
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

QUANTUM NEURAL FIELDS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces a new type of neural field for visual computing with com-
ponents compatible with gate-based quantum hardware or simulators thereof.
Our Quantum Neural Field Network (QNF-Net) expects as input a query coor-
dinate and, optionally, a latent variable value, and outputs the corresponding field
value. QNF-Net includes a new feature map for classical data encoding and a
parametrised quantum circuit. The proposed neuro-deterministic data encoding
converts, into qubit amplitudes, an energy spectrum of the Gibbs-Boltzmann dis-
tribution corresponding to the learned problem energy manifold. We provide a
theoretical analysis of the model and its components and perform experiments on
a simulator of a gate-based quantum computer with 2D images and 3D shapes (and
their collections as learnt priors) and compare results with several classical base-
lines. QNF-Net consistently outperforms the classical baselines with a compara-
ble number of parameters and achieves faster convergence speed, therefore show-
ing its potential quantum advantages, even for relatively large-scale problems
compared to what has been demonstrated in quantum machine learning so far.
We will release the source code to facilitate method reproducibility.

1 INTRODUCTION

Coordinate-based neural fields are at the cornerstone of scene representation learning and they are
widely used and indispensable in modern computer vision Xie et al. (2022a); Mildenhall et al.
(2021); Park et al. (2019); Sabella (1988); Shue et al. (2023); Feng et al. (2022); Osher & Fed-
kiw (2005). They find applications in robotics Wiesmann et al. (2023); Maggio et al. (2023); Kwon
et al. (2023), 3D reconstruction Williams et al. (2022); Sitzmann et al. (2021); Sun et al. (2022);
Zhang et al. (2021); Ran et al. (2023) and novel view synthesis Ye et al. (2023); Li et al. (2021b;a);
Mildenhall et al. (2021), to name a few areas. Neural fields are often used to continuously pa-
rameterise 2D images or 3D scenes and they encode various characteristics of a scene (such as 3D
geometry, appearance, and material properties Yang et al. (2021); Shue et al. (2023); Courant et al.
(2023)); they provide data priors to other methods and allow scene manipulation and editing (such as
interpolation in the latent space, scene inpainting or completion Mirzaei et al. (2023)). The promi-
nent advantages of neural fields include support of different scene topologies and a wide range of
scene resolutions as well as balancing data fitting and generalisation. All these applications became
possible in recent years, as there has been a notable shift from hand-crafted priors, primarily based
on heuristics, to learning priors in the form of neural fields directly from data Xie et al. (2022b),
with multi-layer perceptron (MLP) with ReLU activation being one popular building block for such
a neural field, in the early days. Highly desirable characteristics of neural scene representations such
as efficient and fast training, lightweightness and high accuracy, however, are still not easily com-
binable using modern neural approaches. Moreover, training neural fields can be computationally
and resource-demanding, depending on the model and the data collection size. Hence, any possi-
ble (even seemingly small) reduction in the required number of parameters and training iterations
would be advantageous in widespread techniques and applications relying on neural fields.

With emerging interest in variational quantum circuits, i.e. quantum machine learning (QML) Schuld
et al. (2015); Biamonte et al. (2017); Cerezo et al. (2022) and given that quantum machine learn-
ing (QML) operate under fundamentally different principles compared to its classical counterpart,
we shift our focus to QML and hope it can address those open challenges mentioned above. QML,
which can execute on gate-based quantum hardware or simulators thereof, takes advantage of the
gate-based quantum computational paradigm, i.e. the associated quantum-mechanical effects such
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Figure 1: Our coordinate-based Quantum Neural Field Network (QNF-Net) can be learnt from data
and can represent various signals: (a:) Overall architecture scheme; (b:) Latent space interpolation
of 3D shapes; (c:) 2D images of high resolutions (400×350 pixels) Gardner (2022).

as qubit superposition and entanglement. This provides an alternative to the classical neural univer-
sal approximators and could provide characteristics possibly not observed or easily achievable by
classical architectures (such as faster model convergence and fewer parameters; learning different
patterns compared to classical models). However, it is an open question how these postulated advan-
tages translate to practical QML implementations. We, thus, introduce QNF-Net, a new architecture
for learning Quantum Neural Fields (QNF) (see Figs. 1 and 2). QNF-Net is the first quantum scene
representation of its kind that encodes a scene using parametrised quantum circuits (PQCs) learnt
from data. More specifically, applying PQCs for neural field learning has multiple reasons and ad-
vantages that we observe empirically on a simulator of a fault-tolerant quantum computer. First, it
results in faster convergence and fewer parameters to reach performance on par or better than clas-
sical methods. Second, PQCs allow learning patterns from data not accessible to classical models.
Since PQCs can be interpreted as truncated Fourier series with coefficients determined through uni-
tary quantum operations, they support improved and faster learning of high-frequency details in the
input data. Instead of using heuristic encoding as most other work do Weigold et al. (2020); Huang
et al. (2018); Schalkers & Möller (2024); Bondarenko & Feldmann (2020); Rathi et al. (2023)—
which lacks generality and depends on specific applications—we also provide a learnable encoding
strategy which projects classical data into quantum states with theoretical analysis. Moreover, effi-
ciently encoding signals into quantum states remains challenging in QML. In this regard, QNF-Net
could also be regarded as a novel and efficient way to encode data in learnable parameters of quan-
tum circuits. To summarise, the primary technical contributions of this paper are as follows:

• QNF-Net, i.e. a hybrid quantum neural architecture for quantum neural field (QNF) learn-
ing that can be trained and run on simulators of fault-tolerant quantum hardware and, po-
tentially, upcoming gate-based quantum machines (Sec. 3);

• Neuro-deterministic encoding of classical data through amplitude encoding of state proba-
bilities derived from the inferred problem energy manifold (Sec. 3.1);

• Effective and efficient (in terms of the number of parameters) quantum circuit with a theo-
retical mathematical analysis of its expressiveness (Sec. 3.2);

• QNF-Net conditioning on a latent variable, which enables multiple applications such as
shape interpolation in the latent space (Sec. 3.3).

QNF is a new way of representing images, 3D shapes and their collections on quantum hardware.

2 RELATED WORK

Classical Neural 2D/3D Scene Representation. Neural networks have been extensively used for
implicitly learning scene representations Molaei et al. (2023); Chen et al. (2017); Tschernezki et al.
(2022); Chen et al. (2021); Li et al. (2022). Moreover, the past few years have witnessed significant
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Figure 2: Overview of the proposed QNF-Net, a hybrid quantum framework for representing
field information (e.g., 2D images and 3D shapes). The scene coordinates θ encoded using γ
(positional encoding) concatenated with the conditioning latent code z are used to infer the energy
spectrum E of a quantum system, associated with statistical uncertainty P modelled by Boltzmann
distribution ς . This inferred statistical property is then processed by a parametrised quantum circuit
S(θ) followed by qubit measurements. The measured values are grouped using the parity mapper
to ensure consistent output dimensions.

progress, especially on 3D representations such as SDF Park et al. (2019); Duan et al. (2020), multi-
view images Su et al. (2015); Yang et al. (2018), 3D shape manifold meshes Graham & Van der
Maaten (2017); Graham et al. (2018), radiance fields Mildenhall et al. (2021) and graphs Wang et al.
(2019). Among these, DeepSDFs and similar approaches Park et al. (2019); Mescheder et al. (2019)
encode signed distance fields implicitly capturing the scene geometry. DeepSDFs can be conditioned
on a latent variable that would allow learning shape collections in a single neural field and adjusting
the decoded shapes at test time. In contrast to DeepSDF, our method is a QML approach, i.e., the
SDFs of 3D shapes are encoded in parametrised quantum circuits. While QNF-Net preserves the
core functionality of DeepSDF (e.g., support of topological changes), we reduce the training time
and the overall number of parameters compared to it. QNF-Net can leverage gate-based quantum
hardware which can be more energy-efficient or computationally faster for specific problems.

Gate-based Quantum Computer Vision/Computer Graphics (QCV/CG). This emerging inter-
disciplinary field at the intersection of 3D vision, computer graphics, and quantum computing at-
tracts growing attention. A few studies explored the application of quantum machine learning
(QML) in QCV/CG. Early works Shiba et al. (2019) introduced a quantum circuit model for im-
age denoising. They drew inspiration from convolutional principles, considering only interactions
between each pixel and its neighbors to minimize qubit usage. Similarly, Cong et al. (2019) pro-
posed quantum convolutional neural networks (QCNNs), leveraging mid-circuit measurements and
shared unitaries to replicate the translational equivariance of classical CNNs. As an extension, Baek
et al. (2022) developed a hybrid pipeline for classifying 3D point clouds. It involves voxelizing the
point cloud and using quantum circuits to process dense features extracted from each voxel. Rathi
et al. (2023) proposed a novel quantum autoencoder that embeds classical information through a
hand-crafted approach and compresses it using partial tracing. After the compression bottleneck,
the model reconstructs the information by introducing ancilla qubits initialized in their ground state.

Our QNF-Net is inspired by the two latter works. While these studies focus on classifying 3D
point clouds and compression using hand-crafted embeddings only, we shift the focus to the general
field representation using learnable embeddings of classical data into quantum states, leveraging
their intrinsic connection to energy representation. Additionally, we employ a carefully designed
quantum circuit. Our paper differs from many related and theoretical QML works Silver et al.
(2023); Reddy & Bhattacherjee (2021); Manko & Frolovtsev (2024); Xiang et al. (2024); Blekos
& Kosmopoulos (2021) in that we follow an empirical approach and scale up the supported data
resolution w.r.t. them.

3 METHOD

This section introduces QNF-Net, our hybrid quantum framework for neural field learning; see Fig. 2
for an overview. Our goal is to learn multi-dimensional field representations such as 2D images or
3D shapes, specifically, in a coordinate-based manner. At test time, for each queried coordinate in
different fields, we obtain the corresponding value encoded or inferred by the QNF-Net. We assume
fault-tolerant quantum computers and focus on the fundamental challenges of the setting.
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Figure 3: Overview of our PQC architecture: From left to right, we show: 1) parameter initial-
izations of the quantum circuit; 2) our designed smallest repeatable PQC block structure (denoted
as “Quantum Circuit”); and 3) the circuit arrangement pattern with the identity on top denoted by
“SRJ

” and its adjoint “FRJ
”, and Gaussian on the bottom denoted by long “SGJ

”. Note that “S”
blocks in different mentioned initialisations have the same architecture.

3.1 ENERGY INFERENCE AND INPUT DATA ENCODING

Amplitude encoding can be used to encode classical input data x as a quantum state |ψ(x)⟩ which
can be further processed by an ansatz. One possibility of amplitude encoding is hand-crafted de-
sign, which likely can lead to sub-optimality and limitation to a single problem Rathi et al. (2023).
Hence, we propose to learn the optimal density ρ(x)opt of quantum state encoding from data of a
given type (note that we only consider pure states, i.e., Tr(ρ(x)2) = 1). As quantum circuits are
inherent samplers, one approach to implement a learnable amplitude encoding would be to consider
a measurement outcome distribution of a quantum system and approximate it through a probabilistic
neural network. However, this can easily cause challenges due to the inherent stochastic nature of
the sampling process. Consequently, we adopt an alternative and new stochasticity-free approach,
i.e., inferring the energy spectrum of the quantum system that automatically takes into account such
probabilistic sampling uncertainty. As a first step, we employ a lightweight vanilla multi-layer per-
ceptron (MLP) with ReLU activations to infer the energy E of the field input Θ; it consists of three
hidden layers with 256 neurons each. Since ReLU-based MLP is biased towards representing low-
frequency signals, we incorporate positional encoding γ to accelerate finding such energy, which is
common in classical neural fields Rahaman et al. (2019); Mildenhall et al. (2021):

E = MLP([γ(Θ)T , zT ]T ), with (1)

γ(Θ) = (sin(20πΘ), cos(20πΘ), · · · , sin(2L−1πΘ), cos(2L−1πΘ)). (2)
Here, Θ is our field query coordinate while z is the latent code conditioning our QNF-Net. The
probability distribution P of input quantum states (originating from the encoding of classical data)
can be associated with the inferred energy spectrum E using, for instance, the Gibbs-Boltzmann
distribution ς , i.e., inductive bias of our learned encoding. For a quantum system involving n qubits,
and therefore, with N=2n distinct quantum states, such probability distribution P can be prepared
after inferring a deterministic energy distribution E:

P = ς(E) =
e−βE(x)∫
e−βE(x)dx

≈ e−βE(x)∑N
j=1 e

−βE(x)j
, (3)

where β is a constant dependent on the process temperature as derived originally in thermodynam-
ics. As β serves as an energy scaling factor, it can be incorporated as part of the energy term and
learnt without compromising the generality. As the amplitudes αi of quantum states are inherently
complex, their complex phases arg(αi) can take any values in the interval [0, 2π) while satisfying
the norm condition ∥αi∥2 =

√
Pi. Through later empirical analysis, we have observed that setting

arg(αi) = 0 simplifies the optimisation process while still yielding effective results. We can then
prepare our final quantum encoding of the classical input data as follows:

|ψin⟩ =
N∑
i=1

αi |ψi⟩ , αi =
√
Pi, ρ̂ = |ψin⟩ ⟨ψin| =

N∑
i,j=1

αiα
+
j |ψi⟩ ⟨ψj | , (4)

where |ψin⟩ is our prepared quantum state , |ψi⟩ is some local basis, and ρ̂ describes the density dis-
tribution of |ψin⟩; “(·)+” denotes the adjoint operator (conjugate transpose). Next, we theoretically
analyse the effect of such data encoding on the expressiveness of the whole model.
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Lemma 1 The energy inference module is functionally equivalent to finding the optimal input-
weighted frequency spectrum of variational quantum circuits, which determines its expressive power.

As proved by Schuld et al. 2021, variational circuits of the form U(x) = W 2g(x)W 1 can be ex-
pressed as a truncated Fourier-type sum:

f(x) = ⟨0|W 1†g(x)
†
W 2†MW 2g(x)W 1 |0⟩ =

∑
w∈Ω

cwe
iwx, (5)

where W 1 and W 2 are arbitrary unitary matrices while g(x) serves as data encoding modules ap-
plied across all the qubits. Notably, g(x) is general in the sense it can include data-reuploading
operations without being restricted to Pauli encoding. In contrast, the encoding gates discussed
in Schuld et al. 2021 specifically refer to Pauli encoding; see details in the original paper. The
frequency spectrum, denoted as Ω, is derived from the eigenvalues of g(x). The associated Fourier
coefficient cw is determined by the ansatz design parametersW 1 andW 2 and the measurement oper-
ator M . It is evident that our prepared input quantum state |ψin(x)⟩ can be equivalently represented
as g(x)W 1 |0⟩ through energy inference (note: W 1 can be any arbitrary unitary matrix). This allows
us to relate the inferred energy levels to the multi-dimensional frequency spectrum entries with the
dependence encoded in the learnable weights of our energy inference framework.

3.2 PARAMETRISED QUANTUM CIRCUIT DESIGN

Figure 4: Possible pure
qubit states and transi-
tions between them.

We next describe the design of our ansatz, i.e. the quantum circuit Ŝ(θ)
that induces evolution of our prepared quantum states |ψin(x)⟩ as visu-
alised in Fig. 3.1. Note that Fig. 3.1-(a) visualises the quantum circuit
design included in Fig. 2. It can be noted that not all rotations around
every axis in the circuit are effective as we use the expectation value of
our measurements through sampling the circuit as our output; the sam-
pled distributions depend on the evolved quantum states probabilities.
For example, rotations around Z-axis only incur phase change, i.e., not
changing probability density. Rotations around Y - and X- axis of the
Bloch sphere behave similarly in modifying probability density. From
this consideration and to reduce effective parameter search space, we
design our circuit only out of Y -axis rotations, i.e., our quantum states
under evolution only lie in the real-valued region as shown in Fig. 4.

We measure the qubit states after the proposed set of PQCs in the standard computational basis
{|0⟩ , |1⟩}. The measurement is performed locally, as it relieves potential barren plateau issues,
i.e., ⟨∇θL(θ)⟩ = 0, Var(∇θL(θ)⟩ ≈ 0, L(θ) being the loss function, for large circuits1 Cerezo et al.
(2021); Thanasilp et al. (2023). Mathematically, these local measurements translate to the following
expression, for our case, involving the observable operator Ô chosen as the Pauli Ẑ operator Ô =

{Ôi|Ôi = (⊗i−1
k=11k)Ẑ(⊗n

l=i+11m)}, where 1k and 1m denote so-called identity measurements
preserving the qubit state of i − 1 qubits before and n − i qubits after the measured i-th qubit,
respectively. Furthermore, as the observations of the quantum system inherently exhibit statistical
behaviour, our final measurement output V (x) is defined as the expectation value of individual qubit
measurements, i.e.,

V (x) = Tr(ρ̂(x)M̂), and M̂ = Ŝ(θ)†ÔŜ(θ), (6)

where M̂ is the measurement basis. To identify the optimal measurement base M̂opt, we decompose
and approximate the optimal unitary Hamiltonian evolution with single-qubit rotations and qubit
entanglers. Although we know such circuit design is universal for approaching M̂opt, we still need
to experiment with the required circuit layers J , and, therefore, the total number of gates. Theorem
1 states that this required number of gates is upper bounded by O(4N log4( 1ϵ )).

Theorem 1 Solovay-Kitaev Dawson & Nielsen (2006): Let G be a finite subset of SU(2) and
U ∈ SU(2). If the group is generated by G is dense in SU(2), then for any ϵ > 0, it is possible to
approximate any U to precision ϵ using O(log4( 1ϵ )) from G. For multi-qubit cases, the total number
of gates needed to approximate U on N qubits is at most O(4N log4( 1ϵ )).

1the loss function concentrates around its mean exponentially with the number of qubits
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After obtaining circuit measurements V (x), we still need to post-process them such that QNF-Net
output F (x) is consistent with the field-specific output with dimension m (as we are targeting field
representation problems with low output dimensions, we assume that m is always smaller than the
number of qubits n). To have this guarantee, we define a simple parity-based grouping operation P:

Pj = {mk + j|k,m ∈ N,mk + j ≤ n} and (7)

[V (x)]i = Tr(ρ̂Ŝ(θ)†ÔiŜ(θ)), Fm(x) =
{ 1

|Pj |
∑
i∈Pj

[V (x)]j

∣∣∣j = 1, ...,m
}
. (8)

Note that P in Eq. equation 7 maps the information (statistics) from n qubits to a m-dimensional
real-valued vector, and each entry of this vector contains a possible field quantity in general.

3.3 QNF-NET TRAINING PARAMETER INITIALISATION

Algorithm 1 QNF-Net Training Protocol
1: Input: Training data {x, y}; number of qubits n; epoch number Nepochs.

2: Energy inference weight initialisation: θclassical ∼ U
(
−
√

6
nin
,
√

6
nin

)
3: PQC initialisation: θquantum (Gaussian or identity; see Sec. 3.3)
4: Iterative model optimisation (training) by backpropagation:
5: for epoch = 1 to Nepochs do
6: Classical: Infer energy states E, quantum state probabilities P : Pi =

Gibbs-Boltzmann (Ei) (see Sec. 3.1)
7: Quantum: Quantum states ρ̂ with amplitudes αi =

√
Pi, arg(αi) = 0 evolve under ansatz-

induced Hamiltonian: ρ̂ = |ψin⟩ ⟨ψin| → Ŝ(θ) |ψin⟩ ⟨ψin| Ŝ(θ)† (see Sec. 3.2)
8: Quantum: Sample circuits and evaluate model outputs:

{
1

|Pj |
∑

i∈Pj
[V (x)]j

∣∣∣j =

1, ...,m
}

(see Sec. 3.2)
9: Classical: Compute loss L(θ) and gradients ∇θL(θ); backpropagate ∇θL(θ).

10: end for

Similarly to classical neural networks, where proper parameter initialisation is crucial, the quantum
model requires careful parameter selection for trainability, especially for large circuits. However,
initialisation protocols for QML are still developing, and only a few approaches have been proven
effective; we incorporated two of them: identity and Gaussian initialisation (see Fig. 3.1-(b)).

For identity initialisation, each minimum repeatable block M̂j is constructed by firstly randomly
initialising trainable parameters within the interval [0, 2π) for SR and then appending its adjoin
FR such that SRFR = I at the start of training to minimise circuit effective depth (SRFR is not
constrained to be identity in later training) Grant et al. (2019). For Gaussian initialisation, parameters
SG from M̂j are sampled from a zero-mean Gaussian distribution to ensure slower decay of gradient
norm ||∇θL(θ)||2 with increasing circuit scale, i.e. circuit depth or number of qubits Zhang et al.
(2022). Subsequently, the quantum circuit Ŝ(θ) is built exclusively out of R̂y by chaining J building
blocks in a serial order such that the whole circuit unitary Ŝ(θ) becomes M̂J−1 · · · M̂0. The block
architecture and initialisation remain consistent for all M̂j within the circuit.

Consider a dataset X comprising fields Xi parametrised by physical field quantities sj such as pixel
colours or SDF values. We prepare the field coordinates xj with M sampled points as follows:

Xi = {(xj , sj)|sj = f(xj), j = 0, ...,M}. (9)

Each Xi is linked to a distinct latent code zi initially (at the beginning of training) sampled from a
zero-mean Gaussian distribution. It can be noted that maximising the likelihood pθ(sj |xj) is equiv-
alent to maximising

∑
i pθ(sj |xj , zi)p(zi). Without loss of generality, the likelihood pθ(sj |xj , zi)

can take the form −L(fθ(zi, xj), sj), where the loss function L is chosen to be ℓ1-loss penalising
disparity between predictions fθ(zi, xj) and the corresponding ground-truth field values sj . The
prior distribution over zi can be assumed to be a zero-mean multi-variate Gaussian function. There-
fore, the loss function Lθ,z to be minimised during training withW distinct fields ofM samples per
field can be formulated as follows:

6
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Figure 5: The latent space under 2D projection with t-SNE van der Maaten & Hinton (2008) (a)
associated with reconstructed arbitrary 2D images learned by our QNF-Net (b).

Lθ,z(x, s) =

W∑
i=1

( M∑
j=1

L(fθ(zi, xj), sj) + σ2||zi||2
)
. (10)

Our architecture optimisation is implemented using Adam optimiser Kingma & Ba (2015) with the
initial learning rate set to 1e−3 and Nepochs = 3k training epochs (unless mentioned otherwise).
Additionally, a learning rate scheduler is employed which decays the learning rate by 10% with a
patience value set to 20. Our model is trained using a single A100 GPU on a high-level simulator
in PyTorch provided in Pennylane Bergholm et al. (2018) with a summary of the training protocol
provided in Alg. 1. We next analyse the computational complexity of simulating quantum system
evolution on classical hardware. Generally, for a circuit consisting of n qubits with depth J , the non-
accelerated complexity of a single coordinate query then readsO((2n)3 ·J )+OMLP ; OMLP is the
computational complexity for preparing the input quantum state through its energy state distribution.
Once trained, our approach can be queried at test time by providing the query coordinates (2D or
3D) and an optional latent vector variable.

4 EXPERIMENTAL EVALUATION

We evaluate our approach for the representational accuracy of quantum neural fields across varying
data dimensions (2D and 3D). Due to the inherent computational and memory demands associated
with QML, we choose compact and representative data collections from CIFAR-10 Krizhevsky et al.
(2009) and ShapeNet Chang et al. (2015) datasets. We also use some high-resolution images from
James Webb Space Telescope Gardner (2022); see Fig. 1. We report the Mean Squared Error (MSE)
and PSNR for 2D images and Mean Average Error (MAE) for 3D shapes.

4.1 COORDINATE-BASED NEURAL QUANTUM 2D IMAGE REPRESENTATION

Figure 6: Reconstructed images for different
epochs with average PSNR (“Avg.”). QFN-Net
(top) captures high-frequency details faster than
the classical MLP (bottom).

We evaluate our QNF-Net on dense 2D im-
age representations with pixel colours com-
posing a 2D image field. Starting with single-
image representations, we select a puppy im-
age with rich signal frequency bands. The
quantum component of our model is config-
ured using Gaussian initialisation. To under-
stand the learning process, we prepare the vi-
sualisation of the intermediate reconstruction
results using our model along with the compar-
ison with the MLP baseline of equivalent ex-
pressive capacity in Fig. 6 (our MLP baselines
include positional encoding and three hidden
layers with 328 neurons each). While both approaches seem to handle low-frequency information

7
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Figure 7: (a): Reconstruction of different 3D shapes using our QNF-Net. Each distinct shape is
constructed using Marching Cubes based on inferred field properties from our model with their
unique latent codes; samples used for reconstruction are coloured using their estimated normals.
(b): Shape completion from partial inputs using QNF-Net.

well in some regions (see the grassland and the shadow on bottom-left), the MLP exhibits inferior
performance for high-frequency regions (e.g. the puppy face). Our model converges faster and ex-
hibits higher metric values such as PSNR for the same number of training epochs. We also test
conditioned QNF-Net in a scenario with multiple images; see Fig. 1-(b) and Fig. 5 for examples and
Table 1 for intermediate loss values across different metrics. We observe that our model significantly
accelerates the learning process which is consistent with visualisations in Fig. 6.

4.2 COORDINATE-BASED VOLUMETRIC NEURAL QUANTUM 3D SCENE REPRESENTATION

We extend our evaluations to more challenging 3D multi-shape representations with Signed Distance
Field (SDF) values with model architecture unchanged as in Sec. 4.1. By learning the 3D object
surface details, i.e., signed distances, we expect our quantum neural field model to learn several
shape representations simultaneously which can be used for other downstream tasks. We initially
sample 200k points with SDF values for our 3D field with higher sampling density near the surface
for a higher level of object detail capture. However, we encounter memory depletion issues on our
hardware due to storage requirements of intermediate results and gradient-related numerics upon
our quantum component, which is presumably due to uncomparable optimisation and maturity level
compared with current deep learning tools. We, therefore, experiment using six 3D shapes with
each represented by 100k sample points at the expense of reduced reconstruction quality; some
visual results extracted using Marching Cubes Lorensen & Cline (1998) with inferred field values
are provided in Fig. 7-(a).

Table 1: Numerical comparison of reconstruction performance between our approach and a standard
MLP baseline. “co.” means converged. “clas/quant” means classical and quantum.

Method Epoch # Params
(clas/quant)

Images (MSE↓/ PSNR↑) 3D Shapes (MAE ↓)
w/ PE
L = 6 w/o PE w/ PE

L = 6 w/o PE

Ours
[Gaussian]

100
1.56e5/ 120

1.6 e-2/ 17.74 3.4 e-2/ 14.64 1.9 e-3 2.3 e-3
200 1 e-2 / 19.96 2.8 e-2/ 15.52 1.6 e-3 1.9 e-3

3k (co.) 1 e-3 / 29.2 3 e-3 / 25.37 1 e-3 1.6 e-3

Ours
[Identity]

100
1.56e5/ 120

1.9 e-2 / 17.23 3.4 e-2/ 14.63 1.8 e-3 2.3 e-3
200 9 e-3/ 20.36 2.4 e-2 / 16.19 1.6 e-3 2 e-3

3k (co.) 1 e-3 / 28.8 3 e-3 / 24.68 1.1 e-3 1.5 e-3

MLP Baseline
100

2.2e5
4.4 e-3/ 13.5 6.7 e-2 / 11.72 2.7 e-3 3.5 e-3

200 1.8 e-2 / 17.42 3.5 e-2/ 14.51 1.9 e-3 2.6 e-3
3k (co.) 2 e-3/ 26.57 1.1 e-2/ 19.58 1.4 e-3 2e-3
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Figure 8: Ablation experiments on modules that influence the training performance. Here, our
experiments include the number of involved qubits n (left), building block repetitions J (middle)
and classical energy inference layers (right). Note that the model with more qubits trains slower but
supports a higher resolution of the learned signals (2D-pixel grids and sampled surfaces for SDFs).

4.2.1 IMAGE INPAINTING AND PARTIAL SHAPE COMPLETION

A key advantage of our quantum neural field representation is its ability to perform inference with
partial samples. This enables partial shape completion or image inpainting by identifying a latent
code ẑ that best explains the partial observation Xi while keeping the pre-trained model parameters
fixed, using Maximum-a-posteriori (MAP) estimation as follows:

ẑ = argmin
z

∑
(xj ,sj)∈Xi

L(fθ(z, xj), sj) + σ2||z||2. (11)

Once ẑ is determined, we can sample from QNF-Net in the entire space conditioned on ẑ to obtain
the complete 3D shape or 2D image as shown in Fig. 7-(b) and Supplement B.

4.3 ABLATION STUDY

Besides, we also perform ablation studies analysing the effects of different sub-modules, e.g. the
number of involved qubits n, circuit depth J and the expressivity of energy inference module (see
Fig. 8). With increasing circuit depth J , ranging from 2 in ascending order to 6 (middle figure),
the learning becomes more efficient and accurate in terms of converged value, i.e., consistent with
Solovay-Kitaev theorem. Additionally, augmenting the expressivity of energy inference modules
through the inclusion of more hidden layers leads to both improved convergence and better perfor-
mance (right figure). However, as the number of used qubits n increases, this improvement gets
countered in a noticeable way (left figure). We suspect that this can stem from the increased com-
plexity of identifying the optimal energy description of the problem input while other factors are
strictly controlled. This implies that we do not need to manipulate many qubits, which can be ad-
vantageous in practice and on upcoming quantum processors.

4.4 ADAPTION TO OTHER ENERGY INFERENCE NETWORK DESIGNS

Table 2: Comparisons against SIRENs.

Method Epoch Images
(MSE)↓

3D Shapes
(MAE)↓

Ours
(periodic activation)

200 3.4 e-3 8 e-4
co. 7.8 e-4 2.7 e-4

SIREN 200 8.1 e-3 1.3 e-3
co. 1 e-3 4.8 e-4

We want to highlight the flexibil-
ity in designing the energy infer-
ence module. For instance, using
a sinusoidal activation function in-
stead of the conventional ReLU can
improve convergence to the optimal
energy setup. This approach is em-
pirically evaluated alongside classi-
cal SIREN Sitzmann et al. (2020),
i.e., vanilla-type dense multi-layer
network with a periodic activation function. While this work primarily focuses on the whole frame-
work design, other viable design approaches that could infer the energy more efficiently depending
on specific scenarios could also be integrated. The results are summarised in Tab. 2.
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5 DISCUSSION AND CONCLUSION

This paper formulates a new quantum framework for encoding classical data adaptively into quan-
tum states, following entirely new principles compared to existing literature, i.e., quantum system
evolution and measurements on quantum devices, which can be used for tasks related to neural
field representations. We observe in different scenarios that the QNF-Net allows us to improve
both the convergence speed and the representation accuracy compared to different baselines; it can
even challenge stronger baselines by incorporating more advanced energy-inference network designs
(SIREN). At the same time, it also supports several useful real-world tasks such as shape completion
and interpolation in the latent space. We theoretically analyse the model and perform experiments
on large-scale 2D and 3D datasets while previous QML works evaluate on small-resolution images.
Moreover, we perform thorough ablation studies of different module components. Notably, we do
not observe barren plateaus, thanks to our design choices. The contributing factors to their absence
can be manifold such as measurement locality, network hybridisation, and weight initialisation.

While our work highlights the potential of QML in general neural field representation, there are
avenues for future research. Our current approach only partially leverages the information from
the Hilbert space due to optimisation and circuit complexity considerations; see Fig. 4. Developing
more effective encoding strategies or deploying scenario-conditioned network model design to har-
ness additional Hilbert space information while not compromising optimisation performance would
be a promising direction for further study. While a standard, widely accepted approach for efficient
amplitude encoding of arbitrary classical normalized data has yet to emerge, the field of its physical
realizations is advancing at a remarkable pace Ashhab (2022); Gonzalez-Conde et al. (2024); Dai-
mon & Matsushita (2024). The proposed innovative association between amplitude encoding and
energy could potentially inspire the preparation of such quantum states with Hamiltonian evolution
using devices such as quantum annealers. Furthermore, future research could explore alternative
data encoding strategies that could become more practical as the implementation of QNF-Net on
real quantum hardware becomes feasible. Even in the absence of suitable quantum hardware in the
near term, our QNF remains valid as a quantum-inspired method. While it does not yet account for
all aspects of hardware realization, it offers valuable insights and progresses the field. Lastly, beyond
the demonstrated applications in shape interpolation and completion, QNF also shows promise for
tasks such as image and shape classification.
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