
Under review as a conference paper at ICLR 2023

RETHINKING DATA AUGMENTATION FOR IMPROVING
TRANSFERABLE TARGETED ATTACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diverse input patterns induced by data augmentations prevent crafted adversarial
perturbations from over-fitting to white-box models, hence improving the transfer-
ability of adversarial examples for non-targeted attacks. Nevertheless, current data
augmentation methods usually perform unsatisfactory for transferable targeted at-
tacks. In this paper, we revisit the commonly used data augmentation method - DI,
which is originally proposed to improve non-targeted transferability and discover
that its unsatisfactory performance in targeted transferability is mainly caused by
the unreasonable restricted diversity. Besides, we also show that directly increas-
ing the diversity of input patterns offers better transferability. In addition, our
analysis of attention heatmaps suggests that incorporating more diverse input pat-
terns into optimizing perturbations enlarges the discriminative regions of the target
class in the white-box model. Therefore, these generated perturbations can acti-
vate discriminative regions of other models with high probabilities. Motivated
by this observation, we propose to optimize perturbations with a set of augmented
images that have various discriminative regions of the target class in the white-box
model. Specifically, we design a data augmentation method, which includes mul-
tiple image transformations that can significantly change discriminative regions of
the target class, to improve transferable targeted attacks by a large margin. On the
ImageNet-compatible dataset, our method achieves an average of 92.5% targeted
attack success rate in the ensemble transfer scenario, shedding light on transfer-
based targeted attacks.

1 INTRODUCTION

Data augmentations have been widely used in current training paradigms of deep neural networks
to improve the generalizability of learned models (Cubuk et al., 2019; 2020). It is also found that
data augmentations mitigate the over-fitting of surrogate white-box models, which are oftentimes
used to generate highly transferable non-targeted adversarial examples (Xie et al., 2019; Dong et al.,
2019) to fool black-box models into incorrect predictions (Goodfellow et al., 2014). Specifically,
previous works indicate that loss-preserving transformations provide an alternative visual represen-
tation of images, and models adopting augmented images as input can be considered as augmented
models (Lin et al., 2019). As a result, integrating loss-preserving transformations into one model
derives multiple augmented models, which can be attacked simultaneously to significantly improve
non-targeted transferability (Dong et al., 2018). For example, three widely used and effective meth-
ods, Diverse Input (DI) (Xie et al., 2019), Translation-invariant (TI) (Dong et al., 2019) and Scale-
invariant (SI) (Lin et al., 2019), restrict transformations within a small range to stabilize loss values.
Note that DI which is originally proposed to defend against adversarial examples is also a loss-
preserving transformation that preserves the model performance of benign images (Xie et al., 2017).

Nevertheless, while loss-preserving transformations offer considerable performance gains in trans-
ferable non-targeted attacks, it is unsuitable in transferable targeted attacks (Naseer et al., 2021;
Zhao et al., 2021). The major challenge is that targeted transferability aims to fool models into
the prediction of a target class rather than producing incorrect predictions as in the non-targeted
scenario. To address it, one way is to precisely learn the target feature distribution and drive ad-
versarial examples towards this distribution (Inkawhich et al., 2019; 2020a; Naseer et al., 2021),
because decision boundaries of the target class share the same center among different models (Liu
et al., 2016). However, these approaches require additional datasets for training auxiliary networks
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so as to capture the target feature distribution. To mitigate this issue, Zhao et al. (2021) revisits iter-
ative transferable non-targeted attacks without additional datasets and attributes the failure of these
methods to unconvergence induced by a few iterations in iterative attacks. However, increasing the
number of iterations in transferable non-targeted attacks attains limited benefit. Specifically, Zhao
et al. (2021) directly applies DI into transferable targeted attacks. However, the assumption that loss-
preserving transformations can be used as an augmented model (Lin et al., 2019) may not transfer to
transferable targeted attacks. Unlike non-targeted attacks, targeted attacks are confronted with the
gradient vanishment problem caused by the CE loss (Zhao et al., 2021). When the CE loss is close
to 0, the gradient tends to vanish. It motivates us to address this problem by incorporating more
diverse input patterns into iterative attacks. Therefore, we aim to study the influence of imposing
more diverse input patterns into transferable targeted attacks and explore what attributes of image
transformation can improve the target transferability of adversarial examples.

In this paper, we explore the effect of data augmentations in transferable targeted attacks with the
help of DI. Specifically, we remove the restriction that the size difference between original images
and randomly resized images should within a small range. We increase the size difference for op-
timizing perturbations on more diverse input patterns. Compared to the original version of DI, DI
with a larger size difference postpones the arrival of gradient vanishment and achieves better perfor-
mance. It demonstrates that this delay provides more useful gradients for optimizing perturbations.
To further understand the improvement of transferability caused by unlimited DI, we analyze the
difference of discriminative regions among different models by visualizing their attention heatmaps
of the target class. We demonstrate that diversified augmented images have different discriminative
regions in white-box models, and perturbations crafted on various discriminative regions can cover
discriminative regions of the target class in other black-box models with a high probability, resulting
in better target transferability. Moreover, we calculate the Intersection over Union (IoU) of discrim-
inative regions w.r.t the target class between the original and augmented images to evaluate each
image transformation. Following RandAugment (Cubuk et al., 2020), we propose a data augmenta-
tion method, which contains image transformations with low IoU, to improve transferable targeted
attacks. Comprehensive experiments indicate that including multiple image transformations can
eliminate over-fitting to the white-box models, achieving much better performance under the single-
model transfer and ensemble transfer scenarios. We briefly summarize our primary contributions as
follows:

• We provide fresh insights of DI into transferable targeted attacks. DI with a high size
difference optimizes perturbations on diverse discriminative regions, resulting in improving
target transferability.

• We propose the attention-deviation transformation that significantly changes discrimina-
tive regions. We also utilize the IoU of discriminative regions between the original and
augmented images for the quantization of attention difference.

• Inspired by RandAugment, we propose a data augmentation method to boost the targeted
attack success rates by combining multiple image transformations.

Overall, we hope the change of attention heatmaps caused by data augmentation can facilitate a
better understanding of why transferable targeted attacks occur.

2 BACKGROUND

2.1 TRANSFERABLE NON-TARGETED ATTACKS

Let fθ denote a white-box surrogate model, parameterized by θ which produces probabilities of all
classes. We also use x to represent the benign image, y as the corresponding ground-truth label.
Iterative Fast Gradient Sign Method (I-FGSM) (Kurakin et al., 2018) can be formulated as:

xadv
0 = x, gi+1 = ∇xL(fθ(xadv

i ), y)

xadv
i+1 = Clipx,ϵ{xadv

i + α · sign(gi+1)},
(1)

where xadv
i denotes the adversarial example at the i-th iteration, L is the classification loss (e.g.,

Cross Entropy), α is the step size, Clipx,ϵ restricts perturbations centered on x with a radius ϵ.
This iterative perturbation optimization leads to over-fit to the white-box model hence generating
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adversarial examples with low transferability. To mitigate the effect of over-fitting, MI (Dong et al.,
2018) integrates an additional momentum term into I-FGSM for stably updating perturbations:

g0 = 0, gi+1 = µ · gi +
∇xL(fθ(xadv

i ), y)

||∇xL(fθ(xadv
i ), y)||1

, (2)

where µ is the decay factor. Different from MI, DI (Xie et al., 2019) optimizes perturbations on
diverse input patterns:

gi+1 = ∇xL(fθ(T (xadv
i , p, u)), y), (3)

where T applies random resizing and padding with the probability p and an upper bound u that
determines the size difference between original and resized images. u is set to 330 by default in
MI. In subsequent analysis, we adjust the upper bound u to generate various augmented images
with different strengths of image distortion. TI (Dong et al., 2019) applies image translation to
evade over-fitting to discriminative regions of the white-box model. The discriminative regions are
represented by the attention maps. Afterwards, they convert this data augmentation into convolving
the gradients with a kernel W based on the translation-invariant property:

gi+1 = W ∗ ∇xL(fθ(xadv
i ), y). (4)

In addition, other works attempt to design advanced gradient calculation methods (Lin et al., 2019;
Wu et al., 2020a; Wang & He, 2021) to avoid over-fitting, and destroy critical features of predic-
tions (Wu et al., 2020b; Wang et al., 2021) that may be shared among different models.

2.2 TRANSFERABLE TARGETED ATTACKS

Instead of maximizing the classification loss between the adversarial prediction and the ground-truth
label in transferable non-targeted attacks, targeted attacks minimize the loss between the adversarial
prediction and the targeted class yt. Therefore, I-FGSM in transferable targeted attacks can be
formulated as:

xadv
0 = x, gi+1 = ∇xL(fθ(xadv

i ), yt)

xadv
i+1 = Clipx,ϵ{xadv

i − α · sign(gi+1)}.
(5)

However, existing works in transferable non-targeted attacks perform unsatisfactory in transferable
targeted attacks. Zhao et al. (2021) finds that the unreasonable limited number of iterations restricts
the perturbation optimization in transferable targeted attacks. With a large number of iterations, DI,
TI and MI achieve better target transferability. However, the problem of gradient vanishment of the
Cross Entropy (CE) loss arises along with the large iterations. To address this problem, they propose
to utilize the logit value of the targeted class as the classification loss L. This simple Logit loss
achieves better performance and consistently outperforms the Po+Trip loss (Li et al., 2020a) which
utilizes the Poincaré distance to address the decreasing gradient problem of CE. Different from
these two methods that concentrate on designing new loss functions, Wei et al. (2022) optimizes
perturbations on global and local inputs for improving universality and target transferability. By
adopting the “crop” operation, it can generate more diverse input patterns hence helps improve the
target transferability. Different from Wei et al. (2022), this paper provides a comprehensive analysis
on how data augmentation methods influence the target transferability. Based on the analysis, this
paper also proposes a new data augmentation strategy to boost target transferability.

Apart from designing a new loss function for boosting target transferability, there is another line
of work that focuses on training auxiliary networks to capture the feature distribution of the target
class. For example, the Feature Distribution Attack (FDA) (Inkawhich et al., 2020b) utilizes a set of
training data to train a tiny classifier, which predicts whether features extracted from the white-box
model belong to the target class or not. In the process of attacking, FDA maximizes the probability
of the tiny classifier to generate adversarial perturbations. It follows the similar idea in Activa-
tion Attack (AA) (Inkawhich et al., 2019) that disturbing intermediate features can transfer among
different models. As an extension of FDA, FDAN+xent (Inkawhich et al., 2020a) incorporates
tiny classifiers into multiple layers and combines the CE loss as part of the optimization objective,
resulting in better performance. In addition to training auxiliary classifiers, Transferable targeted
perturbations (TTP) (Naseer et al., 2021) trains a generator for directly crafting adversarial exam-
ples that share similar intermediate features with the target samples. Yang et al. (2021) integrates a
conditional class vector into the generator for multi-target class training. However, these methods
require additional training datasets to train auxiliary networks. In this paper, we demonstrate that
data augmentation with a large iteration can achieve much better performance.
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(b) Gradient magnitude
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(c) Transfer success rates

Figure 1: (a) and (b) show CE loss and gradient magnitude of attacks, respectively. (c) shows the targeted
attack success rate on black-box models.

3 DATA AUGMENTATION IN TRANSFERABLE TARGETED ATTACKS

In this section, we first delve into the data augmentation in transferable targeted attacks through an
empirical study of DI with various values of the upper bound u. We demonstrate that more diverse
input patterns yield better performance. Then, we provide fresh insights into transferable targeted
attacks by considering the attention heatmaps of the target class in augmented images.

3.1 MORE DIVERSE INPUT PATTERNS IN DI

Through combining the gradients of the loss function w.r.t parameters from various augmented im-
ages, data augmentation can generate more generic parameters so as to mitigate over-fitting and im-
prove the generalization of networks (Simonyan & Zisserman, 2014; He et al., 2016b; Krizhevsky
et al., 2017). From the viewpoint that adversarial perturbations can be regarded as optimized pa-
rameters (Lin et al., 2019), the perturbations optimized on diverse augmented inputs tend to be
generalized to different models. Therefore, recent studies apply image transformations in transfer-
able untargeted attacks to generate perturbations with high transferability (Xie et al., 2019; Dong
et al., 2019; Lin et al., 2019). However, they are not suitable for transferable targeted attacks. One
reason is that few iterations limit the convergence of attacks (Zhao et al., 2021). Despite enlarging
the number of iterations can attain fairly high performance, it also reaches a plateau quickly since
the CE loss is over-fitted to limited input patterns. The above observation motivates us to incorpo-
rate more diverse input patterns into transferable targeted attacks. Specifically, we lift restrictions
of the upper bound in DI, which is originally set as a small number (u = 330) to prevent network
performance from degrading on benign images (Xie et al., 2017). We explore DI with different
upper bound u for including more diverse input patterns. The experiments are conducted on the
ImageNet-compatible dataset with a DenseNet121 as the white-box model (Huang et al., 2017).
These generated adversarial examples are limited with ϵ = 16/255 and used to attack black-box
models (ResNet50, VGGNet16, Inception-v3).

Fig.1(a) and Fig.1(b) show the attack curves of CE loss and gradient magnitude, respectively. As
can be seen, I-FGSM decreases sharply within 5 iterations, while DI with a larger upper bound
decreases slowly. In addition, when the CE loss is close to 0, the corresponding gradient tends to
vanish, which is also observed in (Li et al., 2020b). These vanished gradients may lead to useless
perturbation optimizations. To handle this problem, Zhao et al. (2021) replaces the CE loss with the
logit output of the target class. In this paper, we argue that incorporating more diverse input patterns
into attacks can also mitigate the gradient vanishing phenomenon. Fig.1(c) presents the targeted
attack success rate (TASR) of DI with upper bound u on black-box models. We find that DI with a
larger upper bound requires more iterations to converge, and the most diverse DI-570 outperforms
DI-330 by a large margin. This empirical study indicates that more diverse input patterns of DI can
mitigate the over-fitting problem, hence generate more transferable adversarial perturbation.

3.2 ANALYSIS ON ATTENTION HEATMAPS OF DI

To further understand the effect of diverse input patterns in DI, we visualize attention heatmaps of the
target class in different models for original and augmented images in Fig.2(a). Besides, the attention
heatmaps for adversarial images generated by I-FGSM, DI-330 and DI-450 are also visualized in
Fig.2(b). Note that attention heatmaps present the discriminative regions for each model.
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Figure 2: The attention heatmaps w.r.t the target class of four models (Densetnet121, Inception-v3, Resnet50
and VGG16) for (a) benign images and (b) adversarial images generated from densetnet121. Grad-CAM (Sel-
varaju et al., 2017) is utilized for visualization.

From Fig.2(a), we observe that four models have varied attention heatmaps of the target class for
each image. It suggests that these models utilize different discriminative regions for the target predic-
tion. As an adversarial example generated by one model may be highly related to the discriminative
region of this model, it makes it hard to transfer to attack other models with different discrimina-
tion regions. This observation is also discussed in TI (Dong et al., 2019). Besides, we also find
the attention heatmaps among original and augmented images are different for each model, which
indicates that data augmentation can change the discriminative regions of models. Fig.2(b) further
illustrates that optimizing perturbations on more diverse discriminative regions can enlarge the dis-
criminative regions of the target class. Therefore, crafted perturbations with a large discriminative
region can activate discriminative regions of other models with high probabilities. In addition, the
area of discriminative regions becomes larger when increasing the upper bound u of DI, which sug-
gests that the distortion magnitude of image transformations may be positively correlated with the
area of discriminative regions in crafted perturbations, resulting in a higher targeted attack success
rate.
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Figure 3: IoU of DI with different u.

To further illustrate the divergence of discriminative regions
among different distortion magnitudes of DI, we report the
Intersection over Union (IoU) of attention heatmaps between
original and augmented images on randomly sampled 5,000
images from the ImageNet validation set. We binarize atten-
tion heatmaps by a threshold value of 0.5 to calculate IoU. As
shown in Fig.3, the median IoU of 5,000 images decreases as
the upper bound of DI increases. It suggests that one image
transformation with a high distortion magnitude can signifi-
cantly change discriminative regions of the target class. This
motivates us to utilize the IoU as a metric to explore other im-
age transformation methods for generating more diverse input
patterns with different discriminative regions.

In summary, the above analysis provides fresh insights into the performance improvements of data
augmentations. Specifically, we empirically explain the success of DI under a large upper bound
and find that diversified discriminative regions of augmented images drive optimized perturbations
towards enlarging the area of the discriminative region w.r.t the target class. Besides, we propose
the IoU metric to evaluate other image transformations for improving target transferability.

4 METHODOLOGY

For transferable targeted attacks, previous research has been devoted to utilizing additional net-
works to capture feature distributions of targeted classes (Inkawhich et al., 2019; 2020a;b; Naseer
et al., 2021), or design a new loss function to avoid the phenomenon of gradient vanishment (Zhao
et al., 2021). However, little attention is paid to data augmentation. In this section, we provide
a comprehensive analysis of various image transformation methods used in training models based
on the above proposed IoU metric. We then propose a data augmentation method to eliminate the
over-fitting problem and improve target transferability.
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4.1 EVALUATING IMAGE TRANSFORMATIONS

AutoAugment (Cubuk et al., 2019) and RandAugment (Cubuk et al., 2020) are effective data aug-
mentation methods to train models. Based on the transformations they apply, we explore the follow-
ing transformations:

• solarize • color • contrast • brightness
• sharpness • shear-x • shear-y • translate-x
• translate-y • flip • crop • rotate

Where the first five transformations are used to alter the visual effects of images, the remaining
transformations change the shape and size of images. Among them, “crop” and “rotate” convert
images into more diverse patterns. We name the above two category data augmentation methods
as visual and positional transformations, respectively. Intuitively, positional transformations may
change the position of discriminative regions more significantly than visual transformations.
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Figure 4: IoU of image transformations with different
magnitudes.

To support this hypothesis, we calculate IoUs of
the discriminative regions w.r.t the target class
between original and augmented images for
each transformation. Following RandAugment,
we linearly split the parameters of transforma-
tions into several magnitudes (0 to 10). How-
ever, in order to incorporate more diverse input
patterns into image transformations, we ran-
domly sample the parameters that are smaller
than the given magnitude. Hence, a higher
magnitude means adjusting images more sig-
nificantly. The detailed parameters used in
each transformation are provided in Appendix
B. Fig.4 plots the average IoU values of each
transformation at different magnitudes on 5,000
images randomly sampled from the ImageNet validation set. We observe that visual transformations
attain higher IoU values than positional transformations under different magnitudes. Thus, image
transformations with little change in discriminative regions may be useless for improving transfer-
ability. To support this hypothesis, we further conduct transferable targeted attacks with each trans-
formation (see Appendix C). The improvement of visual transformations is small and fluctuating. In
addition, “shear-x/y”, “translate-x/y”, and “flip” achieve lower IoUs, because each transformation
change images in a single direction. In contrast, “crop” and “rotate” can generate more diverse in-
put patterns. More significant diversity leads to better generalization of generated perturbations, as
shown in Appendix C. This evaluation provides a set of image transformations that can deviate from
discriminative regions of the original images, improving target transferability.

4.2 DATA AUGMENTATION

Motivated by the above analysis, we resort to data augmentation for improving transferable targeted
attacks. Specially, we introduce the attention-deviation transformation, defined as follow:
Definition 1. Attention-deviation transformation. Given an image x with its target class t, if there
exists an image transformation T (·) with the magnitude M that attains a low IoU of discriminative
regions w.r.t t between x and T (x), and generate diverse input patterns when the parameter of
transformation is less than M , we term T (·) as a attention-deviation transformation.

As discussed in Sec.3.2, the attention-deviation transformation provides various different discrim-
inative regions in optimizing perturbations like DI, resulting in the expansion of discriminative re-
gions of the white-box model so as to overlap specific discriminative regions of other black-box
models. It is different from loss-preserving transformation Lin et al. (2019), which explores image
transformations that are invariant to the outputs of models. As shown in Sec.4.1, we discover that
positional transformations significantly alter discriminative regions. Thus, these positional transfor-
mations can be served as the attention-deviation transformation. Given the multiple transformations
and driven by RandAugment, we propose a data augmentation method, which integrates differ-
ent transformations to improve target transferability. Specifically, for each iteration, we randomly
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sample N transformations from the given set of transformations Tset, and randomly generate the
parameters of current transformations that are less than the magnitude M . Therefore, we have two
hyper-parameters N and M in the data augmentation method. Algorithm is shown in Appendix D.

To illustrate the effect of tiny and huge changed transformations, we propose two versions of the
proposed method. Tiny-Augment (T-Aug) defines Tset = {“shear-x/y”, “translate-x/y”, “flip”}, and
Huge-Augment (H-Aug) uses Tset as {“crop”, “rotate”, “DI”}. Through generating diverse input
patterns by these transformations, T-Aug and H-Aug enable alleviating over-fitting to the white-box
model and activate discriminative regions of the target class on black-box models.

5 EXPERIMENTS

In this section, we first conduct transferable targeted attacks to validate the effectiveness of the
proposed data augmentation methods in single-model transfer and ensemble transfer scenarios. Then
we evaluate the importance of each transformation in T-Aug or H-Aug.

5.1 SETUP

Following (Zhao et al., 2021), we adopt four models with different architectures: ResNet50 (He
et al., 2016a), DenseNet121 (Huang et al., 2017), VGGNet16 (Simonyan & Zisserman, 2014)
with batch normalization Ioffe & Szegedy (2015) and Inception-v3 (Szegedy et al., 2016) and
the ImageNet-compatible dataset1 to conduct experiments. The NIPS 2017 Competition on Adver-
sarial Attacks and Defenses firstly introduce this dataset, which contains 1,000 images and corre-
sponding target classes for transferable targeted attacks. We restrict perturbations by ℓ∞ norm with
ϵ = 16/255, and set the step size as α = 2/255, the number of iterations as 300. We evaluate at-
tack performance by the percentage of adversarial examples that the black-box models successfully
classifies as the target class, which is termed as Targeted Attack Success Rate (TASR). We use an
NVIDIA GeForce RTX 3090 with 24GB of memory to conduct experiments.

5.2 COMPARISON TO STATE OF THE ART

We compare our method with DI and DI-TM, where the default parameters of TI and MI are di-
rectly used here, the upper bound and the transformation probability of DI are set as 330 and 1.0,
respectively. DI with the probability of 1.0 leads to generating diverse input patterns in each at-
tack iteration. For our method, under using DenseNet121 as the white-box model, a grid search
is performed to find the hyper-parameters N and M on 200 images randomly sampled from the
ImageNet-compatible dataset. Results are shown in Appendix E. Finally, we use N = 5,M = 2 for
T-Aug, N = 2,M = 8 for H-Aug. We perform experiments using the CE and logit loss functions,
respectively. Note that we overlook Po+Trip (Li et al., 2020b) because it has worse performance
than Logit.

Single-model transfer. Table 1 reports the results when using one model as the white-box model.
We can observe that T-Aug and H-Aug consistently outperform DI and DI-TM by a large margin
under the 100th and 300th iterations. In particular, when using T-Aug to attack DenseNet121 from
ResNet50, the crafted adversarial examples achieve 87.1% TASR on average. However, DI-TM has
better performance than our method in some cases at the 20th iteration, because more diverse input
patterns in our methods require a lot of iterations to converge. In addition, T-Aug and H-Aug lead
alternatively in different attack scenarios but have similar performance in most cases. It demonstrates
that more transformations with a lower magnitude in T-Aug are equivalent to fewer transformations
with a higher magnitude in H-Aug. Therefore, combining them together may become redundant
and degrade performance. Appendix F shows that the combination of T-Aug and H-Aug achieve
worse performance than themselves. Besides, TM can improve the performance of both DI and
our methods. It suggests that our methods are complementary to TM. We also find that integrating
our methods into the Logit loss still obtains better performance than DI-TM with the Logit loss.
Specifically, the Logit loss improves TASR from 11.3% to 23.1% when using T-Aug-TM to attack
Inception-v3 from VGG16. However, the Logit loss degrades the performance of our methods in

1https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_
v3.1.0/examples/nips17_adversarial_competition/dataset
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Table 1: TASR (%) of several methods with the CE and Logit losses under ℓ∞ norm with ϵ = 16/255. We
show TASRs with 20/100/300 iterations. TM is the combination of TI and MI. The best results are in bold.

Attack White-box Model: Res50 White-box Model: Dense121

→Dense121 →VGG16 →Inc-v3 →Res50 →VGG16 →Inc-v3

DI 16.0/19.2/19.0 16.8/18.2/18.2 0.1/0.2/0.3 8.1/8.4/8.3 8.6/7.7/8.2 0.1/0.2/0.0
T-Aug 20.1/76.1/90.6 13.5/62.7/79.2 2.0/18.3/27.1 9.5/46.8/59.3 9.2/43.7/56.6 2.0/13.5/18.2
H-Aug 16.9/74.3/89.8 22.3/81.3/92.8 1.5/16.3/24.0 8.3/53.8/71.2 17.3/74.2/87.6 1.7/12.4/18.2

DI-TM 27.1/39.7/44.3 18.9/27.6/29.4 2.2/3.4/4.1 12.9/16.7/18.4 8.1/10.6/10.6 1.7/2.2/3.2
T-Aug-TM 17.1/82.0/95.2 10.0/63.0/82.8 3.9/34.1/57.2 9.9/52.0/69.6 7.1/41.7/58.3 4.3/26.7/40.2
H-Aug-TM 13.0/77.9/93.7 15.5/80.7/94.7 2.2/29.6/55.4 7.6/57.0/82.2 13.7/72.3/90.7 2.3/22.6/42.7

Attack White-box Model: VGG16 White-box Model: Inc-v3

→Res50 →Dense121 →Inc-v3 →Res50 →Dense121 →VGG16

DI 0.2/0.2/0.1 0.0/0.0/0.0 0.0/0.0/0.0 0.7/0.7/0.9 0.2/0.8/1.1 0.4/0.5/1.0
T-Aug 2.4/10.8/14.7 3.1/18.0/24.1 0.1/1.6/2.0 0.4/4.1/7.3 0.6/9.4/13.8 0.6/4.3/7.3
H-Aug 2.1/11.8/17.3 1.9/19.2/26.5 0.1/1.8/1.5 0.5/10.2/18.5 1.3/17.0/33.0 1.8/16.6/32.4

DI-TM 0.6/0.6/0.5 0.4/0.3/0.4 0.0/0.0/0.0 0.8/1.8/2.4 0.8/2.4/2.9 0.7/1.3/1.8
T-Aug-TM 2.5/18.1/31.6 4.3/28.7/46.5 0.4/6.7/11.3 0.7/5.2/12.0 0.8/11.8/23.9 0.6/4.0/9.5
H-Aug-TM 1.4/18.1/37.5 2.9/25.2/49.9 0.2/4.4/10.5 1.1/11.6/31.1 1.8/20.0/50.3 0.8/17.2/44.1

(a) Attacks with the CE loss
.

Attack White-box Model: Res50 White-box Model: Dense121

→Dense121 →VGG16 →Inc-v3 →Res50 →VGG16 →Inc-v3

DI 24.3/50.1/57.5 24.0/51.4/57.5 0.6/1.2/1.4 13.8/28.8/28.9 15.5/31.8/33.0 0.6/1.5/1.2
T-Aug 16.9/69.5/83.6 12.3/59.9/74.4 2.0/21.7/33.5 9.8/49.8/65.1 8.3/46.4/61.7 2.6/15.3/25.7
H-Aug 13.2/64.5/81.7 17.9/71.6/83.7 1.1/16.0/27.6 7.5/48.9/67.6 15.6/65.1/77.6 0.9/13.5/20.6

DI-TM 30.4/64.4/71.8 22.6/55.1/62.8 2.7/7.1/9.6 16.1/39.3/43.7 13.5/33.0/38.1 2.1/7.1/7.7
T-Aug-TM 15.3/70.3/87.2 9.8/58.1/79.1 3.0/35.0/58.6 9.0/52.3/71.6 7.9/44.0/64.9 4.4/29.3/45.7
H-Aug-TM 11.0/65.7/84.6 12.7/70.1/86.0 2.2/29.3/54.4 6.6/49.2/74.5 10.1/63.3/79.2 2.6/23.3/42.8

Attack White-box Model: VGG16 White-box Model: Inc-v3

→Res50 →Dense121 →Inc-v3 →Res50 →Dense121 →VGG16

DI 1.2/3.6/3.1 0.7/3.4/4.0 0.0/0.0/0.1 0.4/1.5/1.6 0.5/2.1/3.1 0.4/1.7/3.1
T-Aug 4.0/30.5/44.4 4.9/37.6/53.1 0.5/5.7/9.4 0.8/5.1/9.5 0.6/8.3/16.5 0.5/5.3/9.6
H-Aug 2.9/21.3/34.4 2.8/29.0/44.9 0.1/3.3/5.2 0.8/10.1/20.7 0.9/16.9/32.5 1.9/17.1/32.1

DI-TM 3.0/9.6/11.3 3.2/12.0/13.7 0.1/0.6/0.7 0.9/2.0/2.8 1.1/3.3/5.0 0.6/2.2/3.9
T-Aug-TM 4.0/33.5/56.5 5.4/41.0/63.2 0.3/11.5/23.1 1.0/6.0/14.5 1.1/10.3/27.3 0.8/4.7/13.6
H-Aug-TM 2.2/24.2/46.8 2.7/30.2/57.2 0.3/8.0/18.4 1.3/11.9/29.8 1.8/20.2/48.2 1.6/17.9/41.8

(b) Attacks with the Logit loss.

some cases. It can be explained by the fact that the Logit loss originally proposed to increase the
logit value of the target class can also improve that of other classes (See Appendix G).

Ensemble transfer. Adversarial examples crafted from multiple white-box models tend to attack
other models with a high probability (Dong et al., 2018). Therefore, we select one model as the
black-box model, and the remaining models as the white-box models. Table 2 reports the results,
which consistently illustrate the effectiveness of T-Aug and H-Aug on different loss functions. For
example, H-Aug-TM with the CE loss achieves an average 92.5% TASR. However, the performance
improvement of our methods with the Logit loss is inferior. This is because the unbounded Logit
loss relies too much on white-box models with high logit values.

5.3 IMPORTANCE OF EACH TRANSFORMATION

The proposed T-Aug and H-Aug can significantly improve target transferability among different
models. The number of randomly selected transformations N = 5 and the magnitude M = 2
in T-Aug suggest that integrating all tiny transformations with low distortion achieves similar per-
formance as the huge transformations with high distortion. To further evaluate the effect of each

8
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Table 2: TASR (%) of attacking one black-box model in ensemble transferable attacks. We report TASR at the
300th iteration. The equal weights are assigned to white-box models. The best results are in bold.

Ensemble Attack Loss Black-box Model Average
Res50 Dense121 VGG16 Inc-v3

DI-TM CE 31.1 55.2 51.6 16.1 38.5
DI-TM-LI CE 42.8 55.2 67.9 24.2 47.5
T-Aug-TM CE 93.4 98.2 92.1 82.9 91.6
H-Aug-TM CE 95.1 98.2 98.4 78.5 92.5
DI-TM Logit 70.2 82.3 82.2 29.1 65.9
DI-TM-LI Logit 75.9 83.0 84.1 35.4 69.6
T-Aug-TM Logit 89.2 91.6 87.4 77.6 86.4
H-Aug-TM Logit 89.1 91.3 92.3 70.7 85.8
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Figure 5: Average TASR (%) deteriorates when an image transformation is excluded in (a) T-Aug and (b) H-
Aug. “None” denotes no removal in the set of transformations.

transformation, we conduct experiments on T-Aug and H-Aug with random removal of an image
transformation using DenseNet121 as the white-box model. The attacks utilize CE as the loss func-
tion and are based on I-FGSM without TI and MI. We set N = 4 for T-Aug. Fig.5 reports the
average TASR of attacking other models. For T-Aug, performance degradation occurs when remov-
ing any of the image transformations. It suggests that each image transformation of T-Aug produces
a marked effect on target transferability. Among these transformations, deleting “shear-x/y” reduces
performance more significantly due to the more obvious changes in image shape. For H-Aug, we
observe that removing “crop” or “rotate” achieves similar performance with including all transfor-
mations. However, including either of them with ’DI’ together achieves higher performance than
using “DI” individually. It demonstrates that the magnitude M = 8 of H-Aug can generate input
patterns with high changes of discriminative regions using “DI” and either of “crop, rotate”. Be-
sides, deleting “DI” leads to significant degradation of TASR. It suggests that DI without limited
upper bounds is most helpful among these transformations.

6 CONCLUSION

In this paper, we provide an exhaustive study on DI with unrestricted upper bounds. More diverse
input patterns introduced by a larger upper bound would improve target transferability. Through
visualizing discriminative regions, we explain the high performance of DI is caused by the fact that
diversified discriminative regions of augmented images drive the crafted adversarial perturbations
towards covering more discriminative regions. Therefore, we aim to utilize multiple image trans-
formations to further improve transferable targeted attacks. We propose to exploit the IoU metric
of discriminative regions between original and augmented images for filtering widely used image
transformations. Based on selected transformations, we introduce two data augmentation methods in
terms of tiny and huge changed transformations, named T-Aug and H-Aug. The experimental results
demonstrate the effectiveness of T-Aug and H-Aug regardless of the used loss functions. In the fu-
ture, we will adaptive adjust the magnitude M for each transformation to include all transformations
together.
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A ATTENTION HEATMAPS OF ORIGINAL LABELS

We visualize attention heatmaps of the original class on original and augmented images. As shown
in Fig.A.1, the discriminative regions of each model are similar among various augmented images.
This is because these models are trained on augmented images with the original class. Besides,
different models have comparable attention for each image, similar to the finding in (Wu et al.,
2020c). In contrast, attention heatmaps of the target class vary among augmented images. It suggests
that transferable non-targeted attacks drive perturbations towards deviating discriminative regions of
the ground-truth class, while transferable targeted attacks aim to highly activate the discriminative
regions of the target class.

w/o DI

DI-330

DI-450

Dense121 Inc-v3 Res50 VGG16Benign

Figure A.1: The attention heatmaps the original class of Densetnet121, Inception-v3, Resnet50 and VGG16
models for augmented images.

B DETAILED PARAMETERS IN EACH TRANSFORMATION

Following RandAugment Cubuk et al. (2020), we linearly split the parameters of transformations
into several magnitudes (0 to 10). The parameter intervals are shown in Table B.1. For a given
magnitude M , we first calculate the corresponding value of the specific parameter by the parameter
interval. We then randomly select one value smaller than the specified parameter as the parameter of
image transformation to be performed. This method enables randomness of image transformations.
Note that the parameter of “flip” is the probability of horizontally and vertically flip the given image.
The parameter of “crop” is the lower bound for the crop area, the upper bound of “crop” is set to 1.0
by default, a subsequent resizing operation resizes the crop to the original size. The parameter of
“DI” is the upper bound u and its probability p is set as 1.0 by default.

Table B.1: Parameters of each transformation. “Signed” denotes to randomly convert the parameter into the
negative number.

Transformation Lower distortion Upper distortion Signed

solarize 255 0 False
color 0 5 False
contrast 0 5 False
brightness 0 5 False
sharpness 0 5 False
shear-x/y 0 180 True
translate-x/y 0 299 True
flip 0 1 False
crop 1 0 False
rotate 0 180 True
DI 299 700 False
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Figure C.1: TASR (%) of each transformation with different magnitudes. We use DenseNet121 as the white-
box model, and report the performance of attacking other three black-box models.

C TRANSFERABLE TARGETED ATTACKS WITH EACH TRANSFORMATION

We conduct transferable targeted attacks for each transformation based on I-FGSM with the CE loss,
and use DenseNet121 as the white-box model. Fig.C.1 show the attack curves of I-FGSM under var-
ious image transformations. For visual transformations (Fig.C.1(a)-C.1(e)), we observe that these
transformations with different magnitudes have fluctuated performance. It empirically suggests that
visual transformations with tiny changes in discriminative regions are unsuitable for transferable
targeted attacks. For positional transformation without “flip” (Fig.C.1(f)-C.1(i),C.1(k),C.1(l)), we
observe that each of them improves target transferability. However, “shear-x/y” and “translate-x/y”
lead to inferior improvement due to the monotonic input patterns. In contrast, “crop” and “rotate”
with abundant changes achieve much higher performance. Besides, “flip” (Fig.C.1(j)) attains the
worst performance at the magnitude 10. This is because that only the horizontal and vertical flipped
image is used to optimize perturbations when the probability is 1.0. Overall, positional transfor-
mations with more diverse input patterns are helpful in improving target transferability than visual
transformations, while they require more iterations to converge. Despite each tiny changed trans-
formation has limited improvement on target transferability, including them together can generate
more diverse input patterns.
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Algorithm 1 Data Augmentation for improving transferable targeted attacks
Input: the classification loss function L, white-box model fθ, benign image x, targeted class yt.
Parameter: The perturbation budget ϵ, iteration number I, step size α, a set of image transforma-
tions Tset, the number of transformation N , the magnitude M
Output: The adversarial example xadv .

1: Initialize xadv
0 by x.

2: for i = 0 to I − 1 do
3: Generate Tuse by randomly selecting N transformations from Tset.
4: Traverse each transformation in Tuse with the magnitude M to generate xaug

i from xadv
i .

5: gi+1 = ∇xL(fθ(xaug
i ), t)

6: xadv
i+1 = Clipx,ϵ{xadv

i − α · sign(gi+1)}
7: end for
8: return xadv
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Figure E.1: TASR (%) of (a) T-Aug and (b) H-Aug with different number of iterations N and magnitudes M .
We use DenseNet121 as the white-box model, and report the average performance of the 300th iteration on
attacking other three black-box models. 200 images randomly selected from the ImageNet-compatible dataset
are used here.

D ALGORITHM OF THE PROPOSED METHOD

Algorithm 1 illustrates the data augmentation methods for improving transferable targeted attacks.
According to the set of image transformations Tset provided, this algorithm can be divided into T-
Aug and H-Aug. For each iteration, we optimize perturbations on a diverse input pattern generated
from randomly selected N image transformations with a predefined magnitude M . The hyper-
parameters N and M reduce the search space, following RandAugment (Cubuk et al., 2020). Our
algorithm is easily combined with MI and TI, and is suitable for different loss functions.

E HYPER-PARAMETERS N AND M

We search for the optimal number of image transformations N and magnitude M on a subset
of the ImageNet-compatible dataset. To illustrate that these optimal parameters are shared in
different white-box models, we conduct experiments when using DenseNet121 as the white-box
model, and report the average TASR (%) of attacking other black-box models with T-Aug and
H-Aug. For T-Aug, we set N ∈ {1, 2, 3, 4, 5},M ∈ {2, 4, 6, 8, 10}, while for H-Aug, we set
N ∈ {1, 2, 3},M ∈ {2, 4, 6, 8, 10}. Fig.E.1(a) and E.1(b) report the results for T-Aug and H-Aug,
respectively. Fig.E.1(a) shows the relative gain in TASR across increasing N when M = 2, and
similar trends across increasing M when N = 1. It suggests that a larger N or M can improve
the diverseness of input patterns. However, when M > 2 or N > 2, TASR increases first and
then decreases. It demonstrates that excessive diversity can harm target transferability. This is be-
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Figure F.1: TASR (%) of TH-Aug with different number of iterations N and magnitudes M .

cause optimizing perturbations is overwhelmed by excessive input patterns. Based on the reported
TASR, we select N = 5, M = 2 for T-Aug. From Fig.E.1(b), we observe that the H-Aug with
N = 2,M = 8 gains more improvement than others. We use these settings to conduct subsequent
experiments.

F THE COMBINATION OF T-AUG AND H-AUG

Table F.1: TASR (%) of TH-Aug with the CE and Logit losses under ℓ∞ norm with ϵ = 16/255. The set
of image transformations in TH-Aug is the combination of tiny and huge changed transformations. We show
TASRs with 20/100/300 iterations. TM is the combination of TI and MI.

Attack White-box Model: Res50 White-box Model: Dense121

→Dense121 →VGG16 →Inc-v3 →Res50 →VGG16 →Inc-v3

TH-Aug 12.4/73.5/88.6 10.4/71.6/89.1 0.6/12.2/17.6 8.1/51.0/70.7 9.0/64.8/80.3 0.4/8.9/13.8
TH-Aug-TM 8.6/65.2/83.9 8.3/62.7/82.9 1.7/16.8/38.6 6.7/47.6/67.2 7.0/53.5/71.2 1.8/17.2/30.0

Attack White-box Model: VGG16 White-box Model: Inc-v3

→Res50 →Dense121 →Inc-v3 →Res50 →Dense121 →VGG16

TH-Aug 1.2/8.6/13.0 0.8/14.0/19.3 0.0/0.4/1.0 0.5/7.5/16.2 0.3/12.2/26.4 0.7/9.2/20.6
TH-Aug-TM 1.1/10.3/24.0 1.5/14.9/33.6 0.2/2.2/5.6 0.7/7.6/17.4 0.9/13.1/29.1 0.6/7.4/20.5

(a) Attacks with the CE loss
.

Attack White-box Model: Res50 White-box Model: Dense121

→Dense121 →VGG16 →Inc-v3 →Res50 →VGG16 →Inc-v3

TH-Aug 11.1/66.2/82.3 9.0/62.9/81.4 0.9/12.6/23.4 7.3/50.5/68.2 8.7/58.6/74.1 0.7/11.1/18.5
TH-Aug-TM 7.7/56.6/78.0 6.9/55.0/76.9 1.5/17.2/38.6 6.3/43.4/68.0 7.2/49.1/69.0 1.0/17.4/34.1

Attack White-box Model: VGG16 White-box Model: Inc-v3

→Res50 →Dense121 →Inc-v3 →Res50 →Dense121 →VGG16

TH-Aug 1.4/19.4/33.6 2.0/25.3/41.8 0.0/2.0/4.4 0.4/7.5/17.6 0.6/11.8/26.5 0.8/10.9/22.1
TH-Aug-TM 1.4/13.9/35.4 1.3/18.6/41.8 0.2/3.7/9.3 1.1/7.6/17.1 0.6/11.6/29.1 0.6/7.8/19.6

(b) Attacks with the Logit loss
.

Let TH-Aug denote the combination of T-Aug and H-Aug. The set of image transformation Tset

is the union of tiny and huge changed transformations. We set N = 2,M = 6 in TH-Aug, as
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shown in Fig.F.1. Table F.1 shows the performance of TH-Aug in single-model transfer scenarios.
As can be seen, TH-Aug performs worse than T-Aug and H-Aug. Suppose that the distortion of
one image transformation of H-Aug is equivalent to the distortion of combining multiple image
transformations of T-Aug Therefore, when selecting an image transformation from tiny and huge
changed transformations respectively in one iteration, the image distortion of TH-Aug may be equal
to that of T-Aug with larger values of N and M , resulting in lower performance, shown in the upper
right of Fig.E.1(a).

G THE PROBLEM OF THE LOGIT LOSS

Despite the Logit loss avoids gradient vanishment in iterative attacks by increasing the logit value
of the target class, it may also improve logit values of other classes. Therefore, we design a median
logit difference metric to explore why Logit has lower performance than CE in some scenarios.
Specifically, for an adversarial example, we calculate the difference between the logit value of the
target class and the highest logit value of the remaining classes. Then we calculate the median logit
difference among all adversarial examples. A higher median logit difference means that the target
class is more dominant than other classes in models’ predictions. As shown in Fig.G.1, the CE loss
attains a higher median logit difference than the Logit loss when using DenseNet121 or ResNet50 as
the white-box model. In contrast, when using Inception-v3 or VGGNet-16 as the white-box model,
the CE loss and the Logit loss have similar values of the median logit difference. Based on this
observation, we can obtain the conclusion that the Logit loss is not applicable in different models
when combining with our data augmentation methods. The results of Table 1 also prove this point.
One simple and possible solution is that increasing the logit value of the target class while decreasing
the highest logit value of other classes, like the C&W attack (Carlini & Wagner, 2017). We leave it
to future work.
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(c) T-Aug-TM
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Figure G.1: The median value of the difference between the logit value of the target class and the highest logit
value of the remaining classes on adversarial examples crafted by (a) T-Aug, (b) H-Aug, (c) T-Aug-TM and (d)
T-Aug-TM. For each method, we compare the median logit different of CE loss with that of the Logit loss. The
median logit differences with 20/100/300 iterations are reported. The whole ImageNet-compatible dataset is
used here.
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