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ABSTRACT

Robust fine-tuning aims to adapt large foundation models to downstream tasks
while preserving their robustness to distribution shifts. Existing methods primarily
focus on constraining and projecting current model towards the pre-trained ini-
tialization based on the magnitudes between fine-tuned and pre-trained weights,
which often require extensive hyper-parameter tuning and can sometimes result in
underfitting. In this work, we propose Directional Gradient Projection (DiGraP),
a novel layer-wise trainable method that incorporates directional information from
gradients to bridge regularization and multi-objective optimization. Besides demon-
strating our method on image classification, as another contribution we generalize
this area to the multi-modal evaluation settings for robust fine-tuning. Specifically,
we first bridge the uni-modal and multi-modal gap by performing analysis on
Image Classification reformulated Visual Question Answering (VQA) benchmarks
and further categorize ten out-of-distribution (OOD) VQA datasets by distribution
shift types and degree (i.e. near versus far OOD). Experimental results show that
DiGraP consistently outperforms existing baselines across Image Classfication
and VQA tasks with discriminative and generative backbones, improving both
in-distribution (ID) generalization and OOD robustness.

1 INTRODUCTION

Robust fine-tuning has become an essential technique in adapting pre-trained models to downstream
tasks, particularly in the face of distribution shifts that challenge model generalization. While pre-
trained models excel in capturing a wide range of features from diverse datasets, fine-tuning them
on specific tasks often leads to overfitting, reducing their robustness to out-of-distribution (OOD)
data (Wortsman et al., 2022; Nguyen et al., 2024). The goal of robust fine-tuning is to strike a balance
between task-specific performance and maintaining the generalization abilities of the pre-trained
model (Wortsman et al., 2022). This is particularly crucial for real-world applications such as visual
question answering (VQA), where models are frequently exposed to varying distributions in images,
questions, and answers (Agrawal et al., 2018; Shah et al., 2019). Effective robust fine-tuning strategies
aim to mitigate performance degradation by incorporating techniques like regularization (Li et al.,
2018) and bi-level optimization (Tian et al., 2023a;b), ensuring that models retain their learned
knowledge while adapting to new domains.

To tailor the model for downstream tasks while retaining the capabilities of the pre-trained model
(e.g. robustness to distribution shifts), L2-SP (Li et al., 2018) imposes a regularization term on
the distance between the fine-tuned and pre-trained weights. More recently, instead of viewing
robust fine-tuning as a regularization problem, TPGM (Tian et al., 2023a) and FTP (Tian et al.,
2023b) consider the regularization term as the constraint to reformulate the problem from a bi-level
optimization prospective and propose to learn different hard constraints for each layer. However,
these methods are computationally heavy and often apply overly strong constraints which results
in underfitting (See Sec. 4.2 and Sec. 4.3). Moreover, these methods perform weight projection to
enforce the distance between fine-tuned and pre-trained weights within a set of projection radii, which
is magnitude-wise but does not encode any directional information. This motivates us to think of
direction-based methods for this fundamental problem.

We re-examine the regularization problem from a multi-objective optimization perspective and
propose Directional Gradient Projection (DiGraP). We consider the regularization term as the second
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objective besides the first objective, i.e., original loss function, and the goal is to minimize the two
simultaneously. This new method involves two aspects: the projecting condition and the directional
projection strength. If the projecting condition meets, i.e., the gradient directions of the two objectives
are opposite, the decrease of one objective will lead to the increase of the other objective. In this case,
we project the opposite gradient to the orthogonal direction of the other to get rid of the conflicting
directional information. We also add a directional projection strength ω ∈ [0, 1] to learn the priority
of the two objectives and make it trainable so that it can be dynamic throughout the training process.

• Regularization (L2-SP): minL(θ) = L̃(θ) + λ
2 ∥θ − θ0∥22

• Bi-level optimization (TPGM, FTP): min L̃(θ) s.t. ∥θ − θ0∥22 ≤ γ

• Multi-objective optimization (DiGraP): min{L̃(θ), 1
2∥θ − θ0∥22}

Typical evaluations on robust fine-tuning methods are primarily done in uni-modal settings, e.g.,
image classification or semantic segmentation. However, they have not been analyzed in the context
of multiple modalities. We first bridge the gap by comparing our method with baselines on an
Image Classification reformulated VQA benchmark. We further propose a new setting for evaluating
robust fine-tuning of VQA by leveraging ten VQA datasets and categorizing them into in-distribution
(ID), near and far OOD datasets covering uni-modal, multi-modal and adversarial distribution shifts.
DiGraP achieves SOTA ID and OOD performance on both image classification and VQA benchmarks.
Our contributions are:

• We propose a layer-wise trainable directional gradient projection method DiGraP for robust
fine-tuning of large foundation models with the intuition of bridging regularization and
multi-objective optimization. This is the first robust fine-tuning methods that considers the
directional information of the gradients.

• We propose new settings for evaluating robust fine-tuning of VQA. We first conduct ex-
periments on Image Classification reformulated VQA benchmarks. We then categorize
the existing OOD VQA datasets into different types and degrees of distribution shifts and
present a consistent comparative analysis of robust fine-tuning algorithms.

• We show that DiGraP consistently outperforms other baselines across uni-modal and multi-
modal tasks in both ID generelization and OOD robustness.

2 RELATED WORKS

Robust Fine-Tuning of Foundation Models. LP-FT (Kumar et al., 2022) proposes a two-step
strategy of linear probing then full fine-tuning to prevent the feature distortion of the pre-trained
layers. WiSE-FT (Wortsman et al., 2022) interpolates the pre-trained and fine-tuned weights to
combine the strengths of the two embedding space. L2-SP (Li et al., 2018) explicitly adds an L2
norm penalty on the deviation between the fine-tuned and pre-trained weights. MARS-SP (Gouk
et al., 2021) further studies different forms of norms as the penalty. More recently, TPGM (Tian
et al., 2023a) approaches the regularization term as a constraint, reformulating the problem as a
bi-level optimization and proposing to learn distinct hard constraints for each layer. FTP (Tian et al.,
2023b) further improves the efficiency of TPGM (Tian et al., 2023a) by learning the constraint from
training set of previous step instead of the current validation set. We argue that these methods are still
computationally heavy and requires lots of tuning, whereas DiGraP reformulates the problems as
multi-objective optimization, injects directional information and is more intuitive to tune.

OOD Robustness in VQA. Previous works have proposed various settings for evaluating robust
VQA models. Agrawal et al. (2023) conducts cross-dataset evaluations with four VQA datasets, while
Ma et al. (2024) and Li et al. (2021) provides a more comprehensive and detailed robustness analysis
by incorporating VQAv2 variants and categorizing different types of distribution shifts. We build on
these efforts by introducing further granularity with near and far OOD distinctions and measuring
the distance between distributions. More importantly, while previous work has primarily focused on
testing different backbone models, they have not yet compared different robust fine-tuning methods.
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3 DIRECTIONAL GRADIENT PROJECTION FOR ROBUST FINE-TUNING

In this section, we first describe the intuition and the mathematical motivation behind DiGraP. Then,
we provide our method’s concrete algorithmic design.
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Figure 1: Directional Gradient Projection. (Left) When the gradients are non-conflicting, we do
not perform projection. (Right) When the gradients are conflicting, we project the gradient for the
original loss function according to the gradient for the regularization term. We add ω ∈ [0, 1] to
control the projection strength, where ω = 0 is an unconstrained update and ω = 1 represents a full
projection to the orthogonal direction of the gradient for the regularization term.

3.1 ROBUST FINE-TUNING AS A MULTI-OBJECTIVE OPTIMIZATION PROBLEM

In order to adapt the model to the downstream tasks but preserve the power of the pre-trained model
(e.g. robustness to distribution shifts), methods such as L2-SP (Li et al., 2018) impose a regularization
term on the distance between the fine-tuned and pre-trained weights. Formally,

L(θ) = L̃(θ) + λ

2
∥θ − θ0∥22 (1)

where θ denotes the fine-tuned weights, θ0 the pre-trained weights, L̃(θ) the original loss function,
and λ the hyper-parameter for regularization strength, i.e., weight decay. In this case, ∥θ − θ0∥22
serves as a constraint so that the updated model will not deviate from the initialization too much, thus
we can maintain some strengths from the pre-trained model. However, L2-SP is not intuitive to tune
λ which often spans over a wide range: a small λ may achieve better in-distribution performance but
leads to poor OOD robustness, while a large λ results in underfitting. Besides, L2-SP is also harder
to tune if applied differently across layers.

In this work, we instead propose to view robust fine-tuning from a multi-objective optimization
perspective, leading to a more explicit method to balance this trade-off. Specifically, there are two
objectives that we want to optimize,

Objective1 = L̃(θ),Objective2 =
1

2
∥θ − θ0∥22 (2)

where the first objective represents the original loss function and the second objective represents the
distance between the fine-tuned and pre-trained weights. Our goal is to minimize both at the same
time to achieve ID generalization and OOD robustness.

3.2 PROJECTING CONFLICTING GRADIENTS

Viewed from this perspective, we can leverage prior multi-objective methods towards our problem.
PCGrad (Yu et al., 2020) hypothesizes that the key optimization issue in multi-objective learning
arises from conflicting gradients, where gradients for different objectives point away from each other.
Thus, optimizing one of them will lead to the suboptimality of the others. They propose a form of
gradient surgery by projecting a task’s gradient onto the normal plane of the gradient of any other
task that has a conflicting gradient, therefore benefiting all objectives.

Inspired by PCGrad, we propose the following algorithm for robust finetuning: When the gradients
between the two objectives are in conflict, i.e. their cosine similarity is negative, we project the
gradient for the original loss function to the orthogonal direction of the gradient for the regularization

3
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term. Specifically, the gradients for the two objectives and the projection of the first gradient in the
direction of the second gradient are respectively:

g̃1 = ∇θL̃(θ), g̃2 = θ − θ0, g̃
proj
1 =

g̃1g̃2
∥g̃2∥2

g̃2 (3)

We add a hyper-parameter ω ∈ [0, 1] to further control the projection strength. ω = 0 is equivalent to
an unconstrained gradient update, while ω = 1 is the same as a full orthogonal projection. The final
projected gradient is the following:

g = g̃1 − ωg̃proj
1 = g̃1 − ω

g̃1g̃2
∥g̃2∥2

g̃2, ω ∈ [0, 1] (4)

Note that for L2-SP, the gradient for the regularized loss function is formulated similarly:

g = ∇θL(θ) = ∇θL̃(θ) + λ(θ − θ0) = g̃1 + λg̃2 (5)

Thus, DiGraP is equivalent to L2-SP with different λ for every layer. In summary, for each layer i:

• Gradients are non-conflicting (g̃i1g̃
i
2 ≥ 0): λi = 0

• Gradients are conflicting (g̃i1g̃
i
2 < 0): λi = −ωi g̃i

1g̃
i
2

∥g̃i
2∥2

Compared to L2-SP, the hyper-parameter ω in DiGraP is within the range between 0 and 1, which is
more intuitive to tune. Furthermore, even with one fixed ω, the regularization strength λ varies across
both layers and iterations, making the fine-tuning process more flexible to fit the training data.

3.3 LAYER-WISE TRAINABLE DIRECTIONAL GRADIENT PROJECTION

We emphasize that the regularization problem in Eq. 1 is still not fully equivalent to the multi-objective
optimization in Eq. 2. Specifically, for a multi-objective optimization problem, we want to optimize
all objective functions, i.e., to minimize both L̃(θ) and 1

2∥θ − θ0∥22 in our case. However, for a
regularization problem, the regularization term does not necessarily decrease. Instead, it acts as a
constraint on the original loss function and the regularization term is smaller compared to the one in
a model trained without regularization. Projecting the original gradient to the orthogonal direction of
the gradient for the regularization term will potentially lead to underfitting. It is especially detrimental
at the beginning of the training, where the fine-tuned weights are close to the pre-trained weights,
thus it is more benefitial for the model to stick to its original gradient descent direction.

As a result, we aim for the projection strength ω to be dynamic throughout the training process.
Intuitively, ω should start small during the early iterations, allowing the model to prioritize fitting to
the downstream task. As training progresses and the fine-tuned model diverges further from its initial
state, ω should gradually increase to guide the fine-tuned gradient direction towards alignment with
the regularization gradient direction. In Sec. 5.2 we will visualize the variation of projection strength
ω throughout training to further validate this motivation.

To achieve this, we make the projection strength ω trainable, allowing it to adapt throughout the
training process. For the t step of unconstrained gradient descent with the learning rate of α, the
model weights update as follows,

θ̃t = θt−1 − αg̃t,1 (6)

where θ̃t, θt−1 and g̃t,1 denote the unconstrained model weights at current step t, the model updates
of previous step t− 1 and the gradient for the original loss function at current step t.

For one step of directional gradient descent, the model weights update as follows,

θt = θt−1 − α(g̃t,1 − ωt
g̃t,1g̃t,2
∥g̃t,2∥2

g̃t,2) = θ̃t + αωt
g̃t,1g̃t,2
∥g̃t,2∥2

g̃t,2 (7)

where θt, ωt and g̃t,2 denote the constrained model weights, the projection strength and the gradient
for the regularization term at current step t. θ̃t and g̃t,1 are the same as the ones in Eq. 6.
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The derivative of the original loss function L̃(θ) w.r.t. ω is as follows using the chain rule:

∇ω :=
∂L̃(θt−1)

∂ω
=

∂L̃(θt−1)

θ

∂θt−1

∂ω
= αg̃t,1g̃

proj
t−1,1 (8)

We initialize ω0 = 0 for the first iteration and update with learning rate of µ. We also add normaliza-
tion on ∇ω for numerical stability. For DiGraP, instead of tuning the weight decay λ in L2-SP, we
only tune the learning rate µ of the projection strength ω. We argue that tuning µ is less sensitive and
will provide sensitivity analysis in Sec. 5.2. We also compare fixed and trainable projection strength
ω in Sec. 5.3. The final algorithm of DiGraP is illustrated in Alg. 1.

Algorithm 1 Adam with Trainable Directional Gradient Projection

Input: θ0: pre-trained model, α: learning rate, µ: learning rate for ω, (β1, β2)← (0.9, 0.999)
Initialize: m0 ← 0, v0 ← 0
for t = 1 to T do{

g̃t,1 ← ∇θL(θt−1)

g̃t,2 ← θt−1 − θ0
▷ Gradients of the Objectives (Eq. 3)

g̃proj
t,1 ←

g̃t,1g̃t,2
∥g̃t,2∥2 g̃t,2 ▷ Gradient Projection (Eq. 3)

if t = 1 then
ωt ← 0 ▷ Initialize ω

else{
∇ωt ← Normalization(αt−1g̃t,1g̃

proj
t−1,1)

ωt ← max(0,min(1,AdamUpdate(ωt−1,∇ωt, µ, t))
▷ Updating ω (Eq. 8)

if g̃t,1g̃t,2 < 0 then
gt ← g̃t,1 ▷ Unconstrained Gradient Descent (Eq. 6)

else
gt ← g̃t,1 − ωtg̃

proj
t,1 ▷ Directional Gradient Projection (Eq. 4, Eq. 7)

mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g

2
t

Bias Correction: m̂t ← mt

1−βt
1

, v̂t ← vt
1−βt

2

Update: θt ← θt−1 − αtm̂t√
v̂t+ϵ

In summary, our unique contribution lies in adapting gradient projection to the specific challenges
of robust fine-tuning. While PCGrad was designed for multi-task learning, DiGraP extends these
principles to the fine-tuning of pre-trained models by introducing a hyper-optimizer and tailoring
gradient projection to balance both ID and OOD performance. This refinement allows us to address
the unique trade-offs in robust fine-tuning, which are distinct from those in multi-task optimization.

3.4 COMPATABILITY WITH PARAMETER-EFFICIENT FINE-TUNING (PEFT) METHODS

DiGraP is further compatible with PEFT methods such as LoRA (Hu et al., 2021), which is a prevalent
fine-tuning strategy for large foundation models. PEFT methods generally update new parameters
to add to the original weights. In this case, instead of optimizing the distance between fine-tuned
and pre-trained weights 1

2∥θ − θ0∥2, we minimize the distance between the updated weight and
origin 1

2∥θ∥
2 in PEFT. Thus, when combined with PEFT, DiGraP does not need to save an additional

pre-trained copy and requires the same amount of memory as PEFT. In Sec. 4.2 and Sec. 4.3, we
demonstrate that DiGraP can further improve the results of LoRA on VQA tasks.

4 EXPERIMENTS

Overview. We test DiGraP on a variety of benchmarks, tasks and architectures to validate its
effectiveness. The experiments are split into three sections including image classification (Sec. 4.1),
reformulating image classification as VQA tasks (Sec. 4.2) and fine-tuning on VQA datasets (Sec. 4.3).
We emphasize that it is important to move robust finetuning towards multi-modal models, given their

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: DomainNet Results using MOCO-V3 pre-trained ResNet50 with Real Data. DiGraP
outperforms baselines on average OOD. Bold: best. Underline: second best.

ID OOD Statistics
Real Sketch Painting Infograph Clipart OOD Avg. ID ∆ (%) OOD ∆ (%)

Vanilla FT 81.99 31.52 42.89 18.51 44.98 34.47 0.00 0.00
Linear Prob. 73.01 24.10 39.56 12.27 30.38 26.58 -10.96 -22.90

Partial Fusion 78.27 27.72 39.74 15.56 38.18 30.30 -4.55 -12.11
L2-SP 81.51 34.91 45.76 18.97 45.29 36.23 -0.59 5.09

MARS-SP 81.89 34.44 45.05 19.97 46.36 36.45 -0.13 5.74
LP-FT 82.92 34.50 45.42 20.12 47.11 36.79 1.13 6.72
TPGM 82.66 35.35 46.20 20.13 45.75 36.86 0.82 6.91

FTP 82.17 36.26 46.58 20.67 46.97 37.62 0.22 9.13

DiGraP (0.1) 82.20 36.43 46.75 21.40 47.46 38.01 0.26 10.27

popularity and richness in terms of different types and strenghts of distribution shfit. For Sec. 4.1, we
use a discriminative backbone - ImageNet pretrained MOCO-V3 ResNet50 (Chen et al., 2021) as the
pre-trained model. We follow the setting of the previous work and further details can be found at Tian
et al. (2023a). For Sec. 4.2 and Sec. 4.3, we use a generative backbone - Google’s recently released
PaliGemma (Beyer et al., 2024) pretrained on a broad mixture of large-scale vision-language tasks.

Datasets. For Sec. 4.1 and Sec. 4.2, we use DomainNet (Peng et al., 2019) as the benchmark,
which consists of six domains (real, sketch, painting, infograph, clipart and quickdraw) with 345
classes. We fine-tune our model on real domain and evaluate on all other domains. For Sec. 4.3, we
fine-tune on VQAv2 (Goyal et al., 2017) and test on nine OOD datasets using LoRA (Hu et al., 2021).
For the near OODs, we evaluate on VQAv2’s six variants, namely IV-VQA (Agarwal et al., 2020),
CV-VQA (Agarwal et al., 2020), VQA-Rephrasings (Shah et al., 2019), VQA-CP v2 (Agrawal et al.,
2018), VQA-CE (Dancette et al., 2021) and AdVQA (Sheng et al., 2021), which cover uni-modal,
multi-modal and adversarial distribution shifts from VQAv2. We also include TextVQA (Singh et al.,
2019), VizWiz (Bigham et al.) and OK-VQAv2 (Reichman et al., 2023), which are constructed from
different sources than VQAv2, as the far OOD datasets. Further details can be found in Sec. 4.3.

Training Details. The hyper-parameter µ is found through cross-validation per dataset, and the
model with the best ID validation accuracy is taken. We leave all training details to Appendix 7.1

4.1 IMAGE CLASSIFICATION EXPERIMENTS

DiGraP outperforms robust fine-tuning baselines on image classification task. We utilize the
DomainNet as benchmark and compare DiGraP with several existing methods using ImageNet
pre-trained MOCO-V3 ResNet50 as initialization. We follow the training scheme and use the same
hyper-parameters of prior work (Tian et al., 2023a). In Tab. 1, we observe that DiGraP achieves
the best OOD performance across all OOD domains and a competitive ID performance on the real
domain. Specifically, DiGraP outperforms L2-SP (Li et al., 2018) and magnitude-based projection
methods (Tian et al., 2023a;b) on both ID and OOD results. Note that we use the reported baseline
results from Tian et al. (2023b) where the Quickdraw results are not presented.

4.2 REFORMULATING IMAGE CLASSIFICATION AS VQA TASKS

Previous work primarily focuses on uni-modal benchmarks but is seldom tested on multi-modal
settings. As an additional contribution, we first bridge the gap by using the same benchmark but
reformulate it as a VQA task and tested several robust fine-tuning methods. Specifically, inspired
by Ging et al. (2024), we change DomainNet to DomainNet-oVQA by using the same images but
asking questions such as "What is in the image?" with class labels as the ground truth answers. To
make the two tasks more comparable, we use the ClipMatch (ClipM) metric from Ging et al. (2024)
by embedding the model prediction and class names with EVA-Clip (Sun et al., 2023) and obtain
the most similar one by matching them using cosine similarity. We consider this benchmark as one
OOD dataset with distribution shifts only in image modality and will conduct a more comprehensive
experiments with distribution shifts in other modalities in Sec. 4.3. We use the pre-trained generative
vision-language model (VLM) PaliGemma (Beyer et al., 2024) as initialization.

1Same as L2-SP (Li et al., 2018) under LoRA (Hu et al., 2021)
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Figure 2: Reformulating Image Classification as VQA. (Left) DomainNet as conventional Image
Classification tasks. (Right) DomainNet-oVQA as VQA tasks. We use the same images but add
questions "What is in the image?" to generate answers and use original labels as the ground truth
answers. To make the two tasks more comparable, we feed the generated answers and 345 class labels
into the EVA-Clip text encoder and use cosine similarity search to obtain the most similar class.

Table 2: DomainNet-oVQA Fine-Tuning Results. PaliGemma-3B fine-tuned on DomainNet-oVQA
(Real) and evaluated on other domains as a VQA task. We use LoRA for efficiency. Note that L2-SP
reduces to Vanilla FT with AdamW under LoRA. DiGraP achieves SOTA results on both ID and
OOD performance. Bold: best. Underline: second best.

ID OOD Statistics
Real Sketch Painting Infograph Clipart Quickdraw OOD Avg. ID ∆ (%) OOD ∆ (%)

Zero-Shot 64.09 39.00 39.80 28.87 57.86 3.27 33.76 - -
Vanilla FT1 92.57 70.65 71.17 54.75 82.68 18.73 59.60 0.00 0.00
Linear Prob. 91.10 68.52 67.23 49.86 79.78 19.74 57.03 -1.59 -4.31

LP-FT 92.60 71.13 70.64 54.66 81.41 20.94 59.76 0.03 0.27
WiSE-FT 80.57 64.70 65.08 43.89 72.98 17.80 52.89 -12.96 -11.26

FTP 87.49 71.38 69.33 53.33 79.18 19.74 58.59 -5.49 -1.69

DiGraP (0.5) 92.72 72.56 72.31 57.52 83.32 20.13 61.17 0.16 2.63

Vanilla fine-tuning outperforms zero-shot on both ID and OOD datasets. Surprisingly, vanilla
fine-tuning on DomainNet-Real-oVQA improves the performance on every domain in DomainNet-
oVQA, while doing the same but as an image classification task degrades the OOD performance
compared to zero-shot (Wortsman et al., 2022). Note that during fine-tuning in the image classification
task, we only take the image encoder from the backbone model and add a linear head after it, i.e., we
remove the text encoder and uses cross-entropy loss which is different from the pre-trained loss used
during pre-training. However, (Goyal et al., 2023) points out that fine-tuning is more robust when
trained with the same objective as pre-training. This may be a potential reason for the robustness of
vanilla fine-tuning for VQA tasks, since fine-tuning on the VQAs does not change the pre-training
model structure and loss function. We will not focus on this problem in this paper and leave further
discussion to future work. Nevertheless, one interesting question remains: when vanilla fine-tuning
performs well on datasets with distributon shifts, can previous robust fine-tuning baselines further
increase the robustness?

WiSE worsens both ID generalization and OOD robustness under VQA tasks. Wortsman et al.
(2022) reports that ensembling the weights of the zero-shot and fine-tuned models can benefit from
both the robustness of the zero-shot and the downstream adaptation of the finetuned models for image
classification tasks. However, WiSE is highly dependent on the performance of the pre-trained model,
and only works when vianilla fine-tuning decreases the robustness. In Tab. 2, there is a huge gap
between the zero-shot and fine-tuned results. In this case, naively combining the pre-trained weights
reduces the model’s robustness under all distribution shifts compared to vanilla fine-tuning.

Directional Gradient Projection benefits the models in general. In Tab. 2, DiGraP outperforms
two-stage training (LP-FT), weight interpolation (WiSE-FT) and bi-level optimization (FTP) on
both ID and average OOD performance. We argue that WiSE-FT only works for the setting where
zero-shot performance is strong while DiGraP is beneficial for general cases.
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4.3 FINE-TUNING ON VQA DATASETS

We now conduct a comprehensive experiment on various VQA datasets with different distribution
shifts. We consider VQAv2 (Goyal et al., 2017) as the ID dataset. We further evaluate the model on
six near OOD datasets which construct different types of distribution shifts from VQAv2 and three
far OOD datasets in which the image and text sources are completely different from VQAv2.

Visual Shifts

ID OOD What do these animals 
generally eat?

What instrument is 
behind the musician?

What is unsafe about 
the man's attire?

How do you pronounce 
the Arabic text?

V+Q Shifts

What is the kite 
supposed to be?

Is the giraffe eating? What color stripes are 
on the women's shirt?

How many zebras are 
there in this picture?

OODID

Shift level

V+Q+A Shifts
ID OOD

Can you tell what pills 
are these?: Tylenol

What's the scientific name 
of this insect?: Butterfly

What airline is 
this?:  Emirates

What is the final answer 
given by the 

calculator?: 5289.63

What colour is bus?: Red What sport is being 
played? : Tennis

Is there a man in a 
suit? : Yes

How many people 
are shown? : 2

Figure 3: ID and OOD VQA datasets with Uni-modal and Multi-modal Distribution Shifts.

ID Dataset. VQAv2 (Goyal et al., 2017) builds upon VQAv1 (Agrawal et al., 2017) by balancing
question-answer pairs with complementary images to minimize the bias in language priors, thus is
more challenging and is widely used as a benchmark for popular vision-language models.

OOD Datasets. 1) Distribution Shifts to Images. IV-VQA (Agarwal et al., 2020) and CV-VQA (Agar-
wal et al., 2020) remove the objects irrelevant to answering the question and generate complementary
images with one instance of the object removed respectively. 2) Distribution Shifts to Questions.
VQA-Rephrasings (Shah et al., 2019) collects three rephrasings of each question. 3) Distribution
Shifts to Answers. VQA-CP (Agrawal et al., 2018) reorganizes the correlation between the question
type and correct answer. 4) Distribution Shifts to Multi-modalities. VQA-CE (Dancette et al., 2021)
selects a subset of VQAv2 that are counterexamples of potential multi-modal shortcuts. 5) Adversarial
Distribution Shifts. AdVQA (Sheng et al., 2021) provides human-adversarial examples for questions
where the model’s predicted answer is incorrect. 6) Far OODs. TextVQA (Singh et al., 2019) requires
models to answer questions by understanding text embedded in images. VizWiz (Bigham et al.)
contains user-generated images with diverse challenges like poor quality, ambiguity, and irrelevant
content for answering visual questions. OK-VQAv2 (Reichman et al., 2023) represents a knowledge-
based VQA task where the visual question cannot be answered without external knowledge.

Evaluation and Metrics. We follow the metric from VQAv2 (Goyal et al., 2017) and the evaluation
is based on the accuracy of predicted answers compared to ground truth human-annotated answers.
For each question, the dataset includes 10 human-provided answers. The accuracy is calculated as:
Accuracy = min

(
number of humans who gave the answer

3 , 1
)

.

Measuring the OOD Distance. We explore shifts on single image modality and joint image question
(V+Q) shifts, as well as image question answer (V+Q+A) shifts by computing the test set shift relative
to the training domain (i.e. VQAv2 train) using the negative Mahalanobis distance metric. The higher
the value, the less the distribution shift. More details are in Appendix 7.2.

Experimental Results. We fine-tune the PaliGemma-3B model on the VQAv2 dataset with LoRA
and evaluate on the other OOD datasets. The results of DiGraP and other robust fine-tuning methods
are shown in Tab. 3. We have the following observations.

Smaller distribution shifts correlate with better OOD performance. The analysis of image and
joint shifts reveals a high correlation with VQA performance, evidenced by correlation values of 0.83
and 0.80, respectively. This suggests that larger shifts significantly degrade VQA performance. Such
trends validate our methodology in quantifying shifts, as far OOD scenarios align with increased shift
levels and diminished performance.

Full fine-tuning improves zero-shot performance across ID, near OOD, and far OOD datasets.
As shown in Tab. 3, we observe no degradation in OOD performance following vanilla fine-tuning,
even when PaliGemma is pre-trained on VQA tasks. This may be attributed to reasons similar to

2Same as L2-SP (Li et al., 2018) under LoRA (Hu et al., 2021)
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Table 3: Visual Question Answering Fine-Tuning Results using PaliGemma-3B. DiGraP outper-
forms baselines across ID and near OOD and is competitive on far OOD datasets using LoRA. Note
that Vanilla FT with AdamW reduces to L2-SP under LoRA. Trainable projection strength Bold: best.
Underline: second best.

ID Near OOD Far OOD

Vision Question Answer Multimodal Adversarial
VQAv2 (val) IV-VQA CV-VQA VQA-Rep. VQA-CP v2 VQA-CE AdVQA Avg. TextVQA VizWiz OK-VQA Avg. OOD Avg.

Zero-Shot 54.42 63.95 44.72 50.10 54.29 30.68 30.46 45.70 14.86 16.84 28.60 20.10 37.17
Vanilla FT2 86.29 94.43 69.36 78.90 86.21 71.73 49.82 75.08 42.08 22.92 48.30 37.77 62.64
Linear Prob. 78.24 87.83 63.87 69.61 78.48 61.66 42.90 67.39 29.61 18.80 42.27 30.23 55.00

LP-FT 85.97 93.30 65.93 76.49 86.16 72.73 45.68 73.38 31.41 19.01 43.27 31.23 59.33
WiSE-FT 71.36 85.06 64.55 66.42 70.89 48.74 43.95 63.27 36.98 22.41 42.35 33.91 53.48

FTP 81.77 92.61 67.93 76.66 81.41 64.14 50.99 72.29 49.12 25.67 51.07 41.95 62.18
DiGraP (0.5) 87.40 95.16 68.56 79.29 87.19 73.63 51.41 75.87 44.12 22.98 49.20 38.77 63.50
Vision Shift 27.84 27.17 28.67 27.94 27.92 27.91 27.66 27.88 28.93 32.92 27.98 29.94 28.57

Question Shift 38.70 37.08 28.70 40.84 38.84 40.19 40.68 37.72 47.10 46.25 48.20 47.18 40.85
Joint Shift 34.81 32.91 29.55 35.26 34.81 37.10 34.97 34.10 45.72 45.69 40.91 44.11 37.44

those discussed in Sec. 4.2, or due to differing characteristics of the backbone models and tasks. Once
again, WiSE negatively impacts both ID generalization and OOD robustness in VQA tasks when
interpolating between pre-trained and fine-tuned weights.

DiGraP outperforms baselines on both ID and near-OOD datasets. Beyond improvements on
uni-modal tasks, DiGraP enhances vanilla fine-tuning and consistently outperforms other baselines
in multi-modal settings. As shown in Tab. 3, DiGraP achieves the highest ID and average near-OOD
results, demonstrating robustness to distribution shifts across various modalities, including vision,
question, answer, their combinations, and adversarial shifts.

DiGraP is competitive on far OOD datasets. From Tab. 3, we observe that DiGraP also improves
vanilla fine-tuning on the three far OOD benchmarks and is the second best among all robust fine-
tuning methods. Notably, while FTP (Tian et al., 2023a) performs well on OOD, it severely underfits
the training domain with a substantial lower ID performance compared to vanilla fine-tuning and
DiGraP, even with the positive gradient annealing factor κ = 0, which indicates weakest regular-
ization. However, FTP demonstrates outstanding performance on far OOD tasks with significant
higher results on the three far OOD datasets. One potential reason is that FTP imposes much stronger
regularization since even when κ = 0 the projection constraints are non-decreasing during training,
which means it still provides regularization. In FTP, the authors also mention that κ = 0 is necessary
to obtain the best performance if underfitting is observed. However, in DiGraP, ω = 0 is equivalent to
unconstrained fine-tuning with no regularization. Thus, DiGraP enforces weaker regularization than
FTP. We emphasize that the significant performance decrease from zero-shot to fine-tuning is mostly
observed on rather simple tasks (e.g. image classification), while DiGraP is more general for all
cases. Nevertheless, it remains interesting why FTP significantly increases the far OOD performance
given the zero-shot is poor in Tab. 3, and we will leave the exploration to future work.

5 HYPER-PARAMETER TUNING AND ABLATION STUDY

5.1 VARIATION OF PROJECTION STRENGTH THROUGHOUT TRAINING

We visualize the variation of the average projection strength ω of all layers over iterations for five
different hyper-parameters µ ∈ {0.01, 0.1, 0.5, 1, 100} in Fig. 4. As we increase µ, the projection
strength ω becomes larger. For all cases, the projection strength ω starts from zero and converges at
the end of the training. This aligns with our intuition that the projection strength should vary over
time to learn dynamic priority of the two objectives during different stage of training.

5.2 IMPACT OF HYPER-PARAMETER SENSITIVITY ON ROBUSTNESS

We further perform the sensitivity analysis of the hyper-parameter µ on ID and average OOD
performance for DomainNet-oVQA and VQA experiments. Results from Tab. 4 show that both ID
and OOD results fluctuate slightly even when µ spans over a wide range from 0.01 to 100. This again
proves that DiGrap is more controllable and less sensitive to hyper-parameter change.
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Figure 4: Variation of the Average Projection Strength ω of all Layers over Iterations. We present
the results of µ ∈ {0.01, 0.1, 0.5, 1, 100}. We use the sliding window with window sizes of 50 and
200 to visualize the results for DomainNet-oVQA (Real) and VQAv2. The projection strength ω is
dynamic over iterations, growing from small to large and converging in the end.

Table 4: Sensitivity Analysis of Hyper-Parameter µ on ID and OOD performance. We sweep
µ ∈ {0.01, 0.1, 0.5, 1, 10}. For DomainNet-oVQA and VQA experiments, both ID and average OOD
performance fluctuates slightly and are robust to the change of µ over a wide range.

Hyper-Parameter µ 0.01 0.1 0.5 1 100

OOD Avg. 60.95 59.96 61.17 60.31 60.40

ID 92.52 92.68 92.72 92.65 92.45

(a) DomainNet-oVQA hyper-parameter (µ) sweep.

Hyper-Parameter µ 0.01 0.1 0.5 1 100

OOD Avg. 63.15 62.78 63.50 63.52 63.44

ID 86.91 86.85 87.40 87.08 87.18

(b) VQA hyper-parameter (µ) sweep.

Table 5: Comparing Fixed and Trainable Projection Strength ω on DomainNet-oVQA. Bold:
best. Underline: second best. Trainable projection strength outperforms different fixed projection
strengths on both ID and average OOD.

ID OOD
Real Sketch Painting Infograph Clipart Quickdraw OOD Avg.

DiGraP (ω = 0.1) 92.49 71.86 71.36 56.34 83.15 19.22 60.39
DiGraP (ω = 0.5) 92.63 71.24 71.46 56.08 83.17 18.61 60.11
DiGraP (ω = 0.9) 92.53 73.09 71.73 56.34 82.85 20.11 60.82

DiGraP (trainable) 92.72 72.56 72.31 57.52 83.32 20.13 61.17

5.3 ABLATING FIXED AND TRAINABLE PROJECTION STRENGTH

To validate the effectiveness of trainable projection strength ω, we conduct analysis to compare
with fixed projection strength with different values ω ∈ {0.1, 0.5, 0.9}. Tab. 5 shows that trainable
DiGraP outperforms the others and achieves the best ID and average OOD results.

6 CONCLUSION

We present Directional Gradient Projection (DiGraP), a novel method for robust fine-tuning that
leverages gradient-based directional information to unify regularization and multi-objective opti-
mization. DiGraP addresses hyperparameter sensitivity and underfitting issues in existing methods.
Experiments on image classification and VQA benchmarks show that DiGraP surpasses baselines,
improving ID accuracy and OOD robustness, while bridging uni-modal and multi-modal evaluation
for robust fine-tuning across domains. However, DiGraP struggles with far OOD datasets due to lim-
ited regularization, excelling in near OOD scenarios but facing a trade-off as stronger regularization
may harm ID and near OOD performance (Sec. 4.2, 4.3). Future work should balance ID, near OOD,
and far OOD performance. Additionally, DiGraP is suited for fine-tuning well pre-trained models,
with its efficacy in training from scratch or non-robust initialization yet to be explored.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Vedika Agarwal, Rakshith Shetty, and Mario Fritz. Towards Causal VQA: Revealing and Reducing
Spurious Correlations by Invariant and Covariant Semantic Editing. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 9687–9695, Seattle, WA, USA, June
2020. IEEE. ISBN 978-1-72817-168-5. doi: 10.1109/CVPR42600.2020.00971. URL https:
//ieeexplore.ieee.org/document/9156407/.

Aishwarya Agrawal, Aniruddha Kembhavi, Dhruv Batra, and Devi Parikh. C-vqa: A compositional
split of the visual question answering (vqa) v1.0 dataset, 2017. URL https://arxiv.org/
abs/1704.08243.

Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and Aniruddha Kembhavi. Don’t Just Assume;
Look and Answer: Overcoming Priors for Visual Question Answering, June 2018. URL http:
//arxiv.org/abs/1712.00377. arXiv:1712.00377 [cs].
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7 APPENDIX

7.1 TRAINING DETAILS

Image Classification. For DiGraP, we fine-tune the model using SGD with a learning rate of
1e− 2 and µ = 0.1 with a batchsize of 256. The regularization hyper-parameter is found through
cross-validation, and the model with the best ID validation accuracy is taken. We use 4 RTX 2080
GPUs for each experiment.

Fine-Tuning DomainNet-oVQA. We use the model pretrained with 224 ∗ 224 input images and
128 token input/output text sequences and fine-tune with the precision of bfloat16. We use the
LAVIS (Li et al., 2022) public repository to fine-tune all methods. Standard hyper-parameters are
used for all: learning rate (1e− 3), weight-decay (1e− 4), optimizer (AdamW), scheduler (Linear
Warmup With Cosine Annealing), warm-up learning rate (1e− 4), minimum learning rate (1e− 4),
accumulation steps (2), beam size (5). The model is trained for 10 epochs with a batch size of 128
for Tab. 2. For LoRA (Hu et al., 2021), we limit our study to only adapting the attention weights and
freeze the MLP modules for parameter-efficiency, specifically apply LoRA to Wq,Wk,Wv,Wo with
r = 8 in Tab. 2. We use λ = 0.5 for all DiGraP results in Tab. 2. The regularization hyper-parameter
is found through cross-validation, and the model with the best ID validation accuracy is taken. We
use 8 A40 GPU for each experiment.

Fine-tuning VQA. We use the model pretrained with 224 ∗ 224 input images and 128 token
input/output text sequences and fine-tune with the precision of bfloat16. We use the LAVIS (Li et al.,
2022) public repository to fine-tune all methods. Standard hyper-parameters are used for all: learning
rate (1e− 3), weight-decay (1e− 4), optimizer (AdamW), scheduler (Linear Warmup With Cosine
Annealing), warm-up learning rate (1e− 4), minimum learning rate (1e− 4), accumulation steps (2),
beam size (5). The model is trained for 10 epochs with a batch size of 128 for Tab. 3. For LoRA (Hu
et al., 2021), we limit our study to only adapting the attention weights and freeze the MLP modules
for parameter-efficiency, specifically apply LoRA to Wq,Wk,Wv,Wo with r = 8 in Tab. 3. We
use λ = 0.5 for all DiGraP results in Tab. 3. The regularization hyper-parameter is found through
cross-validation, and the model with the best ID validation accuracy is taken. We use 8 A40 GPU for
each experiment.

7.2 MEASURING OOD DISTANCE

We follow procedures similar to typical feature-based OOD detection methods (Shi & Lee, 2024).
Specifically, given our input training split X train

in , we compute feature representations z of the training
samples to estimate the empirical mean µ and covariance matrix Σ. For each test split, we compute
the test set shift relative to the training domain using the Mahalanobis distance metric defined in
Eq. 9. The overall shift score for each test dataset, denoted as Smaha, is calculated as the average SMaha
across all samples. Let q denote the question, v the image (vision input), and a the answer. The input
features used in measuring shifts include uni-modal embeddings f(v), f(q) and joint embeddings
f(q, v).

SMaha(ztest) =
√

(ztest − µ)⊤Σ−1(ztest − µ) (9)

We utilize the vanilla fine-tuned PaliGemma model on the VQAv2 training dataset as our feature
encoder. For the image embedding f(v), we obtain it via masking out the question input tokens
and mean-pooling the image portion from the final layer of the model before the language model
head. Similarly, to get f(q), we mask out the image tokens and extract the question portion from the
final layer. To obtain f(v, q), we pass in both image and text tokens as input, compute the average
embedding for both modalities and then taking the overall mean.

7.2.1 CORRELATION BETWEEN UNI- & MULTI-MODAL SHIFTS PER DATASET

Fig. 5 shows the heatmap of the correlation between uni-modal and multi-modal shifts per dataset.
Question-joint shift correlations are higher than image-joint shift correlations across all VQA datasets
and fine-tuning methods. However, pre-train model maintains similar correlation between both
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modalities. Vanilla FT and SPD exhibits the lowest question-joint shift correlation shown by the
darkest row color across all fine-tuning methods in 5a. Whilst, SPD shows the lowest image-joint
shift correlation across the datasets in 5b.

(a) Question-Joint shift correlation heatmap

(b) Image-Joint shift correlation heatmap

Figure 5: Heatmap of correlation between uni-modal and multi-modal shifts per dataset.

7.2.2 HISTOGRAMS FOR EVALUATING DIFFERENT DISTRIBUTION SHIFTS
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(a) VQAv2 Val (b) IV VQA (c) CV VQA

(d) VQA Rephrasings (e) VQA CP v2 (f) VQA CE

(g) ADVQA (h) Text VQA (i) VizWiz

(j) OK VQA

Figure 6: Histogram for Vanilla FT Visual Shifts: We depict the SMaha score on the visual modality for
each sample in the VQAv2 train split in blue and the corresponding test samples in orange. There’s
minimal visual shifts for all VQA datasets from the VQAv2 train, except for Figure i which shows
evidence of greater shifts between the orange distribution and the blue distribution.
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(a) VQAv2 Val (b) IV VQA (c) CV VQA

(d) VQA Rephrasings (e) VQA CP v2 (f) VQA CE

(g) ADVQA (h) Text VQA (i) VizWiz

(j) OK VQA

Figure 7: Histogram for Vanilla FT Question Shifts: We depict the SMaha score on the question
modality for each sample in the VQAv2 train split in blue and the corresponding test samples in
orange. Similar to the visual shift histograms, far OODs (Figures h, i, j) also show evidence of greater
shifts between the orange distribution and the blue distribution than near OODs.
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(a) VQAv2 Val (b) IV VQA (c) CV VQA

(d) VQA Rephrasings (e) VQA CP v2 (f) VQA CE

(g) ADVQA (h) Text VQA (i) VizWiz

(j) OKVQA

Figure 8: Histogram for Vanilla FT V+Q Shifts : We depict the SMaha score on the V+Q shift for each
sample in the VQAv2 train split in blue and the corresponding test samples in orange. For all test
splits, V+Q shifts show a greater degree of shift compared to the corresponding visual and question
shift.
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7.3 ADDITIONAL EXPERIMENTS FOR REBUTTAL

Table 6: DomainNet Results using MOCO-V3 pre-trained ResNet50 with Real Data. DiGraP
outperforms baselines on average OOD. Bold: best. Underline: second best.

ID OOD Statistics
Real Sketch Painting Infograph Clipart OOD Avg. ID ∆ (%) OOD ∆ (%)

Vanilla FT 81.99 31.52 42.89 18.51 44.98 34.47 0.00 0.00
Linear Prob. 73.01 24.10 39.56 12.27 30.38 26.58 -10.96 -22.90

Partial Fusion 78.27 27.72 39.74 15.56 38.18 30.30 -4.55 -12.11
L2-SP 81.51 34.91 45.76 18.97 45.29 36.23 -0.59 5.09

MARS-SP 81.89 34.44 45.05 19.97 46.36 36.45 -0.13 5.74
LP-FT 82.92 34.50 45.42 20.12 47.11 36.79 1.13 6.72
TPGM 82.66 35.35 46.20 20.13 45.75 36.86 0.82 6.91

FTP 82.17 36.26 46.58 20.67 46.97 37.62 0.22 9.13

LP-FT-C (reg=5) 82.18 35.13 46.02 20.36 47.61 37.28 0.23 8.15
DiGraP (0.1) 82.20 36.43 46.75 21.40 47.46 38.01 0.26 10.27

Table 7: Sensitivity Analysis of Hyper-Parameter µ on ID and OOD performance. We sweep
µ ∈ {0.01, 0.1, 0.5, 1, 10}. For DomainNet with CLIP ViT-Base experiments, both ID and average
OOD performance fluctuates slightly and are robust to the change of µ over a wide range.

Hyper-Parameter µ 0.01 0.1 0.5 1 10

OOD Avg. 50.86 51.04 50.79 51.25 51.14

ID 86.00 86.12 86.13 86.14 86.12
(a) DomainNet hyper-parameter (µ) sweep.

Table 8: Visual Question Answering Fine-Tuning Results using LLaVA-7B (Liu et al., 2023). We
sample 10% of the VQAv2 training and validation set. We fine-tune using LoRA with a rank of 4 and
target on the Wq,Wv . DiGraP outperforms baselines across ID and near OOD and is competitive on
far OOD datasets using LoRA. Note that Vanilla FT with AdamW reduces to L2-SP under LoRA.
Trainable projection strength Bold: best. Underline: second best.

ID Near OOD Far OOD

Vision Question Answer Multimodal Adversarial
VQAv2 (val) IV-VQA CV-VQA VQA-Rep. VQA-CP v2 VQA-CE AdVQA Avg. TextVQA VizWiz OK-VQA Avg. OOD Avg.

Zero-Shot 3.27 6.34 4.40 2.92 4.28 1.46 1.22 3.44 1.10 0.24 0.71 0.68 2.52
Vanilla FT3 72.49 82.23 58.61 63.93 69.80 45.60 40.22 60.07 37.16 12.11 36.74 28.67 49.60

LP-FT 53.01 39.26 38.54 27.93 33.14 9.24 23.66 28.63 7.80 5.16 9.95 7.64 21.63
WiSE-FT 60.47 63.98 46.39 50.26 55.79 20.23 23.35 43.33 10.10 3.15 13.97 9.07 31.98

FTP 67.95 80.65 57.33 61.66 68.05 43.70 39.53 58.49 33.88 12.98 31.77 26.21 47.73
DiGraP (0.01) 72.54 83.64 56.56 64.70 69.71 45.15 43.10 60.48 38.22 12.97 37.43 29.54 50.17

Table 9: DomainNet-oVQA Fine-Tuning Results. LLaVA-7B (Liu et al., 2023) fine-tuned on
DomainNet-oVQA (Real) and evaluated on other domains as a VQA task. We use LoRA for
efficiency . Note that L2-SP reduces to Vanilla FT with AdamW under LoRA. DiGraP achieves
SOTA results on both ID and OOD performance. Bold: best. Underline: second best.

ID OOD Statistics
Real Sketch Painting Infograph Clipart Quickdraw OOD Avg. ID ∆ (%) OOD ∆ (%)

Zero-Shot 67.71 53.45 56.15 37.90 58.32 15.87 44.34 - -
Vanilla FT4 86.03 63.93 59.47 45.50 72.85 15.94 51.54 0.00 0.00
Linear Prob. 76.84 51.41 50.53 32.67 60.86 8.72 40.84 -10.68 -20.76

LP-FT 79.76 56.12 55.77 37.10 66.03 12.82 45.57 -7.29 -11.58
FTP 77.70 55.96 43.74 39.05 62.61 15.78 43.43 -9.68 -15.74

DiGraP (0.1) 85.68 64.40 60.26 45.94 72.95 16.69 52.05 -0.41 0.98

3Same as L2-SP (Li et al., 2018) under LoRA (Hu et al., 2021)
4Same as L2-SP (Li et al., 2018) under LoRA (Hu et al., 2021)
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Table 10: OOD Results on DomainNet. CLIP ViT-Base finetuned on DomainNet (Real) dataset and
evaluated on other domains. Bold: best. Underline: second best.

ID OOD Statistics
Method Real Sketch Painting Infograph Clipart OOD Avg. ID ∆ (%) OOD ∆ (%)

Vanilla FT 86.5 45.9 58.9 34.8 59.7 49.82 0 0
LP 83.2 38.6 51.4 27.2 50.7 41.97 -3.82 -15.76

L2-SP 86.4 46.0 58.9 35.0 59.8 49.92 -0.12 0.20
LP-FT 84.4 36.5 50.5 27.2 51.4 41.40 -2.43 -16.90
FTP 86.7 49.1 55.8 32.2 61.4 49.63 0.23 -0.38

DiGraP (1) 86.2 51.3 57.3 34.0 62.4 51.25 -0.35 2.87

Table 11: BOSS (Yuan et al., 2023) Performance Using T5 (Raffel et al., 2023) Fine-Tuned with
AZ. We leverage BOSS, an NLP benchmark suite for OOD robustness evaluation. We focus on the
Sentiment Analysis task which contains Amazon (AZ) as the ID and DynaSent (DS), SemEval and
SST as the OOD. Bold: best. Underline: second best.

Dataset ID OOD Statistics
AZ DS SE SST OOD Avg. ID ∆ (%) OOD ∆ (%)

Vanilla FT 85.57 43.63 48.47 67.29 53.13 0.00 0.00
L2-SP 84.87 43.40 48.65 65.07 52.37 -0.82 -1.43
FTP 84.73 43.84 48.69 66.73 53.09 -0.98 -0.08

DiGraP (8e-3) 85.60 44.10 49.07 67.39 53.52 0.04 0.73

(a) 3D Overview of the Variation of Regularization Strength across
Layers and Epochs.

(b) Layer-Wise Regularization Strength

(c) Dynamic Regularization Across Epochs

Figure 9: Visualization of the Variation in Regularization Strength (λ) across Layers over
Epochs. Fig. 9a is an 3D view of R=regularization strength dynamics across layers and epochs. The
X-axis represents training epochs, the Y-axis represents model layers (vision in blue, language in
orange), and the Z-axis represents the regularization strength λ applied to each layer. Fig. 9b projects
the data onto the plane formed by layers (Y) and regularization strength (Z). Fig. 9c projects the data
onto the plane formed by epochs (X) and regularization strength (Z).
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