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ABSTRACT

Long-tailed recognition poses a significant challenge in deep learning, as models
tend to be biased towards head classes, leading to poor generalization on underrep-
resented tail classes. A key factor contributing to this issue is that the optimization
process for tail classes often stalls in sharp regions of the loss landscape. In this
work, we investigate this problem from an optimization perspective and leverage
the recently proposed Muon optimizer. We provide new theoretical insights, demon-
strating that Muon’s gradient orthogonalization enhances the update’s projection
along directions of negative curvature, thereby facilitating a more effective escape
from sharp minima. To further mitigate the additional computational overhead of
Muon, we propose Progressive Muon Optimizer (ProMO), a novel hybrid opti-
mization approach that balances performance with efficiency. Specifically, ProMO
employs a sinusoidal probability schedule to dynamically alternate between SGD
and Muon. This method predominantly uses computationally efficient SGD in
the early stages of training and gradually increases the use of Muon as the model
approaches convergence when escaping sharp minima becomes critical for tail-
class generalization. Extensive experiments on large-scale long-tailed benchmarks
demonstrate that ProMO consistently outperforms existing long-tailed recognition
methods. These results validate that ProMO effectively improves generalization
on tail classes without incurring significant computational costs, highlighting its
potential as a practical and effective solution for long-tailed learning.

1 INTRODUCTION

Deep learning has significantly advanced a wide range of domains, from computer vision to large
language models, achieving unprecedented performance largely driven by large-scale, high-quality
datasets (Russakovsky et al., 2015). However, modern real-world datasets are often imbalanced,
especially in domains such as medical diagnosis, where data collection is costly and time-consuming
(Buda et al., 2018). In these fields, datasets typically exhibit long-tailed distributions, with a small
number of dominant classes (head classes) being overrepresented, while others (tail classes) are
significantly underrepresented. This class imbalance presents significant challenges during model
training, as traditional learning algorithms tend to bias towards the head classes, leading to poor
generalization for the tail classes (Wang et al., 2023). As a result, it has become crucial to explore
robust training methods that can effectively handle long-tailed class distributions.

Many excellent methods have been proposed to address class imbalance, including re-sampling
(Chawla et al., 2002), decoupling (Kang et al., 2020), loss rebalancing (Ma et al., 2023), and
contrastive learning techniques (Zhu et al., 2022; Du et al., 2024). While these methods aim to
alleviate the dominance of head classes, they often overexpose the limited tail class samples, thereby
increasing the risk of overfitting. Recent studies (Rangwani et al., 2022; Li et al., 2025) have also
shown that for minority classes in imbalanced datasets, the optimization process often converges to
sharp regions in the loss landscape, characterized by large eigenvalues in the Hessian matrix, resulting
in poor generalization performance for these underrepresented classes. One promising direction
to address this issue is Sharpness-Aware Minimization (SAM) (Foret et al., 2021), a technique
that focuses on escaping sharp minima by finding sharp maximal points in the neighborhood of
the current weight and then minimizing the loss at these points. While SAM has been shown to
improve generalization by helping the model escape saddle points, it comes at the cost of significantly
increased training time, as it requires twice the number of backpropagation steps (Luo et al., 2024).
This scaling issue poses significant challenges for applying SAM to large-scale datasets and models,
where training time and computational efficiency are crucial considerations.
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To overcome these challenges, we turn to the recently proposed Muon optimizer (Jordan et al., 2024;
Shen et al., 2025), which modifies the SGD optimizer by orthogonalizing the gradient updates through
Newton-Schulz iteration. We demonstrate that Muon effectively enhances the gradient component
along the negative curvature, allowing the optimizer to converge to flatter regions of the loss landscape
more efficiently, leading to improved generalization performance. This is especially crucial in the
context of imbalanced datasets, where Muon helps to boost the performance of tail classes.

To further balance training cost with the benefits of Muon, we introduce a novel dynamic optimizer
selection method, termed as ProMO. This approach uses a sinusoidal function to dynamically
control the probability of selecting the Muon optimizer during the training process. As the model
nears convergence, the probability of selecting Muon increases, providing continued support for
escaping saddle points without excessively increasing the computational burden. Our contributions
are summarized as follows:

1. We provide new theoretical insights into Muon from the perspective of loss landscape. Specifically,
we show that Muon enhances the gradient component along the negative curvature, facilitating
effective escape from sharp regions toward flatter minima. This is particularly crucial in long-tailed
learning, where tail classes often converge to sharp minima, resulting in reduced generalization.

2. We propose a novel method, ProMO, to dynamically balance training cost and performance. By
controlling the probability of using Muon through a sinusoidal schedule, ProMO helps the model
escape sharp regions as it approaches convergence, without significantly increasing the training cost.

3. We conduct extensive experiments across a variety of datasets, demonstrating that ProMO
consistently improves long-tailed recognition, including large-scale datasets such as Places-LT and
ImageNet-LT. Our results show that ProMO effectively enhances the performance of tail classes and
outperforms existing methods designed for long-tailed and class-imbalanced learning.

2 RELATED WORK

2.1 LONG-TAILED LEARNING

There have been substantial explorations in recent years to address the challenges of long-tailed
learning. At the data level, re-sampling (Chawla et al., 2002; He et al., 2008) and data augmentation
techniques (Zhang et al., 2018; Yun et al., 2019; Ahn et al., 2023) focus on modifying the training
data distribution to mitigate class imbalance. At the representation level, decoupling frameworks
(Kang et al., 2020; Xuan & Zhang, 2024) separate the feature learning stage from classifier training,
allowing for independent optimization of each component. Multi-expert architectures (Wang et al.,
2021b; Tan et al., 2024; Yang et al., 2024) employ multiple specialized networks to handle different
class groups. Transfer learning approaches (Wang et al., 2021a; Li et al., 2024) enhance the feature
space representation for minority classes with knowledge from related domains or tasks. At the
loss level, re-weighting techniques (Cui et al., 2019; Luo et al., 2024) assign different weights,
while margin-based techniques (Cao et al., 2019; Menon et al., 2021) impose class-specific decision
boundaries during training. More recently, fine-tuning methods (Dong et al., 2023; Shi et al.,
2024) adapt foundation models to long-tailed data through parameter-efficient updates that preserve
generalization. Contrastive learning frameworks (Cui et al., 2021; Zhu et al., 2022; Cui et al., 2024;
Du et al., 2024) have demonstrated promising results by encouraging uniformly discriminative feature
representations across all classes. However, existing methods often suffer from the risk of overfitting
due to limited tail class samples, highlighting the need for more robust optimization methods that can
effectively navigate the complex loss landscapes inherent in imbalanced learning scenarios.

2.2 SHARPNESS OF LOSS LANDSCAPE

Ensuring model generalization is a fundamental yet persistent challenge in deep learning. Recent
studies (Jiang et al., 2020; Stutz et al., 2021; Li et al., 2025) have empirically and theoretically
demonstrated a strong connection between the geometry of the loss landscape and generalization
performance, positing that models converging to flatter minima tend to generalize better than those in
sharper ones. This connection becomes particularly critical in the context of imbalanced learning,
where the loss landscapes associated with minority classes are often dominated by sharp regions (Zhou
et al., 2023a). Traditional methods such as Perturbed Gradient Descent (Ge et al., 2015; Jin et al., 2017)
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attempt to escape these regions by adding random noise to gradient updates. However, recent studies
(Rangwani et al., 2022) have demonstrated that these approaches exhibit suboptimal performance in
imbalanced settings, often failing to provide sufficient directional guidance to effectively navigate the
complex loss landscapes of minority classes.

Sharpness-Aware Minimization (SAM) (Foret et al., 2021) has emerged as a more principled approach
to address this challenge. SAM operates by identifying sharp maximal points within a neighborhood
of the current parameters and subsequently minimizing the loss at these locations. Recent work
has shown that SAM can be particularly effective in imbalanced settings (Rangwani et al., 2022),
helping models promote convergence to flatter regions of the loss landscape. However, SAM and
its variants (Zhou et al., 2023a;b; Lyu et al., 2025) require at least twice the number of gradient
computations compared to standard SGD, which limits their scalability to large-scale datasets and
models, where training efficiency is paramount. In this work, we aim to develop more computationally
efficient methods for navigating towards flatter minima in imbalanced learning, seeking to maintain
the benefits of improved optimization while reducing the associated computational burden.

3 METHOD

In this section, we first establish the preliminaries of our work, including the problem setup and the
mechanics of the Muon optimizer. We then present our theoretical analysis of Muon, which serves
as the foundation for our work by identifying its capability to escape sharp regions. Building on
these findings, we introduce our primary proposed method, ProMO, a dynamic optimization method
designed to leverage these theoretical benefits in a computationally efficient manner.

3.1 PRELIMINARIES

Let D = {(xi, yi)}Ni=1 be a training dataset of N samples, where xi ∈ X is an input sample and
yi ∈ Y = {1, . . . , C} is its corresponding class label. We denote the number of samples in each class
as {n1, . . . , nC}, and assume, without loss of generality, that ni > nj for any i > j. Real-world
datasets often exhibit a long-tailed distribution with n1 ≫ nC , where a small number of majority
classes contain abundant samples while numerous minority classes are data-scarce. Our goal is to
learn a deep neural network h(·;w) parameterized by w ∈ W that minimizes the empirical risk
L = 1

N

∑
(x,y)∈D ℓ(h(x;w), y), where ℓ is a loss function, such as the cross-entropy loss.

3.2 ANALYSIS OF MUON OPTIMIZER FROM LOSS LANDSCAPE PERSPECTIVE

To analyze the optimization dynamics, we focus our discussion, for clarity, on a single parameter
matrix W ∈ Rm×n. The principles can be extended to the entire parameter set (Kovalev, 2025). We
consider two optimization methods: the standard SGD optimizer and the Muon optimizer. For the
SGD optimizer, the update rule for a parameter matrix Wt at iteration t is:

Wt+1 = Wt − ηtgt, where gt = ∇L(Wt). (1)

Here, ηt > 0 is the learning rate and gt denotes the stochastic gradient with respect to Wt. For the
Muon optimizer, the gradient is first transformed via a Newton-Schulz iteration process and then used
to update the parameter Wt. Specifically, the update is performed as:

Ot = Newton–Schulz(gt), Wt+1 = Wt − ηtOt. (2)

The central idea of Muon optimizer is to employ the Newton-Schulz iteration process to approximately
compute the polar decomposition Ot of gt, which corresponds to Ot = UtV

T
t in the singular value

decomposition (SVD) of gt = UtΣtV
⊤
t . Suppose gt ∈ Rm×n is the gradient matrix with rank

rt, Σt ∈ Rrt×rt is a diagonal matrix containing the singular values of gt, Ut ∈ Rm×rt and
Vt ∈ Rn×rt are the left and right singular vector matrices of gt, respectively. The update matrix
becomes UtV

⊤
t , which represents the closest semi-orthogonal matrix to gt. Conceptually, this

orthogonalization procedure maintains the structural properties of the update matrices, thereby
preventing the parameters from being updated along a few dominant directions.

Newton-Schulz Iteration Process. This iterative process begins by normalizing the gradient matrix
Gt = gt/∥gt∥F, where ∥ · ∥F is the Frobenius norm. The iteration is then initialized with X0 = Gt,

3
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Figure 1: (a) Maximum eigenvalues λmax (↓) and (b) trace of Hessian metric Tr(H) (↓) across classes
with different number of samples. Classes with fewer training samples consistently exhibit larger
values for both metrics, indicating that these under-represented classes converge to sharper minima in
the loss landscape, which can lead to poor generalization performance.

at each step k of the N -step iteration, Xk is updated from Xk−1 as:

Xk = aXk−1 + b(Xk−1X
T
k−1)Xk−1 + c(Xk−1X

T
k−1)

2Xk−1, (3)

where XN denotes the final output after N iterative steps. The parameters a, b, and c are iteration
coefficients. To guarantee proper convergence of Eq. (3), these coefficients must be tuned such
that the polynomial p(x) = ax + bx3 + cx5 maintains a fixed point in the neighborhood of 1.
Following the original formulation (Jordan et al., 2024), we employ the coefficient values a = 3.4445,
b = −4.7750, c = 2.0315, and perform 5 iterations. These coefficients are specifically designed to
accelerate the convergence rate for matrices with small initial singular values.

Loss Landscape in Long-Tailed Learning. We consider the minimization of a smooth, potentially
non-convex objective function f (e.g. cross-entropy loss). The geometry of this landscape is often
characterized by the spectral properties of its Hessian matrix H. Key indicators of sharpness include
the largest eigenvalue λmax and the trace Tr(H), where larger value metrics indicate a sharper, more
challenging optimization terrain. Following prior work (Rangwani et al., 2022), we empirically
investigate this relationship by computing the eigen spectrum of the Hessian for each class on the
long-tailed dataset CIFAR-10 LT. As depicted in Fig. 1, there is a clear trend where both λmax and
Tr(H) increase substantially as the number of samples per class decreases. This validates that models
trained on tail classes are more prone to converging within sharper regions of the loss landscape.
Consequently, an optimizer’s capability to navigate towards flatter minima is paramount for achieving
robust generalization, a necessity that is especially pronounced in the context of imbalanced learning.

Escaping from Sharp Minima. In the following, we demonstrate that the Muon algorithm can
amplify the gradient projection along directions of negative curvature as training approaches conver-
gence, thereby enabling accelerated escape from sharp areas and convergence to flatter minima. Our
analysis leverages the Correlated Negative Curvature (CNC) assumption (Daneshmand et al., 2018).

Assumption 1 (Correlated Negative Curvature (CNC)). Let Wt be a point where the Hessian
∇2f(Wt) has a minimum eigenvalue λmin at iteration t, and let vWt

be the corresponding unit
eigenvector. The stochastic gradient gt = ∇f(Wt) satisfies the CNC assumption if the second
moment of its projection onto vWt

is uniformly bounded away from zero, i.e.,

∃γ > 0, s.t. ∀Wt : E[⟨vWt
,gt⟩2] ≥ γ. (4)

This assumption posits that the stochastic gradient has a projection along the direction of most
negative curvature, providing a signal for the optimizer to move away from sharp regions. This
assumption has been theoretically justified in the context of learning half-spaces and has also been
empirically validated across a wide range of neural networks with varying complexity (Staib et al.,
2019; Wang et al., 2020). We now present Theorem 1, with the detailed proof provided in Appendix B.

Theorem 1. Let Wt be a point where the Hessian∇2f(Wt) has a minimum eigenvalue at iteration
t, and let vWt

be the corresponding unit eigenvector. Define the projection of the SGD update
onto vWt

as projSGD = ⟨vWt
,gt⟩, and the projection of the Muon update onto vWt

as projMuon =
⟨vWt ,Ot⟩ = ⟨vWt ,UtV

⊤
t ⟩. Under the CNC assumption, the following inequality holds:

∃γ > 0, s.t. ∀Wt : E
[
(projMuon)

2
]
≥ E

[
(projSGD)

2
]
≥ γ. (5)
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Remark. Theorem 1 reveals that Muon’s gradient orthogonalization amplifies the update’s projection
onto the negative curvature direction, enabling a more effective escape from sharp regions. Further-
more, prior analysis (Daneshmand et al., 2018) has shown that the convergence rate of SGD depends
on the value γ as O(γ−4) under certain assumptions. Our findings suggest that Muon effectively
enhances the gradient component of SGD in the direction of negative curvature. Consequently, Muon
is reasonably expected to converge more rapidly to the flatter minima, leading to better generalization.
This aligns with the empirical evidence found in prior studies (Liu et al., 2025; Shah et al., 2025).

3.3 PROMO: A HYBRID OPTIMIZATION APPROACH

Computational Overhead Analysis. While Theorem 1 establishes the theoretical advantage of the
Muon optimizer in escaping sharp regions, its computational overhead presents practical challenges
for long-tailed recognition tasks. For further analysis, we estimate the FLOP overhead introduced
by the Newton-Schulz iteration. For a linear layer parameterized by a weight matrix W ∈ Rm×n,
each Newton-Schulz iteration requires approximately 6mn2 FLOPs. For T iterations, this amounts
to 6Tmn2 FLOPs. The standard linear layer computation involves approximately 6mnL FLOPs,
where L represents the number of inputs processed (Jordan et al., 2024). For linear layers L = B,
where B denotes the batch size in tokens. Thus, the FLOP overhead ∆Flinear for a linear layer can be
estimated as:

∆Flinear =
T · 6mn2

L · 2mn
=

3Tn

B
. (6)

For a convolutional layer, the kernel is flattened into an m × n matrix for optimization, where
m = Cout is the number of output channels and n = Cin · k2 is the product of input channels and
kernel size. The number of inputs per step is L = B ·Hout ·Wout, where Hout and Wout are the spatial
dimensions (height and width) of the output tensor. The FLOP overhead ∆Fconv is then:

∆Fconv =
T · 6mn2

L · 2mn
=

3TCink
2

BHoutWout
. (7)

Prior studies (Jordan et al., 2024) have shown that Muon maintains FLOP overhead below 1% in
large-scale language model training, where token counts per batch can reach millions (e.g., 16M
tokens in LLaVA-405B). However, long-tailed recognition tasks typically employ much smaller batch
sizes. This discrepancy introduces a new challenge: while Muon proves effective at escaping sharp
minima, its computational overhead can become non-negligible in certain scenarios. For instance, in
a ResNet layer with Cin = 512, k = 3, and an output feature map of 7× 7, using T = 5 iterations
with a batch size of B = 256 would result in an estimated overhead of 183% according to Eq. (7).
This substantial increase in training time could limit the scalability of using Muon.

Training Dynamics Insight. To balance computational efficiency with optimization performance,
we focus on the training dynamics of SGD. Prior research (Fang et al., 2019; Rangwani et al., 2022;
Abbe et al., 2023) indicates that in the early stages of training, the inherent stochasticity of SGD
provides sufficient noise to effectively navigate away from sharp areas, but it behaves increasingly
like deterministic gradient descent as training progresses and the learning rate decays, making it
more prone to stalling near sharp regions late in training, especially in long-tailed scenarios. This
observation suggests that the capability of Muon to reach flatter minima is most valuable during later
training phases when SGD’s inherent noise becomes insufficient.

Dynamic Hybrid Optimization. We propose ProMO, a hybrid optimization method that dynamically
alternates between SGD and Muon. Specifically, for a training process with Tmax total epochs, at
epoch t, the model applies a Muon update with probability pt ∈ [0, 1] and otherwise applies a SGD
update with probability 1− pt. We define pt using a sinusoidal schedule:

pt = sin

(
π

2
· t

Tmax

)
. (8)

This sinusoidal probability schedule ensures that during early training, SGD is predominantly selected
(i.e., Eq. (1)), leveraging its inherent stochasticity for escaping sharp regions while minimizing Muon’s
computational overhead. As training progresses, the probability of selecting Muon gradually increases
(i.e., Eq. (2)), providing enhanced capabilities to escape sharp minima that may hinder generalization
performance when SGD’s noise becomes insufficient. This dynamic approach maximizes Muon’s
benefits while maintaining computational efficiency. Notably, both optimizers operate on the same
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parameter set, with Muon simply applying orthogonalization to SGD’s gradient updates without
introducing additional state or parameters to the optimization process. The pseudo-code for the
training processes of Muon and our ProMO are provided in Appendix A.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate the proposed Muon optimizer method on a suite of widely used long-tailed
benchmarks, CIFAR-10 LT, CIFAR-100 LT, ImageNet-LT (Liu et al., 2019), and Places-LT (Liu et al.,
2019). CIFAR-10 LT and CIFAR-100 LT are two long-tailed datasets sampled from the original
CIFAR datasets (Krizhevsky et al., 2009), consisting of 10 and 100 classes, respectively. We conduct
experiments under varying imbalance factors, defined as IF = nmax/nmin, where nmax and nmin

denote the number of samples in the most and least frequent classes, respectively. Following the
mainstream protocol (Cui et al., 2019), we adopt imbalance settings with imbalance factors of 10 and
100, where the number of samples per class decreases exponentially. ImageNet-LT is a large-scale
long-tailed dataset derived from the ImageNet dataset (Deng et al., 2009), comprising 115.8k training
images across 1,000 categories, with class frequencies ranging from 1,280 to 5 instances, and an
imbalance factor of 256. Places-LT contains 62.5k training images from 365 scene categories, with
the number of samples per class varying from 4,980 to 5, and an imbalance factor of 996.

Evaluation Protocol. We follow standard protocols (Wang et al., 2023) in long-tailed classification
by treating all classes equally during testing and reporting results across three class splits: Many,
Medium, and Few, based on the number of training samples per class. Consistent with prior work
(Cui et al., 2019; Rangwani et al., 2022), we use top-1 accuracy as our evaluation metric and report it
for each class split as well as overall on each dataset. To assess computational efficiency, we also
record the average training time per epoch associated with each method across all datasets.

Baselines. We compare our method with a range of strong baselines commonly used in long-tailed
classification. We evaluate four optimizers: SGD, SAM, Muon, and our proposed ProMO, applied
to various widely used methods: Cross-Entropy (CE), Class-Balanced Loss (CB) (Cui et al., 2019),
Logit Adjustment (LA) (Menon et al., 2021), Balanced Contrastive Learning (BCL) (Zhu et al., 2022),
and Probabilistic Contrastive Learning (ProCo) (Du et al., 2024). This allows us to comprehensively
assess the contribution of our optimizer across various long-tailed learning paradigms.

Implementation details. Our code is implemented with Pytorch 1.12.1. All experiments are carried
out on NVIDIA GeForce RTX 3090 GPUs. For a fair comparison, we use ResNet32 on CIFAR-10 LT
and CIFAR-100 LT, ResNet50 on ImageNet-LT, and pre-trained ResNet-152 on Places-LT. We train
each model using a batch size of 256 (for CIFAR-10 LT and CIFAR-100 LT) / 128 (for ImageNet-LT)
/ 512 (for Places-LT), with a momentum of 0.9 and a weight decay of 0.0002. We adopt the Nesterov
momentum form for all optimizers, with an initial learning rate of 0.1; a multi-step schedule (decayed
to 0.01 and 0.0001 at epochs 160 and 180) for CIFAR-10 LT and CIFAR-100 LT, and a cosine
schedule throughout training for ImageNet-LT and Places-LT. For Newton-Schulz iteration steps N
in the Muon optimizer, we set N = 5 for the sake of efficiency.

4.2 COMPARISON RESULTS

Results on CIFAR-10 LT and CIFAR-100 LT. We first evaluate Muon and ProMO on CIFAR-10 LT
and CIFAR-100 LT under imbalance factors (IF) of 10 and 100. As shown in Table 1, both methods
consistently outperform SGD and SAM across all class subsets (Many, Medium, Tail), with the largest
gains on tail classes under severe imbalance. On CIFAR-10 LT, Muon achieves clear improvements
over both baselines, particularly at IF=100 where it boosts tail accuracy without compromising head
or medium classes. The advantage is even more pronounced on CIFAR-100 LT: Muon not only
improves overall accuracy under both moderate and extreme imbalance, but also delivers substantial
gains for tail classes; for instance, when paired with the CB loss, Muon improves tail class accuracy
by 2.2% (IF=10) and 2.4% (IF=100) over SGD. Across all conditions, Muon maintains a consistent
edge over SAM, highlighting its robustness in long-tailed learning.

Crucially, our proposed ProMO not only matches but in some cases even surpasses the performance
of the Muon optimizer across various experimental settings. This demonstrates that our dynamic
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Table 1: Top-1 accuracy (%) (↑) results for Many, Medium (namely Med.), Few and overall classes
on CIFAR-10 LT and CIFAR-100 LT datasets, categorized by imbalance factors (IF) of 10 and 100.
ProMO and Muon are highlighted in blue to group them for focused comparison against the baselines.

Loss Method CIFAR-10 LT IF = 100 CIFAR-100 LT IF = 10 CIFAR-100 LT IF = 100
Many Med. Few All Many Med. Few All Many Med. Few All

CE

SGD 94.1 77.4 65.0 77.4 75.6 62.8 48.2 60.8 75.9 52.0 15.7 44.6
SAM 95.7 76.7 64.4 77.5 76.7 64.4 49.0 61.9 77.5 51.1 15.8 44.9
ProMO 95.2 76.9 64.3 77.3 77.1 65.4 49.7 62.6 77.2 53.9 16.2 45.8
Muon 95.1 75.7 67.1 78.1 75.0 65.6 49.1 61.8 77.2 52.4 17.3 45.8

CB

SGD 94.8 77.0 66.0 77.9 75.1 63.5 48.4 60.9 75.0 50.6 17.3 44.6
SAM 94.9 76.0 65.8 77.6 77.5 65.1 48.3 62.1 75.4 50.6 19.0 45.4
ProMO 94.9 77.1 66.7 78.3 76.1 66.4 50.5 62.9 76.5 52.5 19.3 46.4
Muon 95.1 77.9 66.0 78.3 76.4 65.9 50.6 62.9 76.4 52.2 19.7 46.5

LA

SGD 90.3 76.9 80.9 82.5 70.0 64.3 57.1 63.2 69.2 53.6 34.3 50.5
SAM 91.9 78.2 81.9 83.8 72.6 64.5 58.8 64.6 67.6 54.6 35.8 51.0
ProMO 91.5 78.0 82.0 83.7 71.9 65.0 58.6 64.5 69.3 55.0 34.8 51.2
Muon 92.6 79.9 82.4 84.7 71.7 65.0 59.3 64.7 68.5 56.2 36.1 51.9

BCL

SGD 93.2 79.3 81.7 84.4 71.7 64.5 59.5 64.7 68.5 54.2 34.2 50.5
SAM 94.0 80.8 82.7 85.5 72.5 65.2 60.0 65.3 68.1 53.5 37.1 51.3
ProMO 93.9 80.2 82.1 85.1 73.9 66.0 60.4 66.1 71.1 57.5 36.3 53.1
Muon 94.3 80.5 82.9 85.6 73.2 66.3 60.5 66.0 70.7 56.4 36.9 52.9

ProCo

SGD 93.6 80.7 82.2 85.2 71.8 64.7 59.2 64.6 68.9 55.4 36.2 51.8
SAM 92.6 80.3 84.7 85.8 73.6 64.2 59.9 65.3 69.4 56.2 36.7 52.4
ProMO 94.2 81.0 83.3 85.9 73.6 67.3 59.6 66.1 70.1 57.1 36.9 52.9
Muon 94.2 81.6 82.9 85.9 73.8 65.4 61.5 66.4 70.0 57.4 37.2 53.1

Table 2: Top-1 accuracy (%) (↑) results for Many, Medium (namely Med.), Few, and overall classes
on ImageNet-LT (IN-LT) and Places-LT (PL-LT) datasets, categorized by different loss functions.
ProMO and Muon are highlighted in blue to group them for focused comparison against the baselines.

Dataset Method CE LA ProCo
Many Med. Few All Many Med. Few All Many Med. Few All

IN-LT

SGD 69.4 42.2 14.8 49.0 64.3 52.4 35.1 54.6 66.3 54.3 37.8 56.7
SAM 71.7 43.7 16.1 50.7 66.1 54.5 38.5 56.8 66.8 56.9 40.2 58.5
ProMO 72.7 45.1 16.2 51.8 67.4 54.2 37.8 57.1 68.4 56.6 41.1 59.0
Muon 72.5 44.1 16.1 51.2 68.5 54.5 37.4 57.6 67.3 56.0 39.5 58.1

PL-LT

SGD 46.3 22.0 4.4 27.3 42.0 40.3 27.4 38.4 43.6 42.0 26.4 39.5
SAM 47.0 25.2 9.1 29.9 42.1 42.2 33.3 40.4 42.9 42.6 30.3 40.3
ProMO 47.0 25.2 9.1 29.9 43.3 41.7 32.5 40.5 43.4 42.1 33.0 40.8
Muon 47.6 26.9 10.7 31.2 43.4 41.6 33.1 40.5 43.4 42.2 31.9 40.6

optimization strategy successfully captures the benefits of Muon’s gradient orthogonalization during
critical training phases while maintaining computational efficiency, as will be detailed in Table 4.
Additionally, as shown in Fig. 3(c), experiments on both the balanced and imbalanced versions of
CIFAR-100 demonstrate that Muon is particularly effective in enhancing generalization performance
under imbalanced settings. See Appendix C.1 for more comparison results.

Results on Large-Scale Datasets. The benefits of Muon become more pronounced on large-scale
datasets which present far more extreme class imbalance and substantially larger numbers of classes.
As detailed in Table 2, Muon delivers consistent and notable gains, particularly for the under-
represented medium and tail classes. On Places-LT, Muon significantly improves overall accuracy
over SGD by 1.1% to 3.9% across various loss functions. Critically, its impact is most profound on
the tail classes, boosting their accuracy by up to a remarkable 6.3% (with CE loss). Furthermore,
Muon consistently achieves superior or competitive performance compared to SAM, demonstrating
its ability to find superior generalizing solutions. These trends hold on ImageNet-LT. Muon again
surpasses SGD, with overall accuracy improving by 1.4% to 3.0%. The benefit for tail classes remains
significant, confirming the robustness of our method under diverse, challenging conditions.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Loss landscape geometry metrics for SGD and Muon on CIFAR-10 LT and CIFAR-100 LT
with imbalance factor 100. Maximum eigenvalue λmax (↓) and trace of Hessian matrix Tr(H) (↓) are
reported for the three least frequent classes. Superscripts (1), (2), and (3) denote the 1st, 2nd, and
3rd rarest classes, respectively. Lower values indicate flatter minima and improved generalization.
Performance of Muon is highlighted in blue for focused comparison.

Dataset Method λ
(1)
max λ

(2)
max λ

(3)
max Tr(H)(1) Tr(H)(2) Tr(H)(3)

CIFAR-10 LT
SGD 968.51 516.88 560.69 2499.73 2263.09 2251.20
Muon 116.02 115.23 95.00 404.58 377.77 412.38

CIFAR-100 LT SGD 929.56 524.80 404.30 1560.40 1604.30 1843.20
Muon 358.20 309.71 322.10 437.58 529.98 810.12
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Figure 2: Eigen spectral density for the class with the fewest samples across different methods.
Experiments are conducted on (a,b) CIFAR-10 LT and (c,d) CIFAR-100 LT with imbalance factor
100. Maximum eigenvalue λmax (↓) and trace of hessian metric Tr(H) (↓) in the top right corner of
each panel. Lower λmax and Tr(H) indicate a smoother loss landscape and improved generalization.

Notably, our proposed ProMO continues to exhibit strong performance on large-scale benchmarks,
demonstrating a clear advantage over both SGD and SAM. Its accuracy is largely on par with the Muon
optimizer. Intriguingly, when combined with the most effective loss function, ProCo, ProMO not only
matches but surpasses the performance of the Muon optimizer on both datasets. This suggests that the
dynamic scheduling of optimizers may introduce a more diverse optimization pathway, potentially
guiding the model towards wider, better-generalizing minima than either optimizer could find alone.

Flat Minima of Loss Landscape. To further investigate the mechanism behind the improved
generalization performance of tail classes, we analyze the optimization from a loss landscape
perspective. We compute the eigenvalue spectrum of the Hessian matrix for tail classes on both
CIFAR-10 LT and CIFAR-100 LT datasets with an imbalance factor of 100, training with the LA
loss, as shown in Table 3 and Fig. 2. Table 3 presents the Hessian properties for the three classes with
the smallest sample sizes, comparing SGD and Muon optimizers through the maximum eigenvalue
λmax and trace Tr(H) at convergence. Smaller values indicate flatter loss landscapes associated with
better generalization. The results show clear advantages of Muon: on CIFAR-10 LT, λmax drops
by 77%–88% and the trace by 81–84% relative to SGD. On the more challenging CIFAR-100 LT,
reductions remain substantial, with 20%–61% in λmax and 56%–72% in the trace. These findings
indicate that Muon drives tail classes toward flatter minima, consistent with our theoretical analysis.

It is also crucial to examine the optimizer’s ability to escape saddle points, as the loss landscape of tail
classes often exhibits highly negative minimum eigenvalues, indicating convergence to such regions.
To validate this, we compute the minimum eigenvalues (λmin) for the class with the fewest samples
under Muon and SGD on both CIFAR-10 LT and CIFAR-100 LT under IF=100. On CIFAR-10 LT,
the λmin under Muon is -110.33, which is substantially larger than the -316.30 observed under SGD.
This trend is even more pronounced on the challenging CIFAR-100 LT dataset, where Muon achieved
a λmin of -352.22 compared to -916.12 for SGD. This observation indicates significantly weaker
negative curvature, corroborating Muon’s effectiveness in escaping saddle-like regions for tail classes.

Computational Efficiency Analysis. We analyze the computational efficiency of ProMO against the
SGD, SAM, and Muon optimizers, as shown in Table 4, Figs. 3(a) and 3(b). In Table 4, we measure
the average training time per epoch across four datasets, using two representative loss functions, LA
and ProCo, to evaluate the robustness of each optimizer to varying loss complexities.

The results demonstrate that ProMO effectively resolves the trade-off between generalization and
computational cost, achieving the strong performance of Muon with minimal overhead. This efficiency
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Table 4: Computational overhead of different optimizers on long-tailed benchmarks. We report the
average training time per epoch (seconds) (↓) and the runtime ratio relative to SGD (in parentheses).
Muon and ProMO are highlighted in blue to group them for focused comparison against the baselines.

Loss Method CIFAR-100 LT ImageNet-LT Places-LT
IF=10 IF=100

LA

SGD 4.2s (1.00×) 3.5s (1.00×) 184.8s (1.00×) 174.0s (1.00×)
SAM 7.0s (1.67×) 4.4s (1.27×) 392.2s (2.21×) 216.0s (1.24×)
Muon 8.4s (1.99×) 5.5s (1.61×) 358.8s (1.94×) 472.8s (2.71×)
ProMO 5.9s (1.41×) 4.2s (1.23×) 244.2s (1.32×) 204.0s (1.17×)

ProCo

SGD 11.1s (1.00×) 7.0s (1.00×) 684.0s (1.00×) 622.8s (1.00×)
SAM 21.3s (1.92×) 13.0s (1.85×) 1870.2s (2.73×) 2829.0s (4.54×)
Muon 17.6s (1.59×) 11.3s (1.60×) 1118.4s (1.63×) 1608.0s (2.58×)
ProMO 12.4s (1.12×) 8.2s (1.17×) 804.0s (1.17×) 874.8s (1.40×)
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Figure 3: (a, b) Average training time per epoch (seconds) (↓) for various methods on CIFAR-100 LT
with imbalance factors of 10 and 100, using (a) LA and (b) BCL loss functions, respectively. (c) Top-1
accuracy (%) (↑) comparison between SGD and Muon on both the standard balanced CIFAR-100
and its long-tailed version (IF=100) across various loss functions. Results demonstrate that Muon is
particularly effective for improving generalization performance in imbalanced settings.

Figure 4: Top-1 accuracy (%) (↑) comparison of the proposed sinusoidal probability scheduling
method in ProMO against four alternative probability schedules across different loss functions.
Experiments are conducted on CIFAR-100 LT with an imbalance factor of 100.

is most striking with complex losses like ProCo, where ProMO adds only 21% training overhead
compared to SGD. In sharp contrast, SAM incurs a 176% overhead and Muon still bears a considerable
85%, indicating their pronounced scalability limitations when integrated with advanced long-tailed
learning methods. When paired with LA loss, ProMO maintains its advantage, incurring just 25%
overhead versus 36% for SAM and a costly 106% for Muon. Importantly, these dramatic efficiency
gains come at no cost to accuracy. As shown in Tables 1 and 2, ProMO consistently matches the
performance of the Muon optimizer, establishing it as a highly practical and scalable method for
real-world, large-scale long-tail recognition. See Appendix C.2 for more comparison results.

Comparison with Alternative Probability Schedules. To further assess the effectiveness of our
sinusoidal probability scheduling method in Eq. (8), we compared it against several alternative
scheduling approaches. Specifically, we evaluated: (1) Linear, where the probability of selecting
Muon increases linearly from 0 to 1; (2) Phased, which employs SGD exclusively in the first half of
training and switches entirely to Muon in the second half; (3) Exponential, where the probability of
choosing Muon grows exponentially from 0 to 1; and (4) Alternating, where the optimizer alternates
between Muon and SGD at each epoch. The experimental results on CIFAR-100 LT with an imbalance
factor of 100 are presented in Fig. 4. While most of these schedules generally outperform pure SGD
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in terms of accuracy, the sinusoidal probability schedule consistently achieves superior performance
across a variety of loss functions. This finding highlights that gradually biasing the training process
toward Muon in a sinusoidal manner offers more stability and adaptability, ultimately enabling
stronger generalization compared to other probability scheduling methods.

5 CONCLUSION

In this work, we present a theoretical analysis of the Muon optimizer from the perspective of loss
landscape geometry and introduce ProMO, a novel hybrid optimization approach designed to address
the poor generalization of tail classes in long-tailed recognition. Our approach is grounded in new
insight demonstrating that the Muon optimizer effectively escapes sharp minima by enhancing the
gradient’s projection along directions of negative curvature. To mitigate Muon’s computational
overhead, ProMO dynamically chooses between standard SGD and Muon optimization using a
sinusoidal schedule that progressively favors Muon as training converges. This approach strikes an
effective balance between computational efficiency and performance, guiding the model toward flatter
loss landscapes and significantly improving generalization on tail classes, as validated by extensive
experiments. For future work, we will investigate the efficacy of our approach in other imbalanced
learning scenarios, such as domain adaptation, to further enhance its applicability and robustness.
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A ALGORITHM

We present the pseudo-code of Muon and ProMO in Algorithm 1 and Algorithm 2, respectively, to
illustrate the detailed implementation procedure of our method.

Algorithm 1 Muon

Input: Initial weights W0, learning rate schedule {ηt}, momentum β, batch size B, dataset D
for t = 0 to Tmax − 1 do

Sample mini batch {ξt,i}Bi=1 ← D
Calculate gt =

1
B

∑B
i=1∇f(Wt; ξt,i)

If t > 0, Mt = βMt−1 + (1− β)gt. If t = 0, M0 = g0

Calculate Ot = NewtonSchulz(Mt)
Update Wt+1 = Wt − ηtOt

end for

Algorithm 2 ProMO

Input: Initial weights W0, learning rate schedule {ηt}, momentum β, batch size B, dataset D
for t = 0 to Tmax − 1 do

Sample mini batch {ξt,i}Bi=1 ← D
Calculate gt =

1
B

∑B
i=1∇f(Wt; ξt,i)

If t > 0, Mt = βMt−1 + (1− β)gt. If t = 0, M0 = g0

Calculate pt via Eq. (8)
Sample µ ∼ Uniform(0, 1)
If µ < pt then Ot = NewtonSchulz(Mt) else Ot = Mt

Update Wt+1 = Wt − ηtOt

end for

B THEORETICAL SUPPLEMENT

Lemma 1. Given the normalized gradient matrix Gt = gt

∥gt∥F
and its rank-rt singular value

decomposition Gt = UtStV
⊤
t , where Ut ∈ Rm×rt and Vt ∈ Rn×rt satisfy U⊤

t Ut = Irt and
V⊤

t Vt = Irt , and St = diag(s1, . . . , srt) ∈ Rrt×rt is the diagonal matrix of singular values, it
holds that

∑rt
i=1 s

2
i = 1.

Proof of Lemma 1. By the normalization condition Gt = gt/∥gt∥F, the Frobenius norm of Gt is:

∥Gt∥F =
∥gt∥F
∥gt∥F

= 1, (9)

which implies ∥Gt∥2F = 1. The squared Frobenius norm is equivalent to the trace of G⊤
t Gt:

∥Gt∥2F = trace(G⊤
t Gt). (10)

Substituting the SVD, Gt = UtStV
⊤
t , we compute:

G⊤
t Gt = (UtStV

⊤
t )

⊤(UtStV
⊤
t ) = VtS

⊤
t U

⊤
t UtStV

⊤
t = VtS

⊤
t IrtStV

⊤
t = VtS

2
tV

⊤
t . (11)

The trace operation yields:

∥Gt∥2F = tr(VtS
2
tV

⊤
t ) = tr(V⊤

t VtS
2
t ) = tr(Irt · S2

t ) = tr(S2
t ). (12)

The matrix S2
t = diag(s21, . . . , s

2
rt) is diagonal, so its trace is the sum of the squared singular values:

tr(S2
t ) =

rt∑
i=1

s2i . (13)
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Combining these results, we conclude:
rt∑
i=1

s2i = ∥Gt∥2F = 1. (14)

Lemma 2. Let matrices A,B ∈ Rrt×rt be positive semi-definite (PSD) matrices. Then, it holds that
tr(AB) ≥ 0.

Proof of Lemma 2. Since A is PSD, it admits a symmetric PSD square root A1/2 satisfying
A = A1/2A1/2 and (A1/2)⊤ = A1/2. Applying the cyclic property of the trace operator, we
reinterpret tr(AB) as:

tr(AB) = tr
(
A1/2(A1/2B)

)
= tr

(
A1/2BA1/2

)
. (15)

The matrix M = A1/2BA1/2 preserves the PSD property: for any vector x ∈ Rrt ,

x⊤Mx =
(
x⊤A1/2

)
B
(
(A1/2)⊤x

)
= y⊤By ≥ 0, y = A1/2x, (16)

since B is PSD. Consequently, M is also PSD, and its trace—equivalent to the sum of its non-negative
eigenvalues—satisfies tr(M) ≥ 0, that is,

tr(AB) = tr
(
A1/2BA1/2

)
≥ 0. (17)

Proof of Theorem 1. Define V ∈ Rm×n as the matrix obtained by reshaping vWt into shape m× n,
so that vec(V) = vWt

. The SGD update direction is the stochastic gradient gt, and its projection
onto vWt

is:
projSGD = vec(gt)

⊤vec(V) = tr(g⊤
t V). (18)

Remember that Gt = gt/∥gt∥F is the normalized gradient. The projection of Gt onto vWt can be
expressed as:

tr(G⊤
t V) = tr(VtStU

⊤
t V) = tr(StM) =

rt∑
i=1

si mii, (19)

where Mt := U⊤
t VVt ∈ Rrt×rt , and si ∈ [0, 1] are the singular values of Gt, while mii are the

diagonal entries of M. Hence, the SGD projection on vWt
becomes:

projSGD = ∥gt∥F · tr(G⊤
t V) = ∥gt∥F · tr(StM). (20)

The Muon update direction is given by UtV
⊤
t , and its projection onto vWt

is:

projMuon = vec(UtV
⊤
t )

⊤vec(V) = tr((UtV
⊤
t )

⊤V)

= tr(VtU
⊤
t V) = tr(U⊤

t VVt) = tr(M) =

rt∑
i=1

mii.
(21)

Now we compare the expected squared projection of Muon and the normalized gradient Gt onto
vWt .

E
[
(tr(Mt))

2
]
− E

[
(tr(StMt)

2
]
= E

[(∑
i

mii

)2

−
(∑

i

simii

)2
]

= E

[∑
i,j

(1− sisj)miimjj

]
.

(22)

Let us define vector s = [s1, . . . , srt ]
⊤ ∈ Rrt , where ∥s∥2 = 1 since Gt is normalized. Then, define

the matrix A := I− ss⊤ ∈ Rrt×rt . Let vector m = [m11, . . . ,mrtrt ]
⊤ ∈ Rrt , and define the matrix

B := mm⊤ ∈ Rrt×rt . We now show that both matrices A and B are PSD matrices:
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For matrix A, for any x ∈ Rrt , with the Cauchy–Schwarz inequality, we can obtain
x⊤Ax = x⊤(I− ss⊤)x = ∥x∥22 − (s⊤x)2 ≥ ∥x∥22 − ∥s∥22∥x∥22 = 0, (23)

note that ∥s∥2 = 1 comes from Lemma 1.

For matrix B, for any x ∈ Rrt , we can obtain
x⊤Bx = x⊤mm⊤x = m⊤x · x⊤m = (x⊤m)2 ≥ 0. (24)

Now, we relate the term
∑

i,j(1− sisj)miimjj to the trace of the product AB:∑
i,j

(1− sisj)miimjj = m⊤(I− ss⊤)m = m⊤Am

= tr
(
m⊤Am

)
= tr

(
Amm⊤) = tr(AB).

(25)

Combine Lemma 2 and Eq. (22), we can obtain
E
[
(tr(Mt))

2
]
− E

[
(tr(StMt)

2
]
= E

[
tr(AB)

]
≥ 0. (26)

We focus on the late stages of training near convergence, where the gradient norm becomes very
small, often substantially below one (Zhang et al., 2017). Thus, combining Eq. (21), Eq. (26) and
Eq. (20), we can obtain:

E
[
(projMuon)

2
]
= E

[
(tr(M))

2
]
≥ E

[(
tr(G⊤

t V)
)2] ≥ E

[
(projSGD)

2
]
. (27)

C EXPERIMENTAL SUPPLEMENT

C.1 ADDITIONAL EXPERIMENTS ON CIFAR

Table 5: Top-1 accuracy (%) (↑) results of different optimizers under various loss functions on
CIFAR-10 LT with an imbalance factor of 10. Results for the Medium class group are presented as
Med. in the table.

Loss Method Many Med. Few All

CE

SGD 95.0 85.9 88.2 89.3
SAM 95.2 86.3 88.1 89.1
ProMO 95.0 86.4 89.9 90.0
Muon 96.1 86.3 88.3 89.8

CB

SGD 94.9 86.4 88.4 89.6
SAM 95.0 86.0 87.9 89.3
ProMO 95.7 86.6 88.6 89.9
Muon 95.6 87.2 88.7 90.2

LA

SGD 93.8 87.5 92.1 90.8
SAM 94.1 87.0 92.1 90.7
ProMO 94.5 87.5 92.2 91.0
Muon 94.5 88.0 92.6 91.3

BCL

SGD 94.3 87.5 91.8 90.8
SAM 94.5 88.3 93.2 91.6
ProMO 95.0 88.6 92.5 91.7
Muon 94.8 88.2 92.2 91.4

ProCo

SGD 94.8 88.6 92.6 91.7
SAM 94.6 88.9 93.1 91.8
ProMO 95.3 88.7 92.7 91.9
Muon 94.8 88.6 93.5 92.0

Table 5 presents the comparative performance of Muon and ProMO on the CIFAR-10 LT dataset
with an imbalance factor of 10. The results demonstrate that both Muon and ProMO consistently
surpass the SGD and SAM baselines across various loss functions, aligning with the trend observed
in Table 1.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.2 ADDITIONAL EXPERIMENTS ON COMPUTATIONAL OVERHEAD

Table 6: Computational overhead of different optimizers under CE loss on long-tailed benchmarks.
We report the average training time per epoch (seconds) (↓) and the runtime ratio relative to SGD (in
parentheses). Performance of Muon and ProMO are highlighted in blue to group them for focused
comparison against the baselines.

Method CIFAR-100 ImageNet-LT Places-LT
IF=10 IF=100

SGD 3.47s (1.00×) 3.10s (1.00×) 280.046s (1.00×) 224.70s (1.00×)
SAM 6.94s (1.99×) 4.66s (1.50×) 392.170s (1.40×) 356.08s (1.58×)
Muon 8.22s (2.37×) 5.87s (1.89×) 435.29s (1.55×) 471.63s (2.10×)
ProMO 4.49s (1.29×) 3.35s (1.08×) 292.51s (1.04×) 267.29s (1.19×)

In Table 6, we provide additional experiments analyzing computational efficiency. We measure the
average training time per epoch across four datasets using the CE loss function. The results show that
the SAM optimizer incurs an average of 98% additional training time compared to SGD, while the
Muon optimizer increases training time by an average of 106% under the same settings. In contrast,
our proposed ProMO increases training time by only 15% on average relative to SGD. These findings
are consistent with the results presented in Table 4 and Figs. 3(a) and 3(b).

C.3 EFFICIENCY ANALYSIS VIA GRADIENT APPROXIMATION

To further mitigate computational overhead, we investigated reducing the precision of Newton-Schulz
orthogonalization as a potential optimization for efficient gradient approximation. Specifically, we
evaluated the performance of ProMO on CIFAR-100 LT with CB loss under an imbalance factor of
100, while varying the number of Newton-Schulz iteration steps N from the default 5 down to 2.

The results, summarized in Table 7, demonstrate a clear trade-off between computational cost and
accuracy. Consistent with our theoretical complexity analysis (Eq. (6,7)), reducing the iterations
successfully lowers the computational overhead. While the default N = 5 retains the highest accuracy,
we observe that although the total accuracy decreases slightly as N declines, it consistently remains
superior to SGD. This validates that gradient approximation via moderately reduced iterations is still
an effective method for maintaining robust performance in resource-constrained scenarios.

Table 7: Ablation study on the number of Newton-Schulz iteration steps (N ) on CIFAR-100 LT under
an imbalance factor of 100. We report the top-1 accuracy(%) (↑), the average training time per epoch
(seconds) (↓) and the runtime ratio relative to SGD (in parentheses).

Method N Many Medium Few All Time/epoch
SGD - 75.0 50.6 17.3 44.6 2.57 (1×)

Muon 5 76.4 53.1 19.7 46.7 4.11 (1.59×)
ProMO 5 76.5 52.5 19.3 46.4 2.94 (1.14×)

ProMO 2 76.1 51.1 17.7 45.2 2.59 (1.01×)
ProMO 3 76.1 52.8 18.1 45.9 2.78 (1.09×)
ProMO 4 77.2 51.3 18.8 46.1 2.82 (1.10×)

C.4 GENERALIZATION TO NATURAL LANGUAGE PROCESSING

While our primary evaluation followed mainstream long-tailed learning protocols centered on visual
benchmarks (Menon et al., 2021), we further investigated the versatility of Muon by extending our
experiments to the Natural Language Processing domain. We conducted experiments using the Yahoo
Answers Topic Classification dataset (Zhang et al., 2015). To simulate long-tailed distributions, we
constructed two variants by sampling from a 12k training subset with imbalance factors of 10 and 50,
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respectively. We divide the classes into Many, Medium, and Few splits, corresponding to the top three,
middle four, and bottom three classes sorted by frequency, respectively. Evaluation was performed
on a balanced test set containing 4k samples. The model architecture consisted of a fixed pre-trained
BERT-base-uncased backbone, followed by an MLP layer and a linear classification head. Both
SGD and Muon were trained using CE loss for 20 epochs. As shown in Table 8, Muon consistently
outperforms the SGD baseline across different imbalance factors, especially in the tail classes and
highly imbalanced setting. This confirms that the benefits of Muon’s curvature-aware optimization
are not limited to vision tasks but also extend effectively to other modalities like NLP.

Table 8: Top-1 accuracy (%) (↑) results for Many, Medium, Few, and overall classes on long-tailed
Yahoo Answers dataset, categorized by imbalance factors (IF) of 10 and 50.

IF Method Many Medium Few All

10 SGD 75.9 58.5 43.3 59.1
Muon 73.0 60.9 45.6 59.9

50 SGD 74.8 61.2 3.4 47.9
Muon 76.8 55.9 17.3 50.6

C.5 COMPARISON WITH FINE-TUNING METHOD

Recent long-tailed recognition methods have explored fine-tuning paradigms on top of large-scale
foundation models, such as LIFT (Shi et al., 2024) and LPT (Dong et al., 2023). To verify that Muon
remains effective in this setting, we follow the experimental protocol of LIFT. Specifically, we adopt
a pre-trained CLIP ViT-B/16 backbone and fine-tune it on CIFAR-100 LT with IF=100. We adhere to
the experimental settings of LIFT for a fair comparison. As shown in Table 9, Muon achieves higher
overall accuracy than LIFT, with particularly notable gains on tail classes. This indicates that Muon
is complementary to fine-tuning based long-tailed methods, and can further improve representation
quality even when starting from strong pre-trained features.

Table 9: Top-1 accuracy (%) (↑) results for Many, Medium, Few, and overall classes on CIFAR-100
LT under IF=100 with a CLIP ViT-B/16 backbone.

Method Many Medium Few All
LIFT 84.4 81.1 74.4 80.2
Muon 85.1 81.5 76.8 81.3

C.6 MUON WITH DECOUPLED TRAINING METHOD

We further explore the performance of Muon when combined with decoupled training methods. Specif-
ically, we evaluate Muon and ProMO under the standard two-stage decoupling framework (Kang
et al., 2020): (1) Stage 1, trains the backbone representation, and (2) Stage 2, re-trains a balanced
classifier (cRT) on top of the frozen backbone. Concretely, we train the backbone in Stage 1 using
SGD, Muon, or ProMO, and then apply classifier re-training (cRT) in Stage 2. Experiments are
conducted on CIFAR-100 LT under IF=10 and IF=100.

As shown in Table 10, Muon and ProMO consistently outperform SGD after cRT, indicating that
re-balancing the classifier does not diminish their advantages. Instead, the gains persist because
Muon and ProMO improve the quality of learned representations during Stage 1, providing a stronger
feature space for the balanced classifier in the later stage.

C.7 COMPARISON WITH STRONG SAM VARIANT

Comparison with ImbSAM. Several SAM variants have been proposed for long-tailed learning,
such as ImbSAM (Zhou et al., 2023a). We further conduct additional comparisons to evaluate the
effectiveness and efficiency of our proposed ProMO. We compare ProMO against SGD, SAM, and
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Table 10: Top-1 accuracy (%) (↑) results for Many, Medium, Few, and overall classes on CIFAR-100
LT, categorized by imbalance factors (IF) of 10 and 100.

IF Method Many Medium Few All

10
SGD 67.3 61.5 55.9 61.8
Muon 68.3 61.9 57.3 62.8
ProMO 68.9 62.4 56.5 62.9

100
SGD 66.3 51.7 31.7 47.5
Muon 66.9 56.3 34.0 50.6
ProMO 66.1 54.8 34.3 50.0

ImbSAM on CIFAR-100-LT under imbalance factors IF=10 and IF=100. Following prior work, we
consider both CE loss and BCL loss. We also report the training time measured on a single NVIDIA
RTX 3090, normalized by the SGD baseline to highlight the efficiency trade-off.

As shown in Table 11, ProMO consistently attains the best overall accuracy across all settings, while
being substantially more efficient than SAM and ImbSAM. In particular, ImbSAM requires roughly
2.0×-3.1× the training cost of SGD due to its extra gradient computations, whereas ProMO only
incurs a marginal overhead of about 1.1×–1.3×. These results demonstrate that ProMO achieves a
more favorable accuracy-efficiency trade-off than computationally heavy SAM variants in long-tailed
recognition.

Table 11: Top-1 accuracy (%) (↑) results for Many, Medium, Few, and overall classes on CIFAR-100
LT with CE and BCL losses, under imbalance factors (IF) of 10 and 100. We also report the training
time (seconds) (↓) and the runtime ratio relative to SGD (in parentheses).

Loss IF Method Many Medium Few All Time

CE

10

SGD 75.6 62.8 48.2 60.8 696 (1.00×)
SAM 76.4 64.5 49.1 61.9 1390 (2.00×)
ImbSAM 74.0 61.4 54.6 62.4 2148 (3.09×)
ProMO 77.1 65.4 49.7 62.6 898 (1.29×)

100

SGD 75.9 52.0 15.7 44.6 516 (1.00×)
SAM 76.3 51.6 17.0 45.2 932 (1.81×)
ImbSAM 76.1 49.1 20.0 45.6 1270 (2.47×)
ProMO 77.2 53.9 16.2 45.8 670 (1.30×)

BCL

10

SGD 71.7 64.5 59.5 64.7 1674 (1.00×)
SAM 72.5 65.2 60.0 65.3 2896 (1.73×)
ImbSAM 71.9 66.0 60.3 65.5 3482 (2.08×)
ProMO 73.9 66.0 60.4 66.1 1804 (1.08×)

100

SGD 68.5 54.2 34.2 50.5 1098 (1.00×)
SAM 68.1 53.5 37.1 51.3 1802 (1.64×)
ImbSAM 68.0 52.9 40.0 52.2 2148 (1.96×)
ProMO 71.1 57.5 36.3 53.1 1178 (1.07×)

Comparison with LookSAM. We further compare Muon and ProMO with LookSAM (Liu et al.,
2022), a representative efficient SAM variant in balanced scenarios. We compare these methods on
CIFAR-100-LT under an imbalance factor of 100. The results are shown in Table 12. Although we
verified that LookSAM matches SAM’s performance on the balanced CIFAR-100 (both achieve an
accuracy of 72.8%), the results show that its accuracy deteriorates substantially on the imbalanced
CIFAR-100 LT, particularly on tail classes. In contrast, ProMO retains the robust generalization. This
indicates that efficiency techniques effective in balanced settings, such as the gradient decomposition
and estimation strategies used in LookSAM, are not robust under severe class imbalance. These
findings underscore the value of developing efficient alternatives that remain effective in imbalanced
scenarios, such as Muon and ProMO.
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Table 12: Top-1 accuracy (%) (↑) results for Many, Medium, Few, and overall classes on CIFAR-100
LT with CE and LA losses, under an imbalance factor of 100. LookSAM-k denotes the method where
the SAM update is performed every k steps.

Loss Method Many Medium Few All

CE

SAM 76.3 51.6 17.0 45.2
Muon 77.2 52.4 17.3 45.8
ProMO 77.2 53.9 16.2 45.8
LookSAM-2 74.8 46.7 10.5 40.7
LookSAM-3 70.1 37.8 6.5 35.0
LookSAM-4 64.2 29.9 4.6 30.1

LA

SAM 75.4 50.6 19.0 45.4
Muon 76.4 52.2 19.7 46.5
ProMO 76.5 52.5 19.3 46.4

LookSAM-2 73.2 46.9 13.6 41.5
LookSAM-3 70.0 40.1 9.7 36.9
LookSAM-4 67.3 35.8 7.8 34.1

C.8 RESULTS ON LARGE-SCALE REAL-WORLD LONG-TAILED DATASET

To provide a more comprehensive evaluation, we extend our experiments to the large-scale real-world
setting. We additionally benchmark our method on the iNaturalist-2018 (Horn et al., 2018) dataset.
The iNaturalist-2018 is a large-scale real-world long-tailed dataset that contains 437.5k training
images from 8,142 species. Following mainstream protocols (Cui et al., 2019; Du et al., 2024), we
adopt a ResNet-50 backbone trained for 90 epochs using CE loss. We compare SGD, SAM, Muon,
and our proposed ProMO under the Many, Medium, and Few splits. As shown in Table 13, Muon and
ProMO both outperform SGD and SAM across all class splits, with especially clear improvements on
tail classes. These results demonstrate that curvature-aware optimization methods, such as Muon and
ProMO, generalize effectively to more challenging large-scale long-tailed datasets.

Table 13: Top-1 accuracy (%) (↑) results for Many, Medium, Few, and overall classes on iNaturalist-
2018 dataset. Muon and ProMO exhibit consistent improvements across all class splits.

Method Many Medium Few All
SGD 74.6 64.9 56.8 62.7
SAM 76.4 66.8 58.8 64.6
ProMO 77.5 67.9 59.8 65.7
Muon 78.0 68.4 60.6 66.3

C.9 DEEPER UNDERSTANDING BETWEEN THEORETICAL ANALYSIS AND PROMO DESIGN

To demonstrate that the design of ProMO is grounded in the intrinsic training dynamics of long-tailed
learning, we conducted an empirical analysis tracking the evolution of loss landscape geometry.
Specifically, we monitored the Hessian trace of the least frequent class on CIFAR-100 LT under
IF=100 across the training process for SGD, Muon, and ProMO. The results are presented in Table 14.

These results show that, in the early training phase, both SGD and Muon exhibit relatively low traces.
This suggests that during early exploration, the inherent stochasticity of SGD gradients provides
sufficient noise to avoid sharp minima. Consequently, the complex orthogonalization operations of
Muon incur computational overhead without offering significant geometric advantages during this
period. This justifies ProMO’s design choice to prioritize SGD in the early stages to maintain high
computational efficiency while the optimization landscape is still being actively explored.

In later training stages, especially as the model nears convergence, the trace for SGD increases dramat-
ically, indicating convergence to a sharp minimum, which is known to harm tail-class generalization.
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Table 14: Evolution of the Hessian trace on CIFAR-100 LT under imbalance factor of 100. Lower
values indicate flatter minima, which correlate with better generalization.

Epoch SGD Muon ProMO
80 664.6 636.1 691.5

120 956.1 450.8 615.2
180 1629.6 703.6 667.6
200 2137.5 536.0 514.1

In contrast, Muon maintains significantly lower trace values, validating our theoretical analysis that it
effectively escapes sharp regions by amplifying updates along negative curvature directions. This
provides the motivation for ProMO to progressively increase its usage of the Muon optimizer as
training advances. These observations confirm ProMO as a principled solution that combines SGD’s
early efficiency with Muon’s capability to escape sharp minima in the later stages.

D DISCUSSIONS

Additional related work. Recent advancements in long-tailed recognition have diversified beyond
traditional re-balancing techniques. In the realm of contrastive learning, GPaCo (Cui et al., 2024)
identifies the bias of supervised contrastive loss towards high-frequency classes and introduces para-
metric learnable centers to rebalance optimization dynamics. For handling diverse test distributions,
DirMixE (Yang et al., 2024) proposes a sophisticated mixture-of-experts strategy based on Dirichlet
meta-distributions to capture both global and local label distribution variations. Furthermore, address-
ing the geometry of the loss landscape has become a pivotal direction; CC-SAM (Zhou et al., 2023b)
argues that naive flattening is insufficient for long-tailed learning and proposes a class-conditional
sharpness-aware minimization to robustify the classifier against parameter perturbations.

Muon enhances representation learning. Muon fundamentally improves representation learning
by guiding optimization toward flatter minima. In long-tailed recognition, a critical representational
failure mode is the tendency for minority classes to converge to sharp regions of the loss landscape,
which undermines generalization capabilities. Muon addresses this challenge. By amplifying updates
along directions of negative curvature via gradient orthogonalization, Muon facilitates the escape
from these sharp regions and guides optimization toward flatter solutions. Securing these flatter
minima, which is evidenced by improved loss-landscape metrics on tail classes, is essential for
learning robust representations that generalize better to underrepresented data, going beyond mere
improvements in convergence speed. Table 9 and Table 10 also provide more empirical evidence that
Muon could improve the quality of learned representations.

Regarding CNC assumption. The Correlated Negative Curvature (CNC) assumption is well
established in the non-convex optimization literature. It has been theoretically justified for learning
half-spaces Daneshmand et al. (2018), while subsequent studies, such as (Wang et al., 2020)), have
provided further validation through extensive analyses on deep networks of varying widths and depths.
It has also been adopted in broader domains such as manifold optimization (Criscitiello & Boumal,
2019), making it a standard and widely accepted assumption. Importantly for our setting, CNC has
been examined directly in long-tailed learning. Rangwani et al. (2022) shows that tail classes exhibit
strong negative curvature that traps SGD in sharp minima, and that methods like SAM alleviate this
issue. Later works such as Zhou et al. (2023a) further support these observations. Our analysis builds
on this established foundation and does not require stronger assumptions than prior work.

Targeted design addressing long-tailed learning challenges. Our work identifies and operational-
izes a unique complementarity between gradient orthogonalization and long-tailed learning through
two specialized contributions. First, our theoretical analysis demonstrates that Muon specifically
addresses optimization bottlenecks inherent to underrepresented data by enhancing updates along
directions of negative curvature, enabling the model to escape sharp minima that hinder tail-class
generalization. Second, building on this insight, we designed ProMO specifically for long-tailed
training dynamics. ProMO progressively integrates Muon during critical later stages when SGD fails
to escape sharp minima, thereby increasing tail-class generalization while mitigating computational
overhead. This provides an efficient solution essential for large-scale imbalanced benchmarks.
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ProMO as a trade-off between efficiency and generalization. Our primary design objective of
ProMO is to approximate Muon’s generalization benefits while substantially mitigating its com-
putational overhead. As shown in Table 1 and Table 2, ProMO exhibits a consistent performance
pattern, reliably outperforming SGD and remaining competitive with Muon in accuracy. Crucially, as
shown in Table 4, it achieves these results while drastically reducing training costs compared to the
significant overhead demands of Muon and SAM. Thus, ProMO successfully delivers its intended
precise trade-off between high efficiency and robust tail-class generalization.
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