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ABSTRACT

Artistic font generation (AFG) can assist human designers in creating innovative
artistic fonts. However, most previous studies primarily focus on 2D artistic fonts
in flat design, leaving personalized 3D-AFG largely underexplored. 3D-AFG not
only enables applications in immersive 3D environments such as video games
and animations, but also may enhance 2D-AFG by rendering 2D fonts of novel
views. Moreover, unlike general 3D objects, 3D fonts exhibit precise semantics
with strong structural constraints and also demand fine-grained part-level style
control. To address these challenges, we propose SplatFont3D, a novel structure-
aware text-to-3D AFG framework with 3D Gaussian splatting, which enables the
creation of 3D artistic fonts from diverse style text prompts with precise part-level
style control. Specifically, we first introduce a Glyph2Cloud module, which pro-
gressively enhances both the shapes and styles of 2D glyphs (or components) and
produces their corresponding 3D point clouds for Gaussian initialization. The ini-
tialized 3D Gaussians are further optimized through interaction with a pretrained
2D diffusion model using score distillation sampling. To enable part-level control,
we present a dynamic component assignment strategy that exploits the geometric
priors of 3D Gaussians to partition components, while alleviating drift-induced
entanglement during 3D Gaussian optimization. Our SplatFont3D provides more
explicit and effective part-level style control than NeRF, attaining faster rendering
efficiency. Experiments show that our SplatFont3D outperforms existing 3D mod-
els for 3D-AFG in style—text consistency, visual quality, and rendering efficiency.

1 INTRODUCTION

Artistic fonts are widely used in movie posters, brand icons, video games, and many other areas
in our daily lives. Different from standard printed fonts in books and computers, artistic fonts
attain significant diversity in glyph shapes and font effects. It generally requires expert human
designers to create personalized artistic fonts depending on specific scenarios or contexts, which is
highly demanding in both time and financial cost. Therefore, there is a pressing need for methods
of Artistic Font Generation (AFG), which can teach machines to automatically generate artistic
fonts. Such innovative techniques are supposed to assist human designers in creating customized
3D artistic fonts. With recent advances in GANs and diffusion models (Goodfellow et al., | 2020; [Ho!
et al., 2020), AFG has achieved remarkable success (Hayashi et al., 2019; Wang et al.l [2023a; |L1
et al.l [2023b; Miao et al.| [2024; Mu et al., [2024; [Ren et al . [2025).

Although previous studies are capable of generating novel 2D collections by combining various ex-
isting glyphs and textures, they are primarily limited to 2D artistic fonts in flat design, leaving 3D
font synthesis largely underexplored. Compared with 2D-AFG, 3D-AFG offers broader application
prospects and greater practical values. For example, most 2D-AFG methods are confined to creating
2D planar images from a pre-defined viewpoint but are not capable of generating novel views, lim-
iting their flexibility and practicability. Instead, 3D artistic fonts can explicitly represent the spatial
structures of fonts and can feasibly render 2D fonts of arbitrary views, thereby positioning 2D-AFG
as a special case of its 3D counterpart. Moreover, 3D-AFG enables applications in immersive 3D
environments such as 3D animations, video games, and virtual reality. Therefore, 3D-AFG exhibits
significantly better application potential than 2D approaches, which is worth further investigation.
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Nevertheless, 3D-AFG poses unique challenges beyond the general 3D object synthesis, essentially
making existing text-to-3D models inapplicable. Specifically,

1. Semantic & Style Constraints. Different from general objects, character fonts encode rich
semantic information, and their shapes are strictly constrained to preserve semantic correctness.
However, existing pre-trained text-to-3D models (Poole et al., 2023} LLin et al. 2023} Wang
et al., [2023b; |Y1 et al.| 2024a; |Chen et al., |2024b; [Huang et al.l 2024; [Liu et al.| 2023bjal) or
2D diffusion models (Ho et al. 2020; Song et al., [2020; Rombach et al., 2022} [Nichol et al.,
2021)) are primarily exposed to general objects, making them struggle with font recognition and
understanding. This makes synthesizing 3D artistic fonts particularly challenging, especially in
cases that require both preserving correct semantics under shape constraints and incorporating
accurate stylistic attributes at precise layout positions.

2. Part-level Style Control. A more practical 3D-AFG model should go beyond the global styl-
ization and further achieve structure-aware synthesis with part-level control. However, part-level
modification is considerably difficult for existing 3D models, highlighting their limitations for
structure-aware 3D-AFG. For example, NeRF (Mildenhall et al.l 2021) represents objects im-
plicitly using a neural field that essentially lacks natural decomposition, thus making the part
modifications of 3D objects difficult. Moreover, 3DGS (Kerbl et al., 2023)) represents objects
with 3D Gaussian points, but it carries no precise semantics for reliable component partitioning.

3. Expensive Acquisition Cost. Unlike 2D images, 3D fonts are considerably scarce and not fea-
sibly obtainable from publicly available sources (e.g., the Internet). Furthermore, the creation
and collection of 3D artistic fonts present significant challenges, as they demand that designers
possess formal expertise in artistic font design and mastery of 3D modeling software (e.g., Maya
and 3ds Max). This substantially increases the time and financial cost as well as the complexity
of dataset creation. The scarcity of 3D font datasets eventually makes it impractical to obtain a
generalized, large-scale 3D-AFG model through the conventional supervised training.

So far, structure-aware 3D artistic font generation remains largely unexplored, and existing text-to-
3D approaches (Poole et al., {2023} |Lin et al., 2023; Wang et al.,|2023b; |Chen et al., | 2023} |Yi et al.,
2024a}; |Chen et al., 2024b; Metzer et al., 2023} [Huang et al.l [2024; [Liu et al.| [2023bja) still fail to
address these challenges effectively. For example, a prevalent text-to-3D approach is to directly train
3D models on large-scale data collections, which, however, often struggles to effectively generalize
into open-set domains. Consequently, the scarcity of 3D font data makes it infeasible to build a
general-purpose, highly generalizable 3D-AFG model.

An alternative approach is to leverage large pre-trained 2D diffusion models for 3D generation
(Poole et all 2023} |Lin et al., [2023; Wang et al.| 2023b; (Chen et al., [2023; Metzer et al.| [2023;
Shi et al.|, 2023 |Y1 et al.| [2024a; (Chen et al., [2024b), thereby avoiding the need for extensive data
collection; however, significant challenges remain for 3D-AFG. Specifically, (1) a prior attempt
at 3D-AFG, DreamFont3D (Li et al., [2024), leveraged a pre-trained 2D diffusion model to refine
NeRF-based 3D volumes. However, due to their implicit representation, NeRF-based approaches
struggle to achieve precise part-level control, as they lack structural decomposition of 3D fonts,
and their rendering process remains highly time-consuming and computationally expensive. (2) Al-
though 3DGS enables faster rendering than NeREF, its application to 3D-AFG remains challenging.
This is because 3DGS requires well-initialized point clouds for high-quality generation, and fine-
grained part-level control further depends on precise semantics for component portioning during
optimization, which makes it difficult to achieve structure-aware 3D-AFG with existing 3D models.

To address those challenges, this paper proposes SplatFont3D, a novel structure-aware text-to-3D
artistic font generation model with precise part-level style control, which leverages the geometric ad-
vantages of 3DGS and the strong prior knowledge of pre-trained 2D diffusion models. Specifically,
(1) We first introduce a Glyph2Cloud module to progressively refine the geometry shapes of 2D
glyphs (or components) while maintaining their semantics and further construct well-initialized 3D
point clouds for Gaussian initialization. (2) The initialized 3D Gaussians further leverage the priors
of 2D diffusion models and are accumulatively optimized via Score Distillation Sampling (SDS),
which projects the differentiable 3D representation from various viewpoints and makes the projected
2D images match the text conditions. Such a strategy eliminates the need for acquiring real 3D artis-
tic font data, effectively addressing the challenges posed by data scarcity. (3) To achieve part-level
style control, we exploit the geometric priors of 3D Gaussians to partition components for individual
rendering. However, the dynamic optimization of 3DGS often causes Gaussian points to drift, and
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thus, points from different components may overlap and interfere with each other, ultimately degrad-
ing the generation quality. Hence, we further integrate a dynamic component assignment strategy to
address this drift-induced component entanglement issue. This eventually enables more explicit and
effective part-level style control than NeRF with faster rendering speeds. Experiments empirically
demonstrate that our SplatFont3D can render 3D artistic fonts more effectively and efficiently than
NeRF and existing text-to-3D models. Our contributions are summarized as follows:

* We propose SplatFont3D, a novel structure-aware text-to-3D artistic font generation model
with precise part-level style control, a problem that has remained largely unexplored.

¢ We introduce Glyph2Cloud, a module that progressively refines the geometric shapes of 2D
glyphs while maintaining original semantics, and consequently constructs well-initialized
3D point clouds for Gaussian initialization. This strategy enables the effective combination
of 3DGS and 2D diffusion priors for 3D-AFG and further helps eliminate the need for
acquiring real 3D font data, making the overall approach feasible.

* To enable precise part-level style control, we present dynamic component assignment that
exploits the geometric priors of 3D Gaussians to partition components, while alleviating
drift-induced entanglement during Gaussian optimization. Our explicit part-level control is
more effective than the implicit one of NeRF, while attaining higher rendering efficiency.

» Extensive experiments demonstrate the superiority of our SplatFont3D over existing tex-to-
3D models for 3D-AFG in style—text consistency, visual quality, and rendering efficiency.

2 RELATED WORK

2.1 ARTISTIC FONT GENERATION

Artistic font generation (Gao et al.,|2019;Li et al.,[2022;Wang et al.,2023al) has emerged as a vibrant
research area. Early studies approached AFG via conditional GANs (Goodfellow et al.,|2020)), such
as zi2zi (Tian,|2017) and GlyphGAN (Hayashi et al., 2019), which enabled style-consistent trans-
fer across character sets. Subsequent research explored component-aware and few-shot paradigms
for capturing better intra-character structures. (Chen et al.| (2024a)) explicitly modeled ideographic
composition for characters, and [Li et al.| (2023b)); [Park et al.|(2021) employed the attention and
global-local disentanglement to synthesize characters from only a few exemplars. With the advent
of large-scale generative models, diffusion-based approaches have emerged. |Wang et al.| (2023a)
demonstrated a pretrained text-to-image diffusion can be adapted to artistic typography, and [Yang
et al.| (2023) further leveraged glyph shapes to balance creativity with legibility.

Nevertheless, most previous studies are confined to 2D rendering, leaving 3D artistic font generation
largely underexplored. Prior attempt DreamFont3D (Li et al.,|2024) tried to leverage pre-trained 2D
diffusion models to refine 3D NeRF volumes. However, Such a NeRF model struggles to achieve
precise part-level control, as the implicit representation of NeRF lacks structural decomposition.
Moreover, the optimization and rendering of NeRF are highly time-consuming and computationally
expensive. Our work differs by leveraging the strong geometry priors of 3D Gaussians and suc-
cessfully achieves structure-aware personalized 3D-AFG with explicit part-level style control. Our
SplatFont3D attains much higher rendering efficiency with better generation quality over Dream-
Font3D, and our explicit part-level control is also more effective than the implicit one of NeRF.

2.2 TEXT-TO-3D GENERATION

Early text-to-3D methods (Chen et al., [2018}; |Seo et al.) mainly relied on large-scale 3D assets,
which are limited by dataset coverage and struggle with novel shapes. Recent advances (Lin et al.,
2023)) leveraged Score Distillation Sampling (SDS) (Poole et al.| |2023) to optimize NeRF (Milden-
hall et al.| 2021) with pretrained 2D diffusion models, eliminating the need for real 3D data. More-
over, point- and Gaussian-based representations (Kerbl et al., 2023} |Yi et al., [2024a} [Chen et al.,
2024b) have been proposed to improve optimization speed, memory efficiency, and structure con-
trol. However, existing text-to-3D models are primarily designed for general 3D objects, essentially
making those models inapplicable due to the unique challenges of fonts (such as the strong semantics
and shape constraints of characters). Nevertheless, 3D-AFG via text-to-3D models remains largely
underexplored, especially for structure-aware 3D generation with part-level style control.
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3 METHODOLOGY

3.1 OVERALL FRAMEWORK

Fig(T]illustrates the overall framework of our SplatFont3D, which aims to generate 3D customized
artistic fonts with part-level style control. Our SplatFont3D consists of three parts: (1) glyph2Cloud
for 3D Gaussian initialization, (2) 3D Gaussians optimization via score distillation sampling, and
(3) structure-aware synthesis with part-level style control. We will introduce the details of each part.
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Figure 1: Overview of SplatFont3D for structure-aware 3D-AFG.

3.2 GLYPH2CLOUD FOR 3D GAUSSIAN INITIALIZATION

3D Gaussians require a well-initialized 3D point cloud for effective optimization, while it is chal-
lenging to directly generate accurate 3D font point clouds with pre-trained text-to-3D models. This
is because these models are primarily trained on general objects and thus struggle with 3D font gen-
eration. To address this issue, we propose Glyph2Cloud to enable the creation of well-initialized
3D point clouds. The core idea is to leverage 2D printed glyphs as strong geometric priors and
then utilize large pre-trained 2D diffusion models to generate 2D stylistic fonts that not only respect
shape constraints but also preserve styles specified by textual prompts. Specifically,

2D Generation with Shape-Style Tradeoffs. We first adopt a pre-trained text-to-image diffusion
model ¢ to reconstruct the object shapes of input images in latent space. Let 2, be the latent feature
of the given printed glyph x,,, and y be the text prompts that specify the artistic styles, then the shape
latent z, is obtained as

t t
zg = (2, 4 1), (D

under which we further introduce auxiliary reconstruction loss for shape constraints of z5 as
Lshape = ID(z,) — Zpll1, (2)

where D is the pretrained image decoder. After that, we perform a denoising intervention by inject-
ing the shape latent z, into the original z,, which influences the generation of target 2D artistic fonts
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x4 by enabling a trade-off between stylistic fidelity and shape preservation, i.e.,

F=a0d+(1-a)0z , t=T..T-K (3)
=gz, yt) , t=K...0 4)
zy =D(2°), (5)

where ¢ is a pre-trained text-to-image diffusion model.

Sampling 3D Point Cloud for Gaussian Initialization. Empirically, this strategy often produces
2D stylistic fonts with clean backgrounds, facilitating the segmentation of foreground textures.
Specifically, we adopt a segmentation model ClipSeg (Liiddecke & Ecker] [2022)) £ to predict the
segmentation heatmap as

Hy = E(xy), (6)
under which we can obtain the font foreground with simple pre-processing (such as thresholding).
Subsequently, we perform uniform sampling on the segmented foreground fonts and project the
sampled points into 3D space, thereby constructing 3D font point clouds for Gaussian initialization.

3.3 3D GAUSSIANS OPTIMIZATION VIA SCORE DISTILLATION SAMPLING

3D Gaussian Splatting (3DGS). 3DGS represents an 3D font by a set of 3D Gaussians as

g: {(M’iazivcivai)}ila (7)
wherep; and X; denote the mean and covariance in 3D space, while ¢; and «; represent color and
opacity. After projecting each Gaussian onto the image plane, the color of a pixel is rendered as

N
C(.%‘) = chal./\/‘(l‘lﬂ,“ i»Tl, (8)
i=1

where u; and ii are the projected mean and variance, T; = [] i< i(l — «;) denotes the accumulated
transmittance for alpha blending, and A is the Gaussian kernel.

Score Distillation Sampling (SDS). To further leverage the priors of the pre-trained 2D diffusion
model ¢, for 3D font generation, we accumulatively optimize 3D Guassians G through SDS , which
projects the differentiable 3D representation from various viewpoints and makes the projected 2D
images match the text conditions. Let the differentiable 3D Gaussians G transform parameters 6 to
render 2D images as © = G(0), the optimizing gradient is computed as

VoLsps (6,7 =G(0)) 2 Epe [w(t)(és(259,8) —€)], 9)

where w(t) is a weight function, é4(z"; y, t) predicts the sampled noise é, conditioned on the noisy
latent z* and the given text prompts 3. By lifting 2D models into 3D, such an approach eliminates
the need for real 3D data acquisition when optimizing 3D Gaussians.

3.4 STRUCTURE-AWARE SYNTHESIS WITH PART-LEVEL STYLE CONTROL

By leveraging the strong geometry priors of 3D Gaussians, we can achieve structure-aware 3D-AFG
with precise part-level style control. Specifically,

Component-Wise Style Specification To enable part-level style control, we decompose the
printed glyph x,, into M glyph components, where each component g, is paired with the part-level
style description y,,. Therefore, we obtain the part-level glyph-style annotations {(gy., ym)}2;.
Therefore, we feed each component into the Glyph2Cloud to obtain the initial Gaussians {G,, }}_,,
and we can also obtain the global font Gaussians Gy by composing components in the spatial space.
Therefore, we can achieve part-level style control through component-wise SDS as

M
VoLsps = Y AiVoLsps(6,G:(6)) (10)
m=0
£ Et,e,m [Azw(t)(gqﬁ(zfrm Yi, t) - 6)] ) (1 1)

where A, controls the importance of m-th part, and the pre-trained ¢ are shared for all Gaussians.
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Dynamic Component Assignment Due to the dynamic optimization mechanism of 3DGS, Gaus-
sian points may drift over iterations. As a result, points from different components can overlap and
interfere with each other, ultimately degrading the overall quality of the generated fonts. To address
this drift-induced component entanglement issue, we propose a dynamic component assignment
strategy. Specifically, we leverage the 2D stylized font to obtain a component label map M, where
each pixel at 2D position p is assigned a component label as

M(p) = argmax (log(Hm(p) +0) = B(/lp — u3ll2)) , (12)

Y gegm THm (@) .
Taeon @) !
the centroid position of m-th component, and 4 is an infinitesimal. Let ; be the projected 2D mean
of the ¢-th Gaussian point, then we dynamically update the component label of each Gaussian point
as M (u;) and re-group the Gaussian points from each component G,,, during 3DGS optimization.
This eventually helps achieve more effective and efficient part-level style control for 3D-AFG.

where H,, is the 2D heatmap of the m-th component (according to Eq.|6), u%; =

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Data Preparation. We constructed a collection of glyph—text pairs, including 10 printed digits,
26 uppercase English letters, and 8 Chinese characters. Style text prompts cover categories such as
fruits, foods, and other general objects. For global style generation, printed glyphs are created from
font library files. For part-level style control, the glyph is further divided into 2-3 components, each
labeled with a style description. Other methods that only accept unified prompts can generate cor-
responding text prompts using GPT-4. Our data collection consists of 44 characters, each combined
with 2 font styles and 2 modes (local or global), resulting in 1760 glyph—text pairs. Notably, we did
not create or collect any realistic 3D fonts, since our SplatFont3D requires no realistic 3D data.

Implementation Details. Glyph2Cloud generated 2D images at 768x768 resolution, and the 3D
fonts were rendered at 1024x1024. The model was optimized using Adam with a learning rate of
0.001 and the DDPM scheduler. We set Ag = 0.01 for global SDS and each local \; proportional
to the region’s area relative to the full glyph. Training was performed on an RTX 3090 GPU with
PyTorch, with each font taking approximately 12 minutes for 3D-AFG with part-level style control.

Evaluation Metrics. The following metrics are utilized to thoroughly evaluate different models:

o Semantic Consistency: The CLIP score (Radford et al.,2021;|Hessel et al.,|2021) and Alignment
(He et al., 2023) assessment measure the text-style consistency of the generated 3D fonts. They
quantify the correlation between the text prompt and each 2D image rendered from different views.

* Visual Quality and View Consistency: The Quality (He et al.l 2023} Xu et al.,[2023), V-LPIPS
(Zhang et al,[2018)), and V-CLIP (Radford et al.[[202T) measure the visual quality and view con-
sistency of the generated 3D fonts. They quantify the correlation between the 2D images rendered
from different views, where such view consistency reflects the visual quality of 3D objects.

More details of evaluation metrics can refer to Appendix [A.3]

Competitors. As 3D-AFG remains underexplored, we can only compare classic text-to-3D mod-
els that can be adopted to this task, including DreamFont3D (Li et al.|[2024), DreamFusion (Poole
et al., 2023), Latent-NeRF (Metzer et al.,|2023), MVDream (Shi et al., 2023), Wonder3D (Long
et al., [2024; Rombach et al.| 2022)), Fantasia3D (Chen et al., 2023, GSGEN (Chen et al., [2024Db)),
GaussianDreamer (Yi et al., 20244), GaussianDreamerPro (Y1 et al., [2024b).

Synthesis Tasks. We thoroughly evaluated different models under the following scenarios:

* Global Style Generation. The model produces each 3D font with a consistent global style. Input
is either the glyph paired with a single style description or a corresponding unified text prompt.

* Part-Level Style Control. The model generates 3D fonts with distinct styles applied to different
components of each glyph. Inputs consist of either multiple component images, each with a
single-style description, or a unified text prompt specifying the character with part-level styles.
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4.2 COMPARISON WITH SOTA METHODS

To demonstrate the effectiveness of our method, we compared our SplatFont3D with existing text-to-
3D models through both quantitative and qualitative analyses regarding the generation performance.

Method | Global Style Generation

\ CLIPT Alignmentt Qualityl V-LPIPS| V-CLIPt
Wonder3D 0.64 3.09 25.28 0.51 0.74
MYVDream 0.70 2.81 29.77 0.36 0.89
Latent-NeRF 0.64 2.34 17.12 0.19 0.92
GsGen 0.66 3.57 37.17 0.31 0.92
DreamFusion 0.60 3.60 17.61 0.16 0.91
GaussianDreamer 0.71 3.62 40.36 0.19 0.92
GaussianDreamerPro 0.76 291 40.90 0.35 0.85
Fantasia3D 0.63 324 36.58 0.36 0.91
DreamFont3D 0.82 4.38 35.62 0.19 0.96
SplatFont3D (Ours) \ 0.80 4.02 53.11 0.18 0.93

| Part-Level Style Control
Wonder3D 0.65 3.59 22.87 0.55 0.75
MVDream 0.65 2.81 22.10 0.26 0.91
Latent-NeRF 0.56 3.17 15.50 0.20 0.93
GsGen 0.68 3.74 35.21 0.34 0.92
DreamFusion 0.62 2.57 20.37 0.21 0.92
GaussianDreamer 0.70 3.70 33.74 0.21 0.93
GaussianDreamerPro 0.79 2.42 34.34 0.31 0.89
Fantasia3D 0.65 3.75 32.10 0.36 0.91
DreamFont3D 0.81 322 33.82 0.21 0.95
SplatFont3D (Ours) \ 0.84 4.14 48.89 0.19 0.92

\ Global Generation + Part-Level Control
Wonder3D 0.65 3.34 24.08 0.53 0.74
MVDream 0.66 2.81 25.89 0.31 0.90
Latent-NeRF 0.66 2.81 25.89 0.31 0.90
GsGen 0.67 3.65 36.19 0.32 0.92
DreamFusion 0.62 3.09 18.99 0.19 0.91
GaussianDreamer 0.71 3.66 37.05 0.20 0.92
GaussianDreamerPro 0.77 2.67 37.62 0.33 0.87
Fantasia3D 0.64 3.50 34.34 0.36 0.91
DreamFont3D 0.81 3.80 34.72 0.20 0.96
SplatFont3D (Ours) \ 0.82 4.08 51.00 0.18 0.93

Table 1: Quantitative comparisons of different methods for 3D-AFG under different settings.

Quantitative Results Table [T] reports the quantitative results of different methods for 3D-AFG
under different settings, including “Global Style Generation”, “Part-Level-Style Control”, and the
combination of the two. We can observe that our SplatFont3D achieves competing performance with
existing 3D models for global style generation, while largely outperforming previous 3D models for
part-level style control, especially in terms of style-text consistency (e.g., Alignment scores) and
visual quality (e.g., Quality and P-Lpips scores). Overall, quantitative comparisons demonstrated
that our SplatFont3D achieves the SoTA performance for 3D-AFG, especially for structure-aware
generation with part-level style control.

Qualitative Results Fig |2| illustrates the qualitative comparison between our SplatFont3D and
the current SOTA text-to-3D models for 3D-AFG with “Global Style Generation” and “Part-Level
Style Control”. We can observe that it is inapplicable to directly adopt the existing 3D models for
3D-AFG, due to the unique challenges of 3D-AFG over 3D general object synthesis. Although
DreamFont3D can generate recognizable 3D fonts of digits and letters, it struggled to synthesize
3D artistic fonts of complex structures (i.e., Chinese characters). Instead, our SplatFont3D exhibits
more accurate font effects with more precise locations and better recognizability, even for Chinese
characters of complex structures.
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Figure 2: Qualitative comparisons of global style generation and part-level style control.

Rendering Efficiency Comparison  Fig.[3|reports the rendering efficiency comparison of different
methods for 3D-AFG on a RTX-3090 GPU. It can be observed that our SplatFont3D achieves a
clear advantage in rendering speed over other 3D models. Beyond the inherent efficiency of 3DGS,
this improvement is attributed to our two key designs: (1) Glyph2Cloud, which provides the well-
initialized Gaussians for optimization from a better starting point, and (2) Dynamic Component
Assignment, which prevents Gaussian point drifting during the optimization process. Together,
these enable SplatFont3D to achieve faster and more stable rendering.

4.3 ABLATION STUDY

D \ G2C DCA \ Part-Level Style Control
| CLIPt  Alignment! Quality? V-LPIPS, V-CLIP{
1 X X 0.73 3.42 36.85 0.26 0.87
2 v X 0.71 3.05 43.50 0.27 0.89
3 X v 0.77 3.30 41.38 0.25 0.86
4 v v 0.83 3.94 47.36 0.21 0.92

Table 2: Ablation results on framework components.
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Figure 3: Rendering time comparison. Figure 4: Qualitative ablation results.

o

Quantitative and Quantitative Ablation Results To demonstrate the effectiveness of
Glyph2Cloud (G2C) and Dynamic Component Assignment (DCA) of SplatFont3D, we presented
quantitative ablation results in Table[2]and qualitative ablation results in Fig.[d} Results indicate that
both modules significantly enhance structure-aware 3D-AFG with precise part-level style control.

Glyph2Cloud for Shape-Style Tradeoffs. As shown in Fig. 5] we demonstrated that our
Clyph2Cloud can achieve customized shape-style tradeoffs for 3D-AFG. By dynamically adjust-
ing the hyperparameters K and « in Eq. (3), it enables controllable shape-style tradeoffs.
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()
Figure 5: Glyph2Cloud for shape-style tradeoffs: (a) 2D results and (b) the final 3D fonts.

5 CONCLUSION

Most existing studies are limited to generating 2D artistic fonts, leaving the 3D artistic font gener-
ation largely underexplored. In this paper, we presented SplatFont3D, a structure-aware text-to-3D
artistic font generation framework that enables fine-grained part-level style control. Specifically,
our Glyph2Cloud module progressively refines 2D glyphs while preserving semantic consistency,
producing well-initialized 3D point clouds for Gaussian-based modeling. By integrating 2D diffu-
sion priors with 3D Gaussian geometry and employing a dynamic component assignment strategy,
SplatFont3D effectively resolves drift-induced component entanglement, achieving explicit and con-
trollable part-level styling without requiring real 3D font data. Extensive experiments show that our
method outperforms existing text-to-3D approaches in style—text consistency, visual quality, and
rendering efficiency, demonstrating its effectiveness and potential for immersive 3D applications.
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ETHICS STATEMENT

This work introduces a method for structure-aware 3D artistic font generation with part-level style
control, intended for applications in digital design, creativity, and accessibility. All pretrained mod-
els used are publicly available, and all data collections are synthetically generated, and no personal
or sensitive information is involved. While the technique could potentially be misused to imitate
proprietary fonts, our contribution is intended solely for research and creative purposes, and we en-
courage responsible use. We acknowledge limitations in stylistic diversity and the environmental
cost of training, and we have aimed to minimize computational overhead where possible.

REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of our work. The full model architecture, train-
ing procedure, and hyperparameters are described in Section [3| All evaluation metrics are formally
defined in Section [ and Appendix and all used pre-trained 2D diffusion models are publicly
available. We only use the synthetically generated data collections, where the data generation pro-
cesses are well described in Section 4.1} We also disclose the use of large language models (LLMs)
in the Appendix, including what LLMs are used for metric evaluation and prompt construction in
experiments. All used LLMs are publicly available. Moreover, comprehensive experimental de-
tails, including training configurations, evaluation scenarios, and evaluation metrics, are provided in
Sectiondl
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A APPENDIX

THE USE OF LARGE LANGUAGE MODELS (LLMS)
We disclose that large language models (LLMs) were used in three limited contexts:

1. Language Polishing — We solely used LLMs to polish the writing, specifically for spelling
and grammar checking.

2. Evaluation for Alignment Assessment — When computing the Alignment Assessment (see
Appendix[A.3), we employed BLIP-2 to generate captions for images from each viewpoint,
and then used GPT-4 to evaluate the consistency between the generated captions and the
corresponding 2D view images.

3. Prompt Construction — for text-to-3D models that only accept text prompts as input, we
used GPT-4 to generate text prompts depending on the given text—glyph pairs.

Therefore, we confirm that LLMs did not contribute to the research ideation, methodology, experi-
mental design, analysis, or substantive writing of this paper.

A.1 MORE QUALITATIVE RESULTS OF OUR SPLATFONT3D

As shown in Fig.[6] we also provide more qualitative results of our SplatFont3D for structure-aware
3D-AFG with part-level style control. Experimental results demonstrate the effectiveness of our
approach in achieving both structural fidelity and flexible style manipulation for structure-aware
3D-AFG with customized part-level style control.

Figure 6: Qualitative results of our splatFont3D for structure-aware 3D-AFG.

A.2 MORE QUALITATIVE COMPARISONS OF DIFFERENT MODELS

To further demonstrate the effectiveness of our method for 3D-AFG, we provide a more thorough
qualitative comparison between our SplatFont3D and existing text-to-3D models regarding the gen-
eration performance, including the Global Style Generation in Fig.[7]and Part-Level Style Control
in Fig. (8] These comparisons show that our SplatFont3D produces more faithful global styles and
provides finer part-level control than existing approaches, achieving more consistent global styles
and finer-grained part-level control for 3D-AFG.
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Figure 7: Qualitative comparison of different methods for part-level style control.

A.3 DETAILS OF EVALUATION METRICS

CLIP: Measures the semantic fidelity of generated glyphs by encoding multiple rendered views
with CLIP (Radford et al, 2021}, [Hessel et all, 2021)) and computing the cosine similarity to the
corresponding textual prompt, then averaging across views to obtain a robust multi-view score.

Alignment Assessment: Evaluates higher-level semantic correspondence by generating captions
for each view with BLIP-2 2023a)), consolidating them into a single summary using
GPT-4, and then prompting the model to rate the alignment between the summary and the original
prompt on a five-point scale.

Quality Assessment: Evaluates the visual fidelity of generated glyphs by applying ImageReward
2023) to multi-view renderings conditioned on the input prompt. To reduce view-
to-view noise, each score is smoothed using a local neighborhood average over adjacent views,
producing a more consistent assessment of overall image quality.
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Figure 8: Qualitative comparison of different methods for global style generation.

¢ V-LPIPS: Measures multi-view perceptual consistency of generated artistic glyphs by computing
LPIPS (Zhang et al] 2018) between adjacent rendered views and averaging the results. This
metric captures how smoothly the glyph’s appearance transitions across viewpoints, reflecting
both structural and stylistic coherence.

¢ V-CLIP: Evaluates multi-view semantic consistency of generated artistic glyphs by computing the
cosine similarity between CLIP embeddings of adjacent views and averaging the results, capturing
how consistently the glyph preserves the intended semantics across viewpoints.
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