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Abstract

Generalized Category Discovery (GCD) is a challenging problem, which aims at discovering
novel categories in unlabelled data by transferring the knowledge from the labelled data.
Existing methods often assume a uniform distribution of categories, which is not represen-
tative of real-world data that typically exhibits a long-tailed distribution. In this paper,
we address the problem of GCD under a long-tailed distribution. Our approach introduces
a novel framework that tackles the challenges of biased classifier learning and imprecise
class number estimation. We propose adaptive sample selection based on confidence and
density, balancing the model’s training distribution and mitigating bias. Additionally, we
present a density-peak-based method for accurate class number estimation in long-tailed
settings. Experimental results demonstrate the effectiveness of our approach in discovering
novel categories and outperforming state-of-the-art methods.

1 Introduction

Over the past years, computer vision has shown significant advancements in tasks such as image recogni-
tion ( , ). Despite these progressions, artificial systems still face challenges in recognizing and
categorizing visual information accurately in dynamic and complex environments. The visual information
present in the real world is far more diverse and intricate than the benchmark datasets. To tackle this issue,
researchers have directed their attention towards learning techniques that require minimal human interven-
tion, such as the semi-supervised learning approach ( , ). However, one limitation of most
semi-supervised methods is the common assumption that the unlabelled dataset contains a set of categories
with a small labelled dataset. This assumption is unrealistic as it is not possible to label all categories in the
real world at once, not to mention the categories in the unlabelled dataset may grow over time. Therefore,
Category Discovery (CD) emerges as a research problem, which gains increasing attention. Initially, the
problem is studied as Novel Category Discovery (NCD) ( , ), aiming to discover novel cate-
gories in the unlabelled data, assuming disjoint class spaces between labelled and unlabelled data. Later, the
assumption is relaxed such that the unlabelled data also contains instances from the seen (labelled) classes,
resulting in a more generalized setting called Generalized Category Discovery (GCD).

Although significant progress has been made in the field of GCD, existing methods (e.g., (

, )) often assume a uniform distribution of categories, which does
not, accurately reﬂect the long-tailed distribution commonly observed in real-world data. This distribution
is characterized by a few categories containing a significant number of examples (head classes), while the
majority of categories have only a few instances (tail classes). In this paper, we consider the GCD under
the more realistic long-tailed distribution (see Fig. 1). The primary challenge in this context lies in the
potential bias towards the head classes during category discovery, making it difficult to identify and accurately
recognize the tail classes.

To tackle this problem, we propose a novel framework that makes two key contributions. First, we introduce
a method for adaptively selecting confident samples from the unlabelled dataset based on prediction confi-
dence and density. These selected samples are used to form training mini-batches, effectively balancing the
distribution of the model’s training and reducing bias. We also aim to align the prediction distribution of
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Figure 1: Generalized Category Discovery (GCD) under a long-tailed distribution: Given labelled images
from seen categories and unlabelled images from both seen and unseen categories, the objective is to auto-
matically assign labels to the unlabelled images, where the distribution in the labelled and unlabelled data
is long-tailed.

the model with a prior distribution of confident samples, further mitigating bias. This approach ensures that
the model learns an unbiased representation, enabling accurate recognition of both head and tail classes.

Second, we address the challenge of accurately estimating the number of classes in the long-tailed setting.
Existing methods relying on the k-means algorithm have shown to be inaccurate for this purpose. Therefore,
we propose a unique density-peak-based class number estimation method that is insensitive to imbalances
in the data distribution. By leveraging feature density peaks in the unlabelled data, our method provides
a more precise estimation of the number of classes, enhancing the overall performance of the generalized
category discovery task.

Experimental results on both long-tailed and conventional GCD datasets demonstrate the effectiveness of our
proposed method. Compared to state-of-the-art approaches, our framework achieves superior performance in
discovering novel categories accurately and handling the challenges posed by long-tailed distributions. Our
contributions extend the scope of generalized category discovery research and offer promising possibilities
for real-world applications in computer vision tasks.

2 Related Works

Our work is related to the fields of category discovery, semi-supervised learning, and long-tailed distribution
recognition, we briefly review the related works below.

Category Discovery (CD) was initially introduced as the problem of Novel Category Discovery (NCD) Han
et al. (2019), which aims to discover novel categories in the unlabelled assuming disjoint class spaces be-
tween labelled and unlabelled data. Building upon NCD, the problem was further developed into a broader
framework known as Generalized Category Discovery (GCD) Vaze et al. (2022a). Unlike NCD, GCD relaxes
the assumption and permits the unlabelled dataset to include instances from the seen (labelled) classes. For
NCD, several approaches have been proposed, such as RankStat RankStat (ITan et al.,; 2021) shows that the
NCD task benefits from self-supervised pretrained objectives and proposed a pair-wise objective to trans-
fer the knowledge from the labelled set to the unlabelled dataset. DualRank (Zhao & Han, 2021) extends
on this method to use local fine-grained image features and achieves a better performance on fine-grained
datasets. Contrastive Learning (Zhong et al., 2021a; Jia et al.; 2021) and data augmentations (Zhong et al.,
2021b) have also been explored by previous works. UNO (Fini et al., 2021) proposes a unified objective to
optimize for the NCD task and obtained state-of-the-art performance. Regarding GCD, (Vaze et al., 2022a)
is the first work that formally introduces the GCD task, combining contrastive learning and semi-supervised
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k-means, ( , ) can learn an effective representation on the unlabelled dataset as well as
estimating an accurate class number for the whole unlabelled dataset. Concurrent work ORCA ( ,

) also tackles a similar setting as GCD, termed open-world semi-supervised learning. XCon ( ,

) improves upon ( , ) by introducing the technique of splitting the training dataset into
k-subgroups. ( , ) proposed a simple baseline for the GCD task and can achieve an impressive
result over prior works using a parametric classifier. CiPR ( , ) proposes a hierarchical GCD
method by effectively exploiting pseudo positive samples from unlabelled images. GPC ( , )
introduces a GCD framework based on the Gaussian Mixture Model by jointly considering the representation
learning and category estimation. Despite the progress, most prior works assume the distribution of cate-
gories in the labelled and unlabelled dataset is uniform, which is not representative of real-world data that
typically exhibits a long-tailed distribution. NCDLR ( , ) considers the problem of NCD
under the long-tailed distribution and introduces an adaptive self-labeling method to tackle the challenge.
However, NCDLR ( , ) limits the study on the NCD setting where the unlabelled dataset
is assumed to contain no overlapping classes with the labelled dataset. Recent works ( , ;)
have extended the study of long-tailed distribution to the GCD setting and have proposed methods based
on optimal transport ( , ) and reweighting ( , ) to improve the category discovery
performance. In this work, we also aim to tackle this realistic long-tailed setting for GCD. As will be shown
in the experiments, our proposed method achieves notable improvements over existing methods.

Semi-Supervised Learning (SSL) is a long-standing problem that has many effective methods proposed (

: ; : ; : ; ; ; ; ).
The main assumption of SSL is that the unlabelled dataset shares the same set of categories with the la-
belled dataset, and the goal is to learn a classification model that is able to leverage the unlabelled dataset
to improve its classification performance. Self-supervised representations that can help learn a strong rep-
resentation, are also shown to be effective for SSL ( , ; , ). Consistency
methods are among the most effective methods for SSL, such as Mean- Tcachcr ( , ),
MixMatch ( , ), and FixMatch ( , ). Recent works shift the attention to a
more realistic scenario where the assumption is that the unlabelled dataset can contain categories that are
not in the labelled datasets ( , ; ; , ), this setting is termed
as open-set SSL. The main difference between open-set SSL and the GCD setting tackled in this paper is
that open-set SSL simply rejects unlabelled images from unseen categories, while GCD categorizes all the
unlabelled images.

Long-tailed Recognition is a long-standing problem which aims at tackling the naturally occurring long-tailed
distribution in real-world datasets, where a few classes contain numerous examples (head classes) but other
classes only have a few instances (tail classes). The major technical challenge in this setting is that the
trained model is easily biased towards head classes and performs poorly on the tail classes. Existing works
in long-tailed distribution often assume a fully-supervised setting, several techniques have been proposed,

such as re-sampling ( , ; , ; , ; , ), re-
weighting ( , ; , ; , ), logits adjustment ( , :

, ; , ) and ensembling ( , ; , ). Few works focus on the
long-tailed semi-supervised learning scenario, and it has been shown that similar techniques like re-sampling
or re-weighting ( , ; ; ; ; , ) still

work under the semi-supervised setting. However these long talled SSL works still follow the assumption
in common SSL scenarios where the unlabelled dataset contains the same set of categories as the labelled
set, i.e., no novel categories in the unlabelled dataset. In this work, we consider the case where not only the
distribution of the dataset is long-tailed, but also there may exists novel categories in the unlabelled dataset.
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3 Method

3.1 Preliminaries
3.1.1 Problem Setting

Generalized Category Discovery (GCD) aims to learn a model for categorizing unlabelled samples in dataset
v = {(z¥, y*)} € X x V,, using the knowledge obtained from labelled dataset D' = {(z,y!)} € X x V.
D consists of unlabelled examples in label space Y, while D! contains labelled examples in label space Y,
where ), C )V,. The number of categories in ), is denoted by K,, which is typically assumed to be known
a priori or can be estimated using previous methods ( ; , ). Unlike Semi-
Supervised Learning (SSL) and Novel Category Discovery (NCD) bettmgs where Y, =Y, and Yy NY, =0,
respectively, GCD is a more realistic and practical problem. In our paper, we consider the realistic setting in
which the unlabelled data exhibits a long-tailed distribution. Formally, we denote the number of examples
in class k as Ny, thus Zf:l‘l N = N where N is the number of all examples. Without the loss of generality,
the classes are sorted by Ny in descending order (N7 > Na > --- > Nj), and we can therefore represent the
imbalance ratio as A = %—;
Current approaches for addressing the generalized category discovery problem typically involve two main
components: representation learning and label assignment. The label assignment methods can be further
subdivided into two distinct categories - parametric classifiers and non-parametric clustering methods.

In the following sections, we will begin by presenting a parametric classification baseline (Sec. 3.1.2). Sub-
sequently, we will introduce our proposed method for handling long-tailed distributions, which encompasses
a sample selection process optimized for achieving balance during classifier training (Sec. 3.2). Furthermore,
we will delve into a density-based class number estimation module capable of accurately estimating the class
number under long-tailed distributions (Sec. 3.3).

3.1.2 Baseline

We first present the strong GCD baseline proposed in ( , ) which contains two parts, repre-
sentation learning and classifier learning.

Representation learning aims to learn a general representation of all classes that can be further utilized
by the classifier to classify images from both labelled and unlabelled classes. The representation learning

utilizes supervised contrastive learning ( , ) for labelled data and self-supervised contrastive
learning ( , ) for all the data. The overall representation learning loss :
Erep )\rep£SupCon + (]- - )\rep)ESelfCon, (1)

where Lgypcon and Lseircon denote supervised contrastive loss and self-supervised contrastive loss respec-
tively. Arep is a balancing factor.

Classifier learning aims to learn a classifier for all the classes in the dataset based on the learned repre-
sentations. We can define a set of prototypes C = {¢y,...,cx} where K,, is the total number of classes in
the dataset. During training, we first calculate the predicted logits of one augmented view &; of the input
x; belonging to each class k using the hidden features h; = f(@&;) with normlization:

1) (&) = (hi/lIRill2)T (ex/llexll2)/r, . (2)

We then use the softmax function to convert these logits to a probability:

(k)
5 _ (k) gy = SPIT 3
b; P (Z4) Zk/ expl(F)” (3)
We use the other view &; of the same input x; to calculate the soft pseudo-label p; with a sharpen temperature
1 1B (&) = (Ri/llRill2)" (er/llerll2)/7,. Next, we follow ( , ) to train the classifier with the
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Figure 2: Density selection process. Left: we compute the similarity between the nearest neighbors of each
data sample, denoted as the edges in the figure. Right: leveraging the density definition in Eq. (7), we select
a few density peaks from the raw data.

weighted sum of the following two losses:

ds = |B|Zﬁ Pi,pi) — eH(p), Lo = |Bl\ > Ui i), (4)

i€B 1EB!
where {(q,p) = =), g™ log p'®) is the cross-entropy loss, y; is the label of x;, and H(p) is an entropy
regularization as adopted ( ) Particularly, H(p) = — >, p(k) log p(k)7 where P is the mean

prediction of the batch, computed by p = 318 BI ZZG 5 (Di +pi). The classification loss is then written as
Las = (1 — Aas) LY + AaasLss- The overall loss for representation learning and classifier learning losses is
then written as: Lyase = Lrep + Lels-

3.2 GCD Classifier for Long-tailed Distribution

One major challenge that arises from the long-tailed data distribution is that the classifier may be biased
towards the head classes, which have much more data than the tail classes. This could result in unreliable
pseudo-labels for training and, thus, hurt the learned representation and generalization. To address the
challenge of training a model with a long-tailed data distribution, we propose leveraging a sample selection
method to curate a balanced subset containing reliable samples from the unlabelled dataset. During training,
we will exclusively use this subset of examples to construct training mini-batches and enforce the model’s
prediction distribution to closely match the distribution of the selected subset. The underlying intuition
behind this approach is based on selecting a subset of high-quality data that exhibits a relatively balanced
distribution. By doing so, we aim to assist the model in mitigating the bias originating from the original
long-tailed distribution.

We introduce two complementary methods for selecting reliable samples in the unlabelled dataset, one is
based on the prediction confidence of the input example x; (relying on only the individual sample), and the
other one is based on using the density of each data samples ( , ) (relying on the neighbors
of a sample). Formally, for the confidence-based selection, we use the prototype classifier p(-) introduced
in Sec. 3.1.2 with the sharpened temperature 7; to obtain the prediction of the model for each sample in
the unlabelled dataset p; = p(x;), x; € D*. With this prediction, we sample a subset of the unlabelled data
example S¢onr using:

Sconf - {$1|P(wz) > €conf, Ti € Du}v (5)
where €cont denotes the threshold for the confidence selection. For the density-based sample selection, we
adopted the density definition from ( , ) which defines the density d; of a sample x; as:

Z €ij - Qij, (6)
J E./\f’c

where NV}, is the set of k nearest neighbor of the sample z;. To calculate the connectivity e;; between sample
x; and its j-th neighbor, we use the formula e;; = 2p; - p; — 1. Additionally, we determine the affinity a;;
between x; and x; as a;; =< h;,h; >. Note that the choice of the density definition is not unique, and
alternative density estimation methods can also be applied in this context. Intuitively, the density d; reflects
the compactness of the embedding space around a sample x;, where a higher density implies that x; is closer
to the center of its corresponding class. Importantly, this density measurement is independent of the quality
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Figure 3: The overall framework of classifier training. From the original long-tailed dataset, we leverage two
complementary methods to select a reliable subset of the data to form training mini-batches. The model is
trained with the subsampled data, as well as being regularized by a matching loss to produce a prediction
distribution similar to the selected dataset to reduce biases caused by the long-tailed distribution.

Density based selection

of the learned classifier since the comparison is solely conducted within the embedding space. Consequently,
we can consider this property as being irrelevant to the classifier’s performance, as the selection process only
considers the embedding space and is not heavily influenced by the long-tailed distribution. With the density
estimation for each sample, we propose to select a set of density peaks Sgens from the unlabelled dataset by:

Saens = WMDS({z:|Vj € N d; > d;, z; € D"}). (7)

Here, we first identify a set of density peaks which consist of samples with higher density than their k nearest
neighbors. We then use the NMDS function for Non-Maximum Density Suppression, defined in Algorithm 1,
to suppress redundant high-density samplgs in kthe head class. In this algorithm, the intersection-over-union
function is defined as IoUK(x;, ;) = ”x}%ﬁf/:’is”’
neighbors to compare in the function. Ultimately, this process allows us to obtain Sgens, a subset of the
unlabelled dataset consisting of density peaks. We provide a visualization in Fig. 2 to explain the density
selection process.

where k; is a hyper-parameter that sets the number of

Together with the confidence selection, the final selected data samples form & = S¢onr U Sqens- The prior
distribution pyrior is formed using the pseudo-label distribution within this selected subset, as reliable samples
can provide a more balanced distribution for the model to learn, specifically:

Poprior = U(Z g(%)), (8)

z€eS

where o is the softmax function, and ¢ is a function that generate a one-hot pseudo label of the input a
using the prediction p. An additional loss is then added to the model:

Lmatch = E(ppriorv ﬁ)7 (9)

Here, ¢ is the cross-entropy function and p represents the target distribution. This regularizer will drive the
model to match its predicted distribution with the selected reliable sample distribution, thus improving the
classifier and the underlying representations. The overall loss of the model is £ = Lpase + Lmatch-

Additionally, we apply this sample selection method to the whole unlabelled dataset D%, selecting a subset
D* = § at the end of each epoch based on the same criteria used for the labelled dataset. At the start of the
next epoch, we draw unlabelled training mini-batches B only from the subset D¥. We illustrate the overall
framework of our proposed method for training the classifier in Fig. 3.

3.3 Class Number Estimation

Another major challenge with the long-tailed distribution in generalized category discovery is that it can
be hard to estimate the number of classes in the unlabelled set using the conventional semi-supervised k-
means (Vaze et al., 2022a) algorithm, as the k-means algorithm assumes that each of the clusters in the data
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Algorithm 1 Non-Maximum Density Sup-

pression Table 1: Statistics of the datasets.
procedure NMDS(S)
Swps — 0 Labelled Unlabelled
for (‘Bia di) € S do Dataset #Image #Class #Image #Class
discard « False CUB 15K 100 45K 200
for (z;,d;) € S do Stanford Cars 20K 98 6.1K 196
if ToUK(x;, z;) > Awmps then ImageNet-100 31.9K 50 95.3K 100
if d; > d; then CIFAR-100-LT AK 80 11K 100 10.0
discard < True ImageNet-100-LT 6K 50 22K 100 10.0
if not discard then Herbarium 19 9K 341 25K 683  46.1
Swps — Swmps U (x4, d;) iNatualist-18 130K 4,071 307K 8,142  500.0
return Sywpg
is isotropic with roughly equal number of samples per cluster ( , ; , ). This

assumption, however, does not hold in the long-tailed distribution we want to tackle, thus we cannot directly
adopt the semi-supervised k-means algorithm for estimating the number of classes in the long-tailed GCD
setting. Here we propose a novel algorithm for determining the number of categories in the unlabelled set

using the concept of the k-NN density of data samples ( , ). The main idea is akin to density-
based selection, where samples with higher density and density peaks are more likely to be in proximity to
the cluster center of a cluster ( ; , ). By quantifying the number of density

peak samples in the unlabelled data, we can estimate the potential number of classes present in the dataset.

Formally, given a dataset of samples D* = {(z¥,y¥)}, our goal is to determine the number of classes K,
in D" as well as an assignment ¥, of each data samples x}'. Rather than employing iterative calculations
of class prototypes and updating class assignments, our approach leverages the idea of a ’density peak’ in
the dataset ( ; , ) to develop an algorithm for estimating the value of K. A
‘density peak’ x; is deﬁned as the density d; is higher than all the k neighbours of @;, Vj € Ng,,d; > d;. After
getting all the density peaks in the dataset D%, we run an NMDS step using the algorithm defined in Algorlthm 1
to remove duplicated density peaks that may belong to the same categories. he class assignment process
involves utilizing the density peaks as class prototypes and employing a straightforward distance-based
assignment method. To determine the number of classes, we establish an upper bound by considering
the total count of density peaks, while the lower bound corresponds to the number of labelled categories.
Employing Brent’s algorithm ( , ) in conjunction with our density-based approach on the
combined labelled and unlabelled dataset, we search for the optimal new category number. Throughout
this process, we discard the labels associated with the labelled data. The optimal value is determined by
evaluating the clustering accuracy on the labelled data, aiming to maximize its performance.

4 Experiments
4.1 Experimental Setup

Benchmark and evaluation metrics. We validate the performance of our methods on long-tailed datasets,
including long-tailed CIFAR-100 ( , ), ImageNet-100 ( , ) as well as
naturally occuring long-tailed datasets including Herbarium-19 ( , ) and iNat-18 (

, ). We also conduct experiments on uniformed distributed datasets for GCD, including ImageNet-
100 ( , ) and the Semantic Shift Benchmark(SSB) ( , ) which includes
CUB ( , ) and Stanford Cars ( , ). For each of the datasets, we follow
previous works ( , ; , ) to sample a subset of all classes as the old classses
Vi: 50% of the images from these labelled classes are used to construct D', and the remaining images are
regarded as the unlabelled data D*. Please refer to Tab. 1 for statistics of the datasets we evaluate on,
as well as the imbalance factor A\ of each datasets. The model is evaluated using the clustering accuracy
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(ACC) following the standard practice ( ; , ). For the long-tailed dataset, we
compute the balanced-ACC as the average of per-class ACC for an unbiased evaluation.

Table 2: Results on datasets with a long-tailed distribution.

CIFAR100-LT ImageNet100-LT Herb-19
No. Methods All Old New All Old New All Old New
(1) k-means ( , )y 313 35.3  30.1 51.9 67.2 30.8 13.6 12.2 15.0
(2) RankStats+ ( ) ) 45.7 59.1  24.1 47.4 70.1 23.1 11.4 13.2 12.5
(3) UNO+ ( s ) 49.9 61.1 25.7 51.2 74.2 25.1 15.3 17.1 13.4
(4) ORCA ( , ) 41.3 59.5  20.7 46.3 67.1 24.2 9.8 14.7 4.9
(5) GCD ( s ) 62.3 66.9 28.1 53.1 75.1 28.3 32.8 41.4 24.2
(6) SimGCD ( s ) 70.4 77.4 32.1 56.6 79.6 33.5 39.4 51.4 27.3
(7) NCDLR ( s ) 67.8 73.4 31.5 55.7 74.5 33.7 38.6 48.7 28.0
(8) ImbaGCD ( , )y 715 81.2  33.0 57.4 81.2 34.8 42.5 54.7 28.9
(9) Ours 72.140.4 80.1+1.2 33.7+0.8 58.4+0.2 83.140.5 35.44+1.5 43.5+0.9 55.8+0.6 28.5+0.4

Implementation details. Following the common practice, we train all methods with the ViT-base/16
model ( , ) pretrained with DINO ( , ). The [CLS] token with a
dimension of 768 is used as the feature representation of one image and we only finetune the last block of the
backbone. The model is trained with a batch-size of 128, with an initial learning rate of 0.1 decayed with a
cosine schedule to 0. €conf is set to 0.8. For a fair comparison, we train for 200 epochs on each dataset, and
the best-performing model is selected using the accuracy of the validation set of the labelled classes.

4.2 Comparison with the State-of-the-Art

We present a comparison of our method with state-of-the-art methods on both long-tailed datasets
(see Tab. 2) and the SSB benchmark datasets (see Tab. 3). From Tab. 2 we can observe that our method
achieves the overall best performance on the challenging long-tailed distribution datasets, outperforming the
second-best model ImbaGCD ( , ) by 0.6%-1.9% in ACC, validating the effectiveness of our
method for handling the long-tailed distribution. It can also be observed that our method demonstrates
a non-trivial performance improvement over them compared with other previous state-of-the-art. When
comparing with alternative methods designed to tackle long-tailed distributions, our proposed method is the
only method that consistently outperforms the strong baseline SInGCD ( , ) in terms of the
performance on the long-tailed ‘New’ categories. This observation highlights the challenges associated with
handling long-tailed distributions in category discovery, and also demonstrates the potential of our proposed
method in handling this real-world long-tailed challenge. As shown in Table 2, our method achieves the
highest performance across most scenarios, demonstrating its superiority. In Tab. 3, our method demon-
strates superior performance on both the ‘All’ and ‘New’ classes, while maintaining comparable performance
to SimGCD on the "old" classes. It is worth noting that our method is specifically designed to address the
challenges posed by long-tailed scenarios. Therefore, achieving performance similar to strong methods on
conventional benchmarks is an encouraging outcome, indicating the versatility and potential applicability of
our approach across different scenarios.

4.3 Novel Class Number Estimation

In Tab. 4, we show the performance of estimating the number of categories
in the unlabeled dataset. We first show a comparison of estimated category Table 4: Estimation of class
numbers on uniformed datasets including CIFAR-100 and ImageNet-100, pumbers in unlabelled data.

compared with the search algorithm proposed in ( , ), our
method gives comparable estimation performance. Importantly, our method  Dataset | GT  GCD  Ouws
showcases substantial improvements in estimating the real-world long-tailed  CIFAR100 ‘ 100 100 109

ImageNet-100 100 109 112

distribution datasets, encompassing both artificially split long-tailed datasets CIFARIOOLT T ——

such as CIFAR-100-LT and ImageNet-100-LT, as well as naturally occurring  ImageNet-100-LT | 100 71 79

683 520 586

. . . Herb-19
long-tailed datasets like Herb-19 and iNat-18. Notably, our method outper- "¢ 8142 5981 6.151




Under review as submission to TMLR

Table 3: Results on the Semantic Shift Benchmark ( , ).
CUB Stanford Cars ImageNet-100
No. Methods All Old New All Old New All Old New
(1) k-means ( s ) 34.3 38.9 32.1 12.8 10.6 13.8 72.7 75.5 71.3
(2) RankStats+ ( , ) 33.3 51.6  24.2 28.3 61.8  12.1 37.1  61.6 2438
(3) UNO+ ( , ) 35.1 49.0 281 35.5 70.5 18.6 70.3  95.0  57.9
(4) ORCA ( , ) 35.3 45.6  30.2 23.5 50.1 10.7 735  92.6  63.9
(5) GCD ( s ) 51.3 56.6 48.7 39.0 57.6 29.9 74.1 89.8 66.3
(6) SimGCD ( s ) 60.3 65.6 57.7 46.8 64.9 38.0 82.4 90.7 78.3
(7) NCDLR ( s ) b58.7 58.7 52.4 44.5 60.1 34.5 77.5 89.9 74.5
(8) ImbaGCD ( s ) 61.0 64.0 58.4 47.4 63.2 39.0 82.5 90.8 78.9
(9) Ours 61.340.1 64.240.9 59.2+0.4 47.941.8 64.7+1.3 39.3+2.1 81.1+2.2 88.4+2.2 77.8+2.7

Table 5: Evaluation with different imbalance fac- Table 6: Class number estimation with different

tors A. All results are in ‘All / Old / New". A

CIFAR-100-LT SimGCD Ours CIFAR-100-LT GCD Ours
A=5 73.5/80.2 /351 742 /81.0/35.6 A=5 87 89
A=10 70.4 /774 /321 721 /80.1/33.7 A=10 78 86
A=20 63.1 /70.3 /28.6 67.2 /753 /302 A =20 65 80
ImageNet-100-LT SimGCD Ours ImageNet-100-LT GCD  Ours
A=5 62.1 /83.1 /371 63.1/84.5/38.1 A=5 85 87
A=10 56.6 / 79.6 / 33.5 58.4 /83.1/35.4 A=10 71 79
A=20 50.1 / 74.5 / 26.3 54.2 / 78.2 / 29.1 A =20 60 73

forms the approach proposed in ( , ) in these contexts. These
results serve as compelling evidence for the effectiveness of our method when
applied to long-tailed datasets.

4.4 Ablation Study

In this section, we provide ablations to each component of our method.

Performance with different imbalance factors \. Firstly, we present an ablation to study the per-
formance variation when the imbalance factor A is different. We create splits with different \ values by
subsampling CIFAR-100 and ImageNet-100 datasets. The clustering results, as shown in Tab. 5, consis-
tently demonstrate the superior performance of our method across the different A values tested. Notably, we
observe that as A increases, the performance gap between our method and SimGCD widens. This finding
emphasizes the effectiveness of our proposed method in handling the long-tailed distribution.

The results of estimating the category numbers are presented in Tab. 6, which reveal that as A increases, the
estimated number decreases due to the fact that the smallest cluster becomes smaller with higher imbalance,
and it is more likely for the estimation algorithm to overlook it. According to the results, our proposed
method outperforms the algorithm in ( , ) in all scenarios.

Confident sample selection. In Tab. 8, we show an ablation study using different combinations of the
selected subset S. The default choice is to use SconfUSdens as S for forming training mini-batches to train the
model. Here we explore the performance of only using Sconf Or Sgens as S. From Tab. 8, we can observe that
removing Sconf O Sgens results in a performance degradation. The performance degrades more when Scont
is removed from S, the gap is about 10% on ‘All’, ‘Old’, and ‘New’ categories. These results demonstrate
that both Scons and Sgens are essential to the final performance of the model validating the design choice of
our method.
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Table 7: Imbalance factor A within the selected subset STable 8: Results with different selected samples

S.
ImageNet-100-LT  Herb-19
Du 10.0 16.1 ImageNet-100-LT Herb-19
St 3.4 14.3 Ours w/o Sconr 402 / 71.2 / 22.5 30.0 / 38.5 /10.4
Siens 2.0 10.2 Ours w/o Sqens  55.1 / 80.2 / 314 40.2 / 51.4 / 24.6
Seont U Sdens 4.5 20.7 Ours 58.4 / 83.1 / 35.4 43.5 /55.8 / 28.5

Table 9: Effectiveness of the NMDS algorithm.

ImageNet-100-LT Herb-19

Ours w/o NMDS  55.1 / 76.2 / 31.8 40.1 / 50.7 / 25.1
Ours w/ NMDS 584 /83.1 /354 435 /55.8 / 285

As W/o NMDS 7.8 36.5
As W/ NMDS 45 20.7

How balanced is the selected subset? We show the imbalance factor A\ of the distribution within the
selected subset S&. These statistics are shown in Tab. 7. The original imbalance factor A of the whole
unlabeled dataset is shown in the first row. We can observe from the following rows that using only the
confidence-based selection to select samples for Scons is not able to reduce the imbalanced distribution of
the dataset. Using the density-based selection can indeed sample a more balanced subset from the original
dataset, yet as shown in Tab. 8, using Sgens alone can not achieve good performance for category discovery.
Thus we need to combine these two subsets to form & = S¢onfU Sgens to enjoy the benefit of a more balanced
training set and a better performance simultaneously. The combined S has a more balanced dataset than
the original dataset measured by the imbalanced factor.

Effect of the NMDS algorithm. We validate the effectiveness of our proposed NMDS algorithm by removing
it and evaluating the performance in Tab. 9. Comparing the first two rows in Tab. 9, we can see that
removing the NMDS algorithm leads to a performance drop. To investigate this phenomenon further, we show
the imbalance factor As of the selected subset S in the bottom two rows of Tab. 9. We can see that without
the use of the NMDS algorithm, the imbalance factor As would be significantly higher than when we use the
NMDS algorithm.

Number of Nearest Neighbours. We use two numbers of nearest neighbours in our proposed method,
one is the number k used as the number of nearest neighbours for calculating the density and density peaks,
the other one is the number of k, used in the IoUK function to determine the overlap between two different
density peaks. We first ablate on the influence of k for the clustering performance, intuitively, a larger k can
cover more neighbors, thus providing a more accurate estimation of density peaks. However, by covering a
larger neighbourhood, we would expect the selected number of density peaks to drop as it is less likely for
one sample to have a higher density than a larger number of neighbors. In the extreme scenario where the
neighborhood size k is equal to the total number of samples in the dataset, there would only be one density
peak. In Tab. 10, we can observe that the optimal value for k in our experiments is around 10, and this
value is consistent across the ImageNet-100-LT and Herb-19 datasets. We set 10 as the default choice in our
method, though the sensitivity to different numbers is not high.

In Tab. 11, we show the ablation on kg evaluting on the performance for estimating the number of categories.
We can observe that when the value of k is small, the ToUK function can only cover a small region in the
embedding to perform NMDS, thus the method tends to overestimate the number of categories in the dataset.
When the value of kg is larger than the optimal value, the IoUK function will overestimate the similarity
between two density peaks, thus the method could make more false negative removal of density peaks, leading
to an underestimate of the categories. In our experiments, we set k; to 30 as the default value.

10
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Table 11: Ablation of ks for category number

Table 10: Ablation of k for clustering per- estimation performance.

formance.
ks  ImageNet-100-LT Herb-19
k ImageNet-100-LT Herb-19
GT 100 683
5 56.1/824 /338 412/56.1/27.1
10 58.4/83.1/35.4 43.5/558 /285 10 146 761
15 57.0 /81.9/33.0 421 /54.1/29.4 20 135 620
20 55.2/80.1/31.2 401 /524 /26.9 30 7 586
40 65 511

5 Conclusion

In this paper, we have addressed the challenge of generalized category discovery in long-tailed distributions,
a problem that has been underexplored in the literature. We have identified two key technical challenges -
balancing the classifier for all categories and accurately estimating the category numbers in the presence of
a long tail. To overcome these challenges, we have proposed a novel method based on sample densities. Our
approach iteratively selects a balanced and reliable subset from the original unlabelled dataset and estimates
category numbers using density-based clustering. Through our experiments on both long-tailed and uniform
datasets, we have demonstrated the effectiveness of our method in accurately discovering novel categories.

References

Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand
Joulin, Mike Rabbat, and Nicolas Ballas. Masked siamese networks for label-efficient learning. In FECCV,
2022. 5

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin Raffel. Mix-
match: A holistic approach to semi-supervised learning. In NeurIPS, 2019. 3

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced datasets with
label-distribution-aware margin loss. In NeurIPS, 2019. 3

Kaidi Cao, Maria Brbi¢, and Jure Leskovec. Open-world semi-supervised learning. In ICLR, 2022. 3, 8, 9

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021. 8

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic minority
over-sampling technique. Journal of artificial intelligence research, 2002. 3

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In ICML, 2020. 4

Zhang Chuyu, Xu Ruijie, and He Xuming. Novel class discovery for long-tailed recognition. TMLR, 2023.
3,8,9

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, 2009. 7

Zongyong Deng, Hao Liu, Yaoxing Wang, Chenyang Wang, Zekuan Yu, and Xuehong Sun. Pml: Progressive
margin loss for long-tailed age classification. In CVPR, 2021. 3

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021. 8

11



Under review as submission to TMLR

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al. A density-based algorithm for discovering
clusters in large spatial databases with noise. In KDD, 1996. 7

Yixin Fei, Zhongkai Zhao, Siwei Yang, and Bingchen Zhao. Xcon: Learning with experts for fine-grained
category discovery. In BMVC, 2022. 3

Enrico Fini, Enver Sangineto, Stéphane Lathuiliere, Zhun Zhong, Moin Nabi, and Elisa Ricci. A unified
objective for novel class discovery. In ICCV, 2021. 2, 8, 9

Hao Guo and Song Wang. Long-tailed multi-label visual recognition by collaborative training on uniform
and re-balanced samplings. In CVPR, 2021. 3

Lan-Zhe Guo and Yu-Feng Li. Class-imbalanced semi-supervised learning with adaptive thresholding. In
ICML, 2022. 3

Kai Han, Andrea Vedaldi, and Andrew Zisserman. Learning to discover novel visual categories via deep
transfer clustering. In ICCV, 2019. 1, 2, 4

Kai Han, Sylvestre-Alvise Rebuffi, Sebastien Ehrhardt, Andrea Vedaldi, and Andrew Zisserman. Autonovel:
Automatically discovering and learning novel visual categories. IEEE TPAMI, 2021. 2, 8, 9

Shaozhe Hao, Kai Han, and Kwan-Yee K. Wong. Cipr: An efficient framework with cross-instance positive
relations for generalized category discovery. TMLR, 2024. 3

Ju He, Adam Kortylewski, Shaokang Yang, Shuai Liu, Cheng Yang, Changhu Wang, and Alan Yuille.
Rethinking re-sampling in imbalanced semi-supervised learning. arXiv preprint arXiv:2106.00209, 2021.
3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
CVPR, 2016. 1

Yin-Yin He, Peizhen Zhang, Xiu-Shen Wei, Xiangyu Zhang, and Jian Sun. Relieving long-tailed instance
segmentation via pairwise class balance. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7000-7009, 2022. 3

Youngkyu Hong, Seungju Han, Kwanghee Choi, Seokjun Seo, Beomsu Kim, and Buru Chang. Disentangling
label distribution for long-tailed visual recognition. In CVPR, 2021. 3

Junkai Huang, Chaowei Fang, Weikai Chen, Zhenhua Chai, Xiaolin Wei, Pengxu Wei, Liang Lin, and Guan-
bin Li. Trash to treasure: harvesting ood data with cross-modal matching for open-set semi-supervised
learning. In ICCV, 2021. 3

Xuihui Jia, Kai Han, Yukun Zhu, and Bradley Green. Joint representation learning and novel category
discovery on single-and multi-modal data. In ICCV, 2021. 2

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis Kalan-
tidis. Decoupling representation and classifier for long-tailed recognition. In ICLR, 2019. 3

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot,
Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In NeurIPS, 2020. 4

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained cate-
gorization. In th International IEEE Workshop on 3D Representation and Recognition (3dRR-13), 2013.
7

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical
Report, 2009. 7

Zhengfeng Lai, Chao Wang, Henrry Gunawan, Sen-Ching S Cheung, and Chen-Nee Chuah. Smoothed adap-
tive weighting for imbalanced semi-supervised learning: Improve reliability against unknown distribution
data. In ICML, 2022. 3

12



Under review as submission to TMLR

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In ICLR, 2017. 3

Ziyun Li, Ben Dai, Furkan Simsek, Christoph Meinel, and Haojin Yang. Imbagcd: Imbalanced generalized
category discovery. arXiv preprint arXiv:2401.05353, 2023a. 3, 8, 9

Ziyun Li, Christoph Meinel, and Haojin Yang. Generalized categories discovery for long-tailed recognition.
arXiv preprint arXiv:2401.05352, 2023b. 3

Jiye Liang, Liang Bai, Chuangyin Dang, and Fuyuan Cao. The k-means-type algorithms versus imbalanced
data distributions. IEEE Transactions on Fuzzy Systems, 2012. 7

James MacQueen. Some methods for classification and analysis of multivariate observations. In Proceedings
of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967. 8, 9

Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and Sanjiv
Kumar. Long-tail learning via logit adjustment. In ICLR, 2020. 3

Youngtaek Oh, Dong-Jin Kim, and In So Kweon. Distribution-aware semantics-oriented pseudo-label for
imbalanced semi-supervised learning. In CVPR, 2022. 3

Avital Oliver, Augustus Odena, Colin Raffel, Ekin D Cubuk, and Ian J Goodfellow. Realistic evaluation of
deep semi-supervised learning algorithms. In NeurIPS, 2018. 1

Hanyu Peng, Mingming Sun, and Ping Li. Optimal transport for long-tailed recognition with learnable cost
matrix. In ICLR, 2022. 3

William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. Numerical recipes in C.
Cambridge university press Cambridge, 1992. 7

Sylvestre-Alvise Rebuffi, Sebastien Ehrhardt, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Semi-
supervised learning with scarce annotations. In CVPR Deep- Vision workshop, 2020. 3

Kuniaki Saito, Donghyun Kim, and Kate Saenko. Openmatch: Open-set semi-supervised learning with
open-set consistency regularization. 2021. 3

Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin,
Han Zhang, and Colin Raffel. Fixmatch: Simplifying semi-supervised learning with consistency and
confidence. In NeurIPS, 2020. 3

Kiat Chuan Tan, Yulong Liu, Barbara Ambrose, Melissa Tulig, and Serge Belongie. The herbarium challenge
2019 dataset. In Workshop on Fine-Grained Visual Categorization, 2019. 7

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. In NeurIPS, 2017. 3

Junjiao Tian, Yen-Cheng Liu, Nathaniel Glaser, Yen-Chang Hsu, and Zsolt Kira. Posterior re-calibration
for imbalanced datasets. 2021. 3

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam, Pietro
Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In CVPR, 2018.
7

Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Generalized category discovery. In CVPR,
2022a. 1, 2, 3,4,6,7,8,9, 16

Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Open-set recognition: A good closed-set
classifier is all you need? In ICLR, 2022b. 7,8, 9

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. Caltech-UCSD Birds
200. Computation & Neural Systems Technical Report, 2010. 7

13



Under review as submission to TMLR

Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, and Stella X Yu. Long-tailed recognition by routing
diverse distribution-aware experts. In ICLR, 2021. 3

Chen Wei, Kihyuk Sohn, Clayton Mellina, Alan Yuille, and Fan Yang. Crest: A class-rebalancing self-training
framework for imbalanced semi-supervised learning. In CVPR, 2021. 3, 16

Xin Wen, Bingchen Zhao, and Xiaojuan Qi. A simple parametric classification baseline for generalized
category discovery. arXiv preprint arXiv:2211.11727,2022. 1, 3,4, 7,8, 9

Junjie Wu, Hui Xiong, and Jian Chen. Adapting the right measures for k-means clustering. In Proceedings
of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, 2009. 7

Yifan Xing, Tong He, Tianjun Xiao, Yongxin Wang, Yuanjun Xiong, Wei Xia, David Wipf, Zheng Zhang,
and Stefano Soatto. Learning hierarchical graph neural networks for image clustering. In ICCV, 2021. 5,
7,15

Qing Yu, Daiki Ikami, Go Irie, and Kiyoharu Aizawa. Multi-task curriculum framework for open-set semi-
supervised learning. In ECCV, 2020. 3

Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4l: Self-supervised semi-supervised
learning. In ICCV, 2019. 3

Bingchen Zhao and Kai Han. Novel visual category discovery with dual ranking statistics and mutual
knowledge distillation. In NeurIPS, 2021. 2

Bingchen Zhao, Xin Wen, and Kai Han. Learning semi-supervised gaussian mixture models for generalized
category discovery. In ICCV, 2023. 1, 3

Zhun Zhong, Enrico Fini, Subhankar Roy, Zhiming Luo, Elisa Ricci, and Nicu Sebe. Neighborhood con-
trastive learning for novel class discovery. In CVPR, 2021a. 2

Zhun Zhong, Linchao Zhu, Zhiming Luo, Shaozi Li, Yi Yang, and Nicu Sebe. Openmix: Reviving known
knowledge for discovering novel visual categories in an open world. In CVPR, 2021b. 2

Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen. BBN: Bilateral-branch network with cumulative
learning for long-tailed visual recognition. In CVPR, 2020. 3

14



Under review as submission to TMLR

Table Al: Ablation of A\ypg for category number estimation performance.

Awps  ImageNet-100-LT  Herb-19

GT 100 683
0.2 167 743
0.4 153 617
0.6 113 594
0.8 85 523

Table A2: Comparison of different feature density formulations.

ImageNet-100-LT Herb-19
Only Affinity  40.7 / 64.3 / 10.8 23.4 /415 /9.8
Ours 58.4 / 83.1 / 35.4 43.5 /55.8 / 28.5

A Additional ablations
Here we present additional ablation studies for our proposed method.

A.1 Ablation on Aypg

We first present the ablation on the value of the threshold Amps. The results are shown in Tab. Al. Similar
to the ablation of varying ks in Table 11 of the main paper, setting Ayps to a lower value will result in an
overestimation of the number of categories, and a higher value will result in an underestimation of categories.
In our experiments, we set it to 0.6 for simplicity.

A.2 Ablation on different choices of density calculation

Here, we compare different choices of the feature density formulation. In the main paper, we use both
the connectivity e;; and the affinity a;; between each pair of samples, x; and ;. This definition of feature
density is inherited from HiLander ( , ). In this section, we also experiment with an alternative
definition of the feature density, which simply averages the affinity values among samples. The density is

defined as: )

d; = 7|./\/'£ Z Qij- (10)

©IENE,

We present the results in Tab. A2. We can see that if we only use the affinity for calculating the density, the
results will be much worse than using connectivity and affinity together. We conjecture this to the fact that
our evaluation is under the long-tailed distribution, thus using affinity alone cannot give a good estimation
of the density for tail classes and this leads to the degradation in performance.

B Combine with Long-tailed Semi-Supervised Learning

Our method tackles the challenge of learning generalized category discovery under the long-tailed distribu-
tion. Long-tailed semi-supervised learning is a neighboring problem to ours, which also assumes a long-tailed
distribution of classes. However, it is important to note that our setting differs from long-tailed semi-
supervised learning. In our case, we encounter novel categories within the unlabelled images that cannot
be directly addressed by long-tailed semi-supervised learning methods, as they are not designed to handle
novel categories. This distinction highlights the unique challenge we faced in tackling the discovery of novel
categories within a long-tailed distribution, requiring the development of a specialized approach to effectively
address this scenario. In this section, we propose to combine our method with long-tailed semi-supervised
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Table A3: Performance when combined with long-tailed semi-supervised learning method.

ImageNet-100-LT Herb-19
Ours 58.4 /83.1/354 435 /558 /285
Ours+CReST 59.4 / 84.6 / 36.7 44.6 / 57.4 / 294

Table A4: Runtime (in seconds) comparison for category number estimation.

ImageNet-100-LT  Herb-19

Vaze etal ( , ) 35,624 63,901
Ours 1,192 1,874

learning to further boost the performance of our method on the task of generalized category discovery under
a long-tailed distribution. Specifically, we adopt CReST ( , ), a popular baseline in long-tailed
semi-supervised learning that adjusts the threshold for sampling different categories based on their frequency.
To combine CReST with our method, we use their sampling technique to sample our Scons set by varying
the threshold for different categories. The results are presented in Tab. A3. As can be seen, introducing the
long-tailed semi-supervised learning techniques into our method indeed leads to better performance.

C Runtime for Category Number Estimation

We compare the runtime between our method and the previous SOTA method ( , ). The
result is presented in Tab. A4. Our method is more than 30x faster than ( , ), while achieving
more accurate category number estimation on the long-tailed datasets ImageNet-100-LT and Herb-19 (see
Table 5 in the main paper).
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