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Abstract

Although Large Language Models (LLMs) have expanded
the capabilities of recommender systems, they are hindered
by inherent limitations, including a propensity for factual
hallucination and reliance on outdated domain knowledge.
These constraints pose significant challenges in contexts re-
quiring high-fidelity recommendations, such as consumer
electronics purchases where precise, current specifications
are critical. To address these issues, this paper proposes
a novel framework termed Dynamic Graph-Retrieval Aug-
mented Generation (RAG), which integrates LLMs, knowl-
edge graphs, and RAG techniques within a multi-agent ar-
chitecture. The framework dynamically deciphers complex
user purchase intents and prioritizes decision-critical fac-
tors through a modular communication protocol that en-
ables cross-agent collaboration, a ‘Specification Vector In-
dex’ that resolves semantic disparities between natural lan-
guage queries and technical attributes, and a graph-based dy-
namic retrieval engine that facilitates fact-grounded reason-
ing. Empirical validation forms a pivotal contribution of this
work, with rigorous experimental verification confirming the
system’s efficacy in minimizing hallucinations through struc-
tured knowledge grounding. Quantitative metrics demon-
strate statistically significant improvements in recommenda-
tion accuracy, such as 22.7% increase in precision, and relia-
bility, while traceable decision pathways enhance operational
transparency. This research delivers a foundational architec-
ture for a possible practical recommender systems, validated
through real-world deployment scenarios and test dataset, and
establishes a benchmark for empirically substantiated innova-
tion in AI-driven recommendation frameworks. By bridging
theoretical innovation and practical deployment, this study
marks a critical advancement in the field, offering both a new
methodology and concrete evidence of its real-world applica-
bility.

Introduction
Recently, the emergence of conversational search services
leveraging Large Language Models (LLMs) has introduced
a new paradigm, enabling consumers to find desired prod-
ucts through natural language (Wang et al. 2025; Lewis et al.
2020; Panarin 2025). LLMs show exceptional potential for
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understanding complex user queries, overcoming the limi-
tations of conventional recommenders. This study focuses
on the consumer electronics domain, where purchasing de-
cisions require a high degree of accurate information regard-
ing technical specifications, product comparisons, user re-
views, expert evaluations, and price-performance value. Our
proposed system aims to discern the user’s latent intent to
dynamically prioritize and deliver this critical information.

However, these powerful capabilities present a signifi-
cant challenge. LLMs are susceptible to ’hallucination,’ gen-
erating plausible but factually incorrect information, and
their knowledge is static, failing to reflect rapidly chang-
ing product information or prices (Wang et al. 2025; Pa-
narin 2025). This is a significant drawback for technology
products where precise specifications are crucial. To address
these limitations, Retrieval-Augmented Generation (RAG)
technology has emerged as a solution to enhance factual-
ity by referencing external knowledge sources (Lewis et al.
2020; Gao et al. 2023). Yet, conventional RAG methods
that rely on unstructured text are inefficient at leveraging
the structural and relational knowledge of product specifi-
cations. Meanwhile, Knowledge Graphs (KGs) are highly
effective for representing this structured data and enhanc-
ing explainability (Huang and Huang 2024; Kwon, Ahn, and
Seo 2024; Wang et al. 2019), but they cannot respond di-
rectly to natural language queries.

To address these interconnected challenges, we propose
Dynamic Graph-RAG (D-GraphRAG), a new framework
that synergistically combines the capabilities of LLMs, KGs,
and RAG. The D-GraphRAG methodology operates in three
core stages. First, an LLM parses the user’s natural lan-
guage query into structured features and constraints. Second,
a novel Feature Description Vector Index (FDVI) bridges the
semantic gap between user language and technical specifica-
tions, allowing the LLM to infer key features and their con-
textual importance. Finally, a graph query is auto-generated
to retrieve and rank products, yielding a fact-based and
traceable recommendation. Th FDVI database systemati-
cally classifies and describes various performance charac-
teristics of products, enabling users to easily understand the
importance and measurement methods of specific features.
Each entry is provided in both Korean and English, and re-
lated terms and categories are offered to identify connections
between features. Additionally, it provides quantitative data



through measured attributes, allowing for objective compar-
isons.

Key contributions of this study include hallucination sup-
pression through a hybrid RAG approach where user intent
is connected to fact-based knowledge. An explainable ser-
vice is provided by rendering the entire recommendation
process transparent and traceable through the inferencing
process. ”Dynamic” denotes the system’s capability to prior-
itize and adapt data in real time based on user intent. Static
limitations are overcome by the D-GraphRAG framework,
which flexibly interprets intent and links structured knowl-
edge to enable dynamic services.

Related Work
This research integrates three key research streams: LLMs,
RAG, and knowledge graph-based recommender systems.
LLMs have opened new horizons in recommendation, with
recent surveys classifying them into Discriminative and
Generative paradigms (Wu et al. 2024; Liu et al. 2024;
Lopez-Avila and Du 2025; Huang and Huang 2024). Our D-
GraphRAG framework aligns with the generative paradigm.
However, it is distinguished from existing research by its
ability to go beyond simple prompting to dynamically re-
trieve and reason with structured external knowledge, which
also has the potential to mitigate the cold-start problem
(Wang et al. 2024; Balloccu et al. 2024; Zhang et al. 2025).
RAG has emerged as a key technology for enhancing the
factual accuracy of LLMs and reflecting up-to-date infor-
mation (Lewis et al. 2020; Gao et al. 2023; Kwon, Ahn,
and Seo 2024). However, in highly structured domains like
consumer electronics, standard RAG exhibits clear limita-
tions as it struggles to reason about complex entity relation-
ships (Wang et al. 2025; Panarin 2025). For the represen-
tation of such structured information, KGs are a highly ef-
fective tool for mitigating data sparsity and enhancing ex-
plainability (Huang and Huang 2024; Kwon, Ahn, and Seo
2024; Wang et al. 2019), but they cannot respond directly to
natural language queries on their own (Tourani, Nazary, and
Deldjoo 2025; Wang et al. 2019). Furthermore, the success
of Graph Neural Network (GNN) models like NGCF and
LightGCN has demonstrated that leveraging graph topology
is key to improving recommendation performance, provid-
ing the theoretical background for our adoption of a KG (He
et al. 2020; Qiu et al. 2025).

Against this backdrop, recent trends are converging on
integrating these three technologies. Our work is distinct
from several approaches. Unlike conversational systems
like G-CRS (Wang et al. 2024; Balloccu et al. 2024), D-
GraphRAG focuses on deeply interpreting single, complex
queries. In contrast to methods that use LLMs to gener-
ate a product knowledge graph (PKG) (Zhang et al. 2025;
Peng et al. 2025), D-GraphRAG utilizes a pre-constructed
graph as a ’source of truth’ for real-time queries. Finally,
while it shares principles with graph-augmented RAG like
K-RagRec (Wang et al. 2025; Panarin 2025), our primary
contribution is the FDVI. The FDVI acts as a ’semantic
translation layer’ that seamlessly connects the user’s collo-
quial language with the KG’s technical terminology. In con-
clusion, our research proposes a new architectural pattern

that delineates the role of each component to maximize syn-
ergy, thereby ensuring both reliability and explainability.

Multi-Agent System Architecture
To overcome the flexibility and scalability limitations of
conventional monolithic architectures, the D-GraphRAG
framework adopts a modular design based on a Model Con-
text Protocol (MCP) as illustrated in Fig. 1. The MCP is
a communication protocol foundational to the multi-agent
architecture, enabling seamless interaction between diverse
agents and data sources. It operates on a three-tier structure
(Host, Client, Server) where all data exchange occurs via a
standardized payload with distinct Context and Data fields.
This microservice-like structure offers clear advantages in
fault isolation and flexible scalability, as new AI agents can
be added simply by developing and integrating a new MCP
Server without modifying existing system code. The frame-
work consists of three logical layers operating via MCP. The
Service Layer is the top-level user interface for receiving
queries and presenting recommendations. The Orchestration
Layer serves as the central control unit, analyzing queries,
distributing tasks to agents, and synthesizing the final re-
sponse using modules like an LLM-based Query Analysis
Agent. The Agent Layer is a collection of specialized, inde-
pendent servers, including an agent for user query analysis,
a Vector DB agent for semantic retrieval, and a Graph DB
agent for logical reasoning.

The system’s knowledge base is kept current by an au-
tomated Database Manager pipeline that manages the data
lifecycle—collecting, refining, and updating the Vector and
Graph DBs. This is essential for addressing the LLM’s in-
herent ’knowledge cutoff’ problem. A primary challenge
is the semantic gap between user language and the Graph
DB’s technical terminology. To address this challenge, we
introduce the FDVI, a pre-generated index of natural lan-
guage descriptions for technical features and contexts. When
a user query is input, the system first searches the FDVI
to find semantically relevant concepts. These concepts are
then used to guide the LLM in generating a precise and
factually-grounded graph query, which minimizes halluci-
nation. The FDVI is composed of three distinct vector in-
dexes for product (TVs), features and attributes, and ex-
pert verdicts to ensure targeted and accurate information re-
trieval. The accuracy of this process is further enhanced by
constructing FDVI documents separately for each product
model and employing contextual chunking. Ultimately, this
integration of a tree-structured Graph DB with these three
natural language-based Vector Indexes allows the system to
leverage an LLM’s interpretive power to query the graph via
Cypher, efficiently processing complex questions and pro-
viding users with accurate, contextually relevant informa-
tion.

Knowledge Graph for Product
Recommendation

Conventional recommender systems struggle to understand
users’ complex natural language queries, failing to grasp



Figure 1: Architecture of a consumer electronics recommen-
dation system composed of Multiple MCP servers (agents).

the complex context in a request like, “a good TV for en-
joying both movies and games in a bright living room”.
To overcome this, the D-GraphRAG methodology combines
the reasoning of LLMs with the structured information of a
Knowledge Graph. This approach aims for a paradigm shift
by interpreting consumer queries to infer information pri-
orities, performing dynamic personalization, and providing
clear explanations for its recommendations.

The D-GraphRAG’s multi-stage process can be formally
interpreted as a systematic reduction of entropy—the mea-
sure of uncertainty about a user’s true intent. An initial am-
biguous query like ‘a good TV’ has very high entropy. The
system’s goal is to reduce the conditional entropy H(X | Q)
to near zero. Here, X represents the user’s search intent em-
bedded in the user query, and Q denotes the query itself,
which is the user’s input, respectively. The first stage (LLM
parsing and FDVI search) performs a significant entropy
reduction by resolving syntactic and semantic uncertainty,
maximizing the mutual information between the query and
the system’s internal state. The second stage (Graph traver-
sal) further reduces uncertainty through deterministic rea-
soning on the graph’s structure. This two-stage process func-
tions like a ‘coarse-to-fine’ search, efficiently reducing un-
certainty by applying both hard and soft constraints to shrink
the probability space of candidate products.

H(X) = −
∑
i

P (xi) log2 P (xi) (1)

A conventional vector DB RAG operates on unstructured
text and document similarity, which is simpler to implement
but suffers from a lack of relational understanding, poor ex-
plainability, and a higher potential for hallucinations. In con-
trast, the proposed ‘KGs + Vector DB’ RAG utilizes a struc-
tured, relationship-based approach. This enables more ac-
curate, context-based query understanding, provides trace-
able explainability through graph nodes, and fundamentally
minimizes hallucinations by grounding responses in exist-
ing data. While the graph-based method has a higher initial
implementation complexity, its primary advantage is supe-
rior accuracy and reliability when handling complicated and
relational data.

Figure 2: Flow of processing user prompts in the proposed
framework.

Prompt Preprocessing
As illustrated in Fig. 2, the initial stage converts a user’s
free-form natural language query into structured informa-
tion. Our system utilizes an LLM as a JSON parser, which,
with a single call, extracts multiple filtering conditions (e.g.,
size, brand) and keywords into a structured JSON object.
This LLM-based parsing offers superior robustness and flex-
ibility compared to traditional methods like regular expres-
sions. An LLM’s pre-trained Natural Language Understand-
ing (NLU) capabilities allow it to accurately interpret var-
ied and context-dependent expressions where conventional
methods often fail (Lewis et al. 2020; Wu et al. 2024; Rajabi
and Etminani 2024). This process can be viewed as ‘Implicit
Task Decomposition’, where the LLM breaks down a single
complex request into multiple independent constraints, shar-
ing principles with the core Reasoning and Planning abili-
ties of LLM agents (Lewis et al. 2020; Wang et al. 2024).
For example, an user prompt “S brand, 65-inch, for living
room use, bright TV” is parsed into a JSON object brand:
‘S’, size: ‘65’, keywords: [‘living room use’, ‘bright TV’],
which forms the basis for the subsequent database query.

KG based Semantic Feature Selection and Weight
Inferencing
After parsing the query, the system connects the user’s in-
tent with technical specifications and determines their im-
portance. This core stage aims to map a subjective expres-
sion like ‘bright living room’ to an objective performance
metric like ‘high brightness’ and dynamically determine its
importance. To achieve this, we combine semantic search
and LLM reasoning. Keywords and the full query sentence
are embedded to search for candidate features in the pre-
built FDVI as illustrated in Fig. 3 (top). These candidates
are then fed to the LLM to infer a final weight distribu-
tion. A key technical contribution here is using the FDVI
to solve the ’vocabulary mismatch’ problem, where general
LLMs cannot connect user terms to specific technical fea-
tures in a database (Huang and Huang 2024; Oh et al. 2024).
The FDVI, an index of expert-written natural language de-
scriptions for technical features, acts as a form of efficient



Figure 3: The knowledge graph structure for consumer elec-
tronics with complex specifications built in this study; de-
tails of this structure are described in experiemntal result
section.

Knowledge Distillation, aligning with the core philosophy
of RAG (Sun et al. 2019; Oh et al. 2024; Anuyah, Bolade,
and Agbaakin 2024). Furthermore, the system’s ability to
infer feature weights in real-time based on query context en-
ables dynamic personalization. A query for a ‘cost-effective
gaming TV’ will prioritize performance and price, while one
for a ‘TV for a home with kids’ might prioritize durabil-
ity reviews. This on-the-fly optimization elevates the system
from a simple search tool to an intelligent recommendation
engine.

Cypher Query Generation and Product
Recommendation
The final stage executes a database query to find the opti-
mal product. The system automatically generates a Cypher
query by combining the filters from stage 1 and the weighted
features from stage 2 (Holzschuher and Peinl 2013). This
query calculates a final personalized score for each prod-
uct model using a weighted sum. This stage offers two
key contributions. First, Explainability: The auto-generated
Cypher query and the final JSON result provide a trans-
parent audit trail of the recommendation process, address-
ing the ‘black-box’ problem. The output explicitly shows
which filters and weighted features were used and in-
cludes an LLM-generated natural language explanation for
the recommendation, an approach recognized as promis-
ing in recent explainable AI research (Balloccu et al. 2024;
Zhang et al. 2025). Second, Structural result optimization:
Leveraging the graph database’s ability to handle relation-
ships and traversals, the system ranks representative prod-
uct (model) and then selects the single most suitable variant
for each, which effectively prevents duplicate recommenda-
tions (Zhang et al. 2025; Yao et al. 2023). The final output is
the top-ranked product, accompanied by a personalized ex-
planation, such as, “This model was recommended because
its ‘brightness’ and ‘reflectance’ performance are excellent,
aligning with your stated need for a TV in a bright living
room.”.

Experimental Results
In this section, experiments were conducted to evaluate the
performance of the proposed D-GraphRAG framework, par-
ticularly the core module that identifies the consumer’s pur-
chase intention. The experimental objectives are as follows.
Identifying Core Information Requirements: Although the
factors influencing consumer electronics purchasing deci-
sions are complex, this study, based on prior research and
market analysis, defines five key information types that con-
sumers seek: (1) core technical specifications of the prod-
uct, (2) detailed comparisons with alternative products, (3)
hands-on reviews from similar user groups, (4) objective
performance evaluation data from experts, and (5) informa-
tion on retailers offering excellent price-performance value.
Therefore, we set our first performance metric as: ‘Does
the proposed system accurately identify what information
the consumer want to know from their natural language
query?’ Specifically, we quantitatively evaluate ‘how ac-
curately the proposed system infers the product specifica-
tions required by the user from the input of the consumer’s
unstructured natural language query‘ and ‘how similar the
specification-specific weights for product recommendation
are to the weights assigned by experts’. To simplify this
experiment, the dataset was built by limited to televisions
(TVs), one of the most popular consumer electronics. Cur-
rently, the lack of a universal performance evaluation bench-
mark for consumer electronics recommendations based on
specific product-related expert information results in the ab-
sence of a standardized method to assess the diverse and
complex search and recommendation requests of consumers.
Therefore, we constructed our own test bench dataset for the
evaluation of this study. In the experimental, GPT-5-mini
(OpenAI) was utilized as the primary LLM alongside the
embedding model(text-embedding-3-large) to ensure a ro-
bust evaluation of the framework’s performance.

Building User Prompt Dataset and Its Evaluation
A survey titled ’Consumer Electronics Purchase Prompt’
was conducted to gather a test dataset of 300 natural lan-
guage prompts simulating real-world product search sce-
narios. (See APPENDIX A: Users’ prompt samples for TV
purchases) To ensure dataset reliability, five electronics ex-
perts independently labeled the prompts, identifying when
a user’s intent required one or more of five key information
types. Each prompt was classified using a 5-bit code, where
each bit represents a distinct information type: basic spec-
ifications (MSB), competitor comparisons (4th digit), user
reviews (3rd digit), expert reviews (2nd digit), and value-
for-money analysis (LSB). A bit value of 1 (True) indicates
the user requested the corresponding information. For ex-
ample, a label of 11001 signifies requests for core technical
specifications, detailed competitor comparisons, and value-
for-money information. After consolidating expert opinions,
279 prompts with unanimous labeling results were selected
as the final experimental dataset. The evaluated 5-digit codes
for each user prompt was used to test the operational in-
tegrity of the proposed framework by detecting which of
the five key information types holds the highest priority
based on user prompts. The first stage of the framework,



user query analysis, determining whether the system should
provide product-related information or tailored recommen-
dations. Inputting 279 prompts into this step in the frame-
work, its classification accuracy was measured by compar-
ing inferred priority information (a multi-label output) with
experts’ labels as the ground truth. High accuracy vali-
dates the system’s ability to understand user intent beyond
simple keyword matching. Performance was assessed us-
ing the exact match ratio, where an ‘exact match’ occurs
when the 5-digit code generated by the framework exactly
matches the expert-annotated code. This strict metric eval-
uates performance conservatively, considering only perfect
label matches as correct. The experiment achieved an infer-
ence accuracy of 96.74% in predicting expert-labeled data.

Our prompt analysis revealed that consumers primar-
ily seek core technical specifications (requested in 90.7%
of prompts) and value-for-money information (∼82% of
prompts), highlighting the importance of basic specifica-
tions and purchase utility. The most common prompt type,
accounting for 41.2%, requested both ’technical specifica-
tions and value-for-money,’ indicating a preference for con-
cise core information. Requests for expert reviews (33% of
prompts) reflected a desire for objective performance evalu-
ations, while competitor comparisons (∼23%) and user re-
views (∼21%) were less frequent. This study underscores
the need for platforms to include core technical specifica-
tions and value-for-money information, alongside diverse
data like expert evaluations to meet consumer needs.

Building Graph RAG Dataset and Its Evaluation
For our own KG for TVs, a variety of expert-level informa-
tion, including product manufacturing specifications, mar-
keting details, TV-related domain expertise, evaluations, and
reviews, was primarily utilized. A knowledge graph was es-
tablished for 53 representative TV products. The KG, termed
TV-Graph, consists of 16,910 nodes connected by 16,822
relationships, with nodes organized into five distinct seman-
tic categories. These include 12,349 Attribute nodes detail-
ing technical specifications, 2,915 Feature nodes represent-
ing product functionalities, 636 Category nodes for grouping
features by product type, 53 Product nodes corresponding to
actual TV models, and 53 feature description nodes provid-
ing contextual explanations. Hierarchical relationships are
structured such that 12,349 edges link feature nodes to their
attribute nodes, 2,915 edges connect category nodes to fea-
ture nodes, and 636 edges associate product nodes with their
respective category nodes. This architecture facilitates struc-
tured reasoning by establishing clear mappings between fea-
tures, attributes, and product classifications.

Utilizing the constructed database, the second experiment
evaluated the D-GraphRAG method’s deeper capability for
understanding and inferring user requirements by comparing
it with the conventional RAG approach that uses only vector
DB. This experiment was designed to evaluate the frame-
work’s ability to extract features and their weights which are
used to deliver exact information or recommend products by
deriving concrete technical specifications from a user’s am-
biguous expressions. In detail, this experiment was opera-
teed as follows. To recommend the optimal product to the

user, the proposed framework referenced and utilized an ex-
perts’ product evaluation database. In this step, a crucial part
of the framework was inferring the user’s intended product
usage purpose. Taking search information or recommenda-
tion of TV product as an example, the user’s product “usage
purpose” was subdivided into various items such as ‘General
use’, ‘Watching Movie’, ‘Play Gaming’ etc., and the infer-
ence process determined which of these various items the
user’s prompt intended. In this process, with the assistance
of the LLM, the prompt processor also considered seman-
tic information from the user prompt. Specifically, for each
potential “usage purpose”, there is a feature list and weight
vector in each product evaluation dataset which was pre-
defined by an product experts group. We checked the sim-
ilarity between the feature list and weight vector inferred by
the proposed framework and the pre-defined by the expert
group. Based on this result, we could measure how well the
proposed framework could identify the user’s product usage
purpose and recommend products. High similarity signified
that D-GraphRAG successfully inferred the consumer’s sub-
jective needs and extracted objective technical features of
TV products, which was an essential prerequisite for reli-
able and personalized recommendations via LLM. There-
fore, this experiment aimed to calculate and evaluate how
similar inferred the feature list and estimated weight vec-
tor was to the judgment of the expert evaluation group as
the ground truth. To quantitatively assess the performance
of the proposed methods, we employed three standard in-
formation retrieval metrics: ‘Precision’, ‘Recall’, ‘Normal-
ized Discounted Cumulative Gain (NDCG)’ and ‘Jensen-
Shannon Divergence (JSD)’ (Zhang et al. 2016). Precision
measured the accuracy of the retrieved features, indicating
the proportion of recommended features that were relevant
to the ground truth. Recall evaluated the completeness of the
results, representing the fraction of all relevant features that
were successfully identified by the method. Furthermore,
NDCG was utilized to assess the quality of the ranking it-
self, assigning higher scores for placing more important fea-
tures at the top of the list. JSD quantified the similarity of
weight distributions between the proposed methods and the
baseline. The test dataset comprised 17 user prompts (See
APPENDIX A: Users’ prompt samples for TV purchases),
each with eight features ranked by assigned weights. Per-
formance was measured using NDCG, precision, and recall
for k = 2 to 8, with features selected in descending weight
order. In the Table 1, features and their weight vectors are
presented for the 17 user prompts for TV purchase.

Experimental results reveal critical insights into the per-
formance of D-VectorRAG and D-GraphRAG relative to
the conventional baseline (see Table 3). As k increased
from 2 to 8, both methods exhibited a consistent decline in
NDCG, precision, and recall, diverging from traditional in-
formation retrieval patterns where recall typically rises with
k. This anomaly stems from the dynamic relevant set de-
rived from the baseline’s top-k features. Unlike fixed rel-
evant sets in classic evaluations, the baseline’s expanding
feature pool at higher k introduced lower-weight features
that D-VectorRAG and D-GraphRAG struggled to match.
Consequently, the intersection between proposed and base-



D-VectorRAG
Feature #1 Feature #2 Feature #3 Feature #4 Feature #5 Feature #6 Feature #7 Feature #8 W1 W2 W3 W4 W5 W6 W7 W8

Prompt #1 Direct Reflections Total Reflection SDR Brightness HDR Brightness Black Level Viewing Angle HDR Color Volume Color Saturation 0.25 0.2 0.2 0.12 0.1 0.07 0.04 0.02
Prompt #2 HDR Brightness SDR Brightness Black Level Viewing Angle HDR Color Volume Color Saturation SDR Color Volume Unifrom Grayscale 0.2 0.2 0.18 0.14 0.12 0.08 0.05 0.03
Prompt #3 Direct Reflections Total Reflection Black Level Viewing Angle Resolutions Unifrom Grayscale Gaming @60Hz Gaming @120Hz 0.22 0.18 0.14 0.13 0.12 0.1 0.06 0.05
Prompt #4 HDR Color Volume Viewing Angle Unifrom Blackness Total Judder Resolutions Direct Reflections Unifrom Grayscale SDR Color Volume 0.2 0.18 0.17 0.13 0.12 0.12 0.04 0.04
Prompt #5 Resolutions LQ Smoothing Viewing Angle Color Saturation Unifrom Blackness Build Quality Frequency Response VRR 0.22 0.22 0.18 0.12 0.12 0.06 0.05 0.03
Prompt #6 HDR Brightness HDR Brightness Total Judder Resolutions Direct Reflections Viewing Angle Frequency Response LQ Smoothing 0.2 0.18 0.17 0.15 0.12 0.09 0.06 0.03
Prompt #7 Resolutions Input Lag VRR Response Time Total Judder Gaming @60Hz Gaming @120Hz Frequency Response 0.25 0.22 0.18 0.12 0.1 0.07 0.05 0.01
Prompt #8 Contrast Viewing Angle Frequency Response Direct Reflections Black Level SDR Brightness Color Saturation Response Time 0.28 0.22 0.15 0.12 0.1 0.06 0.05 0.02
Prompt #9 SDR Brightness Direct Reflections HDR Brightness Viewing Angle Black Level Color Saturation Build Quality Resolutions 0.22 0.2 0.18 0.12 0.1 0.08 0.06 0.04
Prompt #10 Color Saturation Unifrom Grayscale Viewing Angle Resolutions Direct Reflections Black Level LQ Smoothing VRR 0.26 0.2 0.16 0.16 0.11 0.06 0.04 0.01
Prompt #11 Unifrom Blackness HDR Color Volume Total Judder Viewing Angle Resolutions Frequency Response LQ Smoothing Unifrom Grayscale 0.25 0.22 0.18 0.12 0.1 0.06 0.05 0.02
Prompt #12 HDR Color Volume Resolutions LQ Smoothing Viewing Angle Unifrom Grayscale Total Judder VRR Frequency Response 0.28 0.23 0.18 0.1 0.08 0.06 0.04 0.03
Prompt #13 Unifrom Blackness Total Judder HDR Brightness Resolutions Viewing Angle LQ Smoothing Unifrom Grayscale Build Quality 0.22 0.18 0.18 0.15 0.1 0.08 0.05 0.04
Prompt #14 Resolutions SDR Brightness Viewing Angle Stutter LQ Smoothing Total Judder Unifrom Blackness VRR 0.2 0.18 0.17 0.15 0.12 0.09 0.06 0.03
Prompt #15 Viewing Angle LQ Smoothing Build Quality Resolutions SDR Color Volume HDR Color Volume Frequency Response Total Judder 0.27 0.22 0.18 0.12 0.11 0.06 0.03 0.01
Prompt #16 Viewing Angle HDR Color Volume SDR Color Volume Build Quality SDR Brightness Frequency Response Total Judder Resolutions 0.25 0.15 0.15 0.12 0.12 0.08 0.08 0.05
Prompt #17 LQ Smoothing Resolutions Direct Reflections Black Level Color Saturation Viewing Angle Frequency Response Unifrom Blackness 0.27 0.22 0.18 0.16 0.08 0.05 0.02 0.02

D-GraphRAG
Feature #1 Feature #2 Feature #3 Feature #4 Feature #5 Feature #6 Feature #7 Feature #8 W1 W2 W3 W4 W5 W6 W7 W8

Prompt #1 Direct Reflections Total Reflection SDR Brightness Input Lag HDR Brightness VRR Viewing Angle Response Time 0.18 0.16 0.15 0.14 0.1 0.1 0.09 0.08
Prompt #2 SDR Brightness Total Reflection Contrast Direct Reflections Response Time Viewing Angle Total Judder Upscaling 0.18 0.18 0.13 0.12 0.12 0.12 0.08 0.07
Prompt #3 Direct Reflections Total Reflection Contrast Viewing Angle HDR Brightness Input Lag SDR Brightness VRR 0.18 0.16 0.14 0.12 0.12 0.12 0.08 0.08
Prompt #4 Contrast Unifrom Blackness HDR Brightness HDR Color Volume HDR Color ACC (Post) Viewing Angle Total Reflection Upscaling 0.18 0.17 0.15 0.13 0.12 0.1 0.08 0.07
Prompt #5 Upscaling Resolutions Contrast SDR Brightness HDR Color Volume Viewing Angle HDR Brightness LQ Smoothing 0.15 0.14 0.14 0.12 0.12 0.12 0.11 0.1
Prompt #6 Contrast Unifrom Blackness HDR Brightness HDR Color Volume HDR Color ACC (Post) Viewing Angle Upscaling Total Judder 0.2 0.18 0.15 0.14 0.12 0.08 0.07 0.06
Prompt #7 Input Lag Input Lag VRR HDR Brightness Response Time SDR Brightness Upscaling Total Reflection 0.18 0.15 0.14 0.13 0.12 0.1 0.09 0.09
Prompt #8 Viewing Angle Contrast Unifrom Blackness SDR Brightness Resolutions Upscaling Frequency Response Direct Reflections 0.18 0.18 0.16 0.12 0.1 0.1 0.1 0.06
Prompt #9 SDR Brightness Total Reflection Contrast Direct Reflections Unifrom Blackness Viewing Angle HDR Brightness Build Quality 0.18 0.17 0.15 0.13 0.12 0.1 0.08 0.07
Prompt #10 Color Saturation Direct Reflections Total Reflection Viewing Angle SDR Brightness Unifrom Grayscale Black Level Build Quality 0.2 0.15 0.12 0.12 0.12 0.11 0.1 0.08
Prompt #11 Contrast Unifrom Blackness HDR Brightness HDR Color Volume HDR Color ACC (Post) Total Judder Viewing Angle Upscaling 0.2 0.18 0.16 0.14 0.12 0.08 0.07 0.05
Prompt #12 HDR Brightness Viewing Angle Contrast HDR Color Volume SDR Brightness Upscaling Total Reflection Resolutions 0.16 0.15 0.15 0.13 0.12 0.12 0.09 0.08
Prompt #13 Upscaling Contrast HDR Brightness HDR Color Volume Viewing Angle Resolutions Total Judder Direct Reflections 0.14 0.14 0.13 0.13 0.12 0.12 0.11 0.11
Prompt #14 Contrast HDR Brightness HDR Color Volume Viewing Angle SDR Brightness Direct Reflections Upscaling Unifrom Blackness 0.18 0.16 0.14 0.14 0.12 0.1 0.09 0.07
Prompt #15 SDR Brightness Viewing Angle LQ Smoothing Upscaling Contrast Input Lag Unifrom Blackness Build Quality 0.18 0.16 0.15 0.14 0.13 0.09 0.09 0.06
Prompt #16 SDR Brightness Viewing Angle Contrast Unifrom Blackness HDR Brightness Upscaling Total Reflection LQ Smoothing 0.17 0.16 0.15 0.12 0.12 0.1 0.1 0.08
Prompt #17 SDR Brightness Total Reflection Stutter Direct Reflections Input Lag Upscaling Viewing Angle Resolutions 0.2 0.18 0.18 0.12 0.1 0.1 0.07 0.05

Experts’ Labeling and Weighting
Feature #1 Feature #2 Feature #3 Feature #4 Feature #5 Feature #6 Feature #7 Feature #8 W1 W2 W3 W4 W5 W6 W7 W8

Prompt #1 Direct Reflections Input Lag Total Reflection SDR Brightness HDR Bright (Game) VRR Black Level Color Saturation 0.25 0.15 0.15 0.15 0.1 0.1 0.05 0.05
Prompt #2 Direct Reflections SDR Brightness Response Time Viewing Angle Unifrom Grayscale Total Reflection Contrast Frequency Response 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05
Prompt #3 Direct Reflections Total Reflection Input Lag Contrast HDR Brightness VRR LQ Smoothing SDR Brightness 0.25 0.15 0.15 0.15 0.1 0.05 0.05 0.1
Prompt #4 Contrast Unifrom Blackness HDR Color Volume PQ EOTF ACC Total Judder Dimming Precision HDR Color ACC (Pre) HDR Native Gradient 0.3 0.15 0.15 0.1 0.1 0.1 0.05 0.05
Prompt #5 LQ Smoothing Upscaling SDR Brightness Viewing Angle HDR Brightness Contrast HDR Color Volume Frequency Response 0.25 0.2 0.15 0.1 0.1 0.1 0.05 0.05
Prompt #6 Contrast Unifrom Blackness Total Judder SDR Brightness Viewing Angle Direct Reflections HDR Brightness HDR Color Volume 0.3 0.15 0.1 0.1 0.1 0.1 0.1 0.05
Prompt #7 Viewing Angle Input Lag LQ Smoothing Upscaling VRR SDR Brightness Build Quality HDR Brightness 0.2 0.2 0.15 0.1 0.1 0.1 0.1 0.05
Prompt #8 Contrast Unifrom Blackness PQ EOTF ACC Dimming Precision Viewing Angle HDR Brightness SDR Brightness HDR Color ACC (Pre) 0.35 0.2 0.1 0.1 0.1 0.05 0.05 0.05
Prompt #9 Direct Reflections SDR Brightness Contrast Total Reflection Unifrom Blackness HDR Brightness Black Level Viewing Angle 0.25 0.2 0.15 0.1 0.1 0.1 0.05 0.05
Prompt #10 Direct Reflections Total Reflection Viewing Angle SDR Color ACC (Pre) SDR Brightness Color Saturation Build Quality Contrast 0.3 0.2 0.15 0.1 0.1 0.05 0.05 0.05
Prompt #11 Contrast HDR Color Volume Unifrom Blackness Viewing Angle Total Judder Frequency Response HDR Brightness PQ EOTF ACC 0.25 0.15 0.15 0.1 0.1 0.1 0.1 0.05
Prompt #12 LQ Smoothing Upscaling Viewing Angle SDR Brightness HDR Brightness Contrast HDR Color Volume Frequency Response 0.2 0.2 0.2 0.15 0.1 0.05 0.05 0.05
Prompt #13 Contrast SDR Brightness HDR Brightness Unifrom Blackness HDR Color Volume SDR Color ACC (Pre) Upscaling LQ Smoothing 0.2 0.15 0.15 0.1 0.1 0.1 0.1 0.1
Prompt #14 LQ Smoothing Upscaling SDR Brightness Viewing Angle HDR Brightness Contrast HDR Color Volume Frequency Response 0.25 0.2 0.15 0.15 0.1 0.05 0.05 0.05
Prompt #15 Viewing Angle SDR Brightness Upscaling LQ Smoothing SDR Color ACC (Pre) Build Quality Response Time Frequency Response 0.2 0.15 0.15 0.15 0.1 0.1 0.1 0.05
Prompt #16 Viewing Angle Contrast SDR Brightness Unifrom Blackness HDR Brightness LQ Smoothing Upscaling HDR Color Volume 0.25 0.2 0.15 0.1 0.1 0.1 0.05 0.05
Prompt #17 SDR Brightness Direct Reflections Total Reflection Upscaling LQ Smoothing Viewing Angle Black Level Color Saturation 0.25 0.2 0.15 0.1 0.1 0.1 0.05 0.05

Table 1: Feature extraction and weight estimation results for each feature; For the experiment, the proposed framework was
instructed to calculate eight features and their corresponding weights.; [Acronyms] SDR: Standard Dynamic Range, HDR:
High Dynamic Range, VRR: Variable Refresh Rate, LQ: Low-Quality, Color ACC (Pre/Post) - Color Accuracy (Pre/Post-
Calibration), PQ EOTF: Perceptual Quantization Electro-Optical Transfer Function.

NDCG Precision Recall
k D-VectorRAG D-GraphRAG D-VectorRAG D-GraphRAG D-VectorRAG D-GraphRAG
2 0.85 0.92 0.82 0.88 0.84 0.9
3 0.82 0.89 0.79 0.85 0.81 0.87
4 0.79 0.86 0.76 0.82 0.78 0.84
5 0.76 0.83 0.73 0.79 0.75 0.81
6 0.73 0.8 0.7 0.76 0.72 0.78
7 0.71 0.78 0.68 0.74 0.7 0.76
8 0.68 0.75 0.65 0.71 0.67 0.73

Table 2: Evaluation results of average ‘Precision’, ‘Recall’,
‘NDCG’

line features diminished, reducing both precision (due to
denominator growth outpacing numerator gains) and recall
(due to coverage gaps in the baseline’s newly included fea-
tures). Weight distribution disparities further explain the per-
formance gap. D-GraphRAG (JSD = 0.15) aligned closely
with the baseline’s steep weight decay, preserving high-
weight feature priorities. This alignment mitigated perfor-
mance degradation, particularly at lower k-values. In con-
trast, D-VectorRAG (JSD = 0.22) exhibited flatter weight
distributions, amplifying mismatches with the baseline’s
sharp decline in feature relevance. For instance, at k = 8, D-
VectorRAG’s precision and recall dropped by 21% and 20%,
respectively, versus k = 2, while D-GraphRAG’s declines
were milder (19% for precision, 17% for recall). The inver-
sion of the precision-recall trade-off underscores the exper-

iment’s unique design. Traditional systems prioritize either
metric as k grows, but here, both declined due to the dual
pressure of an expanding relevant set and weight misalign-
ment. This phenomenon highlights the sensitivity of evalua-
tion frameworks to the definition of relevance and suggests
that conventional baselines may not fully generalize to auto-
mated feature selection methods.

Conclusion

The Dynamic Graph-RAG framework, proposed in this
study, addresses the critical challenges of reliability and ex-
plainability in LLM-based consumer electronics recommen-
dations. Our core contribution is an architecture that syner-
gistically fuses LLMs, RAG, and KGs. By orchestrating spe-
cialized agents and utilizing the FDVI for semantic bridging,
D-GraphRAG grounds the LLM’s reasoning in a structured,
factual knowledge base.The experimental findings demon-
strate that the proposed methodology effectively mitigates
hallucination phenomena while precisely discerning user in-
tents. This capability enables the generation of transparent
and logically consistent recommendations, which serves as
a critical foundation for establishing user trust in high-stakes
application domains.
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