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ABSTRACT

Training well-performing deep neural networks (DNNs) usually requires massive
training data and computational resources, which might not be affordable for some
users. For this reason, users may prefer to outsource their training process to
a third party or directly exploit publicly available pre-trained models. Unfortu-
nately, doing so opens the possibility of a new dangerous training-time attack
(dubbed backdoor attack) against DNNs. Currently, most of the existing backdoor
detectors filter poisoned samples based on the latent feature representations gen-
erated by convolutional layers. In this paper, we first conduct a layer-wise feature
analysis of poisoned and benign samples from the target class. We find out that
the feature difference between benign and poisoned samples tends to reach the
maximum at a critical layer, which is not always the one typically used in existing
defenses, namely the layer before fully-connected layers. In particular, we can lo-
cate this critical layer easily based on the behaviors of benign samples. Based on
this finding, we propose a simple yet effective method to filter poisoned samples
by analyzing the feature differences between suspicious and benign samples at
the critical layer. We conduct extensive experiments on two benchmark datasets,
which confirm the effectiveness of our backdoor detection.

1 INTRODUCTION

Recent years have witnessed the successful application of deep neural networks (DNNs) in many
tasks, including computer vision (He et al. |2016), natural language processing (Vaswani et al.,
2017), and speech recognition (Farrus, 2018). However, training well-performing DNNs requires
massive training data and computational resources, which might not be affordable for some users.
Common practices to reduce training costs are to outsource the training process to a third-party (e.g.,
a cloud service) or directly adopt publicly available pre-trained DNNs.

Unfortunately, these approaches introduce a new dangerous training-time attack, known as backdoor
attack (BA), against DNNs (Chen et al.l 2017; |Gu et al., [2019; [Li et al,, [2022a)). In general, the
backdoor adversaries poison a few training samples to lead the attacked DNNs into misclassifying
samples containing pre-defined trigger patterns as the adversary-specified target label. However,
the attacked models behave normally on benign samples. Accordingly, these attacks are stealthy
because users can hardly identify them. Since DNNs are used in many mission-critical tasks (e.g.,
autonomous driving or facial recognition), it is urgent to design backdoor defenses.

Currently, many defense methods (Zeng et al., 2022; |Huang et al., |2022; |Chen et al.| [2022b) have
been proposed to alleviate backdoor threats. Among all backdoor defenses, backdoor detection
(Chen et al.; 2019;|Tang et al., 2021} Hayase & Kongl[2021])) is one of the most important paradigms,
where defenders attempt to detect whether a suspicious object (e.g., model or sample) is malicious
or not. Most existing backdoor detectors were designed based on the understanding that poisoned
samples should have different feature representations compared to benign ones, since the attacked
DNNs have different prediction behaviors for them. We notice that most detectors analyze the fea-
tures generated by the layer before the fully connected layers. This raises two intriguing questions:
1) Is this layer always the most critical place for backdoor detection? 2) If not, how to find the
critical layer for designing more effective backdoor detection?

In this paper, we answer the first question in the negative (see Figure [T). To answer the second
question, we conduct a layer-wise feature analysis of poisoned and benign samples from the target
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Figure 1: Features of benign (in green) and poisoned samples (in red) generated by the layer before
the fully connected layers of ResNetl18 and MobileNetV2 DNNs attacked by BadNets (Gu et al.,
2019) and Blended (Chen et all [2017). Visualization is based on principal component analysis
(Abdi & Williams|, [2010). It can be seen that the features of poisoned and benign samples are not
neatly separable on the GTSRB dataset with MobileNetV2.

class. We find out that the feature difference between benign and poisoned samples tends to reach
the maximum at a critical layer, which can be easily located based on the behaviors of benign
samples. Specifically, this layer is the one or near the one that contributes most to assigning benign
samples to their true class. Based on this observation, we propose a simple yet effective method to
filter poisoned samples by analyzing the feature differences (measured by cosine similarity) between
incoming suspicious samples and a few benign samples at the critical layer. Our method can serve
as a ‘firewall’ for deployed DNNSs to identify, block, and trace malicious input samples.

We next summarize our four main contributions. 1) We demonstrate that the features of poisoned
and benign samples are not always clearly separable at the layer before fully connected layers, which
is the one typically used in existing defenses. 2) We conduct a layer-wise feature analysis aimed at
locating the critical layer where the separation between poisoned and benign samples is most neat.
3) We propose a backdoor detection method to filter poisoned samples by analyzing the feature
differences between suspicious and benign samples at the critical layer. 4) We conduct extensive
experiments on two benchmark datasets to assess the effectiveness of our proposed defense. We
hope that our work can provide more understandings of attack mechanism, to facilitate the design of
more effective and efficient backdoor defenses.

2 RELATED WORK

In this paper, we focus on backdoor attacks and defenses in image classification. Other deep learning
tasks (e.g., (Xie et al.,|2019; |Zhai et al., 2021} |Chen et al.| 2022a)) are out of our current scope.

2.1 BACKDOOR ATTACKS

BadNets (Gu et al., [2017; 2019) was the first backdoor attack. It randomly selects a few benign
samples and generates their poisoned versions by stamping a trigger patch onto their images and
reassigning their label as the target label. Later |(Chen et al.| (2017) noted that the poisoned im-
age should be similar to its benign version for stealthiness; based on that, the authors proposed a
blended attack by introducing trigger transparency. However, these attacks are with poisoned labels
and therefore users can still identify them by examining the image-label relation. To alleviate this
problem, Turner et al.[{(2019) proposed the clean-label attack paradigm, where the target label is con-
sistent with the ground-truth label of poisoned samples. Specifically, in this paradigm adversarial
attacks are exploited to perturb the selected benign samples before conducting the standard trigger
injection process. [Nguyen & Tran| (2020b) adopted image warping as the backdoor trigger, which
modifies the whole image while preserving its main content. Besides, Nguyen & Tran|(2020a) pro-
posed the first sample-specific attack, where the trigger varies across samples. However, its triggers
are visible and the adversaries need to control the whole training process. More recently, [Li et al.
(2021c)) introduced the first poison-only invisible sample-specific attack to address these problems.
This attack was inspired by DNN-based image steganography (Tancik et al., 2020).
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2.2 BACKDOOR DEFENSES

In general, existing backdoor defenses can be divided into three main categories, including input
filtering, input pre-processing, and model repairing, as follows:

Input Filtering. These approaches intend to differentiate benign and poisoned samples based on
their distinctive behaviors. One of the typical methods is to filter samples based on the separability
of the feature representations of benign and poisoned samples (Chen et al.l[2019; Hayase & Kong,
20215 Tang et al.l [2021). For example, [Hayase & Kong| (2021) introduced a robust covariance
estimation of feature representations to amplify the spectral signature of poisoned samples. |Zeng
et al.| (2021) proposed to filter inputs based on the finding that poisoned images have some high-
frequency artifacts. |Gao et al.| (2022) proposed to blend various images on the suspicious one,
motivated by the understanding that the trigger pattern can still mislead the prediction no matter
what the background contents are. Recently, Jin et al.| (2022)) proposed to filter poisoned samples
based on existing techniques in detecting adversarial samples.

Input Pre-processing. These methods pre-process each input sample before feeding it into the
deployed DNN. Their motivation is that this process can perturb potential trigger patterns and there-
fore prevent backdoor activation. |Liu et al.| (2017)) proposed the first pre-processing-based defense
where they adopt an encoder-decoder to modify input samples. [Rosenfeld et al| (2020) adopted
randomized smoothing to generate a set of input neighbors and averaged their predictions. Further,
Li et al.| (2021b) demonstrated that if the location or appearance of the trigger pattern is slightly
different from that of the one used for training, the attack effectiveness may degrade sharply. Based
on this finding, they proposed to pre-process images with spatial transformations.

Model Repairing. These defenses aim at erasing backdoors contained in the given attacked DNNs.
For example, [Liu et al| (2017); Zhao et al.| (2020); [Li et al.| (2021a)) revealed that users can ef-
fectively remove backdoors by fine-tuning the attacked DNNs with a few benign samples. These
methods were inspired by catastrophic forgetting (Kirkpatrick et al.l [2017). [Liu et al.| (2018)); [Wu
& Wang|(2021); Zheng et al.[(2022) revealed that model pruning can also remove backdoors effec-
tively, because backdoors are mainly encoded in specific neurons. Very recently, |Zeng et al.| (2022)
proposed to repair compromised models with adversarial model unlearning.

In this paper, we focus on input filtering, which can serve as a ‘firewall’ for deployed DNNss.

3 LAYER-WISE FEATURE ANALYSIS

3.1 PRELIMINARIES

Deep Neural Networks (DNNs). A deep neural network (DNN) is a function f(x), obtained by
composing L functions f!,1 € [1, L], that maps an input z to a predicted output 7. Each f! is a
layer that is parameterized by a weight matrix w', a bias vector b’, and an activation function o!. f!
takes as input the output activation of the previous layer a'~!. The output of f! on an input a'~!
is computed as a' = f!(a!"!) = o!(w' - a'~! + b'). In a DNN-based classifier, the first layer f!
takes x as input, whereas the last layer ¥ outputs a vector a” € R¢ with C being the number of
classes. The vector a® is usually fed to the softmax function, which transforms it into a vector p
of probabilities, called confidence scores. Moreover, a DNN-based classifier can be divided into
two main parts: the feature extractor and the fully connected layers. The feature extractor takes the
original input = and produces a latent representation (.e., latent features), which is passed on to the
fully connected layers to make the final classification decision.

Given a training dataset Dyyqin = {(2;,y:)}7, and a loss function £, the parameters of weights
and biases of a DNN f(+) are learned to approximate the optimal (w*,b*) which minimizes £ on
Dyyqin. In classification problems, £ is usually the cross-entropy loss.

In this paper, we use DNNs as C-class classifiers, where y; € {1,...,C} is the ground truth of z;,
and its final predicted label y; is the index of the highest confidence score in p;. Also, we analyze
the activations of the intermediate layers (:.e., intermediate features) to detect poisoned samples.
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Figure 2: Layer-wise behaviors of benign samples from the target class and poisoned samples (gen-
erated by BadNets and ISSBA attacks) on the CIFAR-10 dataset with ResNet-18

3.2 ANALYZING BACKDOOR ATTACKS FROM A LAYER-WISE PERSPECTIVE

We notice that the predictions of attacked DNNs for both benign samples from the target class
and poisoned samples are all the target label. The attacked DNNs mainly exploit class-relevant
features to predict these benign samples while they use trigger-related features for poisoned samples.
We suggest that defenders could exploit this difference to design effective backdoor detection. To
explore their main differences, we conduct a layer-wise analysis, as follows.

Definition 1 (Layer-wise Centroids of Target Class Features). Let f’ be an attacked DNN with a tar-
getclasst. Let X, = {ml}gi‘ be the set of benign samples with true class t, and let {a}, . .., aF }ll):(tll

be their intermediate features generated by f'. The centroid of t’s benign features at layer | is defined

. be . AL ; . , .
as al = ﬁ ZL:;‘ al, and {a},...,al} is the set of layer-wise centroids of t’s benign features.

Definition 2 (Layer-wise Cosine Similarity). Let aé» be the features generated by layer [ for an input
x4, and let csé— be the cosine similarity between aé- and the corresponding t’s centroid a.. The set

{cs}, ceey cst} is said to be the layer-wise cosine similarities between x; and t’s centroids.
Settings. We conducted six representative attacks on the following four benchmarks: CIFAR10-
ResNet18, CIFAR10-MobileNetV2, GTSRB-ResNetl18, and GTSRB-MobileNetV2. The six at-
tacks were BadNets (Gu et all [2019), the BA with blended strategy of |(Chen et al.| (2017), the
label-consistent BA (LC) of [Turner et al.[ (2019), WaNet (Nguyen & Tran, |2020b), the invisible
sample-specific BA (ISSBA) (Li et al.,[2021c), and the input-aware dynamic BA (IAD) (Nguyen &
Tran, 2020a)). More details on the datasets, DNNs, and attack settings are presented in Section @
Specifically, for each attacked DNN f’ with a target class ¢, we estimated {a}, . ..,ar} using 10%
of the benign test samples labeled as ¢. Then, for the benign and poisoned test samples classified
by f’ into ¢, we calculated the layer-wise cosine similarities between their generated features and
the corresponding estimated centroids. Finally, we visualized the layer-wise means of the computed
cosine similarities of the benign and poisoned samples to analyze their behaviors.

Results. Figure[2]shows the layer-wise means of cosine similarity for benign and poisoned samples
with the CIFAR10-ResNet18 benchmark under the BadNets and ISSBA attacks. As we go deeper
into the attacked DNN layers, the gap between the direction of benign and poisoned features gets
larger until we reach a specific layer where the backdoor trigger is activated, causing poisoned
samples to get closer to the target class. Figure |3| shows the same for the GTSRB-MobileNetV2
benchmark. Further, we can see that for BadNets the latent features of benign and poisoned samples
are similar in the last layer of the features extractor (layer 17).

Regardless of the attack or benchmark, when we enter the latter layers of DNNs (which usually are
class-specific), benign samples start to get closer to the target class before the poisoned ones, that
are still farther from the target class because the backdoor trigger is not yet activated. This makes
the difference in similarity maximum in one of those latter layers, which we call the critical layer.
In particular, this layer is not always the one typically used in existing defenses (i.e., the layer before
fully-connected layers). Besides, we show that it is very likely to be either the layer that contributes
most to assigning the benign samples to their true target class (which we name the layer of interest
or LOI, circled in blue) or one of the two layers before the LOI (circled in brown).

Results under other attacks for these benchmarks are presented in Appendix
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Figure 3: Layer-wise behaviors of benign samples from the target class and poisoned samples (gen-
erated by BadNets and ISSBA attacks) on the GTSRB dataset with MobileNetV2
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Figure 4: Layer-wise behavior of benign and poisoned samples under BadNets w.r.t. the target class
in the CIFAR10-MobileNetV2 and GTSRB-ResNet18 benchmarks

To confirm that the above distinctive behaviors hold regardless of the datasets or models being
used, we also perform the BadNet attack on the CIFAR10-MobileNetV2 and GTSRB-ResNet18
benchmarks. Figure ] provides this confirmation.

From the analysis above, we can conclude that focusing on those circled layers can help develop a
simple and robust defense against backdoor attacks.

4 METHODOLOGY

4.1 THREAT MODEL

We consider a scenario where a user obtains a trained DNN that might have been attacked. For
example, a backdoor might have been inserted during training of the DNN on a third-party’s side
(e.g., a cloud service) or added post-training by an adversary before being downloaded by the user.
We assume that the user has limited computational resources or benign samples, and therefore cannot
repair the suspicious model. The user wants to defend herself by detecting at inference time whether
a suspicious incoming input x, is poisoned, given the trained model f,.

Specifically, we consider each class in the set {1, ...,C} to be a potential target class. Similar to ex-
isting defenses, we assume that a small set of benign samples X,,,; is available to the user/defender.
We denote the available samples that belong to a potential class ¢ as X, _,. For simplicity of notation,
let m = | X}, ,| denote the number of available samples labeled as ¢.

val®

val

4.2 THE DESIGN OF OUR DEFENSE

According to the lessons learned in Section [3} our method to detect poisoned samples at inference
time consists of the following four main steps. 1) Estimate the layer-wise features’ centroids of
class ¢ from the middle layer upward using the class’s available benign samples. 2) Compute the
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cosine similarities between the extracted features and the estimated centroids, and then compute the
layer-wise means of the computed cosine similarities. 3) Identify the layer of interest (LOI), sum up
the cosine similarities in LOI and the two layers before LOI (sample-wise), and compute the mean
and standard deviation of the summed cosine similarities. 4) For any suspicious incoming input
x classified as ¢ by f,, i) compute its cosine similarities to the estimated centroids in the above-
mentioned three layers, and ii) consider it as a potentially poisoned input if its summed similarities
fall below the obtained mean by a specific number of standard deviations.

We now describe the details of our method. For each potential target class ¢t € {1,...C}, we first
feed the available m benign samples to fs and extract their intermediate features in the second half

of layers to obtain the set {(af/ % ... al)}m, (if L is odd, take the integer part of L/2 instead of
L /2 here and in what follows). Note that we can reduce computation by focusing on the second half
of layers because the LOI and the two layers before the LOI are among the latter layers of the DNN
(see Section[3). After that, we compute the layer-wise centroids of the extracted features for each
layer ! € {L/2,..., L}, as follows:

m

1

Al !

a; = — g a;. (1)
m

Then, we compute the cosine similarity between the benign features of each layer and their corre-
sponding centroid. That is, for layer ! € {L/2,(L/2) +1,...,L — 1, L}, we compute the cosine
similarity between the features of each sample a! and its centroid a' as follows:

al - al
csh = CS(al,al) = Lt

2

llagl| - llagll

Then, we aggregate the computed similarities to approximate the similarity centroid in each layer
le{L/2,(L/2)+1,...,L—1,L},as:

1
cAsi = — Z cst. 3)

Next, we use {ésf/ 2, cAsEL/ 2)+1, co éstL }, to locate the layer of interest LOI; that contributes most

to assigning t’s benign samples to their true class ¢. To that end, we first compute the absolute
difference between the approximated similarity of each layer and its preceding one, as follows:

~ ~ (L/2)+1 ~L/2 ~ ~ L—
CStaip¢ :{|CS§ /2% _Cst/ |a"'a|CStL_CStL 1|} €]

Then, we identify LOI; as the layer for which the difference in ¢sy,,, , , is maximum. For example, if

the maximum difference is |cﬁsi — cfsé_l , then layer [ is the layer of interest. Once we locate LOI,

we estimate the behavior of benign samples in that layer and in the two layers previous to it. For
each sample z; € X, _,, we sum up its computed cosine similarities in the three layers:

val?

LOI,—

cs; = cs; 2 4 eglO—1 csiLOIf. ®))

i
After computing the summed similarities of the m samples and obtaining the set {cs;}7™,, we
compute the mean y; and the standard deviation o of the set.

To detect potentially poisoned samples, for any suspicious incoming input x4 classified as ¢ by f; at
inference time, we extract its features in LOI; and the two preceding layers, compute their cosine
similarities to the corresponding estimated centroids {csLOTt=2 ¢sLOli=1 ¢gLOLY "and sum them
up to get css. Then, we identify x; as a potentially poisoned sample if css < py — 7 X 0, where T is
a threshold chosen by the defender that provides a reasonable trade-off between the true positive rate
TPR and the false positive rate FPR. Figure [5|shows an example of the distributions of the summed
cosine similarities of benign and poisoned features to the estimated benign centroids (in the three
identified layers) under the label-consistent attack of [Turner et al.|(2019).

The pseudocode of our method is given in Appendix
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Figure 5: Distributions of the summed cosine similarities of benign and poisoned samples under the
label-consistent attack on CIFAR10 with ResNet18 and GTSRB with MobileNetV2 benchmarks
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Figure 6: Example of benign samples and their poisoned versions generated by different attacks

5 EXPERIMENTS

5.1 MAIN SETTINGS

Datasets and DNNs. In this paper, we use two classic benchmark datasets, namely CI-
FAR10 (Krizhevsky et all,[2009) and GTSRB (Stallkamp et al] 2011). We use the ResNet18
[2016) architecture on CIFAR10 and the MobileNetV2 (Sandler et al. 2018)) architecture on
GTSRB. More details are presented in Appendix [E-2]

Attack Baselines. We evaluate each defense under the six attacks mentioned in Section 3.2t Bad-
Nets, Blended, LC, WaNet, ISSBA and IAD. They are representative of visible attacks, patch-based
invisible attacks, clean-label attacks, non-patch-based invisible attacks, invisible sample-specific at-
tacks, and visible sample-specific attacks, respectively.

Defense Baselines. We compare our defense with six representative defenses, namely randomized
smoothing (RS) (Rosenfeld et al.} [2020), ShrinkPad (ShPd) 2021b), activation clustering
(AC) (Chen et al.} 2019), STRIP (Gao et al.}2022), SCAn 2021), and fine-pruning (FP)
2018). RS and ShPd are two defenses with input pre-processing; AC, STRIP, and SCAn
are three advanced input-filtering-based defenses; FP is based on model repairing.

Attack Setup. For both CIFAR10 and GTSRB, we adopt the following settings. We use a 2 x 2
square as the trigger pattern for BadNets, as suggested in [Gu et al| (2019); Wang et al| (2019).
For Blended, we adopt the random noise pattern, with a 10% blended ratio, as suggested by |Chen
(2017). The trigger pattern adopted for the LC attack is the same used in BadNets. For
WaNet, ISSBA, and TAD, we take their default settings. Besides, we set the poisoning rate to 5%
for BadNets, Blended, LC, and ISSBA. For WaNet and IAD, we set the poisoning rate to 10%,
following their original settings. More details on settings are given in Appendix[E3] Figure[6|shows
an example of poisoned samples generated by different attacks.
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Table 1: Main results (%) on the CIFAR-10 dataset. Boldfaced values are the best results among all
defenses. Underlined values are the second-best results.

Attack— BadNets Blended LC WaNet ISSBA IAD Avg

gdeef::fs:i TPR  FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR | TPR FPR
RS 9.84  8.00 7.35 5.76 9.21 752 98.48 10.00 8.83 872 1328 6.36 | 2450 7.73
ShPd 9428 1331 49.72 1289 69.87 13.18 3625 17.69 9522 550 4274 7.56 | 64.68 11.69
FP 96.10 17.13 96.23 16.16 94.76 17.31 96.01 18.64 9898 19.53 97.08 22.52 | 96.53 18.55

AC 99.52 31.14 100.00 30.69 100.00 31.16 99.18 32.44 99.94 3422 8299 3132 | 9694 31.83
STRIP | 6870 1170 6520 1170 66.00 12.80 7.90 1230 5620 1140 2.10 14.00 | 4435 12.32
SCAn | 9660 077 100.00 0.00 002 505 9855 1.06 99.89 2.61 8419 0.3 | 79.88 1.60
Ours | 9938 135 100.00 159 100.00 120 0104 148 9897 117 99.12 1.26 | 98.09 1.34

Table 2: Main results (%) on the GTSRB dataset. Boldfaced values are the best results among all
defenses. Underlined values are the second-best results.

Attack— BadNets Blended LC ‘WaNet ISSBA IAD Avg
]1;)/{3 efter:lcsej TPR  FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR
RS 1320 22.10 10.12 2040 923 19.15 10.10 1720 8.61 1698 1770 17.60 | 11.49 1891
ShPd 9497 12.16 11.58 10.68 96.16 10.60 66.11 14.81 9592 826 31.07 16.10 | 6597 12.10
Fp 89.05 1880 30.56 370 9471 50.02 67.12 324 9422 7.05 9437 575 | 7834 14776
AC 030 8.84 0.00 5.67 4.83 542 042 2587 99.06 1748 4385 10.73 | 2474 12.34
STRIP 3200 9.00 8040 10.80 740 11.00 3420 1140 13.00 13.60 6.60 10.60 | 2893 11.07
SCAn 46.05 257 4602 4.03 3045 1139 5407 1.88 9685 0.17 0.09 1941 | 4559 6.58
Ours 99.99 623 100.00 672 100.00 595 100.00 649 100.00 543 100.00 4.67 | 100.00 5.92

Defense Setup. For RS, ShPd and STRIP, we adopt the settings suggested in [Rosenfeld et al.
(2020); [Li et al.[(2021Db); Gao et al.[(2022). For FP, we prune 95% of the dormant neurons in the last
convolution layer and fine-tune the pruned model using 5% of the training set. We adjust RS, ShPd,
and FP to be used as detectors for poisoned samples by comparing the prediction change before and
after applying them to an incoming input. For AC, STRIP, SCAn, and our defense, we randomly
select 10% from each benign test set as the available benign samples. For SCAn, we identify classes
with scores larger than e as potentially target classes, as suggested in [Tang et al.| (2021). For our
defense, we use a threshold 7 = 2.5, which gives a reasonable trade-off between TPR and FPR for
both benchmarks. More details are presented in Appendix

Evaluation Metrics. We use the main accuracy (MA) and the attack success rate (ASR) to measure
attack performance. Specifically, MA is the number of correctly classified benign samples divided
by the total number of benign samples, and ASR is the number of poisoned samples classified as the
target class divided by the total number of poisoned samples. We adopt TPR and FPR to evaluate
the performance of all defenses, where TPR is computed as the number of detected poisoned inputs
divided by the total number of poisoned inputs, while FPR is the number of benign inputs falsely
detected as poisoned divided by the total number of benign inputs.

5.2 MAIN RESULTS

For each attack, we run each defense five times for a fair comparison. Due to space limitations, we
present the average TPR and FPR in this section. The detailed results are in Appendix [C|

As shown in Table existing defenses fail with low TPR or high FPR in many cases, especially
on the GTSRB dataset. For example, AC fails in most cases on GTSRB, although it has promising
performance on CIFAR-10. In contrast, our method has good performance in detecting all attacks
on both datasets. There are only a few cases (4 over 28) where our approach is not optimal or
sub-optimal. In these cases, our detection is still on par with state-of-the-art methods, and another
indicator (z.e., TPR or FPR) is significantly better than them. For example, when defending against
the blended attack on the GTSRB dataset, the TPR of our method is 69.44% larger than that of the
FP, which has the smallest FPR in this case. These results verify the effectiveness of our detection.

5.3 DISCUSSION

Effect of the Detection Threshold. Figure [7|shows the TPRs and FPRs of our defense with thresh-
old 7 € {0.5,1,1.5,2,2.5,3} for BadNets and WaNet. It shows that setting the threshold as 2.5
is reasonable, as it offers a high TPR while keeping a low FPR. We notice that there is a trade-off
between TPR and FPR, according to the threshold (i.e., the larger the threshold, the smaller the TPR
and FPR). Users should specify its value based on their specific needs.
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Figure 7: The impact of detection thresholds on TPR (%) and FPR (%).

Table 3: The impact of poisoning rates.

Poisoning Rate/, Metric— | MA (%) ASR (%) TPR (%) FPR (%)

1% 91.52 94.15 99.64 1.25
3% 92.28 96.31 99.32 1.32
5% 91.45 97.20 99.36 1.35
10% 91.45 97.56 99.83 1.62

Table 4: The effectiveness of defenses with different features. Latent features denote those gener-
ated by the feature extractor that is typically used in existing defenses. Critical features are those
extracted by our method from the identified layers.

Metric— TPR (%) FPR (%)
Defense], Features— | Latent Features Critical Features | Latent Features Critical Features
AC 0.3 96.32 8.84 7.67
SCAn 46.05 86.19 2.57 1.96
Ours 1.31 99.99 4.93 6.23

Effect of Poisoning Rates. We launch BadNets on CIFAR10-ResNet18 using different poisoning
rates € {1%, 3%, 5%, 10%} to study the impact of poisoning rates on our defense. Table [3|shows
that the attack success rate (ASR) increases with the increase of the poisoning rate. However, the
poisoning rate has minor effects on our TPR and FPR. These results verify our effectiveness again.

Effectiveness of Our Layer Selection. In this section, we verify that the layer of interest (LOI)
identified by our method is useful for detecting poisoned samples. Specifically, we compare the
performance of AC, SCAn, and our method of detecting BadNets on the GTSRB-MobileNetV2
benchmark using latent features and critical features. We generate latent features based on the
feature extractor (z.e., the layer before fully-connected layers) that is typically adopted in existing
defenses. The critical features are extracted by LOI used in our method. As shown in Table[d} using
our features leads to significantly better performance in almost all cases. In other words, existing
detection methods can also benefit from our layer selection. These results verify the effectiveness of
our layer selection and partly explain our promising performance.

Effectiveness of Cosine Similarity. We compare cosine similarity with the Euclidean distance as
a metric to differentiate between benign and poisoned samples. As shown in Appendix [D.2] the
cosine similarity gives a better differentiation than the Euclidean distance. It is mostly because the
direction of features is more important for detection than their magnitude.

6 CONCLUSION

In this paper, we conducted a layer-wise feature analysis of the behavior of benign and poisoned
samples generated by attacked DNNs. We revealed that the feature difference between benign and
poisoned samples tends to reach the maximum at a critical layer, which can be easily located based
on the behaviors of benign samples. Motivated by these findings, we proposed a simple yet effective
backdoor detection to determine whether a given suspicious testing sample is poisoned by analyzing
the differences between its features and those of a few local benign samples. We conducted extensive
experiments on benchmark datasets to verify the effectiveness and efficiency of our detection.
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ETHICS STATEMENT

DNNs are widely adopted in many mission-critical areas (e.g., autonomous driving); therefore, their
security is of great significance. The vulnerability of DNNs to backdoor attacks raises serious con-
cerns about using third-party training resources. In this paper, we propose a general method to detect
poisoned samples at inference time. This work has no particular ethical issues because our method
is purely defensive and does not reveal any new vulnerabilities of DNNs.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of datasets, models, training, and attack settings in Appendix [E]
We also describe the adopted computing facilities and provide the anonymized open-source codes
of our main experiments in the same appendix.
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Figure 8: Layer-wise behavior of benign and poisoned samples w.r.t. the target class in the
CIFAR10-ResNet18 benchmark

A  ADDITIONAL RESULTS ON LAYER-WISE FEATURE ANALYSIS

Figure [§] shows the layer-wise behavior of benign and poisoned features w.r.t. the target class on
the CIFAR10-ResNet18 benchmark under all the used attacks. Figure [0] shows the same on the
GTSRB-MobileNetV2 benchmark.

It can be seen that the layer with the maximum difference in cosine similarity is likely to be one of
the three circled layers (the LOI and the two preceding layers). This happens in all cases, except
for WaNet on GTSRB-MobileNetV2. We can also notice that the layer-wise gaps are smaller for
WaNet, which is stealthier than the other attacks. Nevertheless, no matter how stealthy the attack is,
the difference is always evident in one of the circled layers.

13
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Figure 9: Layer-wise behavior of benign and poisoned samples w.r.t. the target class in the GTSRB-

MobileNetV2 benchmark

B PSEUDOCODE OF THE METHOD

Algorithm 1 summarizes our defense.

14



Under review as a conference paper at ICLR 2023

Table 5: MA% and ASR% under the selected BAs on the CIFAR10-ResNet18 and the GTSRB-
MobileNetV2 benchmarks. Best scores are in bold.

Benchmark | Metric|,Attack— | BadNets Blended LC  WaNet ISSBA IAD
MA% 9145 9219 0198 9113 9474 0442

CIFARI0-ResNetI8 ASR% 9720 1000 9996 99.04 1000  99.66

) MA% 97.00 9727 9745 9600 9843 98.81
GTSRB-MobileNetV2 ASR% 9549 1000 1000 9182 1000 99.63

Algorithm 1 Detecting BAs via layer-wise feature analysis

Input: Suspicious trained DNN f; Validation samples X,4;; Threshold 7;
Suspicious input x
Output: Boolean value (True/False) tells if z; is poisoned.
1. for each potential target class ¢t € {1,...,C} do > An offline-line
loop conducted for one time only

2: Xt,,, <Split t’s benign samples from X,

3: m < ‘Xtmu’

4: { EL/Q), ...,al}m, «Layers’ features generated by f for {x; € Xy}
5: ay <+ 5" al > Estimate t’s centroid at layer [ € {L/2,...,L}
6: cst < COSINESIMILARITY (a!, a!) > Similarity of al to its centroid
7 cﬁsgt — % S cst > Aggregate computed benign similarities at layer
8: LOI, + IDENTIFYLAYEROFINTEREST({cﬁstL/Q, e cistL/Q})

9: cS; — csiLOIt*2 + esTOI=1 4 (gLOL:

10: pie, 0¢ <= MEAN({cs; }2), STD({es; }i24)

11: IsPoisoned < False

12: ys < fs(xs) > 15 is the predicted class by f, for x,
13: for each potential target class ¢t € {1,...,C} do

14: if 9 =t then

15: {eskO1e=2 cshOlmt et 01} « {CosINESIMILARITY (al, a) } /9,
16: CSg csSLOIf_2 + cs?oh—1 + csSLOIt

17: if csg < (ug — 7 X 04) then

18: IsPoisoned < True

19: return IsPoisoned
20: procedure IDENTIFYLAYEROFINTEREST({c¢s7/2, ... ést/?})
21: MAT giff @ (B/DHL a2
22: LOI + (L/2)+1
23: for i € {(L/2)+2,...,L} do
24: ldiff — |éSl — CASZ_1|
25: if ldiff > Maxq;ff then
26: maxqiff <— ldiff
27: LOI <1
28: return LOJ

C PERFORMANCE OF ATTACKS

Table [5] shows the performance of the selected attacks on the CIFAR10-ResNet18 and the GTSRB-
MobileNetV2 benchmarks. It can be seen that sample-specific attacks (e.g., ISSBA and IAD), per-
formed better than other attacks in terms of MA and ASR.
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Table 6: Stability on the CIFAR10-ResNet18 benchmark (+: standard deviation). Lowest standard
deviations are in bold.

Attack— BadNets Blended LC WaNet ISSBA IAD Avg
I];A:;;‘Zgl TPR% FPR% TPR% FPR% TPR% FPR% TPR% FPR% TPR% FPR% TPR% FPR% TPR% FPR%
AC 99.52 31.14 100.00 30.69 100.00 31.16 99.18 32.44 99.94 34.22 82.99 31.32 96.94 31.83
(£025)  (£12.54) (£0.00) (£13.59) (£0.00) (£1243) (£0.23) (£13.80) (£0.12) (£1391) (£14.49) (£13.12) | (£2.52) (£13.23)
SCAn 96.60 0.77 100.00 0.00 0.02 5.05 98.55 1.06 99.89 2.61 84.19 0.13 79.88 1.60
(£0.23)  (£1.54)  (£0.00) (+0.00) (+0.02) (£0.19) (+0.04) (£1.21) (£+0.08) (£3.38) (£30.54) (£0.24) | (£5.15) (£1.09)
Fp 96.10 17.13 96.23 16.16 94.76 17.31 96.01 18.64 98.98 19.53 97.08 22.52 96.53 18.55
(+£0.12) (+0.33) (£2.92) (+0.22) (£1.11) (+0.60) (+0.86) (+0.69) (+0.84) (+0.70) (£1.01) (£0.97) | (£1.14)  (£0.59)
Ours 99.38 1.35 100.00 1.59 100.00 1.20 91.04 1.48 98.97 1.17 99.12 1.26 98.09 1.34
(£0.34)  (£0.24)  (£0.00) (£0.39) (£0.00) (£0.20) (£1.19) (£0.16) (£0.51) (£0.09)  (+0.45) (£0.13) | (£0.42) (+0.20)

Table 7: Stability on the GTSRB-MobileNetV2 benchmark (+£: standard deviation). Lowest stan-
dard deviations are in bold.

Attack— BadNets Blended LC ‘WaNet ISSBA IAD Avg
II\DA;:;:[](;:L TPR% FPR% TPR% FPR%  TPR%  FPR% TPR% FPR% TPR% FPR% TPR% FPR% TPR% FPR%
AC 0.30 8.84 0.00 5.67 4.83 542 0.42 25.87 99.06 17.48 43.85 10.73 24.74 12.34
(£0.20) (£12.58)  (£0.00) (£9.48) (£1.36) (£9.05) (£0.84) (£13.51) (£0.34) (£13.78) (£17.09) (£13.49) | (£3.31) (£11.98)
SCAn 46.05 2.57 46.02 4.03 30.45 11.39 54.07 1.88 96.85 0.17 0.09 19.41 45.59 6.58
(£3.76)  (£2.06)  (£5.14) (£2.29) (£8.24) (£5.10) (£12.92) (£1.55) (£3.32) (£0.32) (£0.04) (+4.09) | (£557) (£2.57)
FP 89.05 18.80 30.56 3.70 94.71 50.02 67.12 3.24 94.22 7.05 94.37 5.75 78.34 14.76
(£4.56) (£17.73) (£2279) (£0.17) (£0.10) (£0.70) (£5.69) (£0.13) (£0.20) (£120) (£033) (£0.59) | (£5.61) (£3.42)
Ours 99.99 6.23 100.00 6.72 100.00 5.95 100.00 6.49 100.00 543 100.00 4.67 100.00 592
; (£0.01) (£0.46) (+0.00) (+0.53) (£0.00) (£0.20) (£0.00) (£0.47) (£0.00) (£0.48) (£0.00) (+0.99) | (£0.00) (+0.52)

Table 8: Comparison between Euclidean distance and cosine similarity as metrics to differentiate
between benign and poisoned samples (+: standard deviation). Best scores are in bold.

Threshold— 0.5 1 1.5 2 2.5 3
Evaluation metric | rpopo pprg,  TPR%  FPR% TPR% FPR%  TPR%  FPR% TPR% FPR% TPR%  FPR%

Similarity metric)
99.98 2477 97.12 13.64 95.73 8.67 70.84 4.69 53.13 321 15.71 1.56
(£0.01) (£0.64) (£3.13) (£0.90) (£2.41) (£0.36) (+10.00) (£0.36) (£12.94) (£1.78) (£10.61) (+0.06)
100.00  33.65 99.99 18.74 99.91 8.71 99.76 3.89 99.12 0.17 95.99 0.40
(£0.00) (£1.11) (£0.00) (£0.73) (£0.05) (+0.88) (£0.04) (+0.32) (£045) (+0.13) (£3.04) (+0.18)

Euclidean distance

Cosine similarity

D ADDITIONAL DISCUSSION

D.1 STABILITY COMPARISON

We compare the stability of our defense with that of AC, SCAn, and FP on the CIFAR10-ResNet18
and GTSRB-MobileNetV2 benchmarks. We ran each defense five times and report the average TPR
and FPR with their standard deviations. Tables |§| and |Z| show that our defense, in general, is more
stable than the others.

D.2 EFFECTIVENESS OF COSINE SIMILARITY

We also tried the Euclidean distance as a metric to differentiate between benign and poisoned sam-
ples, as we did with cosine similarity. The only difference was considering any suspicious input with
a summed distance greater than the mean of benign samples with 7 standard deviation as potentially
poisoned. Table [§]shows the detection performance of our defense with each of the two metrics in
the CIFAR10-ResNet18 benchmark under the IAD BA with different thresholds. It can be seen that
cosine similarity provides a better differentiation between benign and poisoned samples. A possible
explanation is that the direction of features is more important for detection than their magnitude.

D.3 RUNTIME COMPARISON

We compared the average CPU runtime (in seconds) of our defense with that of AC and SCAn on
the whole benign and poisoned test sets. Figure[T0]shows that our defense had the shortest runtime
on CIFAR10-ResNet18 and the second shortest on GTSRB-MobileNetV2. It had a runtime slightly
longer than that of AC on GTSRB-MobileNetV2 because MobileNetV2 contains a larger number of
intermediate layers, which increases the time required to analyze them.
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Table 9: Statistics of the used datasets and DNNs

Dataset  Inputsize # Classes # Training samples #Test samples # Available samples DNN model  # Layers
CIFAR-10  3x32x32 10 50,000 10,000 1,000 ResNet18 10
GTSRB 3x32x32 43 39,209 12,630 1,263 MobileNetV2 19

E DETAILED SETTINGS FOR EXPERIMENTS

We used the PyTorch framework to implement the experiments on an AMD Ryzen 5 3600 6-core
CPU with 32 GB RAM, an NVIDIA GTX 1660 GPU, and Windows 10 OS. In addition, we used
the BackdoorBox open toolbox for conducting all attacks and re-implemented the
other defenses used in our work. The source code, pre-trained models, and poisoned test sets of our
defense are available at https://github.com/anonymizedl /DBALFA.

E.1 DATASETS AND DNNS

Table 9] summarizes the statistics of the used datasets and DNNs and the number of benign samples
available to the defender. Note that, for ease of computation, we consider as a layer each convolu-
tional block other than the first convolutional layer and the last fully connected layer.

E.2 TRAINING SETTING

We used the cross-entropy loss and the SGD optimizer with a momentum 0.9 and weight decay 5 x
10~* on all benchmarks. We used initial learning rates 0.1 for ResNet18 and 0.01 for MobileNetV2,
and trained models for 200 epochs. The learning rates were decreased by a factor of 10 at epochs
100 and 150, respectively. We set the batch size to 128 and trained all models until they converged.

E.3 ATTACK SETTING

The target class on all datasets was 1 for BadNets 2019), the BA with blended strat-
egy (Chen et all 2017) (Blended), the invisible sample-specific BA (ISSBA),
and the input-aware dynamic BA (Nguyen & Tran| [2020a) (IAD). The target classes for the label-
consistent BA (Turner et all,[2019) and WaNet (Nguyen & Tranl, 2020b) were 2 and 0, respectively,
on all datasets. The trigger patterns of attacks were the same as those presented in Section [3.1}
In particular, we set the blended ratio to A = 0.1 for the blended attack on all datasets. We used
the label-consistent BA with maximum perturbation size 16. For WaNet, we set the noise rate to
pn = 0.2, the control grid size to k = 4, and the warping strength to s = 0.5 on all datasets, as
suggested in the WaNet paper (Nguyen & Tranl, 2020b). For IAD (Nguyen & Tran, [2020a), we
trained the classifier and the trigger generator concurrently. We attached the dynamic trigger to the
samples from other classes and relabeled them as the target label.
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E.4 DEFENSE SETTING

For RS, we generated 100 neighbors of each input with a mean = 0 and a standard deviation = 0.1,
as suggested in|Cohen et al.{(2019). We set the shrinking rate to 10% for ShPd and padded shrinked
images with O-pixels to expand them to their original size, as suggested in|Li et al.| (2021b). For FP,
we pruned 95% of the dormant neurons in the last convolution layer and fine-tuned the pruned model
using 5% of the training set. We adjusted RS, ShPd, and FP to be used as detectors for poisoned
samples by comparing the change in prediction before and after applying them to an incoming input.
For AC, STRIP, SCAn, and our defense, we randomly selected 10% from each benign test set as the
available benign samples. Then, for AC, we used the available benign samples, from each class,
for normalizing benign and poisoned test samples and identifying potential poisoned clusters. For
STRIP, we blended each input with 100 random inputs from the available benign samples using a
blending value o« = 0.5, as suggested in |Gao et al.|(2022). Then, we identified inputs with entropy
below the 10-th percentile of the entropies of benign samples as potentially poisoned samples. For
SCAn, we identified classes with scores larger than e as potential target classes, as suggested in/Tang
et al.|(2021)), and identified the cluster that did not contain the available benign samples as a poisoned
cluster. For our defense, we used a threshold 7 = 2.5, which gave us a reasonable trade-off between
TPR and F'PR on both benchmarks.
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