗. Suppose I∗1 and
I∗k are an atomic and bounded size verifying sets minimizing Equation (1) such that cost(I∗1 , α, β, 1) = OPT1 and
cost(I∗k , α, β, k) = OPTk. Then, Algorithm 3 runs in polynomial time and computes a bounded size intervention set I in
a deterministic and adaptive manner such that EI(G∗) = G∗, and
1. cost(I, α, β, 1) ∈ O

(
log2 n · OPT1

)
2. cost(I, α, β, k) ∈ O (log n · (log n+ log k) · OPTk).

Proof. Direct consequence of combining Lemma D.5 and Lemma D.6.

The algorithm runs in polynomial time because the following it uses a polynomial number of phases and each phase can be
computed in polynomial time:

• Computation of 1/2-clique separators run in polynomial time (Theorem 2.2)

• Enumerating all maximal cliques in chordal graph can be done in polynomial time16

• Labelling scheme computation of Lemma 4.8 can be computed in polynomial time

• Applying Meek rules till convergence can be made to run in polynomial time (Wienöbst et al., 2021a)

G. Experiments
In this section, we provide more details about our experiments.

All our experiments are conducted on an Ubuntu server with two AMD EPYC 7532 CPU and 256GB DDR4
RAM. Source code implementation and experimental scripts are available at https://github.com/cxjdavin/
new-metrics-and-search-algorithms-for-weighted-causal-DAGs.

We base our evaluation on the experimental framework of (Choo et al., 2022)17, which in turn is based on (Squires et al.,
2020)18. In the following, we replicate some of the experimental setup details from Appendix H of (Choo et al., 2022).

16e.g. see https://en.wikipedia.org/wiki/Chordal_graph
17Available at https://github.com/cxjdavin/subset-verification-and-search-algorithms-for-causal-DAGs
18Available at https://github.com/csquires/dct-policy

30

https://github.com/cxjdavin/new-metrics-and-search-algorithms-for-weighted-causal-DAGs
https://github.com/cxjdavin/new-metrics-and-search-algorithms-for-weighted-causal-DAGs
https://en.wikipedia.org/wiki/Chordal_graph
https://github.com/cxjdavin/subset-verification-and-search-algorithms-for-causal-DAGs
https://github.com/csquires/dct-policy

New metrics and search algorithms for weighted causal DAGs

G.1. Synthetic graph classes

The synthetic graphs are random connected moral DAGs.

1. Erdős-Rényi styled graphs These graphs are parameterized by 2 parameters: n and density ρ. Generate a random
ordering σ over n vertices. Then, set the in-degree of the nth vertex (i.e. last vertex in the ordering) in the order to be
Xn = max{1,Binomial(n− 1, ρ)}, and sample Xn parents uniformly form the nodes earlier in the ordering. Finally,
chordalize the graph by running the elimination algorithm of (Koller & Friedman, 2009) with elimination ordering equal to
the reverse of σ.

2. Tree-like graphs These graphs are parameterized by 4 parameters: n, degree d, emin, and emax. First, generate a
complete directed d-ary tree on n nodes. Then, add Uniform(emin, emax) edges to the tree. Finally, compute a topological
order of the graph by DFS and triangulate the graph using that order.

G.2. Weights and generalized cost parameters

We ran experiments for α ∈ {0, 1} and β = 1 on two different types of weight classes for a graph on n vertices:

Type 1 The weight of each vertex is independently sampled from an exponential distribution exp(n2) with parameter n2.
This is to simulate the setting where there is a spread in the costs of the vertices.

Type 2 A randomly chosen p = 0.1 fraction of vertices are assigned weight n2 while the others are assigned weight 1.
This is to simulate the setting where there are a few randomly chosen high cost vertices.

So, we have 4 sets of experiments in total, where each set follows the 5 experiments performed in (Choo et al., 2022).

Experiment 1 Graph class 1 with n ∈ {10, 15, 20, 25} and density ρ = 0.1.

Experiment 2 Graph class 1 with n ∈ {8, 10, 12, 14} and density ρ = 0.1.

Experiment 3 Graph class 2 with n ∈ {100, 200, 300, 400, 500} and (degree, emin, emax) = (4, 2, 5).

Experiment 4 Graph class 1 with n ∈ {10, 15, 20, 25} and density ρ = 0.1.

Experiment 5 Graph class 2 with n ∈ {100, 200, 300, 400, 500} and (degree, emin, emax) = (40, 20, 50).

G.3. Algorithms benchmarked

The following algorithms perform atomic interventions. Our algorithm weighted separator perform atomic interven-
tions when given k = 1 and bounded size interventions when given k > 1.

random: A baseline algorithm that repeatedly picks a random non-dominated node (a node that is incident to some
unoriented edge) from the interventional essential graph

dct: DCT Policy of (Squires et al., 2020)

coloring: Coloring of (Shanmugam et al., 2015)

opt single: OptSingle of (Hauser & Bühlmann, 2014)

greedy minmax: MinmaxMEC of (He & Geng, 2008)

greedy entropy: MinmaxEntropy of (He & Geng, 2008)

separator: Algorithm of (Choo et al., 2022); Takes in a parameter k for bounded-size interventions.

weighted separator: Our Algorithm 3; Takes in a parameter k for bounded-size interventions.

G.4. Experimental results

In all experiments, ALG-GENERALIZED has a similar run time19. When α = 0 and β = 1, the generalized cost function
is simply the number of interventions used, and ALG-GENERALIZED incurs a similar cost to the existing state-of-the-art

19ALG-GENERALIZED is faster than all benchmarked algorithms except (Choo et al., 2022). This is expected as both use an approach
based on 1/2-clique separators but ALG-GENERALIZED has additional computational overhead to handle dangling components.

31

New metrics and search algorithms for weighted causal DAGs

algorithms. Meanwhile, when α = 1 and β = 1, the generalized cost function is affected by the vertex weights, and
ALG-GENERALIZED incurs noticeably less generalized cost.

We also tested the bounded size implementation for k ∈ {1, 3, 5} and observe that the lines “flip”, for both weight types.
When (α, β) = (0, 1), k = 1 is worst and k = 3 is best. When (α, β) = (1, 1), k = 3 is worst and k = 1 is best. This
matches what we expect from our theoretical analyses.

G.4.1. EXPERIMENT 1

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 6. Experiment 1, Type 1, α = 0, β = 1

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 7. Experiment 1, Type 1, α = 1, β = 1

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 8. Experiment 1, Type 2, α = 0, β = 1

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 9. Experiment 1, Type 2, α = 1, β = 1

32

New metrics and search algorithms for weighted causal DAGs

G.4.2. EXPERIMENT 2

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 10. Experiment 1, Type 1, α = 0, β = 1

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 11. Experiment 1, Type 1, α = 1, β = 1

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 12. Experiment 1, Type 2, α = 0, β = 1

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 13. Experiment 1, Type 2, α = 1, β = 1

33

New metrics and search algorithms for weighted causal DAGs

G.4.3. EXPERIMENT 3

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 14. Experiment 1, Type 1, α = 0, β = 1

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 15. Experiment 1, Type 1, α = 1, β = 1

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 16. Experiment 1, Type 2, α = 0, β = 1

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 17. Experiment 1, Type 2, α = 1, β = 1

34

New metrics and search algorithms for weighted causal DAGs

G.4.4. EXPERIMENT 4

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 18. Experiment 1, Type 1, α = 0, β = 1

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 19. Experiment 1, Type 1, α = 1, β = 1

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 20. Experiment 1, Type 2, α = 0, β = 1

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 21. Experiment 1, Type 2, α = 1, β = 1

35

New metrics and search algorithms for weighted causal DAGs

G.4.5. EXPERIMENT 5

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 22. Experiment 1, Type 1, α = 0, β = 1

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 23. Experiment 1, Type 1, α = 1, β = 1

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 24. Experiment 1, Type 2, α = 0, β = 1

(a) Generalized cost (log scale) (b) Generalized cost (c) Time taken, in secs (log scale) (d) Time taken, in secs

Figure 25. Experiment 1, Type 2, α = 1, β = 1

36

