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ABSTRACT

Depth ambiguity is a fundamental challenge in spatial scene understanding, espe-
cially in transparent scenes where single-depth estimates fail to capture full 3D
structure. Existing models, limited to deterministic predictions, overlook real-
world multi-layer depth. To address this, we introduce a paradigm shift from
single-prediction to multi-hypothesis spatial foundation models. We first present
MD-3k, a benchmark exposing depth biases in expert and foundational models
through multi-layer spatial relationship labels and new metrics. To resolve depth
ambiguity, we propose Laplacian Visual Prompting (LVP), a training-free spec-
tral prompting technique that extracts hidden depth from pre-trained models via
Laplacian-transformed RGB inputs. By integrating LVP-inferred depth with stan-
dard RGB-based estimates, our approach elicits multi-layer depth without model
retraining. Extensive experiments validate the effectiveness of LVP in zero-shot
multi-layer depth estimation, unlocking more robust and comprehensive geometry-
conditioned visual generation, 3D-grounded spatial reasoning, and temporally
consistent video-level depth inference. Our benchmark and code will be available
at https://github.com/Xiaohao-Xu/Ambiguity-in-Space.

1 INTRODUCTION

Spatial understanding, the ability to derive structured 3D representations from sensory data, is
fundamental to visual intelligence and autonomous systems. Despite progress in both physical
sensors and monocular depth estimation models (Ranftl et al., 2022; Birkl et al., 2023; Bhat et al.,
2023; Yin et al., 2023a; Guizilini et al., 2023; Li et al., 2024; Ke et al., 2024; Yang et al., 2024a;
Gui et al., 2024; Fu et al., 2024; Piccinelli et al., 2024; Yin et al., 2023b; Yang et al., 2024b) (see
Fig. 1a&b), a key challenge persists: biased 3D spatial understanding under depth ambiguity.

In real-world 3D scenes, factors such as transparency (see Fig.1c) break the assumption that each pixel
corresponds to a unique depth value. For example, objects viewed through transparent surfaces like
glass exhibit a range of plausible depths rather than a single fixed value. While state-of-the-art depth
foundation models (Yang et al., 2024b;a) generalize well in unambiguous scenarios, they typically
output only a single depth estimate, thereby ignoring inherent depth ambiguity. This limitation
results in biased, incomplete 3D representations that undermine both generalization and reliability,
especially in safety-critical applications requiring robust spatial reasoning.

To this end, we advocate a paradigm shift from single-prediction to Multi-Hypothesis Spatial Founda-
tion Models (MH-SFMs). We posit that true spatial intelligence demands explicitly modeling and
resolving ambiguity rather than forcing a biased single-depth output. To address this, we propose a
unified framework that enables multi-layer depth estimation from a monocular image via a single,
domain-agnostic foundation model (see Fig. 1d).

To enable rigorous study of multi-layer spatial relationships under depth ambiguity, we introduce
MD-3k, a benchmark featuring explicit labels for multilayer spatial relationships that goes beyond
traditional single-depth metrics. Our analysis reveals that existing models exhibit significant depth
biases under standard RGB input—some favoring nearer surfaces, others preferring farther ones (see
Fig. 2a)—highlighting the limitations of the conventional single-depth prediction paradigm.
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Figure 1: Motivation. 3D spatial understanding, powered by (a) sensors and (b) algorithms, has been
confined to a biased single-layer representation of depth. (c) Existing methods collapse when faced
with the true complexity of 3D, particularly in ambiguous scenes like those with transparency. (d) We
propose Laplacian Visual Prompting (LVP) to transcend this limitation, granting Spatial Foundation
Models the ability to derive multi-hypothesis depth, unlocking ambiguity-free spatial understanding.

Next, we introduce Laplacian Visual Prompting (LVP), a training-free spectral prompting technique
for 3D spatial decoupling. LVP draws inspiration from prompting techniques in NLP (Wei et al.,
2022) and visual prompting (Bar et al., 2022; Hojel et al., 2025; Bai et al., 2024). At its core, LVP
applies the discrete Laplacian operator, a fundamental second-order difference operator, to the RGB
image input. This operation generates high-frequency visual prompts that highlight regions of rapid
intensity change, effectively exposing latent spatial knowledge within pre-trained depth models.
Integrating depth maps from LVP and RGB inputs enables multi-hypothesis depth estimation without
retraining, revealing pre-trained models’ latent ability to disentangle multi-layered 3D structures.
We demonstrate LVP’s effectiveness on the MD-3k benchmark, showing that it uncovers hidden
depth (see Fig. 2b) and mitigates inherent depth biases. Further analysis using LVP explores the
scaling laws of spatial understanding under ambiguous and non-ambiguous scenes, and identifies key
challenges in resolving multi-layer spatial relationships.

Finally, we demonstrate the practical benefits of LVP’s multi-hypothesis depth estimation, enabling
flexible geometry-conditioned visual generation (Zhang et al., 2023), including realistic 3D re-
synthesis of transparent structures for ambiguous scenes, consistent multi-layer depth estimation in
real-world videos, and robust 3D spatial reasoning in multi-modal LLMs. These results highlight the
potential of LVP in advancing spatial intelligence.

Our main contributions are: 1) We rethink spatial ambiguity in real-world 3D scenes and reformulate
domain-agnostic, (i.e., foundational) depth estimation as multi-hypothesis inference. 2) We introduce
MD-3k, a new benchmark to evaluate multilayer spatial understanding and model biases. 3) analyze
existing models across diverse architecture, training schema, and model size on MD-3k and reveal
different depth biases under ambiguity. 4) We propose Laplacian Visual Prompting (LVP), a training-
free prompting method, to facilitate multi-hypothesis depth estimation from pre-trained models. 5)
We validate LVP’s effectiveness in revealing multi-layer depth and depth bias control.

2 RELATED WORK

Monocular depth estimation (MDE). MDE has evolved from early domain-specific depth estimation
(Eigen et al., 2014; Fu et al., 2018; Bhat et al., 2021), constrained by dataset-specific training (e.g.,
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Figure 2: Unlocking hidden depth with Laplacian Visual Prompting across diverse base-
lines (Yang et al., 2024a;b; Ke et al., 2024; Ranftl et al., 2021). Each case includes the RGB
input, estimated depth from RGB, Laplacian input, estimated hidden depth from Laplacian, and an
enhanced Laplacian. Notice that depth maps from RGB and LVP both capture plausible hypotheses:
one for the transparent surface (glass) and another for the opaque object behind it.

NYU (Silberman et al., 2012), KITTI (Geiger et al., 2013)), to more generalizable domain-agnostic
approaches, pushing forward the frontier towards generic depth foundation models. Recent methods
exploit Stable Diffusion (Rombach et al., 2022) for fine-grained depth prediction (Ke et al., 2024; Gui
et al., 2024; Fu et al., 2024). MiDaS (Ranftl et al., 2022; 2021; Birkl et al., 2023) and Metric3D (Yin
et al., 2023a) rely on labeled data, while Depth Anything V1 (Yang et al., 2024a) and V2 (Yang et al.,
2024b) enhance robustness through large-scale and pseudo-labeled training. Despite these advances,
existing monocular depth foundation models estimate only single-layer depth, struggling with
multi-layer spatial ambiguities. To address this, we redefine depth estimation in a domain-agnostic
setting as a multi-hypothesis problem, using Laplacian Visual Prompting to disentangle depth layers
in ambiguous visual contexts.

Visual prompting (VP). Inspired by prompt-based adaptation in NLP (Brown et al., 2020), VP
(Bahng et al., 2022; Bai et al., 2024) enables pre-trained vision models to be adapted via input-
space manipulation. VP has been successfully applied to vision-language models (Bahng et al.,
2022; Singha et al., 2023; Wasim et al., 2023), with further improvements through joint text-visual
optimization (Khattak et al., 2023; Wang et al., 2024). In addition, VP has been explored for black-
box model adaptation (Tsai et al., 2020), cross-domain transfer (Chen et al., 2021; Neekhara et al.,
2022), and adversarial robustness (Chen et al., 2023). While VP research has primarily focused on
semantic understanding tasks, its potential for 3D spatial decoupling and comprehension remains
largely unexplored. To address this gap, we introduce Laplacian Visual Prompting, which facilitates
training-free spatial 3D decoupling through multi-hypothesis depth estimation.

3 MULTI-HYPOTHESIS DEPTH ESTIMATION

Monocular depth estimation in complex 3D scenes is a multi-hypothesis inference problem, especially
in transparent scenarios with multiple plausible depths.1 To address this, we propose: 1) the MD-3k
benchmark, which includes multi-layer spatial relationship labels, 2) new metrics for quantifying

1We consider ambiguous scenes with two visible depth layers, leaving more depth layers for future work.
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single-layer depth estimation bias and multi-layer spatial relationship accuracy, and 3) a training-free
spectral prompting method, i.e., Laplacian Visual Prompting, to estimate multi-layer depth.

3.1 MD-3K BENCHMARK: QUANTIFYING MULTI-LAYER SPATIAL RELATIONSHIPS

The MD-3k benchmark quantifies spatial bias in depth estimation and evaluates multi-layer depth
in ambiguous scenarios, providing an empirical foundation for assessing layered 3D understanding.

RGB Image
Ambiguous Region

Segmentation Mask

1st Spatial Relation 2nd Spatial Relation

near far near far

Figure 3: MD-3k benchmark for evaluating
multi-layer spatial relationships. Example im-
ages feature annotated ambiguous region masks
and sparse point pairs with multi-layer spatial
labels. The first and second spatial relation
columns show ground truth near/far annotations.
The top three rows depict reverse relationships,
while the bottom row shows a same relationship
between layers.
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Figure 4: Statistics of ambiguous regions in
the MD-3k benchmark. Ratio of ambiguous
regions to the whole image (Left) and spatial
distribution of ambiguity regions (Right)

Benchmark construction. MD-3k consists
of 3,161 RGB images sourced from the GDD
dataset (Mei et al., 2020), selected for depth am-
biguity, such as transparency. Following pre-
vious spatial relationship benchmarks for non-
ambiguous scenes (e.g., DIW (Chen et al., 2016)
and DA-2k (Yang et al., 2024b)), we randomly
sample a sparse point pair within the ambiguous
region for each image. Expert annotators assigned
pairwise depth order labels to points both on and
behind transparent surfaces, generating two an-
notation layers. As shown in Fig. 3, each sam-
ple includes an RGB image, segmentation masks,
and two types of spatial relationship labels (near
and far) for point pairs representing multi-layer
depths. Annotation accuracy was rigorously val-
idated through multi-round expert review.

Benchmark statistics. The full MD-3k dataset,
referred to as overall, is divided into two subsets
with different multi-layer spatial relationships for
fine-grained analysis: 1) Same subset (1,783 point
pairs): Consistent multi-layer relative depth order-
ing for each point pair; 2) Reverse subset (1,378
point pairs): Reversed multi-layer relative depth
ordering for each point pair. These subsets facil-
itate the evaluation of depth estimation models
under varying conditions of multi-layer spatial
ambiguity and relative depth consistency.

Fig. 4 summarizes statistics of ambiguous regions
in the MD-3k benchmark. The left panel shows
a histogram of the ambiguous-to-total area ratio
per sample, capturing diverse ambiguity levels
from minimal to near-total scene ambiguity. The
right panel’s heatmap indicates a balanced spatial
distribution with a slight center bias, resembling a
Gaussian pattern that reflects natural scene compositions while minimizing regional biases.

3.2 METRICS: QUANTIFYING DEPTH BIAS AND MULTI-LAYER DEPTH ACCURACY

Spatial Relationship Accuracy (SRA(i)). SRA(i) measures the fraction of point pairs P with correct
relative depth ordering for each depth layer i ∈ {1, 2}:

SRA(i) =
1

|P|
∑

(P1,P2)∈P

I
(

sign(d̂(i)1 − d̂
(i)
2 ) = sign(d(i)1 − d

(i)
2 )
)
, (1)

where d̂(i)j and d
(i)
j represent the predicted and ground truth depths at point Pj for layer i, respectively.

Depth Layer Preference (α(fθ)). It quantifies the bias of a depth model fθ towards one of the layers
for layered scenes in its predictions. It is computed as the difference in SRA across layers:

α(fθ) = SRA(2)− SRA(1). (2)
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A positive value (α(fθ) > 0) indicates a preference for the second layer, while a negative value
(α(fθ) < 0) indicates a preference for the first layer. A higher absolute value signifies a stronger bias.

Multi-Layer Spatial Relationship Accuracy (ML-SRA). ML-SRA measures the proportion of
point pairs where the predicted relative depth ordering is correct in both layers simultaneously:

ML-SRA =
1

|P|
∑

(P1,P2)∈P

I

(
2∧

k=1

sign(d̂(k)1 − d̂
(k)
2 ) = sign(d(k)1 − d

(k)
2 )

)
. (3)

3.3 LAPLACIAN VISUAL PROMPTING FOR MULTI-LAYER DEPTH DECOUPLING
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Figure 5: Multi-layer depth with Laplacian
Visual Prompting (LVP). (a) Paired RGB-depth
training of a domain-specific or domain-agnostic
depth estimation model. (b) Standard inference
via RGB input: single-layer depth on transparent
glass. (c) Model inference via LVP: hidden depth
revealing occluded objects, such as tables and
chairs, behind the glass.

As shown in Fig. 5, we propose Laplacian Visual
Prompting (LVP), a visual prompting technique de-
signed to decouple multi-layer depth estimation by
leveraging spectral components to resolve depth
ambiguities in 3D scenes. LVP does not require
retraining the depth model; instead, it employs a
pre-trained monocular depth estimator to generate
multiple depth hypotheses from a single RGB im-
age. We posit that the latent depth distributions
revealed by LVP can enhance depth estimation ac-
curacy in scenarios with inherent depth ambiguity.

Probabilistic modeling of multi-hypotheses
depth. To address depth ambiguity in monoc-
ular images, we propose a probabilistic model
that predicts an ordered set of depth hypotheses,
{D1,D2}, conditioned on the input image I. To
capture the relative depth ordering, we introduce
a binary latent variable O ∈ {0, 1}, where O = 1
indicates that D1 ≺ D2 (i.e., D1 is closer than
D2) and O = 0 denotes that D2 ≺ D1 (i.e., D2 is
closer than D1).

Rather than marginalizing over all possible order-
ings, we directly predict the ordered pair (D1,D2)
based on the sampled ordering O:

p(D1,D2 | I) = p(D1,D2 | O, I) p(O | I). (4)

Assuming that D1 and D2 are independently estimated from I and that the single-layer depth
prediction model is agnostic to the ordering O, we derive:

p(D1,D2 | O, I) ∝ p(D1 | I) p(D2 | I). (5)

Substituting into Eq. equation 4 yields:

p(D1,D2 | I) ∝ p(D1 | I) p(D2 | I) p(O | I), (6)

where p(D1 | I) and p(D2 | I) represent the marginal likelihoods of the depth estimates for the two
layers, and p(O | I) encodes the probability of the relative depth ordering. The relative ordering can
be determined from the sign of layer preference α(fθ), as defined in Eq. equation 2.

Laplacian transformation for depth disambiguation. Monocular depth estimation often struggles
with discontinuities and transparent surfaces, which leads to depth ambiguity. To mitigate this bias,
we introduce Laplacian Visual Prompting, a spectral prompting strategy that uses the Laplacian
operator to enhance the input image by emphasizing high-frequency details like object boundaries
and edges. The Laplacian, a second-order derivative, effectively acts as a high-pass filter in the spatial
domain. The 2D spatial Laplacian operator is defined as:

∆ =
∂2

∂x2
+

∂2

∂y2
. (7)

For an RGB image I ∈ RH×W×3, the Laplacian transformation is applied channel-wise:

L(I) = (∆IR; ∆IG; ∆IB) , (8)
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where ∆IR, ∆IG, and ∆IB are the Laplacian-transformed red, green, and blue channels.

In discrete form, the Laplacian operator is approximated via a second-order finite difference scheme
using a 3× 3 convolution kernel:

ML =

[
0 1 0
1 −4 1
0 1 0

]
. (9)
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Figure 6: Depth Layer Preference α(fθ) [%]
under RGB and LVP Inputs on MD-3k (Re-
verse). This figure highlights that the heteroge-
neous biases of standard RGB and LVP inputs
significantly influence model preference, shifting
it between the first and second annotated depth
layers for certain models. This demonstrates how
input modality can alter depth layer bias.

Multi-hypothesis depth estimation. We apply a
pre-trained monocular depth model fθ to the origi-
nal monocular RGB image input and its Laplacian-
transformed version separately, which generates
complementary depth hypotheses:

D1 = fθ(I), D2 = fθ(L(I)). (10)

These two independent depth predictions, D1 and
D2, are combined with the latent ordering prob-
ability p(O | I) as described in Eq. equation 4.
This formulation addresses ambiguity by explic-
itly representing multiple depth hypotheses.

4 EXPERIMENTS

To address the challenges of biased spatial un-
derstanding and unlock the potential of multi-
hypothesis depth estimation, we raise the fol-
lowing fundamental questions: 1) Depth bias
(Sec.4.1): In ambiguous scenes, what depth layer
biases do existing models exhibit? 2) LVP en-
hancement (Sec.4.2): Can LVP effectively en-
hance multi-layer spatial understanding? 3) Scal-
ing laws (Sec.4.3): How does model scale in-
fluence LVP-enhanced spatial understanding? 4)
Practical benefits (Sec.4.4): What are the prac-
tical advantages of LVP-driven multi-hypothesis
depth? 5) LVP design (Sec.4.5): How do LVP’s design choices impact performance under ambiguity?

Baseline models. We assess bias and evaluate the effectiveness of our proposed multi-hypothesis
depth estimation method via LVP across diverse baseline models, including Depth Anything V1/V2
(DAv1/2-S,B,L with ViT backbones (Yang et al., 2024a;b)). These models include general (DAv1/2),
indoor (DAv2-I), and outdoor (DAv2-O) fine-tuned variants. Additional models include the discrimi-
native models DPT (Ranftl et al., 2021) and ZoeDepth (Bhat et al., 2023), as well as the generative
models Marigold (Ke et al., 2024) and GeoWizard (Fu et al., 2024).

4.1 PROBING SINGLE-LAYER DEPTH PREDICTION BIAS

We first analyze depth layer preference bias, which is defined in Eq. (2), for baseline models, revealing
inherent biases in predicting closer or farther surfaces in ambiguous regions using standard RGB
input. We then explore whether LVP can alter these biases by introducing complementary depth
hypotheses to enrich RGB predictions.

Heterogeneous depth layer bias under standard RGB input. In Fig. 6, we observe significant
heterogeneity in depth layer prediction preferences across models. Some models (e.g., DAv2, DAV2-I)
exhibit a bias towards the first depth layer, i.e., α(fθ) < 0, while others favor the second depth
layer. In addition, models with the same architecture fine-tuned on different datasets (indoor/outdoor)
can exhibit opposing depth biases, e.g., DAv2-I and DAv2-O. This highlights how training data can
hardwire assumptions about scene structure.

LVP modulates depth prediction preference. Comparing RGB and LVP results in Fig. 6 reveals that
LVP effectively reverses or attenuates depth preferences across all baseline models. The pronounced
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impact of LVP on depth preference modification, particularly in models like DAv2, suggests its ability
to unlock latent representations. This reveals previously suppressed depth layers and fundamentally
reshapes the model’s depth interpretation.

Mari
go

ld

Geo
Wiza

rd

Zoe
Dep

th
DPT

DAv1
-S

DAv1
-B

DAv1
-L

DAv2
-O

-S

DAv2
-O

-B

DAv2
-O

-L

DAv2
-I-

S

DAv2
-I-

B

DAv2
-I-

L

DAv2
-S

DAv2
-B

DAv2
-L

60

70

80

90

100

SR
A

 [%
]

MD-3k (Same) RGB
MD-3k (Same) LVP

DA-2k RGB
DA-2k LVP
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(SRA) [%] under RGB and LVP inputs on the
same subset of MD-3k and DA-2k (Yang et al.,
2024b) (non-ambiguous dataset for reference).

True depth ambiguity exposes depth biases and
remains challenging to tackle. True depth am-
biguity, exemplified by scenes with reverse multi-
layer spatial relationships (see Fig. 6), critically
reveals depth layer biases. In these ambiguous
scenarios, performance becomes inconsistent (i.e.,
large |α(fθ)|) across RGB and LVP inputs, high-
lighting the difficulty in resolving conflicting spa-
tial cues. Conversely, in non-ambiguous scenes
with same multi-layer relationships (see Fig. 7),
models achieve consistently high performance, ex-
ceeding 85% SRA under RGB input. This robust-
ness is further supported by the small performance
gap between RGB and LVP inputs on the non-
ambiguous DA-2k benchmark, and the compara-
ble RGB performance observed between MD-3k (same) and DA-2k. Thus, ambiguous scenes with
reverse multi-layer relationships serve as a crucial diagnostic tool, effectively exposing the inherent
depth biases and limitations of current depth baseline models.

4.2 MULTI-LAYER SPATIAL RELATIONSHIP ACCURACY

Fig. 8 shows the Multi-Layer Spatial Relationship Accuracy (ML-SRA) achieved by our multi-
hypothesis depth estimation method, which combines depth estimates from both RGB images
and LVP inputs. This evaluation demonstrates the effectiveness of Laplacian Visual Prompting in
generating complementary depth hypotheses beyond RGB-based inference, enabling ambiguity-free
spatial understanding across diverse baselines.
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Figure 8: Multi-Layer Spatial Relation-
ship Accuracy (ML-SRA) [%] of our LVP-
empowered multi-layer depth on MD-3k. Ef-
fective performance gains of LVP-derived multi-
depth over random guess (25%) are highlighted
in green boxes.

Latent multi-layer knowledge suggests poten-
tial for MH-SFMs, unlocked by LVP. Despite
being trained on single-layer depth data, some
models implicitly capture multi-layer spatial rela-
tions. For example, DAv2, ZoeDepth, and DPT,
when prompted with LVP, achieve non-trivial ML-
SRA scores in challenging reverse spatial rela-
tionships (see Fig. 8b). This demonstrates that
LVP effectively elicits this latent knowledge, sug-
gesting that these models have the potential to be
adapted into MH-SFMs, capable of representing
and reasoning about multiple depth hypotheses.
The fact that LVP is able to unlock this hidden po-
tential highlights its significance as a key enabler
for multi-hypothesis depth estimation.

Challenges in reverse relationships highlight
the need for explicit ambiguity modeling, even
with LVP. Accurately resolving depth ambiguity
in reverse multi-layer spatial relationships remains
challenging, even when using LVP to generate
multi-layer depth estimates. The performance gap
between same and reverse relationships highlights
the difficulty of handling conflicting spatial cues
and the limitations of relying solely on implicit
priors, even when augmented by LVP. The reduced ML-SRA of domain-finetuned DAv2 models
further suggests that optimizing for single-domain performance can hinder generalization to multi-
layer scenes, reinforcing the need for models that can explicitly model and resolve ambiguity, rather
than relying on domain-specific heuristics, even when combined with LVP-based prompting.
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4.3 SCALING LAWS OF SPATIAL UNDERSTANDING

Developing generalist foundation models requires understanding performance scaling (Fan et al.,
2024; Bai et al., 2024). We investigate how model scale impacts depth layer bias, multi-layer depth
estimation in ambiguous scenes, and single-layer depth estimation in non-ambiguous scenes using
Laplacian Visual Prompting (LVP), providing insights for building more reliable and trustworthy
large-scale spatial foundation models.

Case 1: Converged Bias 

under RGB and LVP

Case 2: Diverged Bias 

under RGB and LVP
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Figure 9: Scaling laws of spatial understand-
ing: performance trends in ambiguous vs.
non-ambiguous scenes. (a) In ambiguous
scenes, converged depth bias (Case 1) leads
to weaker performance with scale, while di-
verged bias (Case 2) yields stronger performance.
(b) In non-ambiguous scenes, performance con-
sistently improves with model scale, showing
stronger generalization to the LVP input.

To provide a high-level overview of these scal-
ing behaviors, Fig. 9 summarizes the key per-
formance trends observed in both ambiguous
and non-ambiguous scenes as model scale in-
creases. As depicted, the impact of model scal-
ing on spatial understanding is nuanced and
context-dependent, echoing a concurrent work
on multi-modal alignment (Tjandrasuwita et al.,
2025). Specifically, in ambiguous scenes, we ob-
serve divergent performance scaling depending
on whether the model exhibits converged or di-
verged depth bias under RGB and LVP inputs.
This divergence suggests that in scenarios with
high spatial ambiguity (akin to high uniqueness
in multi-modal data (Tjandrasuwita et al., 2025)),
simply increasing model scale does not uniformly
translate to improved performance. Instead, the
nature of representation learning, specifically the
depth bias, becomes a critical factor. Conversely, in non-ambiguous scenes, a more consistent pattern
of generalization improvement with scale emerges, aligning with the expected benefits of larger
model capacity in less challenging scenarios where redundancy is higher and ambiguity is lower.
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Figure 10: Performance in ambiguous scenes
(MD-3k reverse subset) as model scale in-
creases. Left: Depth Layer Preference α(fθ)
[%]. Right: Multi-Layer Spatial Relationship
Accuracy (ML-SRA) [%]. Bars within each
group represent small, base, and large model
variants (left to right).
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Figure 11: Generalization to LVP input in
non-ambiguous scenes as model scale in-
creases, measured by the SRA [%] gap between
RGB and LVP inputs on the same subset of
MD-3k (Left) and the non-ambiguous bench-
mark DA-2k (Right).

Model scale amplifies depth layer preference
bias under RGB input. As shown in the left
panel of Fig. 10, larger models tend to exhibit a
stronger preference for certain depth layers un-
der RGB input in ambiguous scenes with reverse
multi-layer spatial relationships. DAv1 and DAv2-
O models demonstrate a growing preference for
the second depth layer while DAv2 and DAv2-I
models demonstrating an increasing preference
for the first layer.

Divergent depth bias elicit stronger multi-layer
depth prediction with scale. As shown in the
right panel of Fig. 10, larger models can exhibit
a stronger divergence in depth layer preference
based on input modality (RGB vs. LVP) in am-
biguous scenes. Some models (DAv1, DAv2-O)
converge towards a consistent second-layer pref-
erence, reducing multi-layer accuracy. Others
(DAv2, DAv2-I) show a divergence, improving
ML-SRA with larger model, suggesting more di-
verse latent representations that encode multiple
depth hypotheses.

Enhanced generalization with increasing model
scale in non-ambiguous scenes. Fig. 11 shows
the performance gap between RGB and LVP in-
puts narrows as model scales. This improved gen-
eralization is observed in both multi-layer scenes
with same spatial relationships of MD-3k and non-ambiguous scenes of DA-2k.
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Figure 12: Flexible 3D-conditioned visual
generation with multi-layer depth.
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Figure 14: Consistent multi-layer depth estima-
tion on monocular RGB video sequence.

4.4 APPLICATIONS OF MULTI-LAYER DEPTH

The multi-hypothesis depth predictions enabled by LVP enhance 3D-conditional image generation
for ambiguous scenes. This capability supports the creation of complex environments, such as
those featuring both transparent and opaque objects (e.g., glass doors and windows), using geometry-
conditioned ControlNet (Zhang et al., 2023) (see Fig.12). In addition, LVP boosts 3D spatial reasoning
through a Multi-modal Large Language Model (LLM), exemplified by precise 3D-grounded human
counting with the ChatGPT o3-mini model (see Fig.13). Furthermore, the multi-layer depth estimation
via LVP also demonstrates robust consistency when applied to real-world videos (see Fig.14).

4.5 ABLATION STUDY OF LVP DESIGN
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Figure 15: Ablation study of LVP design. Over-
all ML-SRA [%] change relative to the default
LVP on MD-3k is shown.

Fig. 15 shows that ML-SRA performance is
largely unaffected by Laplacian discretization (4-
neighbor vs. 8-neighbor in LVP and LVP-2) and
kernel sign (LVP-R with reversed convolution
vs. LVP), with variations generally within ±3%.
While grayscale LVP (LVP-G) slightly reduces
SRA compared to RGB LVP, the difference is
minimal. These results highlight the crucial role
of high-frequency information in 3D decoupling.

5 CONCLUSION

We redefine domain-agnostic monocular spatial foundation models as inherently ambiguous, multi-
hypothesis problems. To advance this, we introduce Laplacian Visual Prompting (LVP), a training-free
technique for multi-layer depth estimation, and MD-3k, the first benchmark for evaluating multi-layer
depth under ambiguity. Our analysis highlights significant biases in existing models, revealing the
limitations of single-depth estimation. Experiments show that LVP modulates depth biases, enables
comprehensive multi-layer estimation, and enhances downstream task robustness and flexibility.

Limitations & Future Work. Future work should broaden spatial understanding by exploring
diverse multi-modal visual prompts, including learned spectral transformations. While MD-3k uses
noisy real-world images, robustness to various noise types and artifacts needs evaluation. Developing
benchmarks with real-world multi-layer depth annotations, potentially via sensor fusion, would
improve performance assessment, though challenging. Finally, addressing diverse spatial ambiguities
like reflection is crucial for reliable spatial foundation models.
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