

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LONG-TAILED LEARNING WITH MUON OPTIMIZER

Anonymous authors

Paper under double-blind review

ABSTRACT

Long-tailed recognition poses a significant challenge in deep learning, as models tend to be biased towards head classes, leading to poor generalization on underrepresented tail classes. A key factor contributing to this issue is that the optimization process for tail classes often stalls in sharp regions of the loss landscape. In this work, we investigate this problem from an optimization perspective and leverage the recently proposed Muon optimizer. We provide new theoretical insights, demonstrating that Muon’s gradient orthogonalization enhances the update’s projection along directions of negative curvature, thereby facilitating a more effective escape from sharp minima. To further mitigate the additional computational overhead of Muon, we propose Progressive Muon Optimizer (ProMO), a novel hybrid optimization approach that balances performance with efficiency. Specifically, ProMO employs a sinusoidal probability schedule to dynamically alternate between SGD and Muon. This method predominantly uses computationally efficient SGD in the early stages of training and gradually increases the use of Muon as the model approaches convergence when escaping sharp minima becomes critical for tail-class generalization. Extensive experiments on large-scale long-tailed benchmarks demonstrate that ProMO consistently outperforms existing long-tailed recognition methods. These results validate that ProMO effectively improves generalization on tail classes without incurring significant computational costs, highlighting its potential as a practical and effective solution for long-tailed learning.

1 INTRODUCTION

Deep learning has significantly advanced a wide range of domains, from computer vision to large language models, achieving unprecedented performance largely driven by large-scale, high-quality datasets (Russakovsky et al., 2015). However, modern real-world datasets are often imbalanced, especially in domains such as medical diagnosis, where data collection is costly and time-consuming (Buda et al., 2018). In these fields, datasets typically exhibit long-tailed distributions, with a small number of dominant classes (head classes) being overrepresented, while others (tail classes) are significantly underrepresented. This class imbalance presents significant challenges during model training, as traditional learning algorithms tend to bias towards the head classes, leading to poor generalization for the tail classes (Wang et al., 2023). As a result, it has become crucial to explore robust training methods that can effectively handle long-tailed class distributions.

Many excellent methods have been proposed to address class imbalance, including re-sampling (Chawla et al., 2002), decoupling (Kang et al., 2020), loss rebalancing (Ma et al., 2023), and contrastive learning techniques (Zhu et al., 2022; Du et al., 2024). While these methods aim to alleviate the dominance of head classes, they often overexpose the limited tail class samples, thereby increasing the risk of overfitting. Recent studies (Rangwani et al., 2022; Li et al., 2025) have also shown that for minority classes in imbalanced datasets, the optimization process often converges to sharp regions in the loss landscape, characterized by large eigenvalues in the Hessian matrix, resulting in poor generalization performance for these underrepresented classes. One promising direction to address this issue is Sharpness-Aware Minimization (SAM) (Foret et al., 2021), a technique that focuses on escaping sharp minima by finding sharp maximal points in the neighborhood of the current weight and then minimizing the loss at these points. While SAM has been shown to improve generalization by helping the model escape saddle points, it comes at the cost of significantly increased training time, as it requires twice the number of backpropagation steps (Luo et al., 2024). This scaling issue poses significant challenges for applying SAM to large-scale datasets and models, where training time and computational efficiency are crucial considerations.

To overcome these challenges, we turn to the recently proposed Muon optimizer (Jordan et al., 2024; Shen et al., 2025), which modifies the SGD optimizer by orthogonalizing the gradient updates through Newton-Schulz iteration. We demonstrate that Muon effectively enhances the gradient component along the negative curvature, allowing the optimizer to converge to flatter regions of the loss landscape more efficiently, leading to improved generalization performance. This is especially crucial in the context of imbalanced datasets, where Muon helps to boost the performance of tail classes.

To further balance training cost with the benefits of Muon, we introduce a novel dynamic optimizer selection method, termed as ProMO. This approach uses a sinusoidal function to dynamically control the probability of selecting the Muon optimizer during the training process. As the model nears convergence, the probability of selecting Muon increases, providing continued support for escaping saddle points without excessively increasing the computational burden. Our contributions are summarized as follows:

1. We provide new theoretical insights into Muon from the perspective of loss landscape. Specifically, we show that Muon enhances the gradient component along the negative curvature, facilitating effective escape from sharp regions toward flatter minima. This is particularly crucial in long-tailed learning, where tail classes often converge to sharp minima, resulting in reduced generalization.
2. We propose a novel method, ProMO, to dynamically balance training cost and performance. By controlling the probability of using Muon through a sinusoidal schedule, ProMO helps the model escape sharp regions as it approaches convergence, without significantly increasing the training cost.
3. We conduct extensive experiments across a variety of datasets, demonstrating that ProMO consistently improves long-tailed recognition, including large-scale datasets such as Places-LT and ImageNet-LT. Our results show that ProMO effectively enhances the performance of tail classes and outperforms existing methods designed for long-tailed and class-imbalanced learning.

2 RELATED WORK

2.1 LONG-TAILED LEARNING

There have been substantial explorations in recent years to address the challenges of long-tailed learning. At the data level, re-sampling (Chawla et al., 2002; He et al., 2008) and data augmentation techniques (Zhang et al., 2018; Yun et al., 2019; Ahn et al., 2023) focus on modifying the training data distribution to mitigate class imbalance. At the representation level, decoupling frameworks (Kang et al., 2020; Xuan & Zhang, 2024) separate the feature learning stage from classifier training, allowing for independent optimization of each component. Multi-expert architectures (Wang et al., 2021b; Tan et al., 2024; Yang et al., 2024) employ multiple specialized networks to handle different class groups. Transfer learning approaches (Wang et al., 2021a; Li et al., 2024) enhance the feature space representation for minority classes with knowledge from related domains or tasks. At the loss level, re-weighting techniques (Cui et al., 2019; Luo et al., 2024) assign different weights, while margin-based techniques (Cao et al., 2019; Menon et al., 2021) impose class-specific decision boundaries during training. More recently, [fine-tuning methods](#) (Dong et al., 2023; Shi et al., 2024) adapt foundation models to long-tailed data through parameter-efficient updates that preserve generalization. Contrastive learning frameworks (Cui et al., 2021; Zhu et al., 2022; Cui et al., 2024; Du et al., 2024) have demonstrated promising results by encouraging uniformly discriminative feature representations across all classes. However, existing methods often suffer from the risk of overfitting due to limited tail class samples, highlighting the need for more robust optimization methods that can effectively navigate the complex loss landscapes inherent in imbalanced learning scenarios.

2.2 SHARPNESS OF LOSS LANDSCAPE

Ensuring model generalization is a fundamental yet persistent challenge in deep learning. Recent studies (Jiang et al., 2020; Stutz et al., 2021; Li et al., 2025) have empirically and theoretically demonstrated a strong connection between the geometry of the loss landscape and generalization performance, positing that models converging to flatter minima tend to generalize better than those in sharper ones. This connection becomes particularly critical in the context of imbalanced learning, where the loss landscapes associated with minority classes are often dominated by sharp regions (Zhou et al., 2023a). Traditional methods such as Perturbed Gradient Descent (Ge et al., 2015; Jin et al., 2017)

attempt to escape these regions by adding random noise to gradient updates. However, recent studies (Rangwani et al., 2022) have demonstrated that these approaches exhibit suboptimal performance in imbalanced settings, often failing to provide sufficient directional guidance to effectively navigate the complex loss landscapes of minority classes.

Sharpness-Aware Minimization (SAM) (Foret et al., 2021) has emerged as a more principled approach to address this challenge. SAM operates by identifying sharp maximal points within a neighborhood of the current parameters and subsequently minimizing the loss at these locations. Recent work has shown that SAM can be particularly effective in imbalanced settings (Rangwani et al., 2022), helping models promote convergence to flatter regions of the loss landscape. However, SAM and its variants (Zhou et al., 2023a; b; Lyu et al., 2025) require at least twice the number of gradient computations compared to standard SGD, which limits their scalability to large-scale datasets and models, where training efficiency is paramount. In this work, we aim to develop more computationally efficient methods for navigating towards flatter minima in imbalanced learning, seeking to maintain the benefits of improved optimization while reducing the associated computational burden.

3 METHOD

In this section, we first establish the preliminaries of our work, including the problem setup and the mechanics of the Muon optimizer. We then present our theoretical analysis of Muon, which serves as the foundation for our work by identifying its capability to escape sharp regions. **Building on these findings, we introduce our primary proposed method, ProMO, a dynamic optimization method designed to leverage these theoretical benefits in a computationally efficient manner.**

3.1 PRELIMINARIES

Let $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$ be a training dataset of N samples, where $x_i \in \mathcal{X}$ is an input sample and $y_i \in \mathcal{Y} = \{1, \dots, C\}$ is its corresponding class label. We denote the number of samples in each class as $\{n_1, \dots, n_C\}$, and assume, without loss of generality, that $n_i > n_j$ for any $i > j$. Real-world datasets often exhibit a long-tailed distribution with $n_1 \gg n_C$, where a small number of majority classes contain abundant samples while numerous minority classes are data-scarce. Our goal is to learn a deep neural network $h(\cdot; w)$ parameterized by $w \in \mathcal{W}$ that minimizes the empirical risk $\mathcal{L} = \frac{1}{N} \sum_{(x,y) \in \mathcal{D}} \ell(h(x; w), y)$, where ℓ is a loss function, such as the cross-entropy loss.

3.2 ANALYSIS OF MUON OPTIMIZER FROM LOSS LANDSCAPE PERSPECTIVE

To analyze the optimization dynamics, we focus our discussion, for clarity, on a single parameter matrix $\mathbf{W} \in \mathbb{R}^{m \times n}$. The principles can be extended to the entire parameter set (Kovalev, 2025). We consider two optimization methods: the standard SGD optimizer and the Muon optimizer. For the SGD optimizer, the update rule for a parameter matrix \mathbf{W}_t at iteration t is:

$$\mathbf{W}_{t+1} = \mathbf{W}_t - \eta_t \mathbf{g}_t, \quad \text{where } \mathbf{g}_t = \nabla \mathcal{L}(\mathbf{W}_t). \quad (1)$$

Here, $\eta_t > 0$ is the learning rate and \mathbf{g}_t denotes the stochastic gradient with respect to \mathbf{W}_t . For the Muon optimizer, the gradient is first transformed via a Newton-Schulz iteration process and then used to update the parameter \mathbf{W}_t . Specifically, the update is performed as:

$$\mathbf{O}_t = \text{Newton-Schulz}(\mathbf{g}_t), \quad \mathbf{W}_{t+1} = \mathbf{W}_t - \eta_t \mathbf{O}_t. \quad (2)$$

The central idea of Muon optimizer is to employ the Newton-Schulz iteration process to approximately compute the polar decomposition \mathbf{O}_t of \mathbf{g}_t , which corresponds to $\mathbf{O}_t = \mathbf{U}_t \mathbf{V}_t^T$ in the singular value decomposition (SVD) of $\mathbf{g}_t = \mathbf{U}_t \Sigma_t \mathbf{V}_t^T$. Suppose $\mathbf{g}_t \in \mathbb{R}^{m \times n}$ is the gradient matrix with rank r_t , $\Sigma_t \in \mathbb{R}^{r_t \times r_t}$ is a diagonal matrix containing the singular values of \mathbf{g}_t , $\mathbf{U}_t \in \mathbb{R}^{m \times r_t}$ and $\mathbf{V}_t \in \mathbb{R}^{n \times r_t}$ are the left and right singular vector matrices of \mathbf{g}_t , respectively. The update matrix becomes $\mathbf{U}_t \mathbf{V}_t^T$, which represents the closest semi-orthogonal matrix to \mathbf{g}_t . Conceptually, this orthogonalization procedure maintains the structural properties of the update matrices, thereby preventing the parameters from being updated along a few dominant directions.

Newton-Schulz Iteration Process. This iterative process begins by normalizing the gradient matrix $\mathbf{G}_t = \mathbf{g}_t / \|\mathbf{g}_t\|_F$, where $\|\cdot\|_F$ is the Frobenius norm. The iteration is then initialized with $\mathbf{X}_0 = \mathbf{G}_t$,

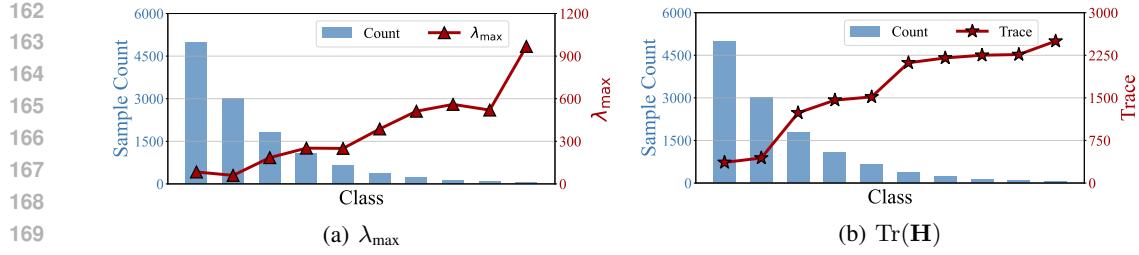


Figure 1: (a) Maximum eigenvalues λ_{\max} (↓) and (b) trace of Hessian metric $\text{Tr}(\mathbf{H})$ (↓) across classes with different number of samples. Classes with fewer training samples consistently exhibit larger values for both metrics, indicating that these under-represented classes converge to sharper minima in the loss landscape, which can lead to poor generalization performance.

at each step k of the N -step iteration, \mathbf{X}_k is updated from \mathbf{X}_{k-1} as:

$$\mathbf{X}_k = a\mathbf{X}_{k-1} + b(\mathbf{X}_{k-1}\mathbf{X}_{k-1}^T)\mathbf{X}_{k-1} + c(\mathbf{X}_{k-1}\mathbf{X}_{k-1}^T)^2\mathbf{X}_{k-1}, \quad (3)$$

where \mathbf{X}_N denotes the final output after N iterative steps. The parameters a , b , and c are iteration coefficients. To guarantee proper convergence of Eq. (3), these coefficients must be tuned such that the polynomial $p(x) = ax + bx^3 + cx^5$ maintains a fixed point in the neighborhood of 1. Following the original formulation (Jordan et al., 2024), we employ the coefficient values $a = 3.4445$, $b = -4.7750$, $c = 2.0315$, and perform 5 iterations. These coefficients are specifically designed to accelerate the convergence rate for matrices with small initial singular values.

Loss Landscape in Long-Tailed Learning. We consider the minimization of a smooth, potentially non-convex objective function f (e.g. cross-entropy loss). The geometry of this landscape is often characterized by the spectral properties of its Hessian matrix \mathbf{H} . Key indicators of sharpness include the largest eigenvalue λ_{\max} and the trace $\text{Tr}(\mathbf{H})$, where larger value metrics indicate a sharper, more challenging optimization terrain. Following prior work (Rangwani et al., 2022), we empirically investigate this relationship by computing the eigen spectrum of the Hessian for each class on the long-tailed dataset CIFAR-10 LT. As depicted in Fig. 1, there is a clear trend where both λ_{\max} and $\text{Tr}(\mathbf{H})$ increase substantially as the number of samples per class decreases. This validates that models trained on tail classes are more prone to converging within sharper regions of the loss landscape. Consequently, an optimizer’s capability to navigate towards flatter minima is paramount for achieving robust generalization, a necessity that is especially pronounced in the context of imbalanced learning.

Escaping from Sharp Minima. In the following, we demonstrate that the Muon algorithm can amplify the gradient projection along directions of negative curvature as training approaches convergence, thereby enabling accelerated escape from sharp areas and convergence to flatter minima. Our analysis leverages the Correlated Negative Curvature (CNC) assumption (Daneshmand et al., 2018).

Assumption 1 (Correlated Negative Curvature (CNC)). *Let \mathbf{W}_t be a point where the Hessian $\nabla^2 f(\mathbf{W}_t)$ has a minimum eigenvalue λ_{\min} at iteration t , and let $\mathbf{v}_{\mathbf{W}_t}$ be the corresponding unit eigenvector. The stochastic gradient $\mathbf{g}_t = \nabla f(\mathbf{W}_t)$ satisfies the CNC assumption if the second moment of its projection onto $\mathbf{v}_{\mathbf{W}_t}$ is uniformly bounded away from zero, i.e.,*

$$\exists \gamma > 0, \quad s.t. \quad \forall \mathbf{W}_t : \quad \mathbb{E}[\langle \mathbf{v}_{\mathbf{W}_t}, \mathbf{g}_t \rangle^2] \geq \gamma. \quad (4)$$

This assumption posits that the stochastic gradient has a projection along the direction of most negative curvature, providing a signal for the optimizer to move away from sharp regions. This assumption has been theoretically justified in the context of learning half-spaces and has also been empirically validated across a wide range of neural networks with varying complexity (Staib et al., 2019; Wang et al., 2020). We now present Theorem 1, with the detailed proof provided in Appendix B.

Theorem 1. *Let \mathbf{W}_t be a point where the Hessian $\nabla^2 f(\mathbf{W}_t)$ has a minimum eigenvalue at iteration t , and let $\mathbf{v}_{\mathbf{W}_t}$ be the corresponding unit eigenvector. Define the projection of the SGD update onto $\mathbf{v}_{\mathbf{W}_t}$ as $\text{proj}_{SGD} = \langle \mathbf{v}_{\mathbf{W}_t}, \mathbf{g}_t \rangle$, and the projection of the Muon update onto $\mathbf{v}_{\mathbf{W}_t}$ as $\text{proj}_{\text{Muon}} = \langle \mathbf{v}_{\mathbf{W}_t}, \mathbf{O}_t \rangle = \langle \mathbf{v}_{\mathbf{W}_t}, \mathbf{U}_t \mathbf{V}_t^\top \rangle$. Under the CNC assumption, the following inequality holds:*

$$\exists \gamma > 0, \quad s.t. \quad \forall \mathbf{W}_t : \quad \mathbb{E}[(\text{proj}_{\text{Muon}})^2] \geq \mathbb{E}[(\text{proj}_{SGD})^2] \geq \gamma. \quad (5)$$

216 **Remark.** Theorem 1 reveals that Muon’s gradient orthogonalization amplifies the update’s projection
 217 onto the negative curvature direction, enabling a more effective escape from sharp regions. Furthermore,
 218 prior analysis (Daneshmand et al., 2018) has shown that the convergence rate of SGD depends
 219 on the value γ as $\mathcal{O}(\gamma^{-4})$ under certain assumptions. Our findings suggest that Muon effectively
 220 enhances the gradient component of SGD in the direction of negative curvature. Consequently, Muon
 221 is reasonably expected to converge more rapidly to the flatter minima, leading to better generalization.
 222 This aligns with the empirical evidence found in prior studies (Liu et al., 2025; Shah et al., 2025).

224 3.3 PROMO: A HYBRID OPTIMIZATION APPROACH

226 **Computational Overhead Analysis.** While Theorem 1 establishes the theoretical advantage of the
 227 Muon optimizer in escaping sharp regions, its computational overhead presents practical challenges
 228 for long-tailed recognition tasks. For further analysis, we estimate the FLOP overhead introduced
 229 by the Newton-Schulz iteration. For a linear layer parameterized by a weight matrix $\mathbf{W} \in \mathbb{R}^{m \times n}$,
 230 each Newton-Schulz iteration requires approximately $6mn^2$ FLOPs. For T iterations, this amounts
 231 to $6Tmn^2$ FLOPs. The standard linear layer computation involves approximately $6mnL$ FLOPs,
 232 where L represents the number of inputs processed (Jordan et al., 2024). For linear layers $L = B$,
 233 where B denotes the batch size in tokens. Thus, the FLOP overhead $\Delta\mathcal{F}_{\text{linear}}$ for a linear layer can be
 234 estimated as:

$$235 \Delta\mathcal{F}_{\text{linear}} = \frac{T \cdot 6mn^2}{L \cdot 2mn} = \frac{3Tn}{B}. \quad (6)$$

236 For a convolutional layer, the kernel is flattened into an $m \times n$ matrix for optimization, where
 237 $m = C_{\text{out}}$ is the number of output channels and $n = C_{\text{in}} \cdot k^2$ is the product of input channels and
 238 kernel size. The number of inputs per step is $L = B \cdot H_{\text{out}} \cdot W_{\text{out}}$, where H_{out} and W_{out} are the spatial
 239 dimensions (height and width) of the output tensor. The FLOP overhead $\Delta\mathcal{F}_{\text{conv}}$ is then:

$$240 \Delta\mathcal{F}_{\text{conv}} = \frac{T \cdot 6mn^2}{L \cdot 2mn} = \frac{3TC_{\text{in}}k^2}{BH_{\text{out}}W_{\text{out}}}. \quad (7)$$

243 Prior studies (Jordan et al., 2024) have shown that Muon maintains FLOP overhead below 1% in
 244 large-scale language model training, where token counts per batch can reach millions (e.g., 16M
 245 tokens in LLaVA-405B). However, long-tailed recognition tasks typically employ much smaller batch
 246 sizes. This discrepancy introduces a new challenge: while Muon proves effective at escaping sharp
 247 minima, its computational overhead can become non-negligible in certain scenarios. For instance, in
 248 a ResNet layer with $C_{\text{in}} = 512$, $k = 3$, and an output feature map of 7×7 , using $T = 5$ iterations
 249 with a batch size of $B = 256$ would result in an estimated overhead of 183% according to Eq. (7).
 250 This substantial increase in training time could limit the scalability of using Muon.

251 **Training Dynamics Insight.** To balance computational efficiency with optimization performance,
 252 we focus on the training dynamics of SGD. Prior research (Fang et al., 2019; Rangwani et al., 2022;
 253 Abbe et al., 2023) indicates that in the early stages of training, the inherent stochasticity of SGD
 254 provides sufficient noise to effectively navigate away from sharp areas, but it behaves increasingly
 255 like deterministic gradient descent as training progresses and the learning rate decays, making it
 256 more prone to stalling near sharp regions late in training, especially in long-tailed scenarios. This
 257 observation suggests that the capability of Muon to reach flatter minima is most valuable during later
 258 training phases when SGD’s inherent noise becomes insufficient.

259 **Dynamic Hybrid Optimization.** We propose ProMO, a hybrid optimization method that dynamically
 260 alternates between SGD and Muon. Specifically, for a training process with T_{max} total epochs, at
 261 epoch t , the model applies a Muon update with probability $p_t \in [0, 1]$ and otherwise applies a SGD
 262 update with probability $1 - p_t$. We define p_t using a sinusoidal schedule:

$$263 p_t = \sin\left(\frac{\pi}{2} \cdot \frac{t}{T_{\text{max}}}\right). \quad (8)$$

265 This sinusoidal probability schedule ensures that during early training, SGD is predominantly selected
 266 (*i.e.*, Eq. (1)), leveraging its inherent stochasticity for escaping sharp regions while minimizing Muon’s
 267 computational overhead. As training progresses, the probability of selecting Muon gradually increases
 268 (*i.e.*, Eq. (2)), providing enhanced capabilities to escape sharp minima that may hinder generalization
 269 performance when SGD’s noise becomes insufficient. This dynamic approach maximizes Muon’s
 270 benefits while maintaining computational efficiency. Notably, both optimizers operate on the same

270 parameter set, with Muon simply applying orthogonalization to SGD’s gradient updates without
 271 introducing additional state or parameters to the optimization process. The pseudo-code for the
 272 training processes of Muon and our ProMO are provided in Appendix A.
 273

274 4 EXPERIMENTS

275 4.1 EXPERIMENTAL SETUP

276 **Datasets.** We evaluate the proposed Muon optimizer method on a suite of widely used long-tailed
 277 benchmarks, CIFAR-10 LT, CIFAR-100 LT, ImageNet-LT (Liu et al., 2019), and Places-LT (Liu et al.,
 278 2019). CIFAR-10 LT and CIFAR-100 LT are two long-tailed datasets sampled from the original
 279 CIFAR datasets (Krizhevsky et al., 2009), consisting of 10 and 100 classes, respectively. We conduct
 280 experiments under varying imbalance factors, defined as $IF = n_{\max}/n_{\min}$, where n_{\max} and n_{\min}
 281 denote the number of samples in the most and least frequent classes, respectively. Following the
 282 mainstream protocol (Cui et al., 2019), we adopt imbalance settings with imbalance factors of 10 and
 283 100, where the number of samples per class decreases exponentially. ImageNet-LT is a large-scale
 284 long-tailed dataset derived from the ImageNet dataset (Deng et al., 2009), comprising 115.8k training
 285 images across 1,000 categories, with class frequencies ranging from 1,280 to 5 instances, and an
 286 imbalance factor of 256. Places-LT contains 62.5k training images from 365 scene categories, with
 287 the number of samples per class varying from 4,980 to 5, and an imbalance factor of 996.
 288

289 **Evaluation Protocol.** We follow standard protocols (Wang et al., 2023) in long-tailed classification
 290 by treating all classes equally during testing and reporting results across three class splits: *Many*,
 291 *Medium*, and *Few*, based on the number of training samples per class. Consistent with prior work
 292 (Cui et al., 2019; Rangwani et al., 2022), we use top-1 accuracy as our evaluation metric and report it
 293 for each class split as well as overall on each dataset. To assess computational efficiency, we also
 294 record the average training time per epoch associated with each method across all datasets.
 295

296 **Baselines.** We compare our method with a range of strong baselines commonly used in long-tailed
 297 classification. We evaluate four optimizers: SGD, SAM, Muon, and our proposed ProMO, applied
 298 to various widely used methods: Cross-Entropy (CE), Class-Balanced Loss (CB) (Cui et al., 2019),
 299 Logit Adjustment (LA) (Menon et al., 2021), Balanced Contrastive Learning (BCL) (Zhu et al., 2022),
 300 and Probabilistic Contrastive Learning (ProCo) (Du et al., 2024). This allows us to comprehensively
 301 assess the contribution of our optimizer across various long-tailed learning paradigms.

302 **Implementation details.** Our code is implemented with Pytorch 1.12.1. All experiments are carried
 303 out on NVIDIA GeForce RTX 3090 GPUs. For a fair comparison, we use ResNet32 on CIFAR-10 LT
 304 and CIFAR-100 LT, ResNet50 on ImageNet-LT, and pre-trained ResNet-152 on Places-LT. We train
 305 each model using a batch size of 256 (for CIFAR-10 LT and CIFAR-100 LT) / 128 (for ImageNet-LT)
 306 / 512 (for Places-LT), with a momentum of 0.9 and a weight decay of 0.0002. We adopt the Nesterov
 307 momentum form for all optimizers, with an initial learning rate of 0.1; a multi-step schedule (decayed
 308 to 0.01 and 0.0001 at epochs 160 and 180) for CIFAR-10 LT and CIFAR-100 LT, and a cosine
 309 schedule throughout training for ImageNet-LT and Places-LT. For Newton-Schulz iteration steps N
 310 in the Muon optimizer, we set $N = 5$ for the sake of efficiency.

311 4.2 COMPARISON RESULTS

312 **Results on CIFAR-10 LT and CIFAR-100 LT.** We first evaluate Muon and ProMO on CIFAR-10 LT
 313 and CIFAR-100 LT under imbalance factors (IF) of 10 and 100. As shown in Table 1, both methods
 314 consistently outperform SGD and SAM across all class subsets (Many, Medium, Tail), with the largest
 315 gains on tail classes under severe imbalance. On CIFAR-10 LT, Muon achieves clear improvements
 316 over both baselines, particularly at IF=100 where it boosts tail accuracy without compromising head
 317 or medium classes. The advantage is even more pronounced on CIFAR-100 LT: Muon not only
 318 improves overall accuracy under both moderate and extreme imbalance, but also delivers substantial
 319 gains for tail classes; for instance, when paired with the CB loss, Muon improves tail class accuracy
 320 by 2.2% (IF=10) and 2.4% (IF=100) over SGD. Across all conditions, Muon maintains a consistent
 321 edge over SAM, highlighting its robustness in long-tailed learning.

322 Crucially, our proposed ProMO not only matches but in some cases even surpasses the performance
 323 of the Muon optimizer across various experimental settings. This demonstrates that our dynamic

324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 Table 1: Top-1 accuracy (%) (\uparrow) results for *Many*, *Medium* (namely Med.), *Few* and overall classes on CIFAR-10 LT and CIFAR-100 LT datasets, categorized by imbalance factors (IF) of 10 and 100. **ProMO** and **Muon** are highlighted in blue to group them for focused comparison against the baselines.

Loss	Method	CIFAR-10 LT IF = 100				CIFAR-100 LT IF = 10				CIFAR-100 LT IF = 100			
		Many	Med.	Few	All	Many	Med.	Few	All	Many	Med.	Few	All
CE	SGD	94.1	77.4	65.0	77.4	75.6	62.8	48.2	60.8	75.9	52.0	15.7	44.6
	SAM	95.7	76.7	64.4	77.5	76.7	64.4	49.0	61.9	77.5	51.1	15.8	44.9
	ProMO	95.2	76.9	64.3	77.3	77.1	65.4	49.7	62.6	77.2	53.9	16.2	45.8
	Muon	95.1	75.7	67.1	78.1	75.0	65.6	49.1	61.8	77.2	52.4	17.3	45.8
CB	SGD	94.8	77.0	66.0	77.9	75.1	63.5	48.4	60.9	75.0	50.6	17.3	44.6
	SAM	94.9	76.0	65.8	77.6	77.5	65.1	48.3	62.1	75.4	50.6	19.0	45.4
	ProMO	94.9	77.1	66.7	78.3	76.1	66.4	50.5	62.9	76.5	52.5	19.3	46.4
	Muon	95.1	77.9	66.0	78.3	76.4	65.9	50.6	62.9	76.4	52.2	19.7	46.5
LA	SGD	90.3	76.9	80.9	82.5	70.0	64.3	57.1	63.2	69.2	53.6	34.3	50.5
	SAM	91.9	78.2	81.9	83.8	72.6	64.5	58.8	64.6	67.6	54.6	35.8	51.0
	ProMO	91.5	78.0	82.0	83.7	71.9	65.0	58.6	64.5	69.3	55.0	34.8	51.2
	Muon	92.6	79.9	82.4	84.7	71.7	65.0	59.3	64.7	68.5	56.2	36.1	51.9
BCL	SGD	93.2	79.3	81.7	84.4	71.7	64.5	59.5	64.7	68.5	54.2	34.2	50.5
	SAM	94.0	80.8	82.7	85.5	72.5	65.2	60.0	65.3	68.1	53.5	37.1	51.3
	ProMO	93.9	80.2	82.1	85.1	73.9	66.0	60.4	66.1	71.1	57.5	36.3	53.1
	Muon	94.3	80.5	82.9	85.6	73.2	66.3	60.5	66.0	70.7	56.4	36.9	52.9
ProCo	SGD	93.6	80.7	82.2	85.2	71.8	64.7	59.2	64.6	68.9	55.4	36.2	51.8
	SAM	92.6	80.3	84.7	85.8	73.6	64.2	59.9	65.3	69.4	56.2	36.7	52.4
	ProMO	94.2	81.0	83.3	85.9	73.6	67.3	59.6	66.1	70.1	57.1	36.9	52.9
	Muon	94.2	81.6	82.9	85.9	73.8	65.4	61.5	66.4	70.0	57.4	37.2	53.1

349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 Table 2: Top-1 accuracy (%) (\uparrow) results for *Many*, *Medium* (namely Med.), *Few*, and overall classes on ImageNet-LT (IN-LT) and Places-LT (PL-LT) datasets, categorized by different loss functions. **ProMO** and **Muon** are highlighted in blue to group them for focused comparison against the baselines.

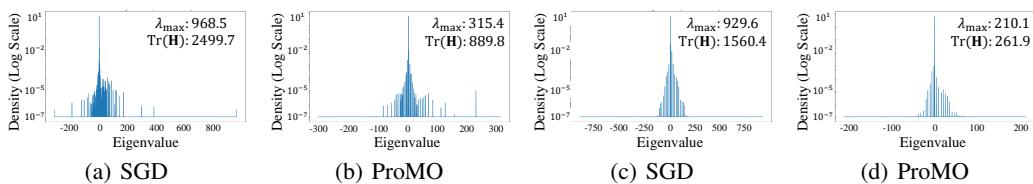
Dataset	Method	CE				LA				ProCo			
		Many	Med.	Few	All	Many	Med.	Few	All	Many	Med.	Few	All
IN-LT	SGD	69.4	42.2	14.8	49.0	64.3	52.4	35.1	54.6	66.3	54.3	37.8	56.7
	SAM	71.7	43.7	16.1	50.7	66.1	54.5	38.5	56.8	66.8	56.9	40.2	58.5
	ProMO	72.7	45.1	16.2	51.8	67.4	54.2	37.8	57.1	68.4	56.6	41.1	59.0
	Muon	72.5	44.1	16.1	51.2	68.5	54.5	37.4	57.6	67.3	56.0	39.5	58.1
PL-LT	SGD	46.3	22.0	4.4	27.3	42.0	40.3	27.4	38.4	43.6	42.0	26.4	39.5
	SAM	47.0	25.2	9.1	29.9	42.1	42.2	33.3	40.4	42.9	42.6	30.3	40.3
	ProMO	47.0	25.2	9.1	29.9	43.3	41.7	32.5	40.5	43.4	42.1	33.0	40.8
	Muon	47.6	26.9	10.7	31.2	43.4	41.6	33.1	40.5	43.4	42.2	31.9	40.6

364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 optimization strategy successfully captures the benefits of Muon’s gradient orthogonalization during critical training phases while maintaining computational efficiency, as will be detailed in Table 4. Additionally, as shown in Fig. 3(c), experiments on both the balanced and imbalanced versions of CIFAR-100 demonstrate that Muon is particularly effective in enhancing generalization performance under imbalanced settings. See Appendix C.1 for more comparison results.

378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103

378
379
380
381
382
Table 3: Loss landscape geometry metrics for SGD and Muon on CIFAR-10 LT and CIFAR-100 LT
with imbalance factor 100. Maximum eigenvalue λ_{\max} (↓) and trace of Hessian matrix $\text{Tr}(\mathbf{H})$ (↓) are
reported for the three least frequent classes. Superscripts (1), (2), and (3) denote the 1st, 2nd, and
3rd rarest classes, respectively. Lower values indicate flatter minima and improved generalization.
Performance of Muon is highlighted in blue for focused comparison.

Dataset	Method	$\lambda_{\max}^{(1)}$	$\lambda_{\max}^{(2)}$	$\lambda_{\max}^{(3)}$	$\text{Tr}(\mathbf{H})^{(1)}$	$\text{Tr}(\mathbf{H})^{(2)}$	$\text{Tr}(\mathbf{H})^{(3)}$
CIFAR-10 LT	SGD	968.51	516.88	560.69	2499.73	2263.09	2251.20
	Muon	116.02	115.23	95.00	404.58	377.77	412.38
CIFAR-100 LT	SGD	929.56	524.80	404.30	1560.40	1604.30	1843.20
	Muon	358.20	309.71	322.10	437.58	529.98	810.12



391
392
393
394
395
396
Figure 2: Eigen spectral density for the class with the fewest samples across different methods.
397 Experiments are conducted on (a,b) CIFAR-10 LT and (c,d) CIFAR-100 LT with imbalance factor
398 100. Maximum eigenvalue λ_{\max} (↓) and trace of hessian metric $\text{Tr}(\mathbf{H})$ (↓) in the top right corner of
399 each panel. Lower λ_{\max} and $\text{Tr}(\mathbf{H})$ indicate a smoother loss landscape and improved generalization.
400
401

402 Notably, our proposed ProMO continues to exhibit strong performance on large-scale benchmarks,
403 demonstrating a clear advantage over both SGD and SAM. Its accuracy is largely on par with the Muon
404 optimizer. Intriguingly, when combined with the most effective loss function, ProCo, ProMO not only
405 matches but surpasses the performance of the Muon optimizer on both datasets. This suggests that the
406 dynamic scheduling of optimizers may introduce a more diverse optimization pathway, potentially
407 guiding the model towards wider, better-generalizing minima than either optimizer could find alone.

408 **Flat Minima of Loss Landscape.** To further investigate the mechanism behind the improved
409 generalization performance of tail classes, we analyze the optimization from a loss landscape
410 perspective. We compute the eigenvalue spectrum of the Hessian matrix for tail classes on both
411 CIFAR-10 LT and CIFAR-100 LT datasets with an imbalance factor of 100, training with the LA
412 loss, as shown in Table 3 and Fig. 2. Table 3 presents the Hessian properties for the three classes with
413 the smallest sample sizes, comparing SGD and Muon optimizers through the maximum eigenvalue
414 λ_{\max} and trace $\text{Tr}(\mathbf{H})$ at convergence. Smaller values indicate flatter loss landscapes associated with
415 better generalization. The results show clear advantages of Muon: on CIFAR-10 LT, λ_{\max} drops by
416 77%–88% and the trace by 81–84% relative to SGD. On the more challenging CIFAR-100 LT,
417 reductions remain substantial, with 20%–61% in λ_{\max} and 56%–72% in the trace. These findings
418 indicate that Muon drives tail classes toward flatter minima, consistent with our theoretical analysis.

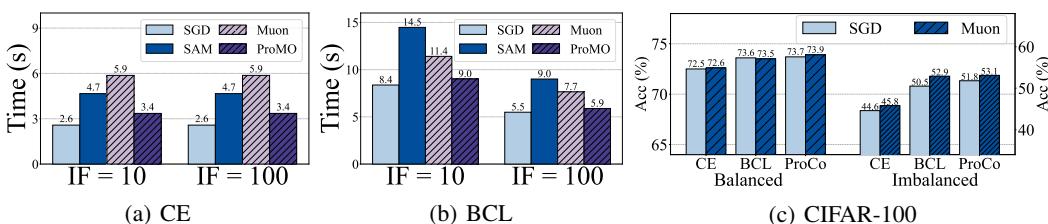
419 It is also crucial to examine the optimizer’s ability to escape saddle points, as the loss landscape of tail
420 classes often exhibits highly negative minimum eigenvalues, indicating convergence to such regions.
421 To validate this, we compute the minimum eigenvalues (λ_{\min}) for the class with the fewest samples
422 under Muon and SGD on both CIFAR-10 LT and CIFAR-100 LT under IF=100. On CIFAR-10 LT,
423 the λ_{\min} under Muon is -110.33, which is substantially larger than the -316.30 observed under SGD.
424 This trend is even more pronounced on the challenging CIFAR-100 LT dataset, where Muon achieved
425 a λ_{\min} of -352.22 compared to -916.12 for SGD. This observation indicates significantly weaker
426 negative curvature, corroborating Muon’s effectiveness in escaping saddle-like regions for tail classes.

427 **Computational Efficiency Analysis.** We analyze the computational efficiency of ProMO against the
428 SGD, SAM, and Muon optimizers, as shown in Table 4, Figs. 3(a) and 3(b). In Table 4, we measure
429 the average training time per epoch across four datasets, using two representative loss functions, LA
430 and ProCo, to evaluate the robustness of each optimizer to varying loss complexities.

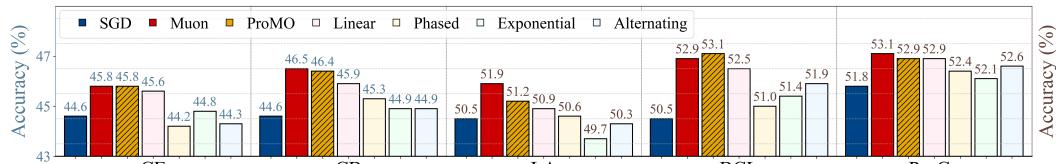
431 The results demonstrate that ProMO effectively resolves the trade-off between generalization and
432 computational cost, achieving the strong performance of Muon with minimal overhead. This efficiency

432
 433 Table 4: Computational overhead of different optimizers on long-tailed benchmarks. We report the
 434 average training time per epoch (seconds) (↓) and the runtime ratio relative to SGD (in parentheses).
 435 **Muon and ProMO are highlighted in blue to group them for focused comparison against the baselines.**

436 437 438	Loss	Method	CIFAR-100 LT		ImageNet-LT	Places-LT
			IF=10	IF=100		
439 440 441 442	LA	SGD	4.2s	(1.00x)	3.5s	(1.00x)
		SAM	7.0s	(1.67x)	4.4s	(1.27x)
		Muon	8.4s	(1.99x)	5.5s	(1.61x)
		ProMO	5.9s	(1.41x)	4.2s	(1.23x)
443 444 445 446	ProCo	SGD	11.1s	(1.00x)	7.0s	(1.00x)
		SAM	21.3s	(1.92x)	13.0s	(1.85x)
		Muon	17.6s	(1.59x)	11.3s	(1.60x)
		ProMO	12.4s	(1.12x)	8.2s	(1.17x)



447
 448 Figure 3: (a, b) Average training time per epoch (seconds) (↓) for various methods on CIFAR-100 LT
 449 with imbalance factors of 10 and 100, using (a) LA and (b) BCL loss functions, respectively. (c) Top-1
 450 accuracy (%) (↑) comparison between SGD and Muon on both the standard balanced CIFAR-100
 451 and its long-tailed version (IF=100) across various loss functions. Results demonstrate that Muon is
 452 particularly effective for improving generalization performance in imbalanced settings.
 453



460
 461 Figure 4: Top-1 accuracy (%) (↑) comparison of the proposed sinusoidal probability scheduling
 462 method in ProMO against four alternative probability schedules across different loss functions.
 463 Experiments are conducted on CIFAR-100 LT with an imbalance factor of 100.
 464

465
 466 is most striking with complex losses like ProCo, where ProMO adds only 21% training overhead
 467 compared to SGD. In sharp contrast, SAM incurs a 176% overhead and Muon still bears a considerable
 468 85%, indicating their pronounced scalability limitations when integrated with advanced long-tailed
 469 learning methods. When paired with LA loss, ProMO maintains its advantage, incurring just 25%
 470 overhead versus 36% for SAM and a costly 106% for Muon. Importantly, these dramatic efficiency
 471 gains come at no cost to accuracy. As shown in Tables 1 and 2, ProMO consistently matches the
 472 performance of the Muon optimizer, establishing it as a highly practical and scalable method for
 473 real-world, large-scale long-tail recognition. See Appendix C.2 for more comparison results.

474
 475 **Comparison with Alternative Probability Schedules.** To further assess the effectiveness of our
 476 sinusoidal probability scheduling method in Eq. (8), we compared it against several alternative
 477 scheduling approaches. Specifically, we evaluated: (1) *Linear*, where the probability of selecting
 478 Muon increases linearly from 0 to 1; (2) *Phased*, which employs SGD exclusively in the first half of
 479 training and switches entirely to Muon in the second half; (3) *Exponential*, where the probability of
 480 choosing Muon grows exponentially from 0 to 1; and (4) *Alternating*, where the optimizer alternates
 481 between Muon and SGD at each epoch. The experimental results on CIFAR-100 LT with an imbalance
 482 factor of 100 are presented in Fig. 4. While most of these schedules generally outperform pure SGD

486 in terms of accuracy, the sinusoidal probability schedule consistently achieves superior performance
 487 across a variety of loss functions. This finding highlights that gradually biasing the training process
 488 toward Muon in a sinusoidal manner offers more stability and adaptability, ultimately enabling
 489 stronger generalization compared to other probability scheduling methods.
 490

491 5 CONCLUSION 492

493 In this work, we present a theoretical analysis of the Muon optimizer from the perspective of loss
 494 landscape geometry and introduce ProMO, a novel hybrid optimization approach designed to address
 495 the poor generalization of tail classes in long-tailed recognition. Our approach is grounded in new
 496 insight demonstrating that the Muon optimizer effectively escapes sharp minima by enhancing the
 497 gradient’s projection along directions of negative curvature. To mitigate Muon’s computational
 498 overhead, ProMO dynamically chooses between standard SGD and Muon optimization using a
 499 sinusoidal schedule that progressively favors Muon as training converges. This approach strikes an
 500 effective balance between computational efficiency and performance, guiding the model toward flatter
 501 loss landscapes and significantly improving generalization on tail classes, as validated by extensive
 502 experiments. For future work, we will investigate the efficacy of our approach in other imbalanced
 503 learning scenarios, such as domain adaptation, to further enhance its applicability and robustness.
 504

505 ETHICS STATEMENT 506

507 This work complies with the Code of Ethics. It uses only publicly available datasets, involves no
 508 human or sensitive data, and raises no foreseeable risks related to privacy, security, or fairness issues.
 509 The research is conducted solely for scientific advancement, with no conflicts of interest.
 510

511 REPRODUCIBILITY STATEMENT 512

513 We are committed to ensure the reproducibility of our proposed method. A detailed description of
 514 our approach is provided in Section 3.3, and the corresponding source code will be made publicly
 515 available upon publication of this paper. Both backbone models and datasets used in our work are
 516 publicly available. Furthermore, the detailed experimental settings required for reproducing are
 517 presented in Section 4.1. We believe that these components provide the community with details
 518 necessary to verify and build upon our work.
 519

520 REFERENCES 521

522 Emmanuel Abbe, Enric Boix Adserà, and Theodor Misiakiewicz. SGD learning on neural networks:
 523 leap complexity and saddle-to-saddle dynamics. In Gergely Neu and Lorenzo Rosasco (eds.), *The
 524 Thirty Sixth Annual Conference on Learning Theory, COLT 2023, 12-15 July 2023, Bangalore,
 525 India*, volume 195 of *Proceedings of Machine Learning Research*, pp. 2552–2623. PMLR, 2023.
 526 URL <https://proceedings.mlr.press/v195/abbe23a.html>.

527 Sumyeong Ahn, Jongwoo Ko, and Se-Young Yun. CUDA: curriculum of data augmentation for long-
 528 tailed recognition. In *The Eleventh International Conference on Learning Representations, ICLR
 529 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/forum?id=RgUPdudkW1n>.

530 Mateusz Buda, Atsuto Maki, and Maciej A. Mazurowski. A systematic study of the class imbalance
 531 problem in convolutional neural networks. *Neural Networks*, 106:249–259, 2018. doi: 10.1016/J.
 532 NEUNET.2018.07.011. URL <https://doi.org/10.1016/j.neunet.2018.07.011>.

533 Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Aréchiga, and Tengyu Ma. Learning imbalanced
 534 datasets with label-distribution-aware margin loss. In Hanna M. Wallach, Hugo Larochelle, Alina
 535 Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), *Advances in
 536 Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
 537 cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada*, pp.
 538 1565–1576, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/621461af90cadfdaf0e8d4cc25129f91-Abstract.html>.

540 Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE: synthetic
 541 minority over-sampling technique. *J. Artif. Intell. Res.*, 16:321–357, 2002. doi: 10.1613/JAIR.953.
 542 URL <https://doi.org/10.1613/jair.953>.

543

544 Chris Criscitiello and Nicolas Boumal. Efficiently escaping saddle points on manifolds. In Hanna M.
 545 Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
 546 Garnett (eds.), *Advances in Neural Information Processing Systems 32: Annual Conference on
 547 Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
 548 BC, Canada*, pp. 5985–5995, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/7486cef2522ee03547cfb970a404a874-Abstract.html>.

549

550 Jiequan Cui, Zhisheng Zhong, Shu Liu, Bei Yu, and Jiaya Jia. Parametric contrastive learning. In *2021
 551 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada,
 552 October 10-17, 2021*, pp. 695–704. IEEE, 2021. doi: 10.1109/ICCV48922.2021.00075. URL
 553 <https://doi.org/10.1109/ICCV48922.2021.00075>.

554

555 Jiequan Cui, Zhisheng Zhong, Zhuotao Tian, Shu Liu, Bei Yu, and Jiaya Jia. Generalized para-
 556 metric contrastive learning. *IEEE Trans. Pattern Anal. Mach. Intell.*, 46(12):7463–7474, 2024.
 557 doi: 10.1109/TPAMI.2023.3278694. URL <https://doi.org/10.1109/TPAMI.2023.3278694>.

558

559 Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge J. Belongie. Class-balanced loss based on
 560 effective number of samples. In *IEEE Conference on Computer Vision and Pattern Recognition,
 561 CVPR 2019, Long Beach, CA, USA, June 16-20, 2019*, pp. 9268–9277. Computer Vision
 562 Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00949. URL http://openaccess.thecvf.com/content_CVPR_2019/html/Cui_Class-Balanced_Loss_Based_on_Effective_Number_of_Samples_CVPR_2019_paper.html.

563

564

565 Hadi Daneshmand, Jonas Moritz Kohler, Aurélien Lucchi, and Thomas Hofmann. Escaping saddles
 566 with stochastic gradients. In Jennifer G. Dy and Andreas Krause (eds.), *Proceedings of the
 567 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, July 10-15, 2018*, volume 80 of *Proceedings of Machine Learning Research*, pp. 1163–
 568 1172. PMLR, 2018. URL <http://proceedings.mlr.press/v80/daneshmand18a.html>.

569

570

571 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 572 hierarchical image database. In *2009 IEEE Computer Society Conference on Computer Vision and
 573 Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA*, pp. 248–255. IEEE
 574 Computer Society, 2009. doi: 10.1109/CVPR.2009.5206848. URL <https://doi.org/10.1109/CVPR.2009.5206848>.

575

576

577 Bowen Dong, Pan Zhou, Shuicheng Yan, and Wangmeng Zuo. LPT: long-tailed prompt tuning for
 578 image classification. In *The Eleventh International Conference on Learning Representations, ICLR
 579 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/forum?id=8pOVaAo8ie>.

580

581

582 Chaoqun Du, Yulin Wang, Shiji Song, and Gao Huang. Probabilistic contrastive learning for
 583 long-tailed visual recognition. *IEEE Trans. Pattern Anal. Mach. Intell.*, 46(9):5890–5904, 2024.
 584 doi: 10.1109/TPAMI.2024.3369102. URL <https://doi.org/10.1109/TPAMI.2024.3369102>.

585

586 Cong Fang, Zhouchen Lin, and Tong Zhang. Sharp analysis for nonconvex SGD escaping from saddle
 587 points. In Alina Beygelzimer and Daniel Hsu (eds.), *Conference on Learning Theory, COLT 2019,
 588 25-28 June 2019, Phoenix, AZ, USA*, volume 99 of *Proceedings of Machine Learning Research*,
 589 pp. 1192–1234. PMLR, 2019. URL <http://proceedings.mlr.press/v99/fang19a.html>.

590

591 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
 592 for efficiently improving generalization. In *9th International Conference on Learning Representations,
 593 ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021. URL
<https://openreview.net/forum?id=6Tm1mposlrM>.

594 Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points - online stochastic
 595 gradient for tensor decomposition. In Peter Grünwald, Elad Hazan, and Satyen Kale (eds.),
 596 *Proceedings of The 28th Conference on Learning Theory, COLT 2015, Paris, France, July 3-6,
 597 2015*, volume 40 of *JMLR Workshop and Conference Proceedings*, pp. 797–842. JMLR.org, 2015.
 598 URL <http://proceedings.mlr.press/v40/Ge15.html>.

599 Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. ADASYN: adaptive synthetic sampling
 600 approach for imbalanced learning. In *Proceedings of the International Joint Conference on Neural
 601 Networks, IJCNN 2008, part of the IEEE World Congress on Computational Intelligence, WCCI
 602 2008, Hong Kong, China, June 1-6, 2008*, pp. 1322–1328. IEEE, 2008. doi: 10.1109/IJCNN.2008.
 603 4633969. URL <https://doi.org/10.1109/IJCNN.2008.4633969>.

604 Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alexander Shepard,
 605 Hartwig Adam, Pietro Perona, and Serge J. Belongie. The inaturalist species classification
 606 and detection dataset. In *2018 IEEE Conference on Computer Vision and Pattern Recog-
 607 nition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018*, pp. 8769–8778. Computer
 608 Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.00914.
 609 URL http://openaccess.thecvf.com/content_cvpr_2018/html/Van_Horn_The_INaturalist_Species_CVPR_2018_paper.html.

610 Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
 611 generalization measures and where to find them. In *8th International Conference on Learning
 612 Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020.
 613 URL <https://openreview.net/forum?id=SJgIPJBFvH>.

614 Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape
 615 saddle points efficiently. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th
 616 International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
 617 2017*, volume 70 of *Proceedings of Machine Learning Research*, pp. 1724–1732. PMLR, 2017.
 618 URL <http://proceedings.mlr.press/v70/jin17a.html>.

619 Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
 620 Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL <https://kellerjordan.github.io/posts/muon/>.

621 Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis
 622 Kalantidis. Decoupling representation and classifier for long-tailed recognition. In *8th International
 623 Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*.
 624 OpenReview.net, 2020. URL <https://openreview.net/forum?id=r1gRTCVFvB>.

625 Dmitry Kovalev. Understanding gradient orthogonalization for deep learning via non-euclidean
 626 trust-region optimization. *CoRR*, abs/2503.12645, 2025. doi: 10.48550/ARXIV.2503.12645. URL
 627 <https://doi.org/10.48550/arXiv.2503.12645>.

628 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

629 Mengke Li, Zhikai Hu, Yang Lu, Weichao Lan, Yiu-ming Cheung, and Hui Huang. Feature fusion
 630 from head to tail for long-tailed visual recognition. In Michael J. Wooldridge, Jennifer G. Dy, and
 631 Sriraam Natarajan (eds.), *Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024,
 632 Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth
 633 Symposium on Educational Advances in Artificial Intelligence, EAAI 2024, February 20-27, 2024,
 634 Vancouver, Canada*, pp. 13581–13589. AAAI Press, 2024. doi: 10.1609/AAAI.V38I12.29262.
 635 URL <https://doi.org/10.1609/aaai.v38i12.29262>.

636 Sicong Li, Qianqian Xu, Zhiyong Yang, Zitai Wang, Linchao Zhang, Xiaochun Cao, and Qingming
 637 Huang. Focal-sam: Focal sharpness-aware minimization for long-tailed classification. *CoRR*,
 638 abs/2505.01660, 2025. doi: 10.48550/ARXIV.2505.01660. URL <https://doi.org/10.48550/arXiv.2505.01660>.

639 Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
 640 Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bohong Yin,
 641 Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Mengnan Dong, Zheng Zhang, Yongsheng

648 Kang, Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin Yang. Muon
 649 is scalable for LLM training. *CoRR*, abs/2502.16982, 2025. doi: 10.48550/ARXIV.2502.16982.
 650 URL <https://doi.org/10.48550/arXiv.2502.16982>.

651

652 Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
 653 sharpness-aware minimization. In *IEEE/CVF Conference on Computer Vision and Pattern Recog-
 654 nition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022*, pp. 12350–12360. IEEE, 2022.
 655 doi: 10.1109/CVPR52688.2022.01204. URL <https://doi.org/10.1109/CVPR52688.2022.01204>.

656

657 Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X. Yu. Large-scale
 658 long-tailed recognition in an open world. In *IEEE Conference on Computer Vision and
 659 Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019*, pp. 2537–2546.
 660 Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00264. URL http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Large-Scale_Long-Tailed_Recognition_in_an_Open_World_CVPR_2019_paper.html.

661

662

663 Jiaan Luo, Feng Hong, Jiangchao Yao, Bo Han, Ya Zhang, and Yanfeng Wang. Revive re-
 664 weighting in imbalanced learning by density ratio estimation. In Amir Globersons, Lester
 665 Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
 666 (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neural
 667 Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
 668 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/92440ec643f4e9f17409557b6516566e-Abstract-Conference.html.

669

670 Xingyu Lyu, Qianqian Xu, Zhiyong Yang, Shaojie Lyu, and Qingming Huang. SSE-SAM: balancing
 671 head and tail classes gradually through stage-wise SAM. In Toby Walsh, Julie Shah, and Zico
 672 Kolter (eds.), *AAAI-25, Sponsored by the Association for the Advancement of Artificial Intelligence,
 673 February 25 - March 4, 2025, Philadelphia, PA, USA*, pp. 19278–19286. AAAI Press, 2025.
 674 doi: 10.1609/AAAI.V39I18.34122. URL <https://doi.org/10.1609/aaai.v39i18.34122>.

675

676

677 Yanbiao Ma, Licheng Jiao, Fang Liu, Yuxin Li, Shuyuan Yang, and Xu Liu. Delving into semantic
 678 scale imbalance. In *The Eleventh International Conference on Learning Representations, ICLR
 679 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/forum?id=07tc5kKRIo>.

680

681 Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit,
 682 and Sanjiv Kumar. Long-tail learning via logit adjustment. In *9th International Conference on
 683 Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net,
 684 2021. URL <https://openreview.net/forum?id=37nvvqkCo5>.

685

686 Harsh Rangwani, Sumukh K. Aithal, Mayank Mishra, and Venkatesh Babu R. Escaping sad-
 687 dle points for effective generalization on class-imbalanced data. In Sanmi Koyejo, S. Mo-
 688 hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural
 689 Information Processing Systems 35: Annual Conference on Neural Information Process-
 690 ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
 691 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/8f4d70db9ecec97b6723a86f1cd9cb4b-Abstract-Conference.html.

692

693 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
 694 Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-Fei. Im-
 695 agenet large scale visual recognition challenge. *Int. J. Comput. Vis.*, 115(3):211–252, 2015. doi: 10.
 696 1007/S11263-015-0816-Y. URL <https://doi.org/10.1007/s11263-015-0816-y>.

697

698 Ishaan Shah, Anthony M. Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel,
 699 Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J. Shah, Khoi Nguyen, Kurt Smith, Michael
 700 Callahan, Michael Pust, Mohit Parmar, Peter Rushton, Platon Mazarakis, Ritzvik Kapila, Saurabh
 701 Srivastava, Somanshu Singla, Tim Romanski, Yash Vanjani, and Ashish Vaswani. Practical
 702 efficiency of muon for pretraining. *CoRR*, abs/2505.02222, 2025. doi: 10.48550/ARXIV.2505.
 703 02222. URL <https://doi.org/10.48550/arXiv.2505.02222>.

Wei Shen, Ruichuan Huang, Minhui Huang, Cong Shen, and Jiawei Zhang. On the convergence analysis of muon. *CorR*, abs/2505.23737, 2025. doi: 10.48550/ARXIV.2505.23737. URL <https://doi.org/10.48550/arXiv.2505.23737>.

Jiang-Xin Shi, Tong Wei, Zhi Zhou, Jie-Jing Shao, Xin-Yan Han, and Yufeng Li. Long-tail learning with foundation model: Heavy fine-tuning hurts. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=ccSSKTz9LX>.

Matthew Staib, Sashank J. Reddi, Satyen Kale, Sanjiv Kumar, and Suvrit Sra. Escaping saddle points with adaptive gradient methods. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA*, volume 97 of *Proceedings of Machine Learning Research*, pp. 5956–5965. PMLR, 2019. URL <http://proceedings.mlr.press/v97/staib19a.html>.

David Stutz, Matthias Hein, and Bernt Schiele. Relating adversarially robust generalization to flat minima. In *2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021*, pp. 7787–7797. IEEE, 2021. doi: 10.1109/ICCV48922.2021.00771. URL <https://doi.org/10.1109/ICCV48922.2021.00771>.

Zichang Tan, Jun Li, Jinhao Du, Jun Wan, Zhen Lei, and Guodong Guo. NCL++: nested collaborative learning for long-tailed visual recognition. *Pattern Recognit.*, 147:110064, 2024. doi: 10.1016/J.PATCOG.2023.110064. URL <https://doi.org/10.1016/j.patcog.2023.110064>.

Jianfeng Wang, Thomas Lukasiewicz, Xiaolin Hu, Jianfei Cai, and Zhenghua Xu. RSG: A simple but effective module for learning imbalanced datasets. In *IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021*, pp. 3784–3793. Computer Vision Foundation / IEEE, 2021a. doi: 10.1109/CVPR46437.2021.00378. URL https://openaccess.thecvf.com/content/CVPR2021/html/Wang_RSG_A_Simple_but_Effective_Module_for_Learning_Imbalanced_Datasets_CVPR_2021_paper.html.

Jun-Kun Wang, Chi-Heng Lin, and Jacob D. Abernethy. Escaping saddle points faster with stochastic momentum. In *8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020. URL <https://openreview.net/forum?id=rkeNfp4tPr>.

Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, and Stella X. Yu. Long-tailed recognition by routing diverse distribution-aware experts. In *9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021b. URL <https://openreview.net/forum?id=D9I3drBz4UC>.

Zitai Wang, Qianqian Xu, Zhiyong Yang, Yuan He, Xiaochun Cao, and Qingming Huang. A unified generalization analysis of re-weighting and logit-adjustment for imbalanced learning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/973a0f50d43cf99118cdab456edcacda-Abstract-Conference.html.

Shiyu Xuan and Shiliang Zhang. Decoupled contrastive learning for long-tailed recognition. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.), *Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2024, February 20-27, 2024, Vancouver, Canada*, pp. 6396–6403. AAAI Press, 2024. doi: 10.1609/AAAI.V38I6.28459. URL <https://doi.org/10.1609/aaai.v38i6.28459>.

Zhiyong Yang, Qianqian Xu, Zitai Wang, Sicong Li, Boyu Han, Shilong Bao, Xiaochun Cao, and Qingming Huang. Harnessing hierarchical label distribution variations in test agnostic long-tail recognition. In *Forty-first International Conference on Machine Learning, ICML 2024*,

756 Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL <https://openreview.net/forum?id=ebt5BfRHcW>.

757

758

759 Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe.

760 Cutmix: Regularization strategy to train strong classifiers with localizable features. In *2019*

761 *IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South),*

762 *October 27 - November 2, 2019*, pp. 6022–6031. IEEE, 2019. doi: 10.1109/ICCV.2019.00612.

763 URL <https://doi.org/10.1109/ICCV.2019.00612>.

764 Chiyuan Zhang, Qianli Liao, Alexander Rakhlin, Karthik Sridharan, Brando Miranda, Noah Golowich,

765 and Tomaso Poggio. Musings on deep learning: Properties of sgd. Technical report, Center for

766 Brains, Minds and Machines (CBMM), 2017.

767 Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical

768 risk minimization. In *6th International Conference on Learning Representations, ICLR 2018,*

769 *Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings*. OpenReview.net,

770 2018. URL <https://openreview.net/forum?id=r1Ddp1-Rb>.

771

772 Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text

773 classification. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman

774 Garnett (eds.), *Advances in Neural Information Processing Systems 28: Annual Conference on*

775 *Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada*,

776 pp. 649–657, 2015. URL <https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html>.

777

778 Yixuan Zhou, Yi Qu, Xing Xu, and Hengtao Shen. Imbsam: A closer look at sharpness-aware

779 minimization in class-imbalanced recognition. In *IEEE/CVF International Conference on Com-*

780 *puter Vision, ICCV 2023, Paris, France, October 1-6, 2023*, pp. 11311–11321. IEEE, 2023a. doi:

781 10.1109/ICCV51070.2023.01042. URL <https://doi.org/10.1109/ICCV51070.2023.01042>.

782

783 Zhipeng Zhou, Lanqing Li, Peilin Zhao, Pheng-Ann Heng, and Wei Gong. Class-conditional

784 sharpness-aware minimization for deep long-tailed recognition. In *IEEE/CVF Conference on*

785 *Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24,*

786 2023, pp. 3499–3509. IEEE, 2023b. doi: 10.1109/CVPR52729.2023.00341. URL <https://doi.org/10.1109/CVPR52729.2023.00341>.

787

788 Jianggang Zhu, Zheng Wang, Jingjing Chen, Yi-Ping Phoebe Chen, and Yu-Gang Jiang. Balanced

789 contrastive learning for long-tailed visual recognition. In *IEEE/CVF Conference on Computer*

790 *Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022*, pp.

791 6898–6907. IEEE, 2022. doi: 10.1109/CVPR52688.2022.00678. URL <https://doi.org/10.1109/CVPR52688.2022.00678>.

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 **A ALGORITHM**
811812 We present the pseudo-code of Muon and ProMO in Algorithm 1 and Algorithm 2, respectively, to
813 illustrate the detailed implementation procedure of our method.
814815 **Algorithm 1** Muon
816

Input: Initial weights \mathbf{W}_0 , learning rate schedule $\{\eta_t\}$, momentum β , batch size B , dataset \mathcal{D}
for $t = 0$ to $T_{\max} - 1$ **do**
 Sample mini batch $\{\xi_{t,i}\}_{i=1}^B \leftarrow \mathcal{D}$
 Calculate $\mathbf{g}_t = \frac{1}{B} \sum_{i=1}^B \nabla f(\mathbf{W}_t; \xi_{t,i})$
 If $t > 0$, $\mathbf{M}_t = \beta \mathbf{M}_{t-1} + (1 - \beta) \mathbf{g}_t$. If $t = 0$, $\mathbf{M}_0 = \mathbf{g}_0$
 Calculate $\mathbf{O}_t = \text{NewtonSchulz}(\mathbf{M}_t)$
 Update $\mathbf{W}_{t+1} = \mathbf{W}_t - \eta_t \mathbf{O}_t$
end for

826 **Algorithm 2** ProMO
827

Input: Initial weights \mathbf{W}_0 , learning rate schedule $\{\eta_t\}$, momentum β , batch size B , dataset \mathcal{D}
for $t = 0$ to $T_{\max} - 1$ **do**
 Sample mini batch $\{\xi_{t,i}\}_{i=1}^B \leftarrow \mathcal{D}$
 Calculate $\mathbf{g}_t = \frac{1}{B} \sum_{i=1}^B \nabla f(\mathbf{W}_t; \xi_{t,i})$
 If $t > 0$, $\mathbf{M}_t = \beta \mathbf{M}_{t-1} + (1 - \beta) \mathbf{g}_t$. If $t = 0$, $\mathbf{M}_0 = \mathbf{g}_0$
 Calculate p_t via Eq. (8)
 Sample $\mu \sim \text{Uniform}(0, 1)$
 If $\mu < p_t$ then $\mathbf{O}_t = \text{NewtonSchulz}(\mathbf{M}_t)$ else $\mathbf{O}_t = \mathbf{M}_t$
 Update $\mathbf{W}_{t+1} = \mathbf{W}_t - \eta_t \mathbf{O}_t$
end for

839 **B THEORETICAL SUPPLEMENT**
840841 **Lemma 1.** Given the normalized gradient matrix $\mathbf{G}_t = \frac{\mathbf{g}_t}{\|\mathbf{g}_t\|_F}$ and its rank- r_t singular value
842 decomposition $\mathbf{G}_t = \mathbf{U}_t \mathbf{S}_t \mathbf{V}_t^\top$, where $\mathbf{U}_t \in \mathbb{R}^{m \times r_t}$ and $\mathbf{V}_t \in \mathbb{R}^{n \times r_t}$ satisfy $\mathbf{U}_t^\top \mathbf{U}_t = \mathbf{I}_{r_t}$ and
843 $\mathbf{V}_t^\top \mathbf{V}_t = \mathbf{I}_{r_t}$, and $\mathbf{S}_t = \text{diag}(s_1, \dots, s_{r_t}) \in \mathbb{R}^{r_t \times r_t}$ is the diagonal matrix of singular values, it
844 holds that $\sum_{i=1}^{r_t} s_i^2 = 1$.
845846 *Proof of Lemma 1.* By the normalization condition $\mathbf{G}_t = \mathbf{g}_t / \|\mathbf{g}_t\|_F$, the Frobenius norm of \mathbf{G}_t is:
847

848
$$\|\mathbf{G}_t\|_F = \frac{\|\mathbf{g}_t\|_F}{\|\mathbf{g}_t\|_F} = 1, \quad (9)$$

849

850 which implies $\|\mathbf{G}_t\|_F^2 = 1$. The squared Frobenius norm is equivalent to the trace of $\mathbf{G}_t^\top \mathbf{G}_t$:
851

852
$$\|\mathbf{G}_t\|_F^2 = \text{trace}(\mathbf{G}_t^\top \mathbf{G}_t). \quad (10)$$

853

854 Substituting the SVD, $\mathbf{G}_t = \mathbf{U}_t \mathbf{S}_t \mathbf{V}_t^\top$, we compute:
855

856
$$\mathbf{G}_t^\top \mathbf{G}_t = (\mathbf{U}_t \mathbf{S}_t \mathbf{V}_t^\top)^\top (\mathbf{U}_t \mathbf{S}_t \mathbf{V}_t^\top) = \mathbf{V}_t \mathbf{S}_t^\top \mathbf{U}_t^\top \mathbf{U}_t \mathbf{S}_t \mathbf{V}_t^\top = \mathbf{V}_t \mathbf{S}_t^\top \mathbf{I}_{r_t} \mathbf{S}_t \mathbf{V}_t^\top = \mathbf{V}_t \mathbf{S}_t^2 \mathbf{V}_t^\top. \quad (11)$$

857 The trace operation yields:
858

859
$$\|\mathbf{G}_t\|_F^2 = \text{tr}(\mathbf{V}_t \mathbf{S}_t^2 \mathbf{V}_t^\top) = \text{tr}(\mathbf{V}_t^\top \mathbf{V}_t \mathbf{S}_t^2) = \text{tr}(\mathbf{I}_{r_t} \cdot \mathbf{S}_t^2) = \text{tr}(\mathbf{S}_t^2). \quad (12)$$

860

861 The matrix $\mathbf{S}_t^2 = \text{diag}(s_1^2, \dots, s_{r_t}^2)$ is diagonal, so its trace is the sum of the squared singular values:
862

863
$$\text{tr}(\mathbf{S}_t^2) = \sum_{i=1}^{r_t} s_i^2. \quad (13)$$

864 Combining these results, we conclude:

$$866 \quad 867 \quad 868 \quad \sum_{i=1}^{r_t} s_i^2 = \|\mathbf{G}_t\|_F^2 = 1. \quad (14)$$

869 **Lemma 2.** Let matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{r_t \times r_t}$ be positive semi-definite (PSD) matrices. Then, it holds that
870 $\text{tr}(\mathbf{AB}) \geq 0$.

871 *Proof of Lemma 2.* Since \mathbf{A} is PSD, it admits a symmetric PSD square root $\mathbf{A}^{1/2}$ satisfying
872 $\mathbf{A} = \mathbf{A}^{1/2}\mathbf{A}^{1/2}$ and $(\mathbf{A}^{1/2})^\top = \mathbf{A}^{1/2}$. Applying the cyclic property of the trace operator, we
873 reinterpret $\text{tr}(\mathbf{AB})$ as:

$$874 \quad 875 \quad \text{tr}(\mathbf{AB}) = \text{tr} \left(\mathbf{A}^{1/2} (\mathbf{A}^{1/2} \mathbf{B}) \right) = \text{tr} \left(\mathbf{A}^{1/2} \mathbf{B} \mathbf{A}^{1/2} \right). \quad (15)$$

876 The matrix $\mathbf{M} = \mathbf{A}^{1/2} \mathbf{B} \mathbf{A}^{1/2}$ preserves the PSD property: for any vector $\mathbf{x} \in \mathbb{R}^{r_t}$,

$$877 \quad 878 \quad \mathbf{x}^\top \mathbf{M} \mathbf{x} = \left(\mathbf{x}^\top \mathbf{A}^{1/2} \right) \mathbf{B} \left((\mathbf{A}^{1/2})^\top \mathbf{x} \right) = \mathbf{y}^\top \mathbf{B} \mathbf{y} \geq 0, \quad \mathbf{y} = \mathbf{A}^{1/2} \mathbf{x}, \quad (16)$$

879 since \mathbf{B} is PSD. Consequently, \mathbf{M} is also PSD, and its trace—equivalent to the sum of its non-negative
880 eigenvalues—satisfies $\text{tr}(\mathbf{M}) \geq 0$, that is,

$$881 \quad 882 \quad \text{tr}(\mathbf{AB}) = \text{tr} \left(\mathbf{A}^{1/2} \mathbf{B} \mathbf{A}^{1/2} \right) \geq 0. \quad (17)$$

883 *Proof of Theorem 1.* Define $\mathbf{V} \in \mathbb{R}^{m \times n}$ as the matrix obtained by reshaping \mathbf{vw}_t into shape $m \times n$,
884 so that $\text{vec}(\mathbf{V}) = \mathbf{vw}_t$. The SGD update direction is the stochastic gradient \mathbf{g}_t , and its projection
885 onto \mathbf{vw}_t is:

$$886 \quad 887 \quad \text{proj}_{\text{SGD}} = \text{vec}(\mathbf{g}_t)^\top \text{vec}(\mathbf{V}) = \text{tr}(\mathbf{g}_t^\top \mathbf{V}). \quad (18)$$

888 Remember that $\mathbf{G}_t = \mathbf{g}_t / \|\mathbf{g}_t\|_F$ is the normalized gradient. The projection of \mathbf{G}_t onto \mathbf{vw}_t can be
889 expressed as:

$$890 \quad 891 \quad \text{tr}(\mathbf{G}_t^\top \mathbf{V}) = \text{tr}(\mathbf{V}_t \mathbf{S}_t \mathbf{U}_t^\top \mathbf{V}) = \text{tr}(\mathbf{S}_t \mathbf{M}) = \sum_{i=1}^{r_t} s_i m_{ii}, \quad (19)$$

892 where $\mathbf{M}_t := \mathbf{U}_t^\top \mathbf{V} \mathbf{V}_t \in \mathbb{R}^{r_t \times r_t}$, and $s_i \in [0, 1]$ are the singular values of \mathbf{G}_t , while m_{ii} are the
893 diagonal entries of \mathbf{M} . Hence, the SGD projection on \mathbf{vw}_t becomes:

$$894 \quad 895 \quad \text{proj}_{\text{SGD}} = \|\mathbf{g}_t\|_F \cdot \text{tr}(\mathbf{G}_t^\top \mathbf{V}) = \|\mathbf{g}_t\|_F \cdot \text{tr}(\mathbf{S}_t \mathbf{M}). \quad (20)$$

896 The Muon update direction is given by $\mathbf{U}_t \mathbf{V}_t^\top$, and its projection onto \mathbf{vw}_t is:

$$897 \quad 898 \quad \text{proj}_{\text{Muon}} = \text{vec}(\mathbf{U}_t \mathbf{V}_t^\top)^\top \text{vec}(\mathbf{V}) = \text{tr}((\mathbf{U}_t \mathbf{V}_t^\top)^\top \mathbf{V}) \\ 899 \quad 900 \quad = \text{tr}(\mathbf{V}_t \mathbf{U}_t^\top \mathbf{V}) = \text{tr}(\mathbf{U}_t^\top \mathbf{V} \mathbf{V}_t) = \text{tr}(\mathbf{M}) = \sum_{i=1}^{r_t} m_{ii}. \quad (21)$$

901 Now we compare the expected squared projection of Muon and the normalized gradient \mathbf{G}_t onto
902 \mathbf{vw}_t .

$$903 \quad 904 \quad \mathbb{E}[(\text{tr}(\mathbf{M}_t))^2] - \mathbb{E}[(\text{tr}(\mathbf{S}_t \mathbf{M}_t))^2] = \mathbb{E} \left[\left(\sum_i m_{ii} \right)^2 - \left(\sum_i s_i m_{ii} \right)^2 \right] \\ 905 \quad 906 \quad = \mathbb{E} \left[\sum_{i,j} (1 - s_i s_j) m_{ii} m_{jj} \right]. \quad (22)$$

907 Let us define vector $\mathbf{s} = [s_1, \dots, s_{r_t}]^\top \in \mathbb{R}^{r_t}$, where $\|\mathbf{s}\|_2 = 1$ since \mathbf{G}_t is normalized. Then, define
908 the matrix $\mathbf{A} := \mathbf{I} - \mathbf{ss}^\top \in \mathbb{R}^{r_t \times r_t}$. Let vector $\mathbf{m} = [m_{11}, \dots, m_{r_t r_t}]^\top \in \mathbb{R}^{r_t}$, and define the matrix
909 $\mathbf{B} := \mathbf{mm}^\top \in \mathbb{R}^{r_t \times r_t}$. We now show that both matrices \mathbf{A} and \mathbf{B} are PSD matrices:

918 For matrix \mathbf{A} , for any $\mathbf{x} \in \mathbb{R}^{r_t}$, with the Cauchy–Schwarz inequality, we can obtain
 919
 920

$$\mathbf{x}^\top \mathbf{A} \mathbf{x} = \mathbf{x}^\top (\mathbf{I} - \mathbf{s} \mathbf{s}^\top) \mathbf{x} = \|\mathbf{x}\|_2^2 - (\mathbf{s}^\top \mathbf{x})^2 \geq \|\mathbf{x}\|_2^2 - \|\mathbf{s}\|_2^2 \|\mathbf{x}\|_2^2 = 0, \quad (23)$$

921 note that $\|\mathbf{s}\|_2 = 1$ comes from Lemma 1.
 922

923 For matrix \mathbf{B} , for any $\mathbf{x} \in \mathbb{R}^{r_t}$, we can obtain
 924

$$\mathbf{x}^\top \mathbf{B} \mathbf{x} = \mathbf{x}^\top \mathbf{m} \mathbf{m}^\top \mathbf{x} = \mathbf{m}^\top \mathbf{x} \cdot \mathbf{x}^\top \mathbf{m} = (\mathbf{x}^\top \mathbf{m})^2 \geq 0. \quad (24)$$

925 Now, we relate the term $\sum_{i,j} (1 - s_i s_j) m_{ii} m_{jj}$ to the trace of the product \mathbf{AB} :
 926

$$\begin{aligned} \sum_{i,j} (1 - s_i s_j) m_{ii} m_{jj} &= \mathbf{m}^\top (\mathbf{I} - \mathbf{s} \mathbf{s}^\top) \mathbf{m} = \mathbf{m}^\top \mathbf{A} \mathbf{m} \\ &= \text{tr}(\mathbf{m}^\top \mathbf{A} \mathbf{m}) = \text{tr}(\mathbf{A} \mathbf{m} \mathbf{m}^\top) = \text{tr}(\mathbf{AB}). \end{aligned} \quad (25)$$

930 Combine Lemma 2 and Eq. (22), we can obtain
 931

$$\mathbb{E}[(\text{tr}(\mathbf{M}_t))^2] - \mathbb{E}[(\text{tr}(\mathbf{S}_t \mathbf{M}_t))^2] = \mathbb{E}[\text{tr}(\mathbf{AB})] \geq 0. \quad (26)$$

933 We focus on the late stages of training near convergence, where the gradient norm becomes very
 934 often substantially below one (Zhang et al., 2017). Thus, combining Eq. (21), Eq. (26) and
 935 Eq. (20), we can obtain:
 936

$$\mathbb{E}[(\text{proj}_{\text{Muon}})^2] = \mathbb{E}[(\text{tr}(\mathbf{M}))^2] \geq \mathbb{E}[(\text{tr}(\mathbf{G}_t^\top \mathbf{V}))^2] \geq \mathbb{E}[(\text{proj}_{\text{SGD}})^2]. \quad (27)$$

938 C EXPERIMENTAL SUPPLEMENT

940 C.1 ADDITIONAL EXPERIMENTS ON CIFAR

942 Table 5: Top-1 accuracy (%) (\uparrow) results of different optimizers under various loss functions on
 943 CIFAR-10 LT with an imbalance factor of 10. Results for the *Medium* class group are presented as
 944 Med. in the table.
 945

Loss	Method	Many	Med.	Few	All
CE	SGD	95.0	85.9	88.2	89.3
	SAM	95.2	86.3	88.1	89.1
	ProMO	95.0	86.4	89.9	90.0
	Muon	96.1	86.3	88.3	89.8
CB	SGD	94.9	86.4	88.4	89.6
	SAM	95.0	86.0	87.9	89.3
	ProMO	95.7	86.6	88.6	89.9
	Muon	95.6	87.2	88.7	90.2
LA	SGD	93.8	87.5	92.1	90.8
	SAM	94.1	87.0	92.1	90.7
	ProMO	94.5	87.5	92.2	91.0
	Muon	94.5	88.0	92.6	91.3
BCL	SGD	94.3	87.5	91.8	90.8
	SAM	94.5	88.3	93.2	91.6
	ProMO	95.0	88.6	92.5	91.7
	Muon	94.8	88.2	92.2	91.4
ProCo	SGD	94.8	88.6	92.6	91.7
	SAM	94.6	88.9	93.1	91.8
	ProMO	95.3	88.7	92.7	91.9
	Muon	94.8	88.6	93.5	92.0

969 Table 5 presents the comparative performance of Muon and ProMO on the CIFAR-10 LT dataset
 970 with an imbalance factor of 10. The results demonstrate that both Muon and ProMO consistently
 971 surpass the SGD and SAM baselines across various loss functions, aligning with the trend observed
 972 in Table 1.
 973

972 C.2 ADDITIONAL EXPERIMENTS ON COMPUTATIONAL OVERHEAD
973974 Table 6: Computational overhead of different optimizers under CE loss on long-tailed benchmarks.
975 We report the average training time per epoch (seconds) (\downarrow) and the runtime ratio relative to SGD (in
976 parentheses). **Performance of Muon and ProMO are highlighted in blue to group them for focused**
977 **comparison against the baselines.**

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025		CIFAR-100		ImageNet-LT		Places-LT	
Method		IF=10	IF=100	ImageNet-LT	Places-LT			
SGD	3.47s	(1.00 \times)	3.10s	(1.00 \times)	280.046s	(1.00 \times)	224.70s	(1.00 \times)
SAM	6.94s	(1.99 \times)	4.66s	(1.50 \times)	392.170s	(1.40 \times)	356.08s	(1.58 \times)
Muon	8.22s	(2.37 \times)	5.87s	(1.89 \times)	435.29s	(1.55 \times)	471.63s	(2.10 \times)
ProMO	4.49s	(1.29 \times)	3.35s	(1.08 \times)	292.51s	(1.04 \times)	267.29s	(1.19 \times)

In Table 6, we provide additional experiments analyzing computational efficiency. We measure the average training time per epoch across four datasets using the CE loss function. The results show that the SAM optimizer incurs an average of 98% additional training time compared to SGD, while the Muon optimizer increases training time by an average of 106% under the same settings. In contrast, our proposed ProMO increases training time by only 15% on average relative to SGD. These findings are consistent with the results presented in Table 4 and Figs. 3(a) and 3(b).

994 C.3 EFFICIENCY ANALYSIS VIA GRADIENT APPROXIMATION
995

To further mitigate computational overhead, we investigated reducing the precision of Newton-Schulz orthogonalization as a potential optimization for efficient gradient approximation. Specifically, we evaluated the performance of ProMO on CIFAR-100 LT with CB loss under an imbalance factor of 100, while varying the number of Newton-Schulz iteration steps N from the default 5 down to 2.

The results, summarized in Table 7, demonstrate a clear trade-off between computational cost and accuracy. Consistent with our theoretical complexity analysis (Eq. (6,7)), reducing the iterations successfully lowers the computational overhead. While the default $N = 5$ retains the highest accuracy, we observe that although the total accuracy decreases slightly as N declines, it consistently remains superior to SGD. This validates that gradient approximation via moderately reduced iterations is still an effective method for maintaining robust performance in resource-constrained scenarios.

1007 Table 7: Ablation study on the number of Newton-Schulz iteration steps (N) on CIFAR-100 LT under
1008 an imbalance factor of 100. We report the top-1 accuracy(%) (\uparrow), the average training time per epoch
1009 (seconds) (\downarrow) and the runtime ratio relative to SGD (in parentheses).

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	Method	N	Many	Medium	Few	All	Time/epoch
SGD	-	75.0	50.6	17.3	44.6	2.57	(1 \times)
Muon	5	76.4	53.1	19.7	46.7	4.11	(1.59 \times)
ProMO	5	76.5	52.5	19.3	46.4	2.94	(1.14 \times)
ProMO	2	76.1	51.1	17.7	45.2	2.59	(1.01 \times)
ProMO	3	76.1	52.8	18.1	45.9	2.78	(1.09 \times)
ProMO	4	77.2	51.3	18.8	46.1	2.82	(1.10 \times)

1020 C.4 GENERALIZATION TO NATURAL LANGUAGE PROCESSING
1021

1022 While our primary evaluation followed mainstream long-tailed learning protocols centered on visual
1023 benchmarks (Menon et al., 2021), we further investigated the versatility of Muon by extending our
1024 experiments to the Natural Language Processing domain. We conducted experiments using the Yahoo
1025 Answers Topic Classification dataset (Zhang et al., 2015). To simulate long-tailed distributions, we
constructed two variants by sampling from a 12k training subset with imbalance factors of 10 and 50,

1026 respectively. We divide the classes into *Many*, *Medium*, and *Few* splits, corresponding to the top three,
 1027 middle four, and bottom three classes sorted by frequency, respectively. Evaluation was performed
 1028 on a balanced test set containing 4k samples. The model architecture consisted of a fixed pre-trained
 1029 BERT-base-uncased backbone, followed by an MLP layer and a linear classification head. Both
 1030 SGD and Muon were trained using CE loss for 20 epochs. As shown in Table 8, Muon consistently
 1031 outperforms the SGD baseline across different imbalance factors, especially in the tail classes and
 1032 highly imbalanced setting. This confirms that the benefits of Muon’s curvature-aware optimization
 1033 are not limited to vision tasks but also extend effectively to other modalities like NLP.

1034
 1035 **Table 8: Top-1 accuracy (%) (\uparrow) results for *Many*, *Medium*, *Few*, and overall classes on long-tailed
 1036 *Yahoo Answers* dataset, categorized by imbalance factors (IF) of 10 and 50.**

IF	Method	Many	Medium	Few	All
10	SGD	75.9	58.5	43.3	59.1
	Muon	73.0	60.9	45.6	59.9
50	SGD	74.8	61.2	3.4	47.9
	Muon	76.8	55.9	17.3	50.6

1045 C.5 COMPARISON WITH FINE-TUNING METHOD

1046
 1047 Recent long-tailed recognition methods have explored fine-tuning paradigms on top of large-scale
 1048 foundation models, such as LIFT (Shi et al., 2024) and LPT (Dong et al., 2023). To verify that Muon
 1049 remains effective in this setting, we follow the experimental protocol of LIFT. Specifically, we adopt
 1050 a pre-trained CLIP ViT-B/16 backbone and fine-tune it on CIFAR-100 LT with IF=100. We adhere to
 1051 the experimental settings of LIFT for a fair comparison. As shown in Table 9, Muon achieves higher
 1052 overall accuracy than LIFT, with particularly notable gains on tail classes. This indicates that Muon
 1053 is complementary to fine-tuning based long-tailed methods, and can further improve representation
 1054 quality even when starting from strong pre-trained features.

1055 **Table 9: Top-1 accuracy (%) (\uparrow) results for *Many*, *Medium*, *Few*, and overall classes on CIFAR-100
 1056 LT under IF=100 with a CLIP ViT-B/16 backbone.**

Method	Many	Medium	Few	All
LIFT	84.4	81.1	74.4	80.2
Muon	85.1	81.5	76.8	81.3

1063 C.6 MUON WITH DECOUPLED TRAINING METHOD

1064
 1065 We further explore the performance of Muon when combined with decoupled training methods. Specif-
 1066 ically, we evaluate Muon and ProMO under the standard two-stage decoupling framework (Kang
 1067 et al., 2020): (1) *Stage 1*, trains the backbone representation, and (2) *Stage 2*, re-trains a balanced
 1068 classifier (cRT) on top of the frozen backbone. Concretely, we train the backbone in Stage 1 using
 1069 SGD, Muon, or ProMO, and then apply classifier re-training (cRT) in Stage 2. Experiments are
 1070 conducted on CIFAR-100 LT under IF=10 and IF=100.

1071 As shown in Table 10, Muon and ProMO consistently outperform SGD after cRT, indicating that
 1072 re-balancing the classifier does not diminish their advantages. Instead, the gains persist because
 1073 Muon and ProMO improve the quality of learned representations during Stage 1, providing a stronger
 1074 feature space for the balanced classifier in the later stage.

1076 C.7 COMPARISON WITH STRONG SAM VARIANT

1077
 1078 **Comparison with ImbSAM.** Several SAM variants have been proposed for long-tailed learning,
 1079 such as ImbSAM (Zhou et al., 2023a). We further conduct additional comparisons to evaluate the
 effectiveness and efficiency of our proposed ProMO. We compare ProMO against SGD, SAM, and

1080 Table 10: Top-1 accuracy (%) (\uparrow) results for *Many*, *Medium*, *Few*, and overall classes on CIFAR-100
 1081 LT, categorized by imbalance factors (IF) of 10 and 100.

IF	Method	Many	Medium	Few	All
10	SGD	67.3	61.5	55.9	61.8
	Muon	68.3	61.9	57.3	62.8
	ProMO	68.9	62.4	56.5	62.9
100	SGD	66.3	51.7	31.7	47.5
	Muon	66.9	56.3	34.0	50.6
	ProMO	66.1	54.8	34.3	50.0

1092
 1093 ImbSAM on CIFAR-100-LT under imbalance factors IF=10 and IF=100. Following prior work, we
 1094 consider both CE loss and BCL loss. We also report the training time measured on a single NVIDIA
 1095 RTX 3090, normalized by the SGD baseline to highlight the efficiency trade-off.

1096 As shown in Table 11, ProMO consistently attains the best overall accuracy across all settings, while
 1097 being substantially more efficient than SAM and ImbSAM. In particular, ImbSAM requires roughly
 1098 $2.0 \times - 3.1 \times$ the training cost of SGD due to its extra gradient computations, whereas ProMO only
 1099 incurs a marginal overhead of about $1.1 \times - 1.3 \times$. These results demonstrate that ProMO achieves a
 1100 more favorable accuracy-efficiency trade-off than computationally heavy SAM variants in long-tailed
 1101 recognition.

1102 Table 11: Top-1 accuracy (%) (\uparrow) results for *Many*, *Medium*, *Few*, and overall classes on CIFAR-100
 1103 LT with CE and BCL losses, under imbalance factors (IF) of 10 and 100. We also report the training
 1104 time (seconds) (\downarrow) and the runtime ratio relative to SGD (in parentheses).
 1105

Loss	IF	Method	Many	Medium	Few	All	Time
CE	10	SGD	75.6	62.8	48.2	60.8	696 (1.00 \times)
		SAM	76.4	64.5	49.1	61.9	1390 (2.00 \times)
		ImbSAM	74.0	61.4	54.6	62.4	2148 (3.09 \times)
		ProMO	77.1	65.4	49.7	62.6	898 (1.29 \times)
	100	SGD	75.9	52.0	15.7	44.6	516 (1.00 \times)
		SAM	76.3	51.6	17.0	45.2	932 (1.81 \times)
		ImbSAM	76.1	49.1	20.0	45.6	1270 (2.47 \times)
		ProMO	77.2	53.9	16.2	45.8	670 (1.30 \times)
	BCL	SGD	71.7	64.5	59.5	64.7	1674 (1.00 \times)
		SAM	72.5	65.2	60.0	65.3	2896 (1.73 \times)
		ImbSAM	71.9	66.0	60.3	65.5	3482 (2.08 \times)
		ProMO	73.9	66.0	60.4	66.1	1804 (1.08 \times)
	100	SGD	68.5	54.2	34.2	50.5	1098 (1.00 \times)
		SAM	68.1	53.5	37.1	51.3	1802 (1.64 \times)
		ImbSAM	68.0	52.9	40.0	52.2	2148 (1.96 \times)
		ProMO	71.1	57.5	36.3	53.1	1178 (1.07 \times)

1125 **Comparison with LookSAM.** We further compare Muon and ProMO with LookSAM (Liu et al.,
 1126 2022), a representative efficient SAM variant in balanced scenarios. We compare these methods on
 1127 CIFAR-100-LT under an imbalance factor of 100. The results are shown in Table 12. Although we
 1128 verified that LookSAM matches SAM’s performance on the balanced CIFAR-100 (both achieve an
 1129 accuracy of 72.8%), the results show that its accuracy deteriorates substantially on the imbalanced
 1130 CIFAR-100 LT, particularly on tail classes. In contrast, ProMO retains the robust generalization. This
 1131 indicates that efficiency techniques effective in balanced settings, such as the gradient decomposition
 1132 and estimation strategies used in LookSAM, are not robust under severe class imbalance. These
 1133 findings underscore the value of developing efficient alternatives that remain effective in imbalanced
 scenarios, such as Muon and ProMO.

1134 Table 12: Top-1 accuracy (%) (\uparrow) results for *Many*, *Medium*, *Few*, and overall classes on CIFAR-100
 1135 LT with CE and LA losses, under an imbalance factor of 100. LookSAM- k denotes the method where
 1136 the SAM update is performed every k steps.

Loss	Method	Many	Medium	Few	All
CE	SAM	76.3	51.6	17.0	45.2
	Muon	77.2	52.4	17.3	45.8
	ProMO	77.2	53.9	16.2	45.8
	LookSAM-2	74.8	46.7	10.5	40.7
	LookSAM-3	70.1	37.8	6.5	35.0
	LookSAM-4	64.2	29.9	4.6	30.1
LA	SAM	75.4	50.6	19.0	45.4
	Muon	76.4	52.2	19.7	46.5
	ProMO	76.5	52.5	19.3	46.4
	LookSAM-2	73.2	46.9	13.6	41.5
	LookSAM-3	70.0	40.1	9.7	36.9
	LookSAM-4	67.3	35.8	7.8	34.1

C.8 RESULTS ON LARGE-SCALE REAL-WORLD LONG-TAILED DATASET

To provide a more comprehensive evaluation, we extend our experiments to the large-scale real-world setting. We additionally benchmark our method on the iNaturalist-2018 (Horn et al., 2018) dataset. The iNaturalist-2018 is a large-scale real-world long-tailed dataset that contains 437.5k training images from 8,142 species. Following mainstream protocols (Cui et al., 2019; Du et al., 2024), we adopt a ResNet-50 backbone trained for 90 epochs using CE loss. We compare SGD, SAM, Muon, and our proposed ProMO under the *Many*, *Medium*, and *Few* splits. As shown in Table 13, Muon and ProMO both outperform SGD and SAM across all class splits, with especially clear improvements on tail classes. These results demonstrate that curvature-aware optimization methods, such as Muon and ProMO, generalize effectively to more challenging large-scale long-tailed datasets.

Table 13: Top-1 accuracy (%) (\uparrow) results for *Many*, *Medium*, *Few*, and overall classes on iNaturalist-2018 dataset. Muon and ProMO exhibit consistent improvements across all class splits.

Method	Many	Medium	Few	All
SGD	74.6	64.9	56.8	62.7
SAM	76.4	66.8	58.8	64.6
ProMO	77.5	67.9	59.8	65.7
Muon	78.0	68.4	60.6	66.3

C.9 DEEPER UNDERSTANDING BETWEEN THEORETICAL ANALYSIS AND PROMO DESIGN

To demonstrate that the design of ProMO is grounded in the intrinsic training dynamics of long-tailed learning, we conducted an empirical analysis tracking the evolution of loss landscape geometry. Specifically, we monitored the Hessian trace of the least frequent class on CIFAR-100 LT under IF=100 across the training process for SGD, Muon, and ProMO. The results are presented in Table 14.

These results show that, in the early training phase, both SGD and Muon exhibit relatively low traces. This suggests that during early exploration, the inherent stochasticity of SGD gradients provides sufficient noise to avoid sharp minima. Consequently, the complex orthogonalization operations of Muon incur computational overhead without offering significant geometric advantages during this period. This justifies ProMO’s design choice to prioritize SGD in the early stages to maintain high computational efficiency while the optimization landscape is still being actively explored.

In later training stages, especially as the model nears convergence, the trace for SGD increases dramatically, indicating convergence to a sharp minimum, which is known to harm tail-class generalization.

1188 Table 14: Evolution of the Hessian trace on CIFAR-100 LT under imbalance factor of 100. Lower
 1189 values indicate flatter minima, which correlate with better generalization.
 1190

Epoch	SGD	Muon	ProMO
80	664.6	636.1	691.5
120	956.1	450.8	615.2
180	1629.6	703.6	667.6
200	2137.5	536.0	514.1

1198 In contrast, Muon maintains significantly lower trace values, validating our theoretical analysis that it
 1199 effectively escapes sharp regions by amplifying updates along negative curvature directions. This
 1200 provides the motivation for ProMO to progressively increase its usage of the Muon optimizer as
 1201 training advances. These observations confirm ProMO as a principled solution that combines SGD’s
 1202 early efficiency with Muon’s capability to escape sharp minima in the later stages.
 1203

D DISCUSSIONS

1204 **Additional related work.** Recent advancements in long-tailed recognition have diversified beyond
 1205 traditional re-balancing techniques. In the realm of contrastive learning, GPaCo (Cui et al., 2024)
 1206 identifies the bias of supervised contrastive loss towards high-frequency classes and introduces para-
 1207 metric learnable centers to rebalance optimization dynamics. For handling diverse test distributions,
 1208 DirMixE (Yang et al., 2024) proposes a sophisticated mixture-of-experts strategy based on Dirichlet
 1209 meta-distributions to capture both global and local label distribution variations. Furthermore, address-
 1210 ing the geometry of the loss landscape has become a pivotal direction; CC-SAM (Zhou et al., 2023b)
 1211 argues that naive flattening is insufficient for long-tailed learning and proposes a class-conditional
 1212 sharpness-aware minimization to robustify the classifier against parameter perturbations.
 1213

1214 **Muon enhances representation learning.** Muon fundamentally improves representation learning
 1215 by guiding optimization toward flatter minima. In long-tailed recognition, a critical representational
 1216 failure mode is the tendency for minority classes to converge to sharp regions of the loss landscape,
 1217 which undermines generalization capabilities. Muon addresses this challenge. By amplifying updates
 1218 along directions of negative curvature via gradient orthogonalization, Muon facilitates the escape
 1219 from these sharp regions and guides optimization toward flatter solutions. Securing these flatter
 1220 minima, which is evidenced by improved loss-landscape metrics on tail classes, is essential for
 1221 learning robust representations that generalize better to underrepresented data, going beyond mere
 1222 improvements in convergence speed. Table 9 and Table 10 also provide more empirical evidence that
 1223 Muon could improve the quality of learned representations.
 1224

1225 **Regarding CNC assumption.** The Correlated Negative Curvature (CNC) assumption is well
 1226 established in the non-convex optimization literature. It has been theoretically justified for learning
 1227 half-spaces Daneshmand et al. (2018), while subsequent studies, such as (Wang et al., 2020)), have
 1228 provided further validation through extensive analyses on deep networks of varying widths and depths.
 1229 It has also been adopted in broader domains such as manifold optimization (Criscitello & Boumal,
 1230 2019), making it a standard and widely accepted assumption. Importantly for our setting, CNC has
 1231 been examined directly in long-tailed learning. Rangwani et al. (2022) shows that tail classes exhibit
 1232 strong negative curvature that traps SGD in sharp minima, and that methods like SAM alleviate this
 1233 issue. Later works such as Zhou et al. (2023a) further support these observations. Our analysis builds
 1234 on this established foundation and does not require stronger assumptions than prior work.
 1235

1236 **Targeted design addressing long-tailed learning challenges.** Our work identifies and operational-
 1237 izes a unique complementarity between gradient orthogonalization and long-tailed learning through
 1238 two specialized contributions. First, our theoretical analysis demonstrates that Muon specifically
 1239 addresses optimization bottlenecks inherent to underrepresented data by enhancing updates along
 1240 directions of negative curvature, enabling the model to escape sharp minima that hinder tail-class
 1241 generalization. Second, building on this insight, we designed ProMO specifically for long-tailed
 1242 training dynamics. ProMO progressively integrates Muon during critical later stages when SGD fails
 1243 to escape sharp minima, thereby increasing tail-class generalization while mitigating computational
 1244 overhead. This provides an efficient solution essential for large-scale imbalanced benchmarks.
 1245

1242
1243 **ProMO as a trade-off between efficiency and generalization.** Our primary design objective of
1244 ProMO is to approximate Muon’s generalization benefits while substantially mitigating its com-
1245 putational overhead. As shown in Table 1 and Table 2, ProMO exhibits a consistent performance
1246 pattern, reliably outperforming SGD and remaining competitive with Muon in accuracy. Crucially, as
1247 shown in Table 4, it achieves these results while drastically reducing training costs compared to the
1248 significant overhead demands of Muon and SAM. Thus, ProMO successfully delivers its intended
1249 precise trade-off between high efficiency and robust tail-class generalization.

1250 **LLM USAGE**

1251 We thank GPT¹ and Gemini² for their assistance in language polishing when writing the paper. The
1252 authors take full responsibility for all the content of this paper.

1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294

1295 ¹<https://chatgpt.com>

²<https://gemini.google.com>