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Abstract

In Phase 1, we presented an approach to rigid-body manipulation based on carefully-designed
motion primitives. In Phase 2, we demonstrated that these primitives combined with a more
robust state machine can reasonably complete all 4 tasks on a real robot. For Phase 3, to
perform manipulation with a cuboid, we continue with the same approach with a different
set of motion primitives. Our approach shows promising results on the position-based tasks
for cuboid manipulation. In general, our approach emphasizes the use of ML machinery only
when classical approaches fail.



Phase 3: Manipulating a Cuboid

Jacobian Force Controllers and PID Loops As in Phase 1 and 2, we first reduced
the more complicated joint space q € RY (3 fingers x 3 joints per finger) into the more
interpretable space x € R? 3D Cartesian position of each end effector, discarding finger
orientation due to the rotational near-symmetry of the end effectors. We retrieve the Jaco-
bian matrix calculated from PyBullet: J := g—z(q, q). We can use its inverse to convert a
task space force command into a joint torque command: ¢ = J~!'%. J may be singular or
non-square, so we use its damped pseudo inverse to guarantee a good solution at the cost
of slight bias: q=J" (J JT + )\I)_1 x. We combine this with gravity compensation torques
from PyBullet’s inverse dynamics module to command gravity-independent linear forces at
each finger tip.

We build upon these linear force commands to create position-based motion primitives.
Given a target position for each finger tip, we can construct a feedback controller with
manually-tuned PID gains (see Figure 1). Since these systems are linear if we avoid collisions,
multiple problems can be solved simultaneously through superposition.
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Figure 1: State Machine and Inner PID Loop. On interim failure (such as a time-out or dropped
cuboid), all states will return to state 0 (Reset).

Y

State Machine Finally, we combine a series of carefully-designed motion primitives into
a simple finite state machine.

0. Reset: Move arms to a pre-defined position well above the cuboid. Based on the object
orientation, set a resting finger which always remains in the reset position.

1. Align:  Designate 2 contact points on the opposite longer side faces of the cuboid.
Move each finger to a point above these grip points (to avoid cuboid collisions).

2. Lower: Lower the fingers to the grip points.

3. Into: Initiate force closure by commanding a constant force towards the center of the
cuboid at each finger until both finger tip force sensors are tripped.

4. Goal: Set the target pose to be the current pose plus the difference between the
current cuboid location and the target cuboid location. Superimpose this onto the
force from (3).

In our final submission, for all difficulty levels, Goal continues indefinitely. If the robot
spends too long in any given state, or the cuboid drops out of its fingers, it will return to
Reset and retry.



Results and Discussion In comparison to our performance in Phase 2, we observe
a slight degradation in performance for this phase. While we were not able to perform
thorough experiments for each of the difficulty levels, we observe some consistent failure
cases that lead to the reduction in the average reward accumulated. First, due to noisy pose
observations and uncertainty in joint positions, we notice grasping failure. This did not
affect our approach that much when manipulating the cube, due to the higher margin for
error. Second, in case of a successful grasp, there are cases where the cuboid slips through
both the fingers. This issue can be addressed by more diligent PID tuning or alternatively
considering systems like MPC or iLQR [1].

For Level 4, we wanted to deploy an additional premanipulation state machine which mini-
mizes the error in Yaw., similar to how we did in Phase 2. Upon reaching the goal position,
for the orientation errors in Pitch and Yaw, we planned on using the third finger to account
for large errors in Pitch and orthogonal pushing by the other two fingers for small errors
in Yaw. Due to time constraints, we were unable to implement these additional motion
primitives.

Conclusion

We implemented a method of manipulation that utilizes a set of carefully engineered position-
based motion primitives and Jacobian-based feedback control. Our approach worked fairly
well in the first 2 phases of the challenge and has a graceful degradation of performance in
Phase 3. In future, we intend to run some rigorous experiments with more complex objects
on the TriFinger simulator. We plan on having an online learning algorithm that can select
the optimal motion primitive given information about the object. Previous work done for
the manipulation of deformable objects has shown promise using this contextual bandit /
restricted RL approach [2].
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