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ABSTRACT

Unlearning has emerged as a technique to efficiently erase information of deleted
records from learned models. We show, however, that the influence created by
the original presence of a data point in the training set can still be detected after
running certified unlearning algorithms (which can result in its reconstruction by an
adversary). Thus, under realistic assumptions about the dynamics of model releases
over time and in the presence of adaptive adversaries, we show that unlearning is
not equivalent to data deletion and does not guarantee the “right to be forgotten.”
We then propose a more robust data-deletion guarantee and show that it is necessary
to satisfy differential privacy to ensure true data deletion. Under our notion, we
propose an accurate, computationally efficient, and secure data-deletion machine
learning algorithm in the online setting based on noisy gradient descent algorithm.

1 INTRODUCTION

Many corporations today collect their customers’ private information to train Machine Learning (ML)
models that power a variety of services, encompassing recommendations, searches, targeted ads, and
more. To prevent any unintended use of personal data, privacy policies, such as the General Data
Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA), require that these
corporations provide the “right to be forgotten” (RTBF) to their data subjects—if a user wishes to
revoke access to their data, an organization must comply by erasing all information about the user
without undue delay (which is typically a month). This includes ML models trained in standard ways
as model inversion (Fredrikson et al., 2015) and membership inference attacks (Shokri et al., 2017;
Carlini et al., 2019) demonstrate that individual training data can be exfiltrated from these models.

Periodic retraining of models after excluding deleted users can be costly. So, there is a growing
interest in designing computationally cheap Machine Unlearning algorithms as an alternative to
retraining for erasing the influence of deleted data from (and registering the influence of added data
to) trained models. Since it is generally difficult to tell how a specific data point affects a model,
Ginart et al. (2019) propose quantifying the worst-case information leakage from an unlearned model
through an unlearning guarantee on the mechanism, defined as a differential privacy (DP) like
(ε, δ)-indistinguishability between its output and that of retraining on the updated database. With
some minor variations in this definition, several mechanisms have been proposed and certified as
unlearning algorithms in literature (Ginart et al., 2019; Izzo et al., 2021; Sekhari et al., 2021; Neel
et al., 2021; Guo et al., 2019; Ullah et al., 2021).

However, is indistinguishability to retraining a sufficient guarantee of data deletion? We argue
that it is not. In the real world, a user’s decision to remove his information is often affected by
what a deployed model reveals about him. The same revealed information may also affect other
users’ decisions. Such adaptive requests make the records in a database interdependent, causing
a retrained model to contain influences of a record even if the record is no longer in the training
set. We demonstrate on a certified unlearning mechanism that if an adversary is allowed to design
an adaptive requester that interactively generates database edit requests as a function of published
models, she can re-encode a target record in the curator’s database before its deletion. We argue that
under adaptive requests, measuring data-deletion via indistinguishability to retraining (as proposed
by Gupta et al. (2021)) is fundamentally flawed because it does not capture the influence a record
might have previously had on the rest of the database. Our example shows a clear violation of the
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RTBF since even after retraining on the database with the original record removed, a model can
reveal substantial information about the deleted record due to the possibility of re-encodings.

Is an unlearning guarantee a sound and complete measure of data deletion when requests are
non-adaptive? Again, we argue that it is neither. A sound data-deletion guarantee must ensure the
non-recovery of deleted records from an infinite number of model releases after deletion. However,
approximate indistinguishability to retraining implies an inability to accurately recover deleted data
from a singular unlearned model only, which we argue is not sufficient. We show that certain
algorithms can satisfy an unlearning guarantee yet blatantly reveal the deleted data eventually over
multiple releases. The vulnerability arises in algorithms that maintain partial computations in internal
data structures for speeding up subsequent deletions. These internal states can retain information
even after record deletion and influence multiple future releases, making the myopic unlearning
guarantee unreliable in an online setting. Several proposed unlearning algorithms in literature (Ginart
et al., 2019; Neel et al., 2021) are stateful (rely on internal states) and, therefore, cannot be trusted.
Secondly, unlearning is an incomplete notion of data deletion as it excludes valid data-deletion
mechanisms that do not imitate retraining. For instance, a (useless) mechanism that outputs a fixed
untrained model on any request is a valid deletion algorithm. However, since its output is easily
distinguishable from retraining, it fails to satisfy any meaningful unlearning guarantees.

This paper proposes a sound definition of data deletion that does not suffer from the abovementioned
shortcomings. According to our notion, a data-deletion mechanism is reliable if A) it is stateless
(i.e., it maintains no internal data structures), and B) generates models that are indistinguishable
from some random variable that is independent of the deleted records. Statelessness thwarts the
danger of sustained information leakage through internal data structures after deletion. Moreover, by
defining data deletion as indistinguishability with any deleted-record independent random variable as
oppsed to the output of retraining, we ensure reliability in presence of adaptive requests that create
dependence between current and deleted records in the database.

In general, we show that data-deletion mechanisms must be differentially private with respect to the
remaining records to be reliable when requests are adaptive. DP also protects against membership
inference attacks that extract deleted records by looking at models before and after deletion (Chen
et al., 2021). We emphasize that we are not advocating for doing data deletion through differentially-
private mechanisms simply because it caps the information content of all records equally, deleted or
otherwise. Instead, a data-deletion mechanisms should provide two differing information reattainment
bounds; one for records currently in the database in the form of a differential privacy guarantee
and the other for records previously deleted in the form of a data-deletion guarantee. We also
provide a reduction theorem that if a mechanism is differentially private with respect to the remaining
records and satisfies a data-deletion guarantee under non-adaptive edit requests, then it also satisfies a
data-deletion guarantee under adaptive requests. Based on this reduction, we redefine the problem
of data-deletion as designing a mechanism that (1.) satisfies a data-deletion guarantee against non-
adaptive deletion requests, (2.) is differentially private for remaining records, and (3.) has the same
utility guarantee as retraining under identical differential privacy constraints. We judge the usefulness
of a data-deletion mechanism based on its computational savings over retraining.

For our refined problem formulation, we provide a data-deletion solution based on Noisy Gradient
Descent (Noisy-GD), a popular differentially private learning algorithm (Bassily et al., 2014; Abadi
et al., 2016; Chourasia et al., 2021). Our solution demonstrates a powerful synergy between data
deletion and differential privacy as the same noise needed for the privacy of records in the database
also rapidly erases information regarding records deleted from the database. We provide a data-
deletion guarantee for Noisy-GD in terms of Rényi divergence (Rényi et al., 1961) bound (which
implies (ε, δ)-indistinguishability (Mironov, 2017)). For convex and smooth losses, we certify that
under a (q, εdd)-Rényi data-deletion and (q, εdp)-Rényi DP constraint, our Noisy-GD based deletion
mechanism for d-dimensional models over n-sized databases under adaptive edit requests that modify
no more than r records can maintain optimal excess empirical risk of the orderO

(
qd

εdpn2

)
while saving

Ω(n log(min{nr , n
√

εdd

qd }) computations in gradient complexity. Our utility guarantee matches the

known lower bound on private empirical risk minimization under same privacy budget (Bassily et al.,
2014). We also provide data-deletion guarantee in the non-convex setting under the assumption that
loss function is bounded and smooth, and show a computational saving of Ω(dn log n

r ) in gradient

complexity while maintaining an excess risk of Õ
(

qd
εdpn2 + 1

n

√
q
εdp

)
.
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2 MODEL AND PRELIMINARIES

2.1 INDISTINGUISHABILITY NOTIONS AND DIFFERENTIAL PRIVACY

We provide the basics of indistinguishability of random variables (with more details in Appendix D).
Let Θ,Θ′ be two random variables in space O with probability densities ν,ν′ respectively.
Definition 2.1 ((ε, δ)-indistinguishability (Dwork et al., 2014)). We say Θ and Θ′ are (ε, δ)-

indistinguishable and write Θ
ε,δ
≈ Θ′ if, for all O ⊂ O,

P [Θ ∈ O] ≤ eεP [Θ′ ∈ O] + δ and P [Θ′ ∈ O] ≤ eεP [Θ ∈ O] + δ. (1)

Definition 2.2 (Rényi divergence (Rényi et al., 1961)). Rényi divergence of ν w.r.t. ν′ of order q > 1
is defined as

Rq (ν‖ν′) =
1

q − 1
log Eq (ν‖ν′) , where Eq (ν‖ν′) = E

θ∼ν′

[(
ν(θ)

ν′(θ)

)q]
, (2)

when ν is absolutely continuous w.r.t. ν′ (denoted as ν� ν′). If ν 6� ν′, we’ll say Rq (ν‖ν′) =∞.
Remark 1. Rényi divergence is assymetric (i.e. Rq (ν‖ν′) 6= Rq (ν′‖ν)) and implies indistin-
guishability only in one direction. Mironov (2017, Proposition 3) show that Rq (ν‖ν′) ≤ ε0 implies
P [Θ ∈ O] ≤ eεP [Θ′ ∈ O] + δ with ε = ε0 + log 1/δ

q−1 and any 0 < δ < 1.

Definition 2.3 (Differential Privacy (Dwork et al., 2014; Mironov, 2017)). A randomized mechanism

M : Xn → O is (ε, δ)-differentially private ifM(D)
ε,δ
≈ M(D′) for all neighbouring databases

D,D′ ∈ Xn. Similarly,M is (q, ε)-Rényi differentially private if Rq (M(D)‖M(D′)) ≤ ε.

2.2 LEARNING FRAMEWORK: ERM

Let D be a database of n ordered records taken from a data universe X and let O be the space of
learnable parameters and any associated auxiliary metadata (what constitutes a metadata is clarified
later). Let `(θ;x) : O ×X → R be a loss function of a parameter θ ∈ O for a record x ∈ X . In this
paper, we consider the problem of empirical risk minimization (ERM) of the average `(θ;x) over

records in the database D under L2 regularization r(θ) =
λ‖θ‖22

2 , i.e., the minimization objective is
LD(θ) = 1

n

∑
x∈D `(θ;x) + r(θ). The excess empirical risk of a model Θ for D by is defined as

err(Θ;D) = E [LD(Θ)− LD(θ∗D)], where θ∗D = arg min
θ∈O

LD(θ) and expectation is taken over Θ.

We build on a popular DP-ERM algorithm called Noisy-GD (Abadi et al., 2016), described in
Algorithm 1 below, and provide Rényi DP guarantees on it in Appendix G.3.

Algorithm 1 Noisy-GD: Noisy Gradient Descent

Require: Database D ∈ Xn, start model Θ0 ∈ O, number of steps K ∈ N.
1: for k = 0, 1, · · · ,K − 1 do
2: ∇LD(Θηk) = 1

n

∑
x∈D∇`(Θηk;x) +∇r(Θηk)

3: Θη(k+1) = Θηk − η∇LD(Θηk) +
√

2ηN
(
0, σ2Id

)
4: Output ΘηK

2.3 ONLINE EDIT REQUESTS AND MACHINE UNLEARNING

Suppose that any database D ∈ Xn can be modified by edit requests that replaces r distinct records 1.
Definition 2.4 (Edit request). A replacement operation 〈ind,y〉 ∈ [n] × X on a database
D = (x1, · · · ,xn) performs the following modification:

D ◦ 〈ind,y〉 = (x1, · · · ,xind−1,y,xind+1, · · · ,xn). (3)
Let r ≤ n and Ur = [n]r6= × X r. An edit request u = {〈ind1,y1〉, · · · , 〈indr,yr〉} ∈ Ur on D is
defined as batch of r replacement operations modifying distinct indices atomically, i.e.

D ◦ u = D ◦ 〈ind1,y1〉 ◦ · · · ◦ 〈indr,yr〉, where indi 6= indj for all i 6= j. (4)
1We consider replacement instead of separate addition/deletion to ensure that database size doesn’t change.
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Let O denote the space of model parameters plus any state variables or data-structures that may be
leveraged for processing edit requests and Φ be the space of publishable outcomes such as sanitized
models or predictions. For an initial database D0 ∈ Xn and an unbounded sequence of edit requests
(ui)i≥1, the job of a data curator is to train a model Θ̂i ∈ O with small empirical risk for each
database Di = D0 ◦ u1 ◦ · · · ◦ ui and use it to release a corresponding publishable outcome, φi ∈ Φ.
For this task, the trivial approach of retraining from scractch by executing a learning algorithm
on each Di could be computationally expensive. This initiated the study of machine unlearning
algorithms (Cao & Yang, 2015; Ginart et al., 2019; Guo et al., 2019; Izzo et al., 2021) that avoid the
cost of retraining by instead fine-tuning an already trained model Θ̂i−1 to cheaply erase (introduce)
the influence of deleted (added) records in edit request ui to Di−1 for producing the next model Θ̂i.

In this paper, we adopt the machine unlearning formulation of Gupta et al. (2021) and Neel et al.
(2021) described as follows. The curator comprises of three mechanisms: a learning algorithm
A : Xn → O, a data-deletion or unlearning algorithm Ā : Xn × Ur ×O → O, and a publish
function fpub : O → Φ. To generate the initial model with accompanying state metadata Θ̂0 ∈ O
on the initial database D0 ∈ Xn, the curator executes the learning algorithm A(D0). Thereafter,
to process an incoming edit request ui ∈ Ur at any step i ≥ 1, the curator executes data-deletion
algorithm Ā(Di−1, ui, Θ̂i−1) that maps the current databaseDi−1, the edit request ui, and the current
model with metadata Θ̂i−1 to the next model with metadata Θ̂i ∈ O. While all the generated models
and corresponding metadata is kept secret, the curator uses the publish function to generate the
publishable outcome φi = fpub(Θ̂i) at every step i ≥ 0.

Gupta et al. (2021) note that edit requests in real world could often be adaptive, i.e., a request ui may
depend on (a subset of) the history of prior published outcomes φ≤i = (φ1, · · · , φi). For instance,
a voter may decide to change his inclination after seeing pre-election results. They model such an
intearctive environment through an adaptive requester defined as follows.

Definition 2.5 (Update requester (Gupta et al., 2021)). A p-adaptive r-requester is a mapping
Q : Φ≤p × Ur∗ → Ur that takes as input a maximum of p of the published outcomes generated by
the curator at arbitrary edit steps s1 < s2 < · · · < sp, and the entire history of previously generated
edit requests to generate the next edit request. For a p-adaptive r-requester Q, the edit request ui at
any step i ≥ 1 can be written as

ui = Q(φs1 , φs2 , · · · , φsj ;u1, u2, · · · , ui−1), (5)

such that sj < i. We refer to 0-adaptive requesters as non-adaptive. And, by∞-adaptive requesters,
we mean requesters that have access to the entire history of interaction transcript (φ<i;u<i).

Since, unlike retraining, an unlearning algorithm fine-tunes a model containing the information
of records to be deleted, we need statistical guarantees on the worst-case amount of information
that might still remain in the unlearned model. Ginart et al. (2019) and Guo et al. (2019) propose
quantifying data-deletion ability of an algorithm Ā based on its (ε, δ)-indistinguishability w.r.t. the
fresh-retraining algorithm A, calling it an unlearning guarantee (more details in Appendix E.1). In
this paper, we mainly consider the extension of unlearning definitions by Neel et al. (2021) and Gupta
et al. (2021) to the online setting of arbitrarily long and adaptive edit sequences 2.

Definition 2.6 ((ε, δ)-unlearning (Neel et al., 2021; Gupta et al., 2021)). We say that Ā is an (ε, δ)-
unlearning algorithm for A under a publish function fpub, if for all initial databases D0 ∈ Xn and
all non-adaptive 1-requesters Q, the following condition holds. For every edit step i ≥ 1, and for all

generated edit sequences u≤i
def
= (u1, · · · , ui),

fpub(Ā(Di−1, ui, Θ̂i−1))
∣∣
u≤i

ε,δ
≈ fpub(A(Di)). (6)

If the same condition holds for all∞-adaptive 1-requesters Q, we say that Ā is an (ε, δ)-adaptive-
unlearning algorithm for A.

2Definition 2.6 is stronger than the adaptive unlearning definition of Gupta et al. (2021) since theirs require
satisfying only one-sided indistinguishability with at-least (1 − γ) probability over generated edit requests u≤i.

4



Under review as a conference paper at ICLR 2023

3 EXISTING UNLEARNING GUARANTEES ARE UNSOUND AND INCOMPLETE

Data deletion under the law of “right to be forgotten” (RTBF) is an obligation to permanently erase
all information about an individual upon a verified request. In order to comply, a corporation’s actions
must not reveal any information identifiable or linkable to a deleted user in the future. In this section,
we argue that unlearning guarantee in Definition 2.6 is neither a sound nor a complete measure of
data-deletion from ML models that RTBF enforces.

Threat model. Suppose, for an arbitrary step i ≥ 1, an adversary is interested in finding out the
identity of a record in the databaseDi−1 that was deleted by the edit request ui. Since RTBF is violated
only when the curator reveals information after the deletion request, we assume that the adversary only
has access to the post-deletion releases by the curator, i.e., she observes φi, φi+1, · · · . Additionally,
we also assume that the adversary knows how users might react to a published outcome. That is to
say, our adversary knows some dependence relationship between random variables φ0, · · · , φi−1 and
u1, · · · , ui−1, but does not explicitly observe these random variables. For instance, an adversary
might know that if the outcome φ1 predicts that "Donald Trump is winning the election," then some
democratic users might delete their data while some new republican users might contribute their data
to the curator. So, even though the adversary does not observe the actual outcome φ1 or the ensuing
edit request u2, and so on, she can still exploit knowledge about this dependence a-posteriori to infer
the identity of a deleted record. To capture the worst-case knowledge about the dependence between
unobserved outcomes and unobserved edit requests, we model our adversary to have the power to
design an adaptive requester Q that interacts with the curator in the first i− 1 steps. However, the
adversary does not observe the interaction transcript (φ0, u1, φ1, · · ·ui−1, φi−1) of Q.

Unsoundness due to secret states. The unlearning Definition 2.6 is a bound on information leakage
about a deleted record through a single released outcome. However, our adversary can observe
multiple (potentially infinite) releases after deletion. We argue that algorithms satisfying Definition 2.6
can lead to blatant non-privacy of a deleted record under our threat model, even for a weaker
adversary that cannot design an adaptive requester (i.e., knows nothing about the dependence between
unobserved outcomes and edit requests). The vulnerability arises as Definition 2.6 permits algorithms
to maintain secret states while using a publishing function fpub for releases. These internal states
may propagate encoded information about records even after their deletion from the database. So,
every subsequent release by an unlearning algorithm can reveal new information about a record that
was purportedly erased multiple edits earlier. We demonstrate in the following theorem that a certified
unlearning algorithm can reveal a limited amount of information about a deleted record per release so
as not to break the unlearning certification, yet eventually reveal everything about the record to an
adversary that observes enough future releases.

Theorem 1. For every ε > 0, there exists a pair (A, Ā) of algorithms that satisfy (ε, 0)-unlearning
under a publish function fpub such that for all non-adaptive 1-requestersQ, their exists an adversary
that can correctly infer the identity of a record deleted at any arbitrary edit step i ≥ 1 by observing
only the post-edit releases φ≥i = (φi, φi+1, · · · ).

Unsoundness due to adaptivity. For an adversary that knows some dependence relationship between
the unobserved outcomes and edit requests, a much more severe violation of RTBF may occur, even
when an unlearning algorithm does not maintain secret internal states and perfectly imitates retraining
(i.e., satisfy a (0, 0)-adaptive unlearning guarantee for identity publish function fpub(θ) = θ). This
vulnerability arises because the indistinguishability in Definition 2.6 protects the privacy of deleted
records but not that of records currently present. A certified adaptive unlearning algorithm is allowed
to reveal unbounded information about a target record before its deletion. This revealed information
can have a major influence on the subsequent edit requests in the worst case, potentially causing the
curator’s database to have patterns specific to the identity of the target record even after its deletion.
An adversary knowing the possible patterns and their causes (i.e., the dependence relationship
between unobserved outcomes and requests) can therefore infer the target records’s identity from
post-deletion releases. We concretize this vulnerability in the following theorem.

Theorem 2. There exists a pair (A, Ā) of algorithms that satisfy (0, 0)-adaptive-unlearning for
an identity publish function fpub(θ) = θ such that by designing a 1-adaptive 1-requester Q, an
adversary, even with no access to Q’s interaction transcript, can infer the identity of a record deleted
at any arbitrary edit step i > 3 with probability at-least 1− (1/2)i−3 from the post-edit release φi.
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Incompleteness. Another issue with unlearning guarantees is that valid data-deletion algorithms may
fail to satisfy it. As per Definition 2.6, the publishable outcome generated by a data-deletion mech-
anism must imitate that of a retraining algorithm for satisfying an unlearning guarantee. However,
imitating retraining is not necessary for data deletion. For instance, consider a (useless) mechanism
Ā that outputs a fixed untrained model in O regardless of its inputs. This Ā would be an unac-
ceptable unlearning algorithm for most re-training algorithms A under an identity publish function
fpub(θ) = θ. However, fpub(Ā(·)) contains no information about the deleted records and should be
acceptable under the data-deletion paradigm.

Remark 2. Several prior works on machine unlearning propose data-deletion definitions similar
to Definition 2.6 but without an explicit fpub and for the offline setting of a single-stage deletion to
remove r many records from a learned model (Ginart et al., 2019; Guo et al., 2019; Sekhari et al.,
2021). In Appendix E.1, we show that these offline unlearning definitions are also unreliable when
deletion requests are adaptive. In light of our demonstration of unsoundness of these data-deletion
guarantees, we remark that several certified unlearning algorithms in literature should not be trusted
to ensure RTBF.

4 REDEFINING DATA-DELETION IN MACHINE LEARNING

In this section, we redefine data deletion in Machine Learning to address the problems with the notion
of unlearning that we demonstrate in the preceding section. The first change we propose is to rule
out the possibility of information leakage through internal data structures (as shown in Theorem 1)
by requiring deletion mechanisms to be stateless. That is, the models produced by learning or the
data-deletion algorithm are directly released without applying any publish function fpub.

Secondly, the following definition of a data-deletion guarantee fixes the security blind spot of an
adaptive unlearning guarantee. As demonstrated in Theorem 2, an adaptive requester can encode
patterns specific to a target record in the database by making edit decisions in response to the observed
outcomes. Thus, being indistinguishable from retraining on the edited database does not guarantee
data deletion, as the target’s information remains extractable even after the target record’s deletion,
potentially revealing its identity. In our definition, we account for an adaptive adversary’s influence by
measuring the indistinguishability of a data-deletion mechanism’s output from some random variable
that is independent of the deleted record.

Definition 4.1 ((q, ε)-data-deletion under p-adaptive r-requesters). Let q > 1, ε ≥ 0, and p, r ∈ N.
We say that an algorithm pair (A, Ā) satisfies (q, ε)-data-deletion under p-adaptive r-requesters if
the following condition holds for all p-adaptive r-requester Q. For every step i ≥ 1, there exists a
randomized mapping πQi : Xn → O such that for all initial databases D0 ∈ Xn,

Rq

(
Ā(Di−1, ui, Θ̂i−1)

∥∥∥πQi (D0 ◦ 〈ind,y〉)
)
≤ ε, for all ui ∈ Ur and all 〈ind,y〉 ∈ ui. (7)

We argue that the above definition is a sound guarantee on data-deletion. Suppose that an adversary
is interested in identifying a record at index ‘ind’ in D0 that is being replaced with record ‘y’ by
one of the replacement operations in edit request ui ∈ Ur. The inequality (7) above implies that
even with the power of designing an adaptive requester Q, no adversary observing the unlearned
model Ā(Di−1, ui, Θ̂i−1) can be too confident that the observation was not from πQi (D0 ◦ 〈ind,y〉),
a distribution that contains no information about the target record D0[ind] by construction. More
formally, we provide the following soundness guarantee for Definition 4.1.

Theorem 3 (Data-deletion Definition 4.1 is sound). If the algorithm pair (A, Ā) satisfies (q, ε)-
data-deletion guarantee under all p-adaptive r-requesters, then even with the power of designing an
p-adaptive r-requester Q that interacts with the curator before deletion of a target record at any step
i ≥ 1, any adversary observing only the post-deletion releases (Θ̂i, Θ̂i+1, · · · ) has its membership
inference advantage for inferring a deleted target bounded as

Adv(MI) ≤ qeε(q−1)/q

q − 1
[2(q − 1)]1/q − 1. (8)

Note that the bound in (8) approaches 0 as q →∞ and ε→ 0, implying Definition 4.1 is sound.
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Remark 3. A non-adaptive requester Q is equivalent to fixing the request sequence (ui)i≥1 a-priori.
Hence, given a non-adaptiveQ, the database Di ◦ 〈ind,y〉 is a deterministic function of the database
D0 ◦ 〈ind,y〉 for any i ≥ 1, thanks to the commutativity of ‘◦’. Since 〈ind,y〉 ∈ ui, we remark that
for a non-adaptive requester Q, the random variable πQi (D0 ◦ 〈ind,y〉) in (7) can be the output
π(Di) of any randomized map π : Xn → O, including the learning algorithm A.

Connection with DP. We highlight that our data-deletion guarantee on pair (A, Ā) is an information
bound on the records that were deleted, while the standard DP guarantee on A and Ā is an information
bound on the records currently present in the database. In the following theorem, we show that DP
with respect to existing records is a necessary condition for (A, Ā) to satisfy adaptive data-deletion.
Theorem 4 (DP is necessary for adaptive data-deletion). If learning algorithm A : Xn → O is not
(0, δ)-DP with respect to the replacement of a single record and deletion algorithm Ā : Xn×U×O →
O is not (0, δ)-DP with respect to the replacement of a single record that is not being deleted, then
the pair (A, Ā) cannot satisfy (q, δ4/2)-data-deletion under 1-adaptive 1-requester for any q > 1.

Additionally, if A and Ā does satisfy DP with respect to existing records then a data-deletion bound
under non-adaptive requesters reduces to a data-deletion bound under adaptive requesters.
Theorem 5 (Non-adaptive data-deletion with Rényi DP implies adaptive data-deletion). If an algo-
rithm pair (A, Ā) satisfies (q, εdd)-data-deletion under all non-adaptive r-requesters and (q, εdp)-
Rényi DP, then it also satisfies (q, εdd + pεdp)-data-deletion under all p-adaptive r-requesters.

We provide additional discussion on this reduction theorem in Appendix F.1. By virtue of our
reduction Theorem 5, we reformulate the data deletion problem in ML as follows.

Problem Definition. Let constants q > 1, 0 < εdd ≤ εdp, and α > 0. The goal is to design a
learning mechanism A : Xn → O and a deletion mechanisms Ā : Xn × Ur ×O → O such that

(1.) both A and Ā satisfy (q, εdp)-Rényi DP with respect to records in the input database,

(2.) pair (A, Ā) satisfies (q, εdd)-data-deletion guarantee for all non-adaptive r-requesters Q,

(3.) and, all models (Θ̂i)i≥0 produced by (A, Ā,Q) on any D0 ∈ Xn have err(Θ̂i;Di) ≤ α.

We judge the benefit of data deletion based on the computation saving that Ā offers over A per
request. That is, if we want err(Θ̄i;Di) ≤ α for all i ≥ 0, where Θ̄i is trained from scratch by A(Di),
how large is Cost(A) compared to Cost(Ā). Note that α should ideally be the optimal excess risk
attainable under the (q, εdp)-RDP constraint. We remark that one may use any reasonable measure of
utility in the third constraint, such as population risk instead of excess empirical risk.

5 DATA DELETION USING NOISY GRADIENT DESCENT

This section proposes a simple and effective data-deletion solution based on Noisy-GD Algorithm 1.
Our proposed approach falls under the Descent-to-Delete framework proposed by Neel et al. (2021),
wherein, after each deletion request ui, we run Noisy-GD starting from the previous model Θ̂i−1

and perform a small number of gradient descent steps over records in the modified database Di =
Di−1 ◦ ui; sufficient to ensure that the information about the deleted records is reduced within a
desired bound in the subsequent model Θ̂i. Formally, our data-deletion solution is defined as follows.
Definition 5.1 (Data-deletion based on Noisy-GD). Let space of model parameters be O = Rd.
Our learning algorithm ANoisy-GD(D0) = Noisy-GD(D0,Θ0,KA) runs Noisy-GD algorithm for
KA iterations to generate the first learned model Θ̂0 on the input database D0 ∈ Xn,
with Θ0 sampled from a weight initialization distribution ρ. Our data-deletion algorithm
ĀNoisy-GD(Di−1, ui, Θ̂i−1) = Noisy-GD(Di−1 ◦ ui, Θ̂i−1,KĀ) processes an edit request ui ∈ Ur by
running KĀ iterations of Noisy-GD algorithm on the updated database Di = Di−1 ◦ ui to generate
the updated model Θ̂i from the current model Θ̂i−1 ∈ Rd.

For this setup, our objective is to provide conditions under which the algorithm pair
(ANoisy-GD, ĀNoisy-GD) satisfies objectives (1.), (2.), and (3.) as stated in the problem definition above
and analyze the computational savings of using ĀNoisy-GD over ANoisy-GD in terms of the gradient
complexity n(KA −KĀ).
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5.1 DATA-DELETION AND ACCURACY GUARANTEES UNDER CONVEXITY

We give the following guarantee for pair (ANoisy-GD, ĀNoisy-GD) under convexity of loss `(θ;x).

Theorem 6 (Accuracy, privacy, deletion, and computation tradeoffs). Let constants λ, β, L > 0,
q > 1, and 0 < εdd ≤ εdp. Define constant κ = λ+β

λ . Let the loss function `(θ;x) be twice
differentiable, convex, L-Lipschitz, and β-smooth, the regularizer be r(θ) = λ

2 ‖θ‖
2
2. If the learning

rate be η = 1
2(λ+β) , the gradient noise variance is σ2 = 4qL2

λεdpn2 , and the weight initialization

distribution is ρ = N
(

0, σ2

λ(1−ηλ/2)Id

)
, then

(1.) both ANoisy-GD and ĀNoisy-GD are (q, εdp)-RDP for any KA,KĀ ≥ 0,

(2.) pair (ANoisy-GD, ĀNoisy-GD) satisfies (q, εdd)-data-deletion all non-adaptive r-requesters

if KĀ ≥ 4κ log
εdp

εdd
, (9)

(3.) and all models in (Θ̂i)i≥0 produced by (ANoisy-GD, ĀNoisy-GD,Q) on any D0 ∈ Xn, where

Q is any r-requester, have an excess empirical risk err(Θ̂i;Di) = O
(

qd
εdpn2

)
if KA ≥ 4κ log

(
εdpn

2

4qd

)
, and KĀ ≥ 4κ log max

{
5κ,

8εdpr
2

qd

}
. (10)

Proof of Theorem 6 can be found in Appendix G.4.

Our utility upper bound for data-deletion matches the theoretical lower bound of Ω(min
{

1, d
ε2n2

}
)

in Bassily et al. (2014) for the best attainable utility of (ε, δ)-DP algorithms on Lipschitz, smooth,
strongly-convex loss functions3. Thus, our data-deletion algorithm, ĀNoisy-GD, incurs no additional
cost in utility but saves substantial computation costs. Our data-deletion algorithm offers a com-
putation saving of Ω(n log min{nr , n

√
εdd

qd }) per request while guaranteeing privacy, deletion, and

optimal utility and without unsafe internal data structures. This saving is better than all existing
unlearning algorithms in literature that we know of, and we present a detailed comparison in Table 1.

Also, observe that for satisfying (q, εdp)-RDP and (q, εdd)-data-deletion for non-adaptive r-
requesters, the number of iterations KĀ needed is independent of the size, r, of the deletion batch,
depending solely on the ratio εdd

εdp
. However, the number of iterations required for ensuring optimal

utility with differential privacy grows with r. As such, we highlight that when deletion batches are

sufficiently large, i.e., r ≥
√

qd
εdd

, ensuring optimal utility under (q, εdp)-RDP results in (q, εdd)-
data-deletion for free, thus demonstrating synergy between privacy and data deletion.

5.2 DATA-DELETION AND UTILITY GUARANTEES UNDER NON-CONVEXITY

We give the following guarantee for pair (ANoisy-GD, ĀNoisy-GD) under non-convexity of loss `(θ;x).

Theorem 7 (Accuracy, privacy, deletion, and computation tradeoffs). Let constants λ, β, L, σ2, η > 0,
q,B > 1, and 0 < εdd ≤ εdp < d. Let the loss function `(θ;x) be σ2 log(B)

4 -bounded, L-Lipschitz
and β-smooth, the regularizer be r(θ) = λ

2 ‖θ‖
2
2, and the weight initialization distribution be

ρ = N
(

0, σ
2

λ Id
)

. Then,

(1.) both ANoisy-GD and ĀNoisy-GD are (q, εdp)-RDP for any η ≥ 0 and any KA,KĀ ≥ 0 if

σ2 ≥ qL2

εdpn2
· ηmax{KA,KĀ}, (11)

3Recall from Remark 1 that (q, εdp)-RDP implies (ε, δ)-DP for q = 1 + 2
ε

log(1/δ) and εdp = ε/2. When
ε = Θ(log(1/δ)), one can evaluate that q

εdp
= Θ( log(1/δ)

ε2
).
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Table 1: Comparison of the computation savings in gradient complexity per edit request along with
requirement of secret states with prior unlearning algorithms. For a fair comparison, we require that
each of them satisfy an (ε, δ)-data-deletion guarantee (ignoring the statelessness requirement) and
have the same excess empirical risk bound. Edit requests are non-adaptive and modify r = 1 record
in n-sized databases. The models’ dimension is d. We assume loss `(θ;x) to be convex, 1-Lipschitz,
and O(1)-smooth, and L2 regularization constant to be O(1).

Unlearning Algorithm Requires secret
states?

Compute savings
for ith edit

Noisy-m-A-SGD [Thm. 1, (Ullah et al., 2021)] No Ω
(√

d
(

1−
√
d
n

))
Perturbed-GD [Thm. 9, (Neel et al., 2021)] Yes Ω

(
n log

(
εn√
d

))
Perturbed-GD [Thm. 28, (Neel et al., 2021)] No Ω

(
n log

(
εn

log2(id)
√
d

))
Noisy-GD [Thm. 6, Ours] No Ω

(
n log min

{
n, εn√

d

})
(2.) pair (ANoisy-GD, ĀNoisy-GD) satisfy (q, εdd)-data-deletion under all non-adaptive r-requesters

for any σ2 > 0, if learning rate is η ≤ λεdd

64dqB(β+λ)2 and number of iterations satisfy

KA ≥
2B

λη
log

(
q log(B)

εdd

)
, KĀ ≥ KA −

2B

λη
log

(
log(B)

2
(
εdd + r

n log(B)
)) , (12)

(3.) and all models in sequence (Θ̂i)i≥0 output by (ANoisy-GD, ĀNoisy-GD,Q) on any D0 ∈ Xn,

where Q is an r-requester, satisfy err(Θ̂i;Di) = Õ

(
dq

εdpn2 + 1
n

√
qεdd

εdp

)
when inequalities

in (12) and (11) are equalities.

Proof of Theorem 7 can be found in Appendix G.5. The Rényi DP result in (1.) is a restatement
of Abadi et al. (2016, Theorem 1) (discussed further in Appendix G.3. We prove the deletion
and utility results in (2.) and (3.) by building on recent rapid convergence results for Noisy-GD
by Vempala & Wibisono (2019); Chewi et al. (2021). Specifically, we show bounds on Rényi
divergence of generated models Θ̂i w.r.t. Gibbs distribution π(Di) ∝ exp(−LDi/σ2) for all i ≥ 0.

Under non-convexity, all prior works on deletion have focused on empirical analysis for utility. As far
as we know, we are the first to provide utility guarantees in this setting. Moreover, our non-convex
utility bound exceeds the optimal privacy-preserving utility under convexity by only a factor of
Õ
(

1
n

√
qεdd

εdp

)
, which becomes small for large databases or small deletion to privacy budget ratio.

Also, observe a strict computational benefit in using ĀNoisy-GD whenever the fraction of edited records
in a single update request satisfies r

n ≤
1
2 −

εdd

logB . In the deletion regime where εdd = log(B)/4,
relying on ĀNoisy-GD rather than retraining with ANoisy-GD is Ω(dn log n

r ) cheaper.

Remark 4. The assumption that `(θ;x) is L-Lipschitz in both Theorems 6 and 7 can be removed if
gradients∇`(Θηk;x) computed in step 2 of Algorithm 1 are clipped to L (discussed in Appendix C).

6 CONCLUSIONS

We showed that unlearning guarantees are an unsuitable data deletion measure in the online setting
of adaptive edit requests and proposed a proper notion of data deletion in line with the "right to be
forgotten." We also showed that differential privacy is necessary for data deletion when requests
are adaptive and proved a reduction from secure deletion under non-adaptive requests to adaptive
requests under DP. Our theoretical results on Noisy-GD based data-deletion, for both convex and
non-convex losses, show a substantial computation saving over retraining with a reliable deletion
guarantee and at no additional cost in utility.
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A TABLE OF NOTATIONS

Table 2: Symbol reference

Symbol Meaning
O Arbitrary model parameter space.
Φ Space of publishable outcomes.
d Dimension of model parameters.
Rd Space of d-dimensional model parameters.
n Database size.
X ,Xn Data universe and Domain of all datasets of size n.
ν,ν′,π,µ Arbitrary distributions on O or on Rd.
Q An edit requester.
r, p Number of records replaced per edit and number of releases observable by a requester.
U ,Ur Space of singular and batched replacement edits in [n]×X .
u, ui, Ui Arbitrary edit request, ith edit request in Ur and its random variable.
D,Di An example database and database after ith update.
x,y Singular data records from universe X .
η Step size or learning rate in Noisy-GD.
σ2 Variance scaling used in weight initialization distribution or gradient noise.
`(θ;x) Twice continuously differentiable loss function on models in Rd.
r(θ) L2 regularizer λ ‖θ‖22 /2.
L(θ),LD(θ) Arbitrary optimization objective and an r(θ) regularized objective on D over `(θ;x).
err(Θ;D) Excess empirical risk of random model Θ over objective LD.
π(D) An mapping from Xn to distributions on Rd; sometimes distributions are Gibbs.
ΛD Normalization constant of the Gibbs distribution π(D).
πui A distribution independent of record deleted by request u on database Di−1.
Tk A map over Rd.
ρ Weight initialization distribution for Noisy-GD.
v,v′ Vector fields on Rd.
θ∗D, θ

∗
Di Risk minimizer for LD and LDi .

q Order of Rényi divergence.
εdp, εdd Differential privacy budget and data-deletion budget in q-Rényi divergence.
ε, δ Parameters for DP-like indistinguishability.
A,ANoisy-GD Learning algorithm and Noisy-GD based learning algorithm respectively.
Ā, ĀNoisy-GD Data-deletion algorithm and Noisy-GD based data-deletion algorithm respectively.
KA,KĀ Number of learning and data-deletion iterations in Noisy-GD.
k, t Index of a Noisy-GD iteration and continuous time variable for tracing diffusions.
Θηk,Θ

′
ηk Random variables representing the iteration k parameter distribution in Noisy-GD.

Θt,Θ
′
t Random variables representing the time t distribution of tracing diffusion for Noisy-GD.

µt,µ
′
t Probability density for Θt,Θ

′
t.

Id d-dimensional identity matrix.
Z,Zk,Z

′
k Random variables taken from N (0, Id).

dZt,dZ
′
t Two independent Weiner process.

λ, β,B, L L2 regularizer constant and smoothness, boundedness, and Lipschitzness constants.
ClipL(·) Operator that clips vectors in Rd to a magnitude of L.
Rq (ν‖ν′) Rényi divergence of distribution of ν w.r.t ν′.
Eq (ν‖ν′) qth moment of likelihood ratio r.v. between ν and ν′.
I (ν‖ν′) , Iq (ν‖ν′) Fisher and q-Rényi Information of distribution of ν w.r.t ν′.
W2 (ν,ν′) Wasserstein distance between distribution ν and ν′.
KL (ν‖ν′) Kullback Leibler divergence of distribution ν w.r.t. ν′.
Pt,G,G∗ Markov semigroup, its infintesimal generator, and its Fokker-Planck operator.
Entπ(f2) Entropy of function f2 under any arbitrary distribution π.
H(·) Differential entropy of a distribution.
LS(c) Log-sobolev inequality with constant c.
proxL Proxmial mapping for objective L.
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B CALCULUS REFRESHER

Given a twice continuously differentiable function L : O → R, where O is a closed subset of Rd, its
gradient∇L : O → Rd is the vector of partial derivatives

∇L(θ) =

(
∂L(θ)

∂θ1
, · · · , ∂L(θ)

∂θ2

)
. (13)

Its Hessian∇2L : O → Rd×d is the matrix of second partial derivatives

∇2L(θ) =

(
∂2L(θ)

∂θiθj

)
1≤i,j≤d

. (14)

Its Laplacian ∆L : O → R is the trace of its Hessian∇2L, i.e.,

∆L(θ) = Tr
(
∇2L(θ)

)
. (15)

Given a differentiable vector field v = (v1, · · · ,vd) : O → Rd, its divergence div (v) : O → R is

div (v) (θ) =

d∑
i=1

∂vi(θ)

∂θi
. (16)

Some identities that we would rely on:

1. Divergence of gradient is the Laplacian, i.e.,

div (∇L) (θ) =

d∑
i=1

∂2L(θ)

∂θ2
i

= ∆L(θ). (17)

2. For any function f : O → R and a vector field v : O → Rd with sufficiently fast decay at
the border of O, ∫

O
〈v(θ),∇f(θ)dθ〉 = −

∫
O
f(θ)(div (v))(θ)dθ. (18)

3. For any two functions f, g : O → R, out of which atleast for one the gradient decays
sufficinetly fast at the border of O, the following also holds.∫

O
f(θ)∆g(θ)dθ = −

∫
O
〈∇f(θ),∇g(θ)〉dθ =

∫
O
g(θ)∆f(θ)dθ. (19)

4. Based on Young’s inequality, for two vector fields v1,v2 : O → Rd, and any a, b ∈ R such
that ab = 1, the following inequality holds.

〈v1,v2〉 (θ) ≤
1

2a
‖v1(θ)‖22 +

1

2b
‖v2(θ)‖22 . (20)

Wherever it is clear, we would drop (θ) for brevity. For example, we would represent div (v) (θ) as
only div (v).

C LOSS FUNCTION PROPERTIES

In this section, we provide the formal definition of various properties that we assume in the paper.
Let `(θ;x) : Rd ×X → R be a loss function on Rd for any record x ∈ X .
Definition C.1 (Lipschitzness). A function `(θ;x) is said to be L Lipschitz continuous if for all
θ, θ′ ∈ Rd and any x ∈ X ,

|`(θ;x)− `(θ′;x)| ≤ L ‖θ − θ′‖2 . (21)

If `(θ;x) is differentiable, then it is L-Lipschitz if and only if∇`(θ;x) ≤ L for all θ ∈ Rd.
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Definition C.2 (Boundedness). A function `(θ;x) is said to be B-bounded if for all x ∈ X , its
output takes values in range [−B,B].
Definition C.3 (Convexity). A continuous differential function `(θ;x) is said to be convex if for all
θ, θ′ ∈ Rd and x ∈ X ,

`(θ′;x) ≥ `(θ;x) + 〈∇`(θ;x), θ′ − θ〉 , (22)
and is said to be λ-strongly convex if

`(θ′;x) ≥ `(θ;x) + 〈∇`(θ;x), θ′ − θ〉+
λ

2
‖θ′ − θ‖22 . (23)

Theorem 8 ((Nesterov, 2003, Theorem 2.1.4)). A twice continuously differentiable function `(θ;x) is
convex if and only if for all θ ∈ Rd and x ∈ X , its hessian matrix ∇2`(θ;x) is positive semidefinite,
i.e.,∇2`(θ;x) < 0 and is λ-strongly convex if its hessian matrix satisfies∇2`(θ;x) < λId.
Definition C.4 (Smoothness). A continuously differentiable function `(θ;x) is said to be β-Smooth
if for all θ, θ′ ∈ Rd and x ∈ X ,

‖∇`(θ;x)−∇`(θ′;x)‖2 ≤ β ‖θ − θ
′‖2 . (24)

Theorem 9 ((Nesterov, 2003, Theorem 2.1.6)). A twice continuously differentiable convex function
`(θ;x) is β-smooth if and only if for all θ ∈ Rd and x ∈ X ,

∇2`(θ;x) 4 βId. (25)

C.0.1 EFFECT OF GRADIENT CLIPPING

First order optimization methods on a continuously differentiable loss function `(θ;x) over a database
D ∈ Xn with gradient clipping ClipL(v) = v/max

(
1,
‖v‖2
L

)
is equivalent to optimizing

LD(θ) =
1

|D|
∑
x∈D

¯̀(θ;x) + r(θ), (26)

where ¯̀(θ;x) is a surrogate loss function that satisfies ∇¯̀(θ;x) = ClipL(∇`(θ;x)). This surrogate
loss function inherits convexity, boundedness, and smoothness properties of `(θ;x), as shown below.
Lemma 10 (Gradient clipping retains convexity). If `(θ;x) is a twice continuously differentiable
convex function for every x ∈ Rd, then surrogate loss ¯̀(θ;x) resulting from gradient clipping is also
convex for every x ∈ Rd.

Proof. Note that the clip operation ClipL(v) is a closed-form solution of the orthogonal projection
onto a closed ball of radius L and centered around origin, i.e.

ClipL(v) = arg min
‖v′‖2≤L

‖v − v′‖2 . (27)

By properties of orthogonal projections on closed convex sets, for every v,v′ ∈ Rd,
〈v′ − ClipL(v),v − ClipL(v)〉 ≤ 0 if and only if ‖v′‖2 ≤ L. (28)

Therefore, for any θ ∈ Rd, and x ∈ X , we have〈
∇¯̀(θ + hv̂;x)−∇¯̀(θ;x),∇`(θ;x)−∇¯̀(θ;x)

〉
≤ 0, (29)〈

∇¯̀(θ;x)−∇¯̀(θ + hv̂;x),∇`(θ + hv̂;x)−∇¯̀(θ + hv̂;x)
〉
≤ 0, (30)

for all unit vectors v̂ ∈ Rd and magnitude h > 0. For the directional derivative of vector field∇¯̀(θ;x)

along v̂, defined as ∇v̂∇¯̀(θ;x) = limh→0+
∇¯̀(θ+hv̂;x)−∇¯̀(θ;x)

h , the above two inequalities imply〈
∇v̂∇¯̀(θ;x),∇`(θ;x)−∇¯̀(θ;x)

〉
= 0, (31)

for all v̂. Therefore, when ∇¯̀(θ;x) 6= ∇`(θ;x), we must have ∇2¯̀(θ;x) = 0. And, when
∇`(θ;x) = ∇¯̀(θ;x), gradients aren’t clipped, which implies the rate of change of `(θ;x) along any
direction v̂ is

∇v̂ · ∇¯̀(θ;x) = lim
h→0+

〈
∇¯̀(θ + hv̂;x)−∇`(θ;x)

h
, v̂

〉
=

{
v̂>∇2`(θ;x)v̂ if ∃h > 0 s.t. ∇¯̀(θ + hv̂;x) = ∇`(θ + hv̂;x)

0 otherwise
≥ 0.
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Lemma 11 (Gradient clipping retains boundedness). If `(θ;x) is a continuously differentiable and
B-bounded function for every x ∈ X , then the surrogate loss ¯̀(θ;x) resulting from gradient clipping
is also B-bounded.

Proof. Since `(θ;x) is continuously differentiable, its B-boundedness implies path integral of
∇`(θ;x) along any curve between θ, θ′ ∈ Rd is less than 2B. Since ClipL(·) operation clips the
gradient magnitude, the path integral of ∇¯̀(θ;x) is also less than 2B. That is, the maximum and
minimum values that ¯̀(θ;x) takes differ no more than 2B. By adjusting the constant of path integral,
we can always ensure ¯̀(θ;x) takes values in range [−B,B] without affecting first order optimization
algorithms.

Lemma 12 (Gradient clipping retains smoothness). If `(θ;x) is a continuously differentiable and
β-smooth function for every x ∈ Rd, then surrogate loss ¯̀(θ;x) resulting from gradient clipping is
also β-smooth for every x ∈ Rd.

Proof. Note that the gradient clipping operation is equivalent to an orthogonal projection opera-
tion into a ball of radius L, i.e. ClipL(v) = arg minv′{‖v′ − v‖2 : v ∈ Rd, ‖v′‖2 ≤ L}. Since
orthogonal projection onto a closed convex set is a 1-Lipschitz operation, for any θ, θ′ ∈ Rd,∥∥∇¯̀(θ;x)−∇¯̀(θ′;x)

∥∥
2
≤ ‖∇`(θ;x)−∇`(θ′;x)‖2 ≤ β ‖θ − θ

′‖2 . (32)

Additionally, the surrogate loss ¯̀(θ;x) is twice differentiable almost everywhere if `(θ;x) is smooth,
which follows from the following Rademacher’s Theorem.
Theorem 13 (Rademacher’s Theorem (Nekvinda & Zajíček, 1988)). If f : Rn → Rn is Lipschitz
continuous, then f is differentiable almost everywhere in Rn.

All our results in Section 5 rely on the above four properties on losses and therefore apply with
gradient clipping instead of the Lipschitzness assumption.

D DIVERGENCE MEASURES AND THEIR PROPERTIES

Let Θ,Θ′ ∈ O be two random variables with probability measures ν,ν′ respectively. We abuse the
notataions to denote respective probability densities with ν,ν′ as well. We say that ν is absolutely
continuous with respect to ν′ (denoted by ν � ν′) if for all measurable sets O ⊂ O, ν(O) = 0
whenever ν′(O) = 0.
Definition D.1 ((ε, δ)-indistinguishability (Dwork et al., 2014)). We say ν and ν′ are (ε, δ)-
indistinguishable if for all O ⊂ O,

P
Θ∼ν

[Θ ∈ O] ≤ eε P
Θ′∼ν′

[Θ′ ∈ O] + δ and P
Θ′∼ν′

[Θ′ ∈ O] ≤ eε P
Θ∼ν

[Θ ∈ O] + δ. (33)

In this paper, we measure indistinguishability in terms of Rényi divergence.
Definition D.2 (Rényi divergence (Rényi et al., 1961)). Rényi divergence of ν w.r.t. ν′ of order q > 1
is defined as

Rq (ν‖ν′) =
1

q − 1
log Eq (ν‖ν′) , where Eq (ν‖ν′) = E

θ∼ν′

[(
ν(θ)

ν′(θ)

)q]
, (34)

when ν is absolutely continuous w.r.t. ν′ (denoted as ν� ν′). If ν 6� ν′, we’ll say Rq (ν‖ν′) =∞.
We abuse the notation Rq (Θ‖Θ′) to denote divergence Rq (ν‖ν′) between the measures of Θ,Θ′.

A bound on Rényi divergence implies a one-directional (ε, δ)-indistinguishability as described below.
Theorem 14 (Conversion theorem of Rényi divergence (Mironov, 2017, Proposition 3)). Let q > 1
and ε > 0. If distributions ν,ν′ satisfy Rq (ν‖ν′) < ε0, then for any O ⊂ O,

P
Θ∼ν

[Θ ∈ O] ≤ eε P
Θ′∼ν′

[Θ′ ∈ O] + δ, (35)

for ε = ε0 + log 1/δ
q−1 and any 0 < δ < 1.
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We use the following properties of Rényi divergence in some of our proofs.
Theorem 15 (Mononicity of Rényi divergence (Mironov, 2017, Proposition 9)). For 1 ≤ q0 < q,
and arbitrary probability measures ν and ν′ over O, Rq0 (ν‖ν′) ≤ Rq (ν‖ν′).
Theorem 16 (Rényi composition (Mironov, 2017, Proposition 1)). If A1, · · · ,Ak are randomized
algorithms satisfying, respectively, (q, ε1)-RDP, · · · , (q, εk)-RDP then their composed mechanism
defined as (A1(D), · · · ,Ak(D)) is (q, ε1 + · · ·+ εk)-RDP. Moreover, ith algorithm can be chosen
on the basis of the outputs of algorithms A1, · · · ,Ai−1.
Theorem 17 (Weak triangle inequality of Rényi divergence (Mironov, 2017, Proposition 12)). For
any distribution ρ on O, the Rényi divergence of ν w.r.t. ν′ satisfies the following weak triangle
inequality:

Rq (ν‖ν′) ≤ Rq (ν‖ρ) + R∞ (ρ‖ν′) . (36)

Another popular notion of information divergence is the Kullback-Leibler divergence.
Definition D.3 (Kullback-Leibler divergence (Kullback & Leibler, 1951)). Kullback-Leibler (KL)
divergence KL (ν‖ν′) of ν w.r.t. ν′ is defined as

KL (ν‖ν′) = E
θ∼ν

[
log

ν(θ)

ν′(θ)

]
. (37)

Rényi divergence generalizes Kullback-Leibler divergence (Van Erven & Harremos, 2014) as
limq→1 Rq (ν‖ν′) = KL (ν‖ν′).

Some other divergence notions that we rely on are the following.
Definition D.4 (Wasserstein distance (Vaserstein, 1969)). Wasserstein distance between ν and ν′ is

W2 (ν,ν′) = inf
Π

E
Θ,Θ′∼Π

[
‖Θ−Θ′‖22

] 1
2

, (38)

where Π is any joint distribution on O ×O with ν and ν′ as its marginal distributions.
Definition D.5 (Relative Fisher information (Otto & Villani, 2000)). If ν� ν′ and ν

ν′
is differen-

tiable, then relative Fisher information of ν with respect to ν′ is defined as

I (ν‖ν′) = E
θ∼ν

[∥∥∥∥∇ log
ν(θ)

ν′(θ)

∥∥∥∥2

2

]
. (39)

Definition D.6 (Relative Rényi information (Vempala & Wibisono, 2019)). Let q > 1. If ν � ν′

and ν
ν′

is differentiable, then relative Rényi information of ν with respect to ν′ is defined as

Iq (ν‖ν′) =
4

q2
E

θ∼ν′

∥∥∥∥∥∇
(
ν(θ)

ν′(θ)

)q/2∥∥∥∥∥
2

2

 = E
θ∼ν′

[(
ν(θ)

ν′(θ)

)q−2 ∥∥∥∥∇( ν(θ)

ν′(θ)

)∥∥∥∥2

2

]
. (40)

E PROOFS FOR SECTION 3

Theorem 1. For every ε > 0, there exists a pair (A, Ā) of algorithms that satisfy (ε, 0)-unlearning
under a publish function fpub such that for all non-adaptive 1-requestersQ, their exists an adversary
that can correctly infer the identity of a record deleted at any arbitrary edit step i ≥ 1 by observing
only the post-edit releases φ≥i = (φi, φi+1, · · · ).

Proof. For a query h : X → {0, 1}, consider the task of learning the count over a database that is
being edited online by a non-adaptive 1-requester Q. Since Q is non-adaptive by assumption, it is
equivalent to the entire edit sequence {ui}i≥1 being fixed before interaction. We design an algorithm
pair (A, Ā) for this task with secret model space being O = N3 and published outcome space being
Φ = R, with the publish function being fpub(〈a, b, c〉) = a+b/c+Lap

(
1
ε

)
(with the convention that

b/c = 0 if b = c = 0). At any step i ≥ 0, our internal model Θ̂i = 〈cnti,deli, i〉 encodes the current
count of h on database Di, the count of h on records previously deleted by u≤i, and the current step
index i. Our learning algorithm initializes the secret model as Θ̂0 = A(D0) = 〈

∑
x∈D0

h(x), 0, 0〉,
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and, for an edit request ui = {〈indi,yi〉}, our algorithm Ā updates the secret model Θ̂i−1 → Θ̂i

following the rule

Θ̂i = Ā(Di−1, ui, Θ̂i−1) = 〈cnti,deli, i〉 where
{

cnti = cnti−1 + h(yi)− h(Di−1[indi]),

deli = deli−1 + h(Di−1[indi]).

Note that ∀i ≥ 1, ∆i
def
= deli/i ∈ [0, 1]. Therefore, from properties of Laplace mechanism (Dwork

et al., 2014), it is straightforward to see that for all i ≥ 1,

fpub(Ā(Di−1, ui, Θ̂i−1))
∣∣u≤i =

∑
x∈Di

h(x) + ∆i + Lap
(

1

ε

)
ε,0
≈
∑
x∈Di

h(x) + Lap
(

1

ε

)
= fpub(A(Di)).

Hence, Ā is an (ε, 0)-unlearning algorithm for A under fpub.

To show that an adversary can still infer the identity of record deleted by update
ui = (indi, •), consider a database D′i−1 that differs from Di−1 only at index indi such that
h(D′i−1[indi]) 6= h(Di−1[indi]). Let random variable sequences φ≥i and φ′≥i denote the releases
by Ā in the scenarios that the (i− 1)th database was Di−1 and D′i−1 respectively. The divergence
between these two random variable sequences reflect the capacity of any adversary to infer the record
deleted by ui. Since, we have identical databases after ui, i.e. Dj−1 ◦ uj = D′j−1 ◦ uj for all
j ≥ i, note that both φj and φ′j are independent Laplace distributions with a shift of exactly 1

j units.
Therefore,

max
O⊂Φ∗

log
P [φ≥i ∈ O]

P
[
φ′≥i ∈ O

] =

∞∑
j=i

max
Oj⊂R

log
P [φj ∈ Oj ]

P
[
φ′j ∈ Oj

] =

∞∑
j=i

log eε/j =∞.

Theorem 2. There exists a pair (A, Ā) of algorithms that satisfy (0, 0)-adaptive-unlearning for
an identity publish function fpub(θ) = θ such that by designing a 1-adaptive 1-requester Q, an
adversary, even with no access to Q’s interaction transcript, can infer the identity of a record deleted
at any arbitrary edit step i > 3 with probability at-least 1− (1/2)i−3 from the post-edit release φi.

Proof. Let data universe be X , the internal state space O, and publishable outcome space Φ be R.
Consider the task of releasing a sequence of medians using function med : R∗ → R in the online
setting when the initial database D0 ∈ Xn is being modified by some adaptive requester Q. Given
a database D ∈ Xn, our learning algorithm is defined as A(D) = med(D). For an arbitrary edit
request u ∈ Ur, our unlearning algorithm is defined as Ā(D, u, •) = med(D ◦ u). Let the publish
function fpub : O → Φ be an identity function, i.e. fpub(θ) = θ.

For any initial database D0 ∈ Xn and an adaptive sequence (ui)i≥1 generated by any∞-adaptive
1-requester Q, note that

fpub(Ā(Di−1, ui, •)) = fpub(A(Di)), for all i ≥ 1 and any • ∈ O. (41)

Therefore, Ā is a (0, 0)-adaptive unlearning algorithm for A under fpub.

Now suppose that n is odd andD0 consists of unique entries. W.L.O.G assume that the median record
med(D0) is at index indm and its owner will be deleting it at step i by sending a non-adaptive edit
request ui = {〈indm,y〉} such that y 6= med(D0). We design the following 1-adaptive 1-requester
Q that sends edit requests in the first i− 1 steps to ensure with high probability that the published
outcome at step i remains the deleted record, i.e., med(Di) = med(D0):

Q(φ0, u1, u2, · · · , uj−1) = {〈indj , φ0〉} ∀ 1 ≤ j < i, (42)

where indj is randomly sampled from [n] \ {ind1, · · · , indj−1} without replacement. Note that by
the end of interaction, Q replaces at-least i− 2 unique records in D0 with φ0 = med(D0). If one of
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those original records was larger than med(D0) and another was smaller than med(D0), then it is
guaranteed that med(Di) = med(D0). Therefore, P [med(Di) = med(D0)] is at-least

P
[
∃indl, indu ∈ {ind1, · · · , indi−1} s.t. D0[indl] < D0[indm] < D0[indu]

]
≥ 1− 2×

(
bnc/2
i− 2

)/(
n

i− 2

)
≥ 1−

(
1

2

)i−3

.

E.1 UNSOUNDNESS AND INCOMPLETENESS OF OFFLINE UNLEARNING DEFINITIONS

In this subsection, we show that our criticisms on both soundness and completeness of unlearning
notions in Section 3 also apply to the one-stage unlearning definitions of Guo et al. (2019); Sekhari
et al. (2021); Ginart et al. (2019).
Definition E.1 ((ε, δ)-certified removal (Guo et al., 2019)). A removal mechanism Ā performs
(ε, δ)-certified removal for learning algorithm A if for all databases D ⊂ X and deletion subset
S ⊂ D,

Ā(D, S,A(D))
ε,δ
≈ A(D \ S). (43)

Definition E.2 ((ε, δ)-unlearning (Sekhari et al., 2021)). For all D ⊂ X of size n and deletion
subset S ⊂ D such that |S| ≤ m, a learning algorithm A and an unlearning algorithm Ā is
(ε, δ)-unlearning if

Ā(T (D), S,A(D))
ε,δ
≈ Ā(T (D \ S),∅,A(D \ S)), (44)

where ∅ denotes the empty set and T (D) denotes the data statistics available to Ā regarding D.

Definition E.3 (Data Deletion Operation Ginart et al. (2019)). Fix any dataset D ⊂ X and learning

algorithm A. Operation Ā is a deletion operation for A if Ā(D, S, Ā(D))
0,0
≈ A(D \ S) for any set

S ⊂ D selected independently of A(D).

Unsoundness. Definitions E.1 and E.2 make no assumptions about dependence between the deletion
request S and the learned model A(D). So, request S can depend on A(D). This dependence is
common in the real world; for example, a user deletes her information if she doesn’t like what model
A(D) reveals about her. We present the following construction along the same lines as our proof in
Theorem 2 to show that Definitions E.1 and E.2, are unsound.

For the universe of records X = {−2,−1, 1, 2}, consider the following learning and unlearning
algorithms:

A(D) =
∑
x∈D

x, and Ā(D, S,A(D)) =
∑

x∈D\S

x. (45)

Note that for any D ⊂ X and any S ⊂ D, the above algorithm pair (A, Ā) satisfies Defini-
tions E.1, E.2 and E.3 for ε = δ = 0 and T (D) = D. Suppose the adversary is aware that the
following dependence holds between the learned model A(D) and deletion request S:

S =

{
{x < 0 : ∀x ∈ X} if A(D) < 0,

{x > 0 : ∀x ∈ X} otherwise.
(46)

Consider two neighbouring databases D−1 = {−2,−1, 2} and D1 = {−2, 1, 2}. Knowing the
above dependence, an adversary can determine whether D = D−1 or D = D1 by looking only
at Ā(D, S,A(D)). This is because if D = D−1, then the observation after unlearning is 2, and if
D = D1, the observation after unlearning is −2. So, even though (A, Ā) satisfies the guarantees of
Guo et al. (2019) and Sekhari et al. (2021), it blatantly reveals the identity (−1 or 1) of a deleted
record to an adversary observing only the post-deletion release.

Note that Definition E.3 assumes that the requests S is selected independently of the learned model
A(D). So, our construction does not apply, keeping the possibility that their definition is sound. We
remark, however, that algorithms satisfying their definitions cannot be trusted in settings where we
expect some dependence between deletion requests and the learned models.
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Incompleteness. Definitions E.1, E.2 and E.3 are also incomplete. Consider an unlearning algorithm
Ā that outputs a fixed output x1 ∈ X if the deletion request S = ∅ and outputs another fixed output
x2 ∈ X if the deletion request S 6= ∅. It is easy to see that Ā is a valid deletion algorithm as its
output does not depend on the input database D or the learned model A(D). However, note that Ā
does not satisfy the unlearning Definition E.2, for any learning algorithm A. And, for a learning
algorithm A(D) =

∑
x∈D x, one can also verify that the pair (A, Ā) does not satisfy Definitions E.1

and E.3 either.

F PROOFS FOR SECTION 4

Theorem 3 (Data-deletion Definition 4.1 is sound). If the algorithm pair (A, Ā) satisfies (q, ε)-
data-deletion guarantee under all p-adaptive r-requesters, then even with the power of designing an
p-adaptive r-requester Q that interacts with the curator before deletion of a target record at any step
i ≥ 1, any adversary observing only the post-deletion releases (Θ̂i, Θ̂i+1, · · · ) has its membership
inference advantage for inferring a deleted target bounded as

Adv(MI) ≤ qeε(q−1)/q

q − 1
[2(q − 1)]1/q − 1. (47)

Proof. For an arbitrary step i ≥ 1, suppose one of the replacement operations in the edit request
ui ∈ Ur replaces a record at index ‘ind’ from the database Di−1 with ‘y’. In the worst case, this
record Di−1[ind] might have been there from the start, i.e. D0[ind] = D0[ind], and influenced
all the decisions of the adaptive requester Q in the edit steps 1, · · · , i − 1. To prove soundness,
we need to show that if (A, Ā) satisfies (q, ε)-data-deletion, then even in this worst-case scenario,
no adaptive adversary can design a membership inference test MI(Θ̂i, Θ̂i+1, · · · ) ∈ {0, 1} that
can distinguish with high probability the null hypothesis H0 = {D0[ind] = x} from the alternate
hypothesis H1 = {D0[ind] = x′} for any x,x′ ∈ X . That is, the advantage of any test MI, defined
as

Adv(MI) def
= P

[
MI(Θ̂i, Θ̂i+1, · · · ) = 1|H0

]
− P

[
MI(Θ̂i, Θ̂i+1, · · · ) = 1|H1

]
, (48)

must be small. Since after processing edit request ui, the databasesDi,Di+1, · · · no longer contain the
deleted record Di−1[ind], the data-processing inequality implies that future models Θ̂i+1, Θ̂i+2, · · ·
cannot have more information about Di−1[ind] that what is present in Θ̂i. Therefore, any test
MI(Θ̂i, Θ̂i+1, · · · ) has a smaller advantage than the optimal test MI∗(Θ̂i) ∈ {0, 1} that only uses Θ̂i.

Also, since (A, Ā) satisfy (q, ε)-data-deletion for any p-adaptive r-requester Q, we know from
Definition 4.1 that there exists a mapping πQi such that for all D0 ∈ Xn, the model Θ̂i generated by

the interaction between (A, Ā,Q) onD0 after ith edit satisfies Rq

(
Θ̂i

∥∥∥πQi (D0 ◦ 〈ind,y〉)
)
≤ ε. As

the databaseD0◦〈ind,y〉 is identical under both hypothesisH0 andH1, we have Rq

(
Θ̂i|Hb

∥∥∥Θ̄
)
≤ ε

for b ∈ {0, 1}, where Θ̄ ∼ πQi (D0 ◦ 〈ind,y〉). From Rényi divergence to (ε, δ)-indistinguishability
conversion described in Remark 1, we get

P
[
MI∗(Θ̂i) = 1|H0

]
≤ eε

′(δ)P
[
MI∗(Θ̄) = 1

]
+ δ, and (49)

P
[
MI∗(Θ̂i) = 0|H1

]
≤ eε

′(δ)P
[
MI∗(Θ̄) = 0

]
+ δ, (50)

where ε′(δ) = ε+ log 1/δ
q−1 for any 0 < δ < 1. On adding the two inequalities, we get:

Adv(MI) ≤ Adv(MI∗) = P
[
MI∗(Θ̂i) = 1|H0

]
− P

[
MI∗(Θ̂i) = 1|H1

]
≤ min

δ
eε
′(δ) − 1 + 2δ

=
qeε(q−1)/q

q − 1
[2(q − 1)]1/q − 1
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Theorem 4 (DP is necessary for data-deletion). If learning algorithm A : Xn → O is not (0, δ)-DP
with respect to the replacement of a single record and deletion algorithm Ā : Xn × U ×O → O is
not (0, δ)-DP with respect to the replacement of a single record that is not being deleted, then the
pair (A, Ā) cannot satisfy (q, δ4/2)-data-deletion under 1-adaptive 1-requester for any q > 1.

Proof. If A is not (0, δ)-DP with respect to replacement of a single record, then there exists a pair of
neighbouring databases D,D′ such that

TV (A(D); A(D′)) = sup
O∈O
|P [A(D) ∈ O]− P [A(D′) ∈ O] | > δ. (51)

Similarly, if Ā is not (0, δ)-DP with respect to replacement of a single record that is not being deleted,
then there exists a pair of databases D̄, D̄′ and an edit request ū ∈ U1 such that D̄ ◦ ū and D̄′ ◦ ū are
neighbouring and for all θ ∈ O,

TV
(
Ā(D̄, ū, θ); Ā(D̄′, ū, θ)

)
= sup
O∈O
|P
[
Ā(D̄, ū, θ) ∈ O

]
− P

[
Ā(D̄′, ū, θ) ∈ O

]
| > δ. (52)

Since TV distance is bounded from below in both cases, there exists tests Test,Test : O → {0, 1}
such that

Adv(Test;D,D′) def
= P [Test(A(D)) = 1]− P [Test(A(D′)) = 1] > δ, (53)

and for all θ ∈ O,

Adv(Test; D̄, D̄′, ū)
def
= P

[
Test(Ā(D̄, ū, θ)) = 1

]
− P

[
Test(Ā(D̄′, ū, θ)) = 1

]
> δ. (54)

Assume W.L.O.G. that ū replaces at index n and the edited databases D̄ ◦ u, D̄′ ◦ u still differs at
index 1. Also assume that D,D′ differs at index n.

Recall from Definition 4.1 that satisfying (q, δ
4

2 )-data-deletion under 1-adaptive 1-requesters requires
existence of a map πQn : Xn → O for each Q such that for all D0 ∈ Xn,

Rq

(
Ā(Dn−1, un, Θ̂n−1)

∥∥∥πQn (D0 ◦ un)
)
≤ δ4

2
, (55)

To prove the theorem statement, we show that for a starting database D0 ∈ {D,D′} and an edit
request un = ū that deletes the differing record in choices of D0 at edit step n, there exists a
1-adaptive 1-requester Q that sends adaptive edit requests u1, · · · , un−1 in the first n− 1 steps such
that no map πQn exists that satisfies (55) for both choices of D0.

Consider the following construction of 1-adaptive 1-requester Q that only observes the first model
Θ̂0 = A(D0) and generates the edit requests (u1, · · · , un−1) as follows:

Q(Θ̂0;u1, u2, · · · , ui−1) =

{
〈i, D̄[i]〉 if Test(Θ̂0) = 1,

〈i, D̄′[i]〉 otherwise.
(56)

This requester Q transforms any initial database D0 to Dn−1 = D̄ if the outcome Test(Θ̂0) = 1,
otherwise to Dn−1 = D̄′. Consider an adversary that does not observe the interaction transcript
(Θ̂<n;u<n), but is interested in identifying whether D0 was D or D′. The adversary gets to observe
only the output Θ̂n = Ā(Dn−1, un, Θ̂n−1) generated after processing the edit request un = ū.
On this observation, the adversary runs the membership inference test MI(Θ̂n) = Test(Θ̂n). The
membership inference advantage of MI is

Adv(MI;D,D′) def
= P

[
MI(Θ̂n) = 1|D0 = D

]
− P

[
MI(Θ̂n) = 1|D0 = D′

]
=

∑
b∈{0,1}

P
[
Test(Θ̂n) = 1|Test(Θ̂0) = b

]
× P

[
Test(Θ̂0) = b|D0 = D

]
−

∑
b∈{0,1}

P
[
Test(Θ̂n) = 1|Test(Θ̂0) = b

]
× P

[
Test(Θ̂0) = b|D0 = D′

]
=
(
P
[
Test(Θ̂n) = 1|Dn−1 = D̄

]
− P

[
Test(Θ̂n) = 1|Dn−1 = D̄′

])
Adv(Test;D,D′)

= Adv(Test; D̄, D̄′, ū)× Adv(Test;D,D′) > δ2.
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So, it must be true that the total variation distance between Θ̂n given D0 = D and D0 = D′ is lower
bounded as

TV
(

Θ̂n|D0=D; Θ̂n|D0=D′
)
> δ2. (57)

From triangle inequality of total variation distance, Pinsker’s inequality, and monotonicity of Rényi
divergence w.r.t. order q, note that for a random variable Θ̄ ∈ O with any arbitrary distribution,

δ2 < TV
(

Θ̂n|D0=D; Θ̂n|D0=D′
)

≤ TV
(

Θ̂n|D0=D; Θ̄
)

+ TV
(

Θ̂n|D0=D′ ; Θ̄
)

≤
√

1

2
KL
(

Θ̂n|D0=D′
∥∥∥Θ̄
)

+

√
1

2
KL
(

Θ̂n|D0=D′
∥∥∥Θ̄
) )

≤
√

2 max
{

Rq

(
Θ̂n|D0=D′

∥∥∥Θ̄
)
,Rq

(
Θ̂n|D0=D′

∥∥∥Θ̄
)}
.

This implies that for all random variables Θ̄, and all q > 1,

max
{

Rq

(
Ā(Di−1, un, Θ̂n)|D0=D′

∥∥∥Θ̄
)
,Rq

(
Ā(Di−1, un, Θ̂n)|D0=D′

∥∥∥Θ̄
)}

>
δ4

2
. (58)

But, to satisfy (q, δ
4

2 )-data-deletion under 1-adaptive 1-requesters, there must exist a mapping πQn for
which (55) must hold for both choices of D0 ∈ {D,D′}. Since the random variable πQn (D0 ◦ un) is
identically distributed in our construction for both choices of D0 ∈ {D,D′}, from (58) we have that
no such map πQn can exist.

Theorem 5 (Reduction from Adaptive to Non-adaptive Data Deletion). If an algorithm pair (A, Ā)
satisfy (q, εdd)-data-deletion under all non-adaptive r-requesters and (q, εdp)-Rényi differential
privacy, then it also satisfies (q, εdd + pεdp)-data-deletion for all p-adaptive r-requesters.

Proof. To prove this theorem, we need to show that for any p-adaptive r-requester Q, there exists a
construction for a map πQi : Xn → O such that for all D0 ∈ Xn, the sequence of model (Θ̂i)i≥0

generated by the interaction between (Q,A, Ā) on D0 satisfies the following inequaltiy for all i ≥ 1:

Rq

(
Ā(Di−1, ui, Θ̂i−1)

∥∥∥πQi (D0 ◦ 〈ind,y〉)
)
≤ εdd + pεdp, for all ui ∈ Ur and 〈ind,y〉 ∈ ui.

(59)
Fix a database D0 ∈ Xn and an edit request ui ∈ Ur. Let D′0 ∈ Xn be a neighbouring database
defined to be D′0 = D0 ◦ 〈ind,y〉 for an arbitrary replacement operation 〈ind,y〉 ∈ ui. Given any
p-adaptive r-requesterQ, let (Θ̂i)i≥0 and (Ui)i≥1 be the sequence of released model and edit request
random variables generated on Q’s interaction with (A, Ā) with inital database as D0. Similarly,
let (Θ̂′i)i≥0 and (U ′i)i≥1 be the corresponding sequences generated due to the interaction among
(Q,A, Ā) on D′0.

Since (A, Ā) is assumed to satisfy (q, εdd)-data-deletion guarantee under non-adpative r-requesters,
recall from Remark 3 that there exists a mapping π : Xn → O such that for any fixed edit sequence
u≤i

def
= (u1, u2, · · · , ui),

Rq

(
Θ̂i|U≤i=u≤i

∥∥∥π(D0 ◦ u≤i)
)
≤ εdd (60)

=⇒ Rq

(
Ā(D0 ◦ U<i, ui, Θ̂i)|U<i=u<i

∥∥∥π(D0 ◦ U ′<i ◦ ui)|U<i=u<i
)
≤ εdd. (61)

Note that since the replacement operation 〈ind,y〉 is part of the edit request ui, we have D0 ◦ U ′<i ◦
ui = D′0 ◦U ′<i ◦ui. Moreover, since the sequence U ′<i of edit requests is generated by the interaction
of (Q,A, Ā) on D′0 = D0 ◦ 〈ind, u〉 and the ith edit request ui is fixed beforehand, we can define a
valid construction of a map πQi : Xn → O as per Definition 4.1 as follows:

πQi (D0 ◦ 〈ind,y〉) = π(D′0 ◦ U ′<i ◦ ui). (62)
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For brevitly, let Θ̂u = Ā(D0 ◦ U<i, ui, Θ̂i−1), and Θ̂′u = πQi (D0 ◦ 〈ind,y〉). For this construction,
we prove the requisite bound in (59) as follows.

Rq

(
Θ̂u

∥∥∥Θ̂′u

)
≤ Rq

(
(Θ̂u, U<i)

∥∥∥(Θ̂′u, U
′
<i)
)

(Data processing inequality (Van Erven & Harremos, 2014, Theorem 1))

=
1

q − 1
log

∫
θ

∑
u<i

J(θ, u<i)
q

J ′(θ, u<i)q−1
dθ

(J & J ′ are joint PDFs of (Θ̂u, U<i) & (Θ̂′u, U
′
<i))

=
1

q − 1
log
∑
u<i

P [U<i = u<i]
q

P
[
U ′<i = u<i

]q−1

{∫
θ

pΘ̂u|U<i=u<i(θ)
q

pΘ̂′u|U ′<i=u<i
(θ)q−1

dθ

}

≤ 1

q − 1
log
∑
u<i

P [U<i = u<i]
q

P
[
U ′<i = u<i

]q−1 exp((q − 1)εdd) (From (61))

= εdd + Rq (U<i‖U ′<i)

≤ εdd + Rq

((
Θ̂s1 , · · · , Θ̂sp

)∥∥∥(Θ̂′s1 , · · · , Θ̂′sp
))

(If Q sees outputs at steps s1, · · · , sp)
≤ εdd + pεdp. (Via Rényi composition)

F.1 CONTRASTING OUR REDUCTION THEOREM 5 WITH GUPTA ET AL. (2021)’S RESULTS

The recent work of Gupta et al. (2021), also studies adaptive data deletion and proves a reduction
from adaptive unlearning guarantee to non-adaptive unlearning guarantee in Definition 2.6 under
differential privacy. We remark that the reduction Theorem 3.1 by Gupta et al. (2021) relies on DP
with regards to a change in the description of learning/unlearning algorithm’s coins and not with
regards to the standard replacement of records. In contrast, our Theorem 5 presents a reduction from
adaptive to non-adaptive data-deletion guarantee under DP with respect to the standard replacement
of records. We emphasize that these two Theorems are fundamentally different.

The adaptive unlearning definition of Gupta et al. (2021) is designed to ensure with a high prob-
ability that no adaptive requester Q can force the output distribution of the unlearning algorithm
Ā(Di−1, ui, Θ̂i−1) to diverge substantially from that of retraining algorithm A(Di). Such an attack
is possible in stateful unlearning algorithms that rely on persistent structures that are only randomized
once during initialization, for example, the initial partitioning of start database D0 in Bourtoule et al.
(2021)’s SISA algorithm. Gupta et al. (2021) show in their Theorem 5.1 that an adaptive update
requester Q can interactively send deletion requests u1, · · · , ui to SISA so that the partitioning of
remaining records in Di = D0 ◦ u1 · · ·ui follows a pattern that is unlikely to occur on repartitioning
of Di when executing A(Di). As proved in their reduction in Theorem 3.1, a straightforward way
to prevent this is by ensuring that the uncertainty regarding the persistent structures remains private
for long periods of time to an adversary observing the unlearned model. Hence the proof of their
reduction from adaptive unlearning guarantee to non-adaptive unlearning guarantee relies on DP with
regards to the coins of the unlearning algorithm.

Our work shows that satisfying adaptive unlearning definition of Gupta et al. (2021) still does not
guarantee data deletion. In Theorem 2, we demonstrate that there exists an algorithm pair (A, Ā)
satisfying (a strictly stronger version) of adaptive unlearning (Gupta et al., 2021, Definition 2.3),
but still causes blatant non-privacy of deleted records in post-deletion release. The vulnerability
we identify occurs because an adaptive requester can learn the identity of any target record before
it is deleted and re-encode it back in the curator’s database by sending edit requests. Because of
this, an adversary (who knows how the adaptive requester works but does not have access to the
requester’s interaction transcript) can extract the identity of the target record from the model released
after processing the deletion request. In our work, we argue that a reliable (and necessary) way to
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prevent this attack is to make sure that no adaptive requester ever learns the identity of a target record
from the p pre-deletion model releases it has access to. Consequently, our reduction in Theorem 5
from adaptive to non-adaptive requests relies on differential privacy with respect to the replacement
of records instead.

G ADDITIONAL PRELIMINARIES AND PROOFS FOR SECTION 5

G.1 LANGEVIN DIFFUSION AND MARKOV SEMIGROUPS

Langevin diffusion process on Rd with noise variance σ2 under the influence of a potential
L : Rd → R is characterized by the Stochastic Differential Equation (SDE)

dΘt = −∇L(Θt)dt+
√

2σ2dZt, (63)

where dZt = Zt+dt − Zt ∼
√

dtN (0, Id) is the d-dimensional Weiner process.

We present some preliminary knowledge on the diffusion theory used in our analysis. Let pt(θ0, θt)
denote the probability density function describing the distribution of Θt, on starting from Θ0 = θ0 at
time t = 0. For SDE (63), the associated Markov Semigroup P, is defined as a family of operators
(Pt)t≥0, such that an operator Pt sends any real-valued bounded measurable function f : Rd → R to

Ptf(θ0) = E [f(Θt)|Θ0 = θ0] =

∫
f(θt)pt(θ0, θt)dθt. (64)

The infentisimal generator G def
= lims→0

1
s [Pt+s − Ps] for this diffusion Semigroup is

Gf = σ2∆f − 〈∇L,∇f〉 . (65)

This generator G, when applied on a function f(θt), gives the infentisimal change in the value of a
function f when θt undergoes diffusion as per (63) for dt time. That is,

∂tPtf(θ0) =

∫
∂tpt(θ0, θt)f(θt)dθt =

∫
pt(θ0, θt)Gf(θt)dθt. (66)

The dual operator of G is the Fokker-Planck operator G∗, which is defined as the adjoint of generator
G, in the sense that ∫

fG∗gdθ =

∫
gGfdθ, (67)

for all real-valued bounded measurable functions f, g : Rd → R. Note from (66) that, this operator
provides an alternative way to represent the rate of change of function f at time t:

∂tPtf(θ0) =

∫
f(θt)G∗pt(θ0, θt)dθt. (68)

To put it simply, Fokker-Planck operator gives the infentesimal change in the distribution of Θt with
respect to time. For the Langevin diffusion SDE (63), the Fokker-Planck operator is the following:

∂tpt(θ) = G∗pt(θ) = div (pt(θ)∇L(θ)) + σ2∆pt(θ). (69)

From this Fokker-Placnk equation, one can verify that the stationary or invariant distribution π of
Langevin diffusion, which is the solution of ∂tpt = 0, follows the Gibbs distribution

π(θ) ∝ e−L(θ)/σ2

. (70)

Since π is the stationary distribution, note that for any measurable bounded function f : Rd → R,

E
π

[Gf ] =

∫
fG∗πdθ = 0. (71)
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G.2 ISOPERIMETRIC INEQUALITIES AND THEIR PROPERTIES

Convergence properties of various diffusion semigroups have been extensively analyzed in literature
under certain isoperimetric assumptions on the stationary distribution π (Bakry et al., 2014). One
such property of interest is the logarithmic Sobolev (LS) inequality (Gross, 1975), which we define
next.

The carré du champ operator Γ of a diffusion semigroup with invariant measure µ is defined using its
infintesimal generator G as

Γ(f, g) =
1

2
[G(fg)− fGg − gGf ] , (72)

for every f, g ∈ L2(µ). Carre du champ operator represent fundamental properties of a Markov
semigroup that affect its convergence behaviour. One can verify that Langevin diffusion semigroup’s
carre du champ operator (on differentiable f, g) is

Γ(f, g) = σ2 〈∇f,∇g〉 . (73)

We use shorthand notation Γ(f) = Γ(f, f) = σ2 ‖∇f‖2.

Definition G.1 (Logarithmic Sobolev Inequality (see Bakry et al. (2014, p. 24))). A distribution with
probability density π is said to satisfy a logarithmic Sobolev inequality (LS(c)) (with respect to Γ in
(73)) if for all functions f ∈ L2(µ) with continuous derivatives∇f ,

Entπ(f2) ≤ 1

2c

∫
Γ(f2)

f2
πdθ =

2σ2

c

∫
‖∇f‖22 πdθ, (74)

where entropy Entπ is defined as

Entπ(f2) = E
π

[
f2 log f2

]
− E

π

[
f2
]

logE
π

[
f2
]
. (75)

Logarithmic Sobolev inequality is a very non-restrictive assumption and is satisfied by a large class
of distributions. The following well-known result show that Gaussians satisfy LS inequality.

Lemma 18 (LS inequality of Gaussian distributions (see Bakry et al. (2014, p. 258))). Let ρ be a
Gaussian distribution on Rd with covariance σ2/λ (i.e., the Gibbs distribution (70) with L(·) being
the L2 regularizer r(θ) = λ

2 ‖θ‖
2
2). Then ρ satisfies LS(λ) tightly (with respect to Γ in (73)), i.e.

Entρ(f2) =
2σ2

λ

∫
‖∇f‖22 ρdθ. (76)

Additionally, if µ is a distribution on Rd that satisfy LS(c), then the convolution µ~ ρ, defined as the
distribution of Θ + Z where Θ ∼ µ and Z ∼ π, satisfies LS inequality with constant

(
1
c + 1

λ

)−1
.

Bobkov (2007) show that like Gaussians, all strongly log concave distributions (or more generally, log-
concave distributions with finite second order moments) satisfy LS inequality (e.g. Gibbs distribution
π with any strongly convex L). LS inequality is also satisfied under non-log-concavity too. For
example, LS inequality is stable under Lipschitz maps, although such maps can destroy log-concavity.

Lemma 19 (LS inequality under Lipschitz maps (see Ledoux (2001))). If π is a distribution on Rd
that satisfies LS(c), then for any L-lipschitz map T : Rd → Rd, the pushforward distribution T#π,
representing the distribution of T (Θ) when Θ ∼ π, satisfies LS(c/L2).

LS inequality is also stable under bounded perturbations to the distribution, as shown in the following
lemma by Holley & Stroock (1986).

Lemma 20 (LS inequality under bounded perturbations (see Holley & Stroock (1986))). If π is the
probability density of a distribution that satisfies LS(c), then any proability distribution with density
π′ such that 1√

B
≤ π(θ)

π′(θ) ≤
√
B everywhere in Rd for some constant B > 1 satisfies LS(c/B).

Logarithmic Sobolev inequality is of interest to us due to its equivalence to the following inequalities
on Kullback-Leibler and Rényi divergence.
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Lemma 21 (LS inequality in terms of KL divergence (Vempala & Wibisono, 2019)). The distribution
π satisfies LS(c) inequality (with respect to Γ in (73)) if and only if for all distributions µ on Rd such
that µ

π
∈ L2(π) with continuous derivatives∇µ

π
,

KL (µ‖π) ≤ σ2

2c
I (µ‖π) . (77)

Proof. Set f2 in (74) to µ
π

to obtain (77). Alternatively, set µ = f2π
E
π

[f2] in (77) to obtain (74).

Lemma 22 (Wasserstein distance bound under LS inequality (Otto & Villani, 2000, Theorem 1)). If
distribution π satisfies LS(c) inequality (with respect to Γ in (73)) then for all distributions µ on Rd,

W2 (µ,π)
2 ≤ 2σ2

c
KL (µ‖π) . (78)

Lemma 23 (LS inequality in terms of Rényi Divergence (Vempala & Wibisono, 2019)). The distri-
bution π satisfies LS(c) inequality (with respect to Γ in (73)) if and only if for all distributions µ on
Rd such that µ

π
∈ L2(π) with continuous derivatives∇µ

π
, and any q > 1,

Rq (µ‖π) + q(q − 1)∂qRq (µ‖π) ≤ q2σ2

2c

Iq (µ‖π)

Eq (µ‖π)
. (79)

Proof. For brevity, let the functions R(q) = Rq (µ‖π), E(q) = Eq (µ‖π), and I(q) = Iq (µ‖π). Let

function f2(θ) =
(

µ(θ)
π(θ)

)q
. Then,

E
π

[
f2
]

= E
π

[(µ
π

)q]
= E(q), (From (34))

and,

E
π

[
f2 log f2

]
= E

π

[(µ
π

)q
log
(µ
π

)q]
= q∂qE

π

[∫
q

(µ
π

)q
log
(µ
π

)
dq

]
= q∂qE

π

[(µ
π

)q]
= q∂qE(q).

(From Lebniz rule and (34))

Moreover,

E
π

[
‖∇f‖22

]
= E

π

[∥∥∥∥∇(µπ)
q
2

∥∥∥∥2

2

]
=
q2

4
I(q) (From (40))

On substituting (74) with the above equalities, we get:

Entπ(f2) ≤ 2σ2

c
E
π

[
‖∇f‖22

]
⇐⇒ q∂qE(q)− E(q) logE(q) ≤ q2σ2

2c
I(q)

⇐⇒ q∂q logE(q)− logE(q) ≤ q2σ2

2c

I(q)

E(q)

⇐⇒ q∂q ((q − 1)R(q))− (q − 1)R(q) ≤ q2σ2

2c

I(q)

E(q)
(From (34))

⇐⇒ R(q) + q(q − 1)∂qR(q) ≤ q2σ2

2c

I(q)

E(q)

G.3 (RÉNYI) DIFFERENTIAL PRIVACY GUARANTEES ON NOISY-GD

In this section, we recap the differential privacy bounds in literature for Noisy-GD Algorithm 1.
Theorem 24 (Rényi DP guarantee for Noisy-GD Algorithm 1). If `(θ;x) is L-lipschitz, then Noisy-
GD satisfies (q, ε)-RDP with ε = qL2

σ2n2 · ηK.
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Proof. The L2 sensitivity of gradient ∇LD(θ)
def
= 1

n

∑
x∈D∇`(θ;x) +∇r(θ) computed in step 2

of Algorithm 1 for neighboring databases in Xn that differ in a single record is 2L
n since `(θ;x) is

L-Lipschitz.

Conditioned on observing the intermediate model Θηk = θk at step k, the next model Θη(k+1) after
the noisy gradient update is a Gaussian mechanism with noise variance 2σ2/η. So, for neighboring
databases D,D′ ∈ Xn, we have from the Rényi DP bound of Gaussian mechanisms proposed
by Mironov (2017, Proposition 7) that

Rq

(
Θη(k+1) |Θηk=θk

∥∥∥Θ′η(k+1) |Θ′ηk=θk

)
≤ ηqL2

n2σ2
, (80)

where (Θηk)0≤k≤K and (Θ′ηk)0≤k≤K are intermediate parameters in Algorithm 1 when run on
databases D and D′ respectively. Finally, from Rényi composition Mironov (2017, Proposition 1),
we have

Rq

(
ΘηK

∥∥Θ′ηK
)
≤ Rq

(
(Θ0,Θη, · · · ,ΘηK)

∥∥(Θ′0,Θ
′
η, · · · ,Θ′ηK)

)
≤
K−1∑
k=0

Rq

(
Θη(k+1) |Θηk=θk

∥∥∥Θ′η(k+1) |Θ′ηk=θk

)
≤ qL2

n2σ2
· ηK.

Remark 5. Different papers discussing Noisy-GD variants adopt different notational conventions
for the total noise added to the gradients. The noise variance in our Algorithm 1 is 2ησ2; but
is η2σ2L2

n2 in the full-batch setting of DP-SGD by Abadi et al. (2016). To translate the bound in
Theorem 24, one can simply rescale σ across different conventions to have the same noise variance,
i.e., 2ησ2 = η2σ̂2L2

n2 .

Our Theorem 24 is somewhat identical to Abadi et al. (2016)’s (ε, δ)-DP bound. To verify this,
note from Rényi divergece to (ε, δ)-indistinguishability conversion discussed in Remark 1 that
(1 + 2

ε log 1
δ ,

ε
2 )-Rényi DP implies (ε, δ)-DP. So, setting the bound in Theorem 24 to be smaller than

ε
2 and substituting q = 1 + 2

ε log 1
δ , we get

(
ε+ 2 log 1

δ

ε

)
L2

n2σ2
· ηK ≤ ε

2
⇐⇒

√
K(ε+ 2 log 1

δ )

ε
≤ σ̂.

For ε ≤ 2 log 1
δ , we get the same noise bound as in Abadi et al. (2016, Theorem 1) for their (full-batch)

DP-SGD algorithm.

Next, we recap the tighter Rényi DP guarantee of Chourasia et al. (2021) under stronger assumptions
on the loss function.
Theorem 25 (Rényi DP guarantee for Noisy-GD Algorithm 1 (Chourasia et al., 2021)). If `(θ;x) is
convex, L-Lipschitz, and β-smooth and r(θ) is the L2 regularizer with constant λ, then Noisy-GD
with learning rate η < 1

β+λ satisfies (q, ε)-RDP with ε = 4qL2

λσ2n2

(
1− e−ληK/2

)
.

G.4 PROOFS FOR SUBSECTION 5.1

In this appendix, we provide a proof of our Theorem 6 which applies to convex losses `(θ;x) under
L2 regularizer r(θ). Let D0 ∈ Xn be any arbitrary database, and Q be any non-adaptive r-requester.

Our first goal in this section is to prove (q, εdd)-data-deletion guarantees on our proposed algorithm
pair (ANoisy-GD, ĀNoisy-GD) (in Definition 5.1) under Q. That is, if (Θ̂i)i≥0 is the sequence of models
produced by the interaction between (ANoisy-GD, ĀNoisy-GD,Q) on D0, we need to show that their
exists a mapping πQi such that for all i ≥ 1 and any ui ∈ Ur,

Rq

(
Ā(Di−1, ui, Θ̂i−1)

∥∥∥πQi (D0 ◦ 〈ind,y〉)
)
≤ εdd for all 〈ind,y〉 ∈ ui. (81)
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For an arbitrary replacement operation 〈ind,y〉 in ui, we define a map πQi (D0◦〈ind,y〉) = Θ̂′i, where
the model sequence (Θ̂′i)i≥0 is produced by the interaction of between (ANoisy-GD, ĀNoisy-GD,Q) on
D0 ◦ 〈ind,y〉. Since non-adaptive requester Q is equivalent to fixing the edit sequence (ui)i≥1

a-priori, note that showing the data-deletion guarantee reduces to proving the following DP-like
bound

Rq

(
Ā(Di−1, ui, Θ̂i−1)

∥∥∥Ā(D′i−1, ui, Θ̂
′
i−1)

)
≤ εdd, (82)

for for all u≤i and for all neighbouring databases D0,D′0 s.t. D′0 = D0 ◦ 〈ind,y〉 with 〈ind,y〉 ∈ ui.

Note from our Definition 5.1 that the sequence of models (Θ̂0, · · · , Θ̂i) can be seen as being generated
from a continuous run of Noisy-GD, where:

1. for iterations 0 ≤ k < KA, the loss function is LD0 ,

2. for the iterations KA + (j − 1)KĀ ≤ k < KA + jKĀ on any 1 ≤ j ≤ i − 1, the loss
function is LDj , and

3. for the iterations KA + (i− 1)KĀ ≤ k < KA + iKĀ, the loss function is LDi−1◦ui .

Let (Θηk)0≤k≤KA+iKĀ
be the sequence representing the intermediate parameters of this extended

Noisy-GD run. Similarly, let (Θ′ηk)k≥0 be the parameter sequence corresponding to the extended run
on the neighbouring database D′0. Since 〈ind,y〉 ∈ ui, note from the construction that D′i−1 ◦ ui =
Di−1 ◦ ui, meaning that the loss functions while processing request ui is identical for the two
processes, i.e. LDi−1◦ui = LD′i−1◦ui . For brevity, we refer to the database seen in iteration k of the
two respective extended runs as D(k) and D′(k) respectively. In short, these two discrete processes
induced by Noisy-GD follow the following update rule for any 0 ≤ k < KA + iKĀ:{

Θη(k+1) = Θηk − η∇LD(k)(Θηk) +
√

2ησ2Zk
Θ′η(k+1) = Θ′ηk − η∇LD′(k)(Θ

′
ηk) +

√
2ησ2Z′k,

where Zk,Z
′
k ∼ N (0, Id) , (83)

and Θ0 and Θ′0 are sampled from same the weight initialization distribution ρ. To prove the bound in
(82), we follow the approach proposed in Chourasia et al. (2021) of interpolating the two discrete
stochastic process of Noisy-GD with two piecewise-continuous tracing diffusions Θt and Θ′t in the
duration ηk < t ≤ η(k + 1), defined as follows.{

Θt = Tk(Θηk)− (t−ηk)
2 ∇

(
LD(k)(Θηk)− LD′(k)(Θηk)

)
+
√

2σ2(Zt − Zηk),

Θ′t = Tk(Θ′ηk) + (t−ηk)
2 ∇

(
LD(k)(Θ

′
ηk)− LD′(k)(Θ

′
ηk)
)

+
√

2σ2(Z′t − Z′ηk),
(84)

where Zt,Z
′
t are two independent Weiner processes, and Tk is a map on Rd defined as

Tk = Id −
η

2
∇
(
LD(k) + LD′(k)

)
. (85)

Note that equation (84) is identical to (83) when t = η(k+ 1), and can be expressed by the following
stochastic differential equations (SDEs):{

dΘt = −gk(Θηk)dt+
√

2σ2dZt
dΘ′t = +gk(Θ′ηk)dt+

√
2σ2dZ′t,

where gk(Θ) =
1

2n
∇ [`(Θ;D(k)[ind])− `(Θ;D′(k)[ind])] ,

(86)
and initial condition limt→ηk+ Θt = Tk(Θηk), limt→ηk+ Θ′t = Tk(Θ′ηk). These two SDEs can be
equivalently described by the following pair of Fokker-Planck equations.

Lemma 26 (Fokker-Planck equation for SDE (86)). Fokker-Planck equation for SDE in (86) at time
ηk < t ≤ η(k + 1), is∂tµt(θ) = div

(
µt(θ)E [gk(Θηk)|Θt = θ]

)
+ σ2∆µt(θ),

∂tµ
′
t(θ) = div

(
µ′t(θ)E

[
−gk(Θ′ηk)

∣∣∣Θ′t = θ
])

+ σ2∆µ′t(θ),
(87)

where µt and µ′t are the densities of Θt and Θ′t respectively.
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µηk

µ′ηk

Tk#µηk

Tk#µ′ηk

µ′η(k+1)

µ′∞

µη(k+1)

µ∞

(a)

(a)

(b)

(b)

Rk RkRk+1R∞ = qL2

λn2σ2

(I) Phase I: Processing requests u<i, i.e.
0 ≤ k < KA + (i− 1)KĀ.

µηk Tk#µηk

µ′ηk Tk#µ′ηk

µ′η(k+1)

µη(k+1)

µ′∞

µ∞
R∞ = 0

(a)

(a)
(b)

(b)
Rk Rk Rk+1

(II) Phase II: Processing request ui, i.e.
KA + (i− 1)KĀ ≤ k < KA + iKĀ.

Figure 1: Diagram illustrating the technical overview of Theorem 31. Here µηk and µηk′ represent
the kth iteration parameter distribution of Θηk and Θ′ηk respectively. We interpolate the two discrete
processes in two steps: (a) an identical transformation Tk (as defined in (85), and (b) a diffusion
process. If divergence before descent step is Rk = Rq

(
µηk

∥∥∥µ′ηk), the stochastic mapping Tk in (a)
doesn’t increase the divergence, while the diffusion (b) either increases it upto an asymptotic constant
in phase I or decreases it exponentially to 0 in phase II.

Proof. Conditioned on observing parameter Θηk = θηk, the process (Θt)ηk<t≤η(k+1) is a Langevin
diffusion along a constant Vector field (i.e. on conditioning, we get a Langevin SDE (63) with
∇L(θ) = gk(θηk) for all θ ∈ Rd). Therefore as per (69), the conditional probability density
µt|ηk(·|θηk) of Θt given Θηk follows the following Fokker-Planck equation:

∂tµt|ηk(·|θηk) = div
(
µt|ηk(·|θηk)gk(θηk)

)
+ σ2∆µt|ηk(·|θηk) (88)

Taking expectation over µηk which is the distribution of Θηk,

∂tµt(·) =

∫
µηk(θηk)

{
div
(
µt|ηk(·|θηk)gk(θηk)

)
+ σ2∆µt|ηk(·|θηk)

}
dθηk

= div

(∫
gk(θηk)µt,ηk(·, θηk)dθηk

)
+ σ2∆µt(·)

= div

(
µt(·)

{∫
gk(θηk)µηk|t(θηk|·)dθηk

})
+ σ2∆µt(·)

= div
(
µt(·)E [gk(Θηk)|Θt = ·]

)
+ σ2∆µt(·).

where µηk,|t is the conditional density of Θηk given Θt. Proof for second fokker-planck equation is
similar.

We provide an overview of how we bound equation (82) in Figure 1. Basically, our analysis has two
phases; in phase (I) we provide a bound on Rq

(
Θ̂i−1

∥∥∥Θ̂′i−1

)
that holds for any choice of number

of iterations KA and KĀ, and in phase (II) we prove an exponential contraction in the divergence
Rq

(
Ā(Di−1, ui, Θ̂i−1

∥∥∥Ā(D′i−1, ui, Θ̂
′
i−1)

)
with number of iterations KĀ.

We first introduce a few lemmas that will be used in both phases. The first set of following lemmas
show that the transformation Θηk,Θ

′
ηk → Tk(Θηk), Tk(Θηk) preserves the Rényi divergence. To

prove this property, we show that Tk is a differentiable bijective map in Lemma 28 and apply the
following Lemma from Vempala & Wibisono (2019).
Lemma 27 (Vempala & Wibisono (2019, Lemma 15)). If T : Rd → Rd is a differentiable bijective
map, then for any random variables Θ,Θ′ ∈ Rd, and for all q > 0,

Rq (T (Θ)‖T (Θ′)) = Rq (Θ‖Θ) . (89)
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Lemma 28. If `(θ;x) is a twice continuously differentiable, convex, and β-smooth loss function and
regularizer is r(θ) = λ

2 ‖θ‖
2
2, then the map Tk defined in (85) is:

1. a differentiable bijection for any η < 1
λ+β , and

2. (1− ηλ)-Lipschitz for any η ≤ 2
2λ+β .

Proof. Differentiable bijection. To see that Tk is injective, assume Tk(θ) = Tk(θ′) for some
θ, θ′ ∈ Rd. Then, by (β + λ)-smoothness of L def

= (LD(k) + LD′(k))/2,

‖θ − θ′‖2 = ‖Tk(θ) + η∇L(θ)− Tk(θ′)− η∇L(θ′)‖2
= η ‖∇L(θ)−∇L(θ′)‖2
≤ η(λ+ β) ‖θ − θ′‖2 .

Since η < 1/(λ + β), we must have ‖θ − θ′‖2 = 0. For showing Tk is surjective, consider the
proximal mapping

proxL(θ) = arg min
θ′∈Rd

‖θ′ − θ‖22
2

− ηL(θ′). (90)

Note that proxL(·) is strongly convex for η < 1
λ+β . Therefore, from KKT conditions, we have

θ = proxL(θ)− η∇L(proxL(θ)) = Tk(proxL(θ)). Differentiability of Tk follows from the twice
continuously differentiable assumption on `(θ;x).

Lipschitzness. Let L def
= (LD(k) + LD′(k))/2. For any θ, θ′ ∈ Rd,

‖Tk(θ)− Tk(θ′)‖22 = ‖θ − η∇L(θ)− θ′ + η∇L(θ′)‖22
= ‖θ − θ′‖22 + η2 ‖∇L(θ)−∇L(θ′)‖22 − 2η 〈θ − θ′,∇L(θ)−∇L(θ′〉 .

We define a function g(θ) = L(θ) − λ
2 ‖θ‖

2
2, which is convex and β-smooth. By co-coercivity

property of convex and β-smooth functions, we have

〈θ − θ′,∇g(θ)−∇g(θ′)〉 ≥ 1

β
‖∇g(θ)−∇g(θ′)‖22

=⇒ 〈θ − θ′,∇L(θ)−∇L(θ′)〉 − λ ‖θ − θ′‖22 ≥
1

β

(
‖∇L(θ)−∇L(θ′)‖22 + λ2 ‖θ − θ′‖22

− 2λ 〈θ − θ′,∇L(θ)−∇L(θ′)〉
)

=⇒ 〈θ − θ′,∇L(θ)−∇L(θ′)〉 ≥ 1

2λ+ β
‖∇L(θ)−∇L(θ′)‖22 +

λ(λ+ β)

2λ+ β
‖θ − θ′‖22 .

Substituting this in the above inequality, and noting that η ≤ 2
2λ+β , we get

‖Tk(θ)− Tk(θ′)‖22 ≤
(

1− 2ηλ(λ+ β)

2λ+ β

)
‖θ − θ′‖22 +

(
η2 − 2η

β + 2λ

)
‖∇L(θ)−∇L(θ′)‖22

≤
(

1− 2ηλ(λ+ β)

2λ+ β

)
‖θ − θ′‖22 +

(
η2λ2 − 2ηλ2

β + 2λ

)
‖θ − θ′‖22

= (1− ηλ)2 ‖θ − θ′‖22 .

The second set of lemmas presented below describe how Rq (Θt‖Θt) evolves with time in both
phases I and II. Central to our analysis is the following lemma which bounds the rate of change of
Rényi divergence for any pair of diffusion process characterized by their Fokker-Planck equations.
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Lemma 29 (Rate of change of Rényi divergence (Chourasia et al., 2021)). Let Vt, V ′t : Rd → Rd be
two time dependent vector field such that maxθ∈Rd ‖Vt(θ)− V ′t (θ)‖2 ≤ L for all θ ∈ Rd and t ≥ 0.
For a diffusion process (Θt)t≥0 and (Θ′t)t≥0 defined by the Fokker-Planck equations{

∂tµt(θ) = div (µt(θ)Vt(θ)) + σ2∆µt(θ) and
∂tµ
′
t(θ) = div (µ′t(θ)V

′
t (θ)) + σ2∆µ′t(θ),

(91)

respectively, where µt and µt are the densities of Θt and Θ′t, the rate of change of Rényi divergence
between the two at any t ≥ 0 is upper bounded as

∂tRq (µt‖µ′t) ≤
qL2

2σ2
− qσ2

2

Iq (µt‖µ′t)
Eq (µt‖µ′t)

. (92)

We will apply the above lemma to the Fokker-Planck equation (87) of our pair of tracing diffusion
SDE (84) and solve the resulting differential inequality to prove the bound in (82). To assist our proof,
we rely on the following lemma showing that our two tracing diffusion satisfy the LS inequality
described in Definition G.1, which enables the use the inequality (79) in Lemma 23.

Lemma 30. If loss `(θ;x) is convex and β-smooth, regularizer is r(θ) = λ
2 ‖θ‖

2
2, and learning rate

η ≤ 2
2λ+β , then the tracing diffusion (Θt)0≤t≤η(KA+iKĀ) and (Θ′t)0≤t≤η(KA+iKĀ) defined in (84)

with Θ0,Θ
′
0 ∼ ρ = N

(
0, σ2

λ(1−ηλ/2) Id
)

satisfy LS inequality with constant λ(1− ηλ/2).

Proof. For any iteration 0 ≤ k < KA + iKĀ in the extended run of Noisy-GD, and any 0 ≤ s ≤ η,
let’s define two functions Ls,L′s : Rd → R as follows:

Ls =
1 + s/η

2
LD(k) +

1− s/η
2
LD′(k), and L′s =

1− s/η
2
LD(k) +

1 + s/η

2
LD′(k). (93)

Since r(·) is the L2(λ) regularizer and `(θ;x) is convex and β-smoothness, both Ls and L′s are λ-
strongly convex and (λ+ β)-smooth for all 0 ≤ s ≤ η and any k. We define maps Ts, T ′s : Rd → Rd
as

Ts(θ) = θ − η∇Ls(θ), and T ′s(θ) = θ −∇L′s(θ). (94)

From a similar argument as in Lemma 28, both Ts and T ′s are (1− ηλ)-Lipschitz for learning rate
η ≤ 2

2λ+β .

Note that the densities of Θt and Θ′t of the tracing diffusion for t = ηk + s can be respectively
expressed as

µt = Ts#(µηk) ~N
(
0, 2sσ2Id

)
, and µ′t = T ′s#(µ′ηk) ~N

(
0, 2sσ2Id

)
, (95)

where µηk and µ′ηk represent the distributions of Θηk and Θ′ηk. We prove the lemma via induction.

Base step: Since Θ0,Θ
′
0 are both Gaussian distributed with variance σ2

λ(1−ηλ/2) , from Lemma 18
they satisfy LS inequality with constant λ(1− ηλ/2).

Induction step: Suppose µηk and µ′ηk satisfy LS inequality with constant λ(1 − ηλ/2). Since
equation (95) shows that µt,µ′t are both gaussian convolution on a pushforward distribution of
µηk,µ

′
ηk respectively over a Lipschitz function, from Lemma 18 and Lemma 19, both µt,µ

′
t satisfy

LS inequality with constant(
(1− ηλ)2

λ(1− ηλ/2)
+ 2s

)−1

≥ λ(1− ηλ/2)× [(1− ηλ)2 + λη(2− ηλ)]−1︸ ︷︷ ︸
=1

, (96)

for all ηk ≤ t ≤ η(k + 1).

We are now ready to prove the data-deletion bound in (82).

Theorem 31 (Data-Deletion guarantee on (ANoisy-GD, ĀNoisy-GD) under convexity). Let the weight

initialization distribution be ρ = N
(

0, σ2

λ(1−ηλ/2)

)
, the loss function `(θ;x) be convex, β-smooth,
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and L-Lipschitz, the regularizer be r(θ) = λ
2 ‖θ‖

2
2, and learning rate be η < 1

λ+β . Then Algorithm
pair (A, Ā) satisfies a (q, εdd)-data-deletion guarantee under all non-adaptive r-requesters for any
noise variance σ2 > 0 and KA ≥ 0 if

KĀ ≥
2

ηλ
log

(
4qL2

λεddσ2n2

)
. (97)

Proof. Following the preceding discussion, to prove this theorem, it suffices to show that the in-
equality (82) holds under the stated conditions. Consider the Fokker-Planck equation described in
Lemma 26 for the pair of tracing diffusions SDEs in (86): at any time t in duration ηk < t ≤ η(k+1)
for any iteration 0 ≤ k < KA + iKĀ,∂tµt(θ) = div

(
µt(θ)E [gk(Θηk)|Θt = θ]

)
+ σ2∆µt(θ),

∂tµ
′
t(θ) = div

(
µ′t(θ)E

[
−gk(Θ′ηk)

∣∣∣Θ′t = θ
])

+ σ2∆µ′t(θ),
(98)

where µt and µ′t are the distribution of Θt and Θ′t. Since `(θ;x) is L-Lipschitz and for any
KA + (i− 1)KĀ ≤ k < KA + iKĀ we have D(k)[ind] = D′(k)[ind], note from the definition of
gk(θ) in (86) that∥∥∥E [gk(Θηk)|Θt = θ]− E

[
−gk(Θ′ηk)

∣∣Θ′t = θ
]∥∥∥

2
≤
{

2L
n if k < KA + (i− 1)KĀ

0 otherwise
. (99)

Therefore, applying Lemma 29 to the above pair of Fokker-Planck equations gives that for any t in
duration ηk < t ≤ η(k + 1),

∂tRq (µt‖µ′t) ≤
2qL2

σ2n2
1 {t ≤ η(KA + (i− 1)KĀ)} − qσ2

2

Iq (µt‖µ′t)
Eq (µt‖µ′t)

. (100)

Equation (100) suggests a phase change in the dynamics at iteration k = KA + (i− 1)KĀ. In phase
I, the divergence bound increases with time due to the effect of the differing record in database pairs
(Dj ,D′j)0≤j≤i−1. In phase II however, the update request ui makes Di−1 ◦ ui = D′i−1 ◦ ui, and so
doing gradient descent rapidly shrinks the divergence bound. This phase change is illustrated in the
Figure 1.

For brevity, we denote R(q, t) = Rq (µt‖µ′t). Since η < 1
λ+β < 2

2λ+β , from Lemma 30, the
distribution µ′t satisfies LS inequality with constant λ(1− λη/2). So, we can apply Lemma 23 to
simplify the above partial differential inequality as follows.

∂tR(q, t) + λ(1− λη/2)

(
R(q, t)

q
+ (q − 1)∂qR(q, t)

)
≤ 2qL2

σ2n2
1 {t ≤ η(KA + (i− 1)KĀ)} .

(101)
For brevity, let constant c1 = λ(1 − λη/2) and constant c2 = 2L2

σ2n2 . We define u(q, t) = R(q,t)
q .

Then,

∂tR(q, t) + c1

(
R(q, t)

q
+ (q − 1)∂qR(q, t)

)
≤ c2q × 1 {t ≤ η(KA + (i− 1)KĀ)}

=⇒ ∂tu(q, t) + c1u(q, t) + c1(q − 1)∂qu(q, t) ≤ c2 × 1 {t ≤ η(KA + (i− 1)KĀ)} .

For some constant q̄ > 1, let q(s) = (q̄ − 1) exp [c1 {s− η(KA + iKĀ)}] + 1 and t(s) = s. Note
that dq(s)

ds = c1(q(s) − 1) and dt(s)
ds = 1. Therefore, for any ηk < s ≤ η(k + 1), the differential

inequality followed along the path u(s) = u(q(s), t(s)) is

du(s)

ds
+ c1u(s) ≤ c2 × 1 {t ≤ η(KA + (i− 1)KĀ)} (102)

=⇒ d

ds
{ec1su(s)} ≤ c2 × 1 {t ≤ η(KA + (i− 1)KĀ)} . (103)

Since the map Tk(·) in (85) is a differentiable bijection for η < 1
λ+β as per Lemma 28, note that

Lemma 27 implies that lims→ηk+ u(s) = u(ηk). Therefore, we can directly integrate in the duration
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0 ≤ t ≤ η(KA + iKĀ) to get

[ec1su(s)]
η(KA+iKĀ)
0 ≤

∫ η(KA+(i−1)KĀ)

0

c2e
c1sds

=⇒ ec1η(KA+iKĀ)u(η(Kp + iKu))− u(0) ≤ c2
c1

[ec1η(KA+(i−1)KĀ) − 1]

=⇒ u(η(KA + iKĀ)) ≤ c2
c1
e−c1ηKĀ . (Since u(0) = R(q(0), 0)/q(0) = 0.)

Noting that q(0) ≥ 1, on reverting the substitution, we get

Rq̄

(
µη(KA+iKĀ)

∥∥∥µ′η(KA+iKĀ)

)
≤ 2q̄L2

λσ2n2(1− ηλ/2)
exp (−ηλKĀ(1− ηλ/2))

≤ 4q̄L2

λσ2n2
exp

(
−ηλKu

2

)
(Since η < 1

λ+β )

Recall from our construction that µη(KA+iKĀ) and µ′η(KA+iKĀ) are the distributions of

Ā(Di−1, ui, Θ̂i−1) and Ā(D′i−1, ui, Θ̂
′
i−1) respectively. Therefore, choosing KĀ as specified in

the theorem statement concludes the proof.

Our next goal in this section is to provide utility guarantees for the algorithm pair
(ANoisy-GD, ĀNoisy-GD) in form of excess empirical risk bounds. For that, we introduce some ad-
ditional auxiliary results first. The following Lemma 32 shows that excess empirical risks does not
increase too much on replacing r records in a database, and Lemma 33 provides a convergence
guarantee on the excess empirical risk of Noisy-GD algorithm under convexity.

Lemma 32. Suppose the loss function `(θ;x) is convex, L-Lipschitz, and β-smooth, and the regular-
izer is r(θ) = λ

2 ‖θ‖
2
2. Then, the excess empirical risk of any randomly distributed parameter Θ for

any database D ∈ Xn after applying any edit request u ∈ Ur that modifes no more than r records is
bounded as

err(Θ;D ◦ u) ≤
(

1 +
β

λ

)[
2 err(Θ;D) +

16r2L2

λn2

]
. (104)

Proof. Let θ∗D and θ∗D◦u be the minimizers of objectives LD(·) and LD◦u(·) as defined in (??). From
λ-strong convexity of the LD,

LD(θ∗D◦u)− LD(θ∗D) ≥ λ

2
‖θ∗D◦u − θ∗D‖

2
2 . (105)

From optimality of θ∗D◦u and L-Lipschitzness of `(θ;x), we have

LD(θ∗D◦u) = LD◦u(θ∗D◦u) +
1

n

(∑
x∈D

`(θ∗D◦u;x)−
∑

x∈D◦u
`(θ∗D◦u;x)

)

≤ LD◦u(θ∗D) +
1

n

(∑
x∈D

`(θ∗D◦u;x)−
∑

x∈D◦u
`(θ∗D◦u;x)

)

= LD(θ∗D) +
1

n

∑
x∈D

(`(θ∗D◦u;x)− `(θ∗D;x)) +
1

n

∑
x∈D◦u

(`(θ∗D;x)− `(θ∗D◦u;x))

≤ LD(θ∗D) +
2rL

n
‖θ∗D◦u − θ∗D‖2 .

Combining the two inequalities give

‖θ∗D◦u − θ∗D‖2 ≤
4rL

λn
. (106)
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Therefore, from (λ+ β)-smoothness of LD◦u and λ-strong convexity of LD, we have

err(Θ;D ◦ u) = E [LD◦u(Θ)− LD◦u(θ∗D◦u)]

≤ λ+ β

2
E
[
‖Θ− θ∗D◦u‖

2
2

]
≤ (λ+ β)

[
E
[
‖Θ− θ∗D‖

2
2

]
+ ‖θ∗D − θ∗D◦u‖

2
2

]
≤
(

1 +
β

λ

)[
2E [LD(Θ)− LD(θ∗D)] +

16r2L2

λn2

]
.

Lemma 33 (Accuracy of Noisy-GD). For convex, L-Lipschitz, and, β-smooth loss function
`(θ;x) and regularizer r(θ) = λ

2 ‖θ‖
2
2, if learning rate η < 1

λ+β , the excess empirical risk of
ΘηK = Noisy-GD(D,Θ0,K) for any D ∈ Xn is bounded as

err(ΘηK ;D) ≤ err(Θ0;D)e−ληK/2 +

(
1 +

β

λ

)
dσ2. (107)

Proof. Let Θηk denote the kth iteration parameter of Noisy-GD run. Recall that k + 1th noisy
gradient update step is

Θη(k+1) = Θηk − η∇LD(Θηk) +
√

2ησ2Zk. (108)

From (β + λ)-smoothness of LD, we have

LD(Θη(k+1)) ≤ LD(Θηk) +
〈
∇LD(Θηk),Θη(k+1) −Θηk

〉
+
β + λ

2

∥∥Θη(k+1) −Θηk

∥∥2

2

= LD(Θηk)− η ‖∇LD(Θηk)‖22 +
√

2ησ2 〈∇LD(Θηk),Zk〉

+
η2(β + λ)

2
‖∇LD(Θηk)‖22 + ησ2(β + λ) ‖Zk‖22

− η
√

2ησ2(β + λ) 〈∇LD(Θηk),Zk〉

On taking expectation over the joint distribution of Θηk,Θη(k+1),Zk, the above simplifies to

E
[
LD(Θη(k+1))

]
≤ E [LD(Θηk)]−η

(
1− η(λ+ β)

2

)
E
[
‖∇LD(Θηk)‖22

]
+ηdσ2(β+λ). (109)

Let θ∗D = arg min
θ∈Rd

LD(θ). From λ-strong convexity of LD, for any θ ∈ Rd, we have

‖∇LD(θ)‖22 ≥ 2λ(LD(θ)− LD(θ∗D)). (110)

Let γ = λη(2− η(λ+ β)). Plugging this in the above inequality, and substracting LD(θ∗D) on both
sides, for η < 1

λ+β , we get

E
[
LD(Θη(k+1))− LD(θ∗D)

]
≤ (1− γ)E [LD(Θηk)− LD(θ∗D)] + ηdσ2(β + λ)

≤ (1− γ)k+1E [LD(Θ0)− LD(θ∗)] + ηdσ2(β + λ)(1 + · · ·+ (1− γ)k+1)

≤ e−γ(k+1)/2E [LD(Θ0)− LD(θ∗D)] +
ηdσ2(β + λ)

γ
.

For η < 1
λ+β , note that γ ≥ λη, and so

err(ΘηK ;D) ≤ err(Θ0;D)e−ληK/2 +

(
1 +

β

λ

)
dσ2. (111)
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Finally, we are ready to prove our main Theorem 6 showing that algorithm pair (ANoisy-GD, ĀNoisy-GD)
solves the data-deletion problem as described in Section 4. We basically combine the RDP guarantee
in Theorem 25, non-adaptive data-deletion guarantee in Theorem 31, and prove excess empirical risk
bound using Lemma 33 and Lemma 32.
Theorem 6 (Accuracy, privacy, deletion, and computation tradeoffs). Let constants λ, β, L > 0,
q > 1, and 0 < εdd ≤ εdp. Define constant κ = λ+β

λ . Let the loss function `(θ;x) be twice
differentiable, convex, L-Lipschitz, and β-smooth, the regularizer be r(θ) = λ

2 ‖θ‖
2
2. If the learning

rate be η = 1
2(λ+β) , the gradient noise variance is σ2 = 4qL2

λεdpn2 , and the weight initialization

distribution is ρ = N
(

0, σ2

λ(1−ηλ/2)Id

)
, then

(1.) both ANoisy-GD and ĀNoisy-GD are (q, εdp)-RDP for any KA,KĀ ≥ 0,

(2.) pair (ANoisy-GD, ĀNoisy-GD) satisfies (q, εdd)-data-deletion all non-adaptive r-requesters

if KĀ ≥ 4κ log
εdp

εdd
, (112)

(3.) and all models in (Θ̂i)i≥0 produced by (ANoisy-GD, ĀNoisy-GD,Q) on any D0 ∈ Xn, where

Q is any r-requester, have an excess empirical risk err(Θ̂i;Di) = O
(

qd
εdpn2

)
if KA ≥ 4κ log

(
εdpn

2

4qd

)
, and KĀ ≥ 4κ log max

{
5κ,

8εdpr
2

qd

}
. (113)

Proof. (1.) Privacy. By Theorem 25, the Noisy-GD with K iterations will be (q, εdp)-RDP for the
stated choice of loss function, regularizer, and learning rate as long as σ2 ≥ 4qL2

λεdpn2

(
1− e−ληK/2

)
.

Therefore, if we set σ2 = 4qL2

λεdpn2 , Noisy-GD is (q, εdp)-RDP for any K. For the same σ2, both
ANoisy-GD and ĀNoisy-GD are also (q, εdp)-RDP for anyKA andKĀ as they run Noisy-GD on respective
databases for generating the output.

(2.) Deletion. By Theorem 31, for the stated choice of loss function, regularizer, learning rate,
and weight initialization distribution, the algorithm pair (ANoisy-GD, ĀNoisy-GD) satisfies (q, εdd)-

data-deletion under all non-adaptive r-requesters Q if KĀ ≥ 2
ηλ log

(
4qL2

λεddσ2n2

)
. By plugging in

σ2 = 4qL2

λεdpn2 and η = 1
2(λ+β) , this constraint simplifies to KĀ ≥ 4κ log

εdp

εdd
.

(3.) Accuracy. We prove the induction hypothesis that under the conditions stated in the theorem,
err(Θ̂i;Di) ≤ 10κqdL2

λεdpn2 for all i ≥ 0.

Base case: The minimizer θ∗D0
of LD0

satisfies

∇LD0
(θ∗D0

) =
1

n

∑
x∈D0

∇`(θ∗D0
;x)− λθ∗D0

= 0 =⇒
∥∥θ∗D0

∥∥
2
≤ L

λ
. (114)

As a result, the excess empirical risk of initialization weights Θ0 ∼ ρ = N
(

0, σ2

λ(1−ηλ/2)Id

)
on LD0

is bounded as

err(Θ0;D0) = E
[
LD0

(Θ0)− LD0
(θ∗D0

)
]

≤ (λ+ β)

2
E
[∥∥Θ0 − θ∗D0

∥∥2

2

]
(From (λ+ β)-smoothness of LD0

)

=
(λ+ β)

2

[∥∥θ∗D0

∥∥2

2
+ E

[
‖Θ0‖22

]
− 2E

[〈
θ∗D0

,Θ0

〉]]
≤
(

1 +
β

λ

)[
L2

2λ
+

σ2d

2− λη

]
(From (114) and E

[
‖Z‖22

]
= d if Z ∼ N (0, Id).)

≤ κ
[
L2

2λ
+ dσ2

]
.

35



Under review as a conference paper at ICLR 2023

Since Θ̂0 = ANoisy-GD(D0) = Noisy-GD(D0,Θ0,KA), by Lemma 33, running

KA ≥ 2κ log
(
εdpn

2

4qd

)
iterations gives

err(Θ̂0;D0) ≤ err(Θ0;D0)e−ληKA/2 + κdσ2

≤ κ
[
L2

2λ
+ dσ2

]
e−ληKA/2 + κdσ2

≤ κL2

2λ
e−ληKA/2 +

8κqdL2

λεdpn2
(On substituting σ2 = 4qL2

λεdpn2 )

≤ 10κqdL2

λεdpn2
(Since KA ≥ 4κ log

(
εdpn

2

4qd

)
)

Induction step: Assume that err(Θ̂i−1;Di−1) ≤ 10κqdL2

λεdpn2 . Since Θ̂i = ĀNoisy-GD(Di−1, ui, Θ̂i−1) =

Noisy-GD(Di, Θ̂i−1,KĀ), by Lemma 33 and Lemma 32, running KĀ ≥ 2κ log max
{

5κ, 8r2

qd

}
iterations gives

err(Θ̂i;Di) ≤ κ
[
2err(Θ̂i−1;Di−1) +

16r2L2

λn2

]
e−ληKĀ/2 + κdσ2

≤ κ
[

20κqdL2

λεdpn2
+

16r2L2

λn2

]
e−ληKĀ/2 +

4κqdL2

λεdpn2
(Substituting σ2)

≤ 16κr2L2

λn2
e−ληKĀ/2 +

8κqdL2

λεdpn2
(Since KĀ ≥ 4κ log(5κ))

≤ 10κqdL2

λεdpn2
(Since KĀ ≥ 4κ log

8εdpr
2

qd )

G.5 PROOFS FOR SUBSECTION 5.2

In this Appendix, we provide a proof of our data-deletion and utility guarantee in Theorem 7 which
applies to non-convex but bounded losses `(θ;x) under L2 regularizer r(θ). Suppose D0 ∈ Xn is an
arbitrary database, Q is any non-adaptive r-requester, and (Θ̂i)i≥0 is the model sequence generated
by the interaction of (ANoisy-GD, ĀNoisy-GD,Q). Our first goal will be to prove (q, εdd)-data deletion
guarantee on (ANoisy-GD, ĀNoisy-GD) and we will later use it for arguing utility as well. Recall from
Definition 4.1 that to prove (q, εdd)-data-deletion, we need to construct a map πQi : Xn → O such
that for all i ≥ 1 and any ui ∈ Ur,

Rq

(
Ā(Di−1, ui, Θ̂i−1)

∥∥∥πQi (D0 ◦ 〈ind,y〉)
)
≤ εdd for all 〈ind,y〉 ∈ ui. (115)

Our construction of πui for this proof is completely different from the one described in Appendix G.4.
As discussed in Remark 3, since Q is non-adaptive, it suffices to show that there exists a map
π : Xn → O such that for all i ≥ 1,

Rq

(
Ā(Di−1, ui, Θ̂i−1)

∥∥∥π(Di)
)
≤ εdd, (116)

for all D0 ∈ Xn and all edit sequences (ui)i≥1 from Ur.
Our mapping of choice for the purpose is the Gibbs distribution with the following density:

π(D)(θ) ∝ e−LD(θ)/σ2

. (117)

The high-level intuition for this construction is that Noisy-GD can be interpreted as Unadjusted
Langevin Algorithm (ULA) (Roberts & Tweedie, 1996), which is a discretization of the Langevin dif-
fusion (described in eqn. (63)) that eventually converges to this Gibbs distribution (see Appendix G.1
for a quick refresher). However, showing a convergence for ULA (in indistinguishability notions like
Rényi divergence) to this Gibbs distribution, especially in form of non-asymptotic bounds on the
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mixing time and discretization error has been a long-standing open problem. Recent breakthrough
results by Vempala & Wibisono (2019) followed by Chewi et al. (2021) resolved this problem with
an elegant argument, relying solely on isoperimetric assumptions over (117) that hold for non-convex
losses. Our data-deletion argument leverages this rapid convergence result to basically show that
once Noisy-GD reaches near-indistinguishability to its Gibbs mixing distribution, maintaining indis-
tinguishability to subsequent Gibbs distribution corresponding to database edits require much fewer
Noisy-GD iterations than fresh retraining (i.e. data deletion is faster than retraining).

We start by presenting Chewi et al. (2021)’s convegence argument adapted to our Noisy-GD for-
mulation, with a slighlty tighter analysis that results in a log(q) improvement in the discretization
error over the original. Consider the discrete stochastic process (Θηk)0≤k≤K induced by parameter
update step in Noisy-GD algorithm when run for K iterations on a database D with an arbitrary
start distribution Θ0 ∼ µ0. We interpolate each discrete update from Θηk to Θη(k+1) via a diffusion
process Θt defined over time ηk ≤ t ≤ η(k + 1) as

Θt = Θηk − (t− ηk)∇LD(Θηk) +
√

2σ2(Zt − Zηk), (118)

where Zt is a Weiner process. Note that if Θηk models the parameter distribution after the kth

update, then Θη(k+1) models the parameter distribution after the k + 1th update. On repeating this
construction for all k = 0, · · · ,K, we get a tracing diffusion {Θt}t≥0 for Noisy-GD (which is
different from (84)). We denote the distribution of random variable Θt with µt. The tracing diffusion
during the duration ηk ≤ t ≤ η(k + 1) is characterized by the following Fokker-Planck equation.

Lemma 34 (Proposition 14 (Chewi et al., 2021)). For tracing diffusion Θt defined in (118), the
equivalent Fokker-Planck equation in the interval ηk ≤ t ≤ η(k + 1) is

∂tµt(θ) = div

({
E [∇LD(Θηk)−∇LD(Θt)|Θt = θ] + σ2∇ log

µt(θ)

π(D)(θ)

}
µt(θ)

)
, (119)

where π(D) is the Gibbs distribution defined in (117).

Proof. Conditioned on observing parameter Θηk = θηk, the process (Θt)ηk≤t≤η(k+1) is a Langevin
diffusion along a constant Vector field ∇LD(θηk). Therefore, the conditional probability density
µt|ηk(·|θηk) of Θt given θηk follows the following Fokker-Planck equation.

∂tµt|ηk(·|θηk) = σ2∆µt|ηk(·|θηk) + div
(
µt|ηk(·|θηk)∇LD(θηk)

)
(120)

Taking expectation over Θηk, we have

∂tµt(·) =

∫
µηk(θηk)

{
σ2∆µt|ηk(·|θηk) + div

(
µt|ηk(·|θηk)∇LD(θηk)

)}
dθηk

= σ2∆µt(·) + div (µt(·)∇LD(·)) + div

(
µt(·)

∫
[∇LD(θηk)−∇LD(·)]µηk|t(θηk|·)dθηk

)
= σ2div

(
µt(·)∇ log

µt(·)
π(D)(·)

)
+ div

(
E [∇LD(Θηk)−∇LD(·)|Θt = ·]µt(·)

)
,

where µηk|t is the conditional density of Θηk given Θt. For the last equality, we have used the fact
that∇LD = −σ2∇ logπ(D) from (117).

The following lemma provides a partial differential inequality that bounds the rate of change in Rényi
divergence Rq (µt‖π(D)) using Fokker-Planck equation (119) of Noisy GD’s tracing diffusion.

Lemma 35 (Proposition 15 (Chewi et al., 2021)). Let ρt := µt/π(D) where π(D) is the Gibbs
distribution defined in (117) and ψt := ρq−1

t /Eq (ρt‖π(D)). The rate of change in Rq (µt‖π(D))
along racing diffusion in time ηk ≤ t ≤ η(k + 1) is bounded as

∂tRq (µt‖π(D)) ≤ −3qσ2

4

Iq (µt‖π(D))

Eq (µt‖π(D))
+

q

σ2
E
[
ψt(Θt) ‖∇LD(Θηk)−∇LD(Θt)‖22

]
. (121)
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Proof. For brevity, let ∆t(·) = E [∇LD(Θηk)−∇LD(Θt)|Θt = ·] in context of this proof. From
Lebinz integral rule, we have

∂tRq (µt‖π(D)) =
q

(q − 1)Eq (µt‖π(D))

∫ (
µt

π(D)

)q−1

∂tµtdθ

=
q

(q − 1)Eq (µt‖π(D))

∫
ρq−1
t div

({
∆t + σ2∇ log ρt

}
µt
)

dθ (From (119))

= − q

(q − 1)Eq (µt‖π(D))

∫ 〈
∇
(
ρq−1
t

)
,∆t + σ2∇ log ρt

〉
µtdθ

= − q

Eq (µt‖π(D))

∫
ρq−2
t

〈
∇ρt,∆t + σ2∇ρt

ρt

〉
µtdθ

= − q

Eq (µt‖π(D))

σ
2Iq (µt‖π(D)) +

2

q
E
µt

[
ρ
q/2−1
t

〈
∇
(
ρ
q/2
t

)
,∆t

〉]
︸ ︷︷ ︸

def
=F1


(From (40))

Note that the expectation in ∆t(·) is over the conditional distribution µηk|t while the expectation in
F1 is over µt. Therefore, we can combine the two to get an expectation over the unconditional joint
distribution over Θt and Θηk as follows.

−F1 = E
Θt∼µt

[
ρ
q/2−1
t (Θt)

〈
∇
(
ρ
q/2
t

)
(Θt), E

Θηk∼µηk|t
[∇LD(Θt)−∇LD(Θηk)]

〉]
= E

µηk,t

[
ρ
q/2−1
t (Θt)

〈
∇
(
ρ
q/2
t

)
(Θt),∇LD(Θt)−∇LD(Θηk)

〉]
≤ σ2

2q
E
[
ρ−1
t (Θt)

∥∥∥∇(ρq/2t

)
(Θt)

∥∥∥2

2

]
+

q

2σ2
E
[
ρq−1
t (Θt) ‖∇LD(Θt)−∇LBk(Θηk)‖22

]
=
qσ2

8
Iq (ρt‖µ) +

q

2σ2
E
[
ρq−1
t (Θt) ‖∇LD(Θt)−∇LBk(Θηk)‖22

]
(From (40))

Substituting it in the preceding inequality proves the proposition.

We need to solve the PDI (121) to get a convergence bound for Noisy-GD. To help in that, we first
introduce the change of measure inequalities shown in Chewi et al. (2021).

Lemma 36 (Change of measure inequality (Chewi et al., 2021)). If `(θ;x) is β-smooth, and regular-
izer is r(θ) = λ

2 ‖θ‖
2
2, then for any probability density µ on Rd,

E
µ

[
‖∇LD‖22

]
≤ 4σ4 E

π(D)

[∥∥∥∥∇√ µ

π(D)

∥∥∥∥2

2

]
+ 2dσ2(β + λ), (122)

where π(D) is the Gibbs distribution defined in (117).

Proof. Consider the Langevin diffusion (63) described in Appendix G.1 over the potential LD. The
Gibbs distribution π(D) is its stationary distribution, and the diffusion’s infintesimal generator G
applied on the LD gives

GLD = σ2∆LD − ‖∇LD‖22 . (123)
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Therefore,

E
µ

[
‖∇LD‖22

]
= σ2E

µ
[∆LD]− E

µ
[GLD] (From (123))

≤ dσ2(β + λ)−
∫
GLD

(
µ

π(D)
− 1

)
π(D)dθ (From β-smoothness and (71))

= dβσ2(β + λ) +

∫ [
‖∇LD‖22 − σ

2∆LD
]( µ

π(D)
− 1

)
π(D)dθ

= dβσ2(β + λ) +

∫
‖∇LD‖22 (µ− π(D))dθ

+ σ2

∫ 〈
∇LD,∇

[(
µ

π(D)
− 1

)
π(D)

]〉
dθ (From (19))

= dβσ2(β + λ) +

∫
‖∇LD‖22 (µ− π(D))dθ + σ2

∫ 〈
∇LD,−

∇LD
σ2

〉
(µ− π(D))dθ

+ σ2

∫ 〈
∇LD,∇

µ

π(D)

〉
π(D)dθ (Since∇π(D) = −∇LDσ2 π(D))

= dβσ2(β + λ) + 0 + 2σ2

∫ 〈√
µ

π(D)
∇LD,∇

√
µ

π(D)

〉
π(D)dθ

≤ dβσ2(β + λ) +
1

2
E
µ

[
‖∇LD‖22

]
+ 2σ4 E

π(D)

[∥∥∥∥∇√ µ

π(D)

∥∥∥∥2

2

]
(From (20) with a = 2σ2)

Another change in measure inequality needed for the proof is the Donkser-Vardhan variational
principle.
Lemma 37 (Donsker-Vardhan Variational principle (Donsker & Varadhan, 1983)). If ν and ν′ are
two distributions on Rd such that ν� ν′, then for all functions f : Rd → R,

E
θ∼ν

[f(θ)] ≤ KL (ν‖ν′) + log E
θ′∼ν′

[exp(f(θ′))] . (124)

We are now ready to prove the rate of convergence guarantee for Noisy-GD following Chewi et al.
(2021)’s method, but with a more refined analysis that leads to a improvement of log q factor in the
discretization error (compared to the original (Chewi et al., 2021, Theorem 4)).
Theorem 38 (Convergence of Noisy-GD in Rényi divergence). Let constants β, λ, σ2 ≥ 0 and
q,B > 1. Suppose the loss function `(θ;x) is (σ2 log(B)/4)-bounded and β-smooth, and regularizer
is r(θ) = λ

2 ‖θ‖
2
2. If step size is η ≤ λ

64Bq2(β+λ)2 , then for any database D ∈ Xn and any weight
initialization distribution µ0 for Θ0, the Rényi divergence of distribution µηK of output model
ΘηK = Noisy-GD(D,Θ0,K) with respect to the Gibbs distribution π(D) defined in (117) shrinks
as follows:

Rq (µηK‖π(D)) ≤ q exp

(
−ληK

2B

)
Rq (µ0‖π(D)) +

32dηqB(β + λ)2

λ
. (125)

Proof. From (β + λ)-smoothness of loss LD we have that for any ηk ≤ t ≤ η(k + 1),

‖∇LD(Θηk)−∇LD(Θt)‖22 ≤ (β + λ)2 ‖Θηk −Θt‖22

= (β + λ)2
∥∥∥(t− ηk)∇LD(Θηk)−

√
2(t− ηk)σ2Zk

∥∥∥2

2
(From (118))

≤ 2η2(β + λ)2 ‖∇LD(Θηk)‖22 + 4ησ2(β + λ)2 ‖Zk‖22
≤ 4η2(β + λ)2 ‖∇LD(Θηk)−∇LD(Θt)‖22

+ 4η2(β + λ)2 ‖∇LD(Θt)‖22 + 4ησ2(β + λ)2 ‖Zk‖22
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Let ρt := µt
π(D) and ψt := ρq−1

t /Eq (ρt‖π(D)). If η ≤ 1
2
√

2(β+λ)
, we rearrange to get the following

and use it to get the following bound on the discretization error in (121):

E
[
ψt(Θt) ‖∇LBk(Θηk)−∇LD(Θt)‖22

]
≤ 8η2(β + λ)2 E

[
ψt(Θt) ‖∇LD(Θt)‖22

]
︸ ︷︷ ︸

def
=F1

+ 32ησ2(β + λ)2 E
[
ψt(Θt) ‖Zk‖22 /4

]
︸ ︷︷ ︸

def
=F2

.

Hence, for solving the PDI (121), we have to bound the three expectations F1 and F2.

1. BoundingF1. Note that E
Θt∼µt

[ψt(Θt)] =
∫
ψt(θ)µt(θ)dθ = 1

Eq(ρt‖π(D))

∫ µ
q
t

π(D)q−1 dθ = 1.

So, ψtµt(θ) := ψt(θ)µt(θ) is a probablitly density function on Rd. On applying the
measure change Lemma 36 on it, we get

F1 = E
ψtµt

[
‖∇LD‖22

]
≤ 4σ4 E

π(D)

∥∥∥∥∥∇
√
ψtµt
π(D)

∥∥∥∥∥
2

2

+ 2dσ2(β + λ) (From (122))

= 4σ4 E
π(D)


∥∥∥∇√ρqt

∥∥∥2

2

Eq (µt‖π(D))

+ 2dσ2(β + λ)

= σ4q2 Iq (µt‖π(D))

Eq (µt‖π(D))
+ 2dσ2(β + λ). (From (40))

2. Bounding F2. Since ψtµt is a valid density on Rd, the joint density ψtµt,z(θ, z) :=
ψt(θ)µt,z(θ, z) where µt,z is the joint density of Θt and Zk is also a valid density. Note
that the F2 is an expectation on ‖Zk‖22 taken over the joint density ψtµt,z . We can perform
a measure change operation using Donsker-Vardhan principle to get

F2 = E
ψtµt,z

[
‖Zk‖22 /4

]
≤ KL (ψtµt,z‖µt,z) + log E

µz

[
exp(‖Zk‖22 /4)

]
,

where we simplified the second term using the fact that the marginal µz of µt,z is a standard
normal Gaussian. The random variable ‖Zk‖22 is distributed according to the Chi-squared
distribution χ2

d with d degrees of freedom. Since the moment generating function of
Chi-squared distribution is Mχ2

d
(t) = E

X∼χ2
d

[exp(tX)] = (1− 2t)−d/2 for t < 1
2 , we can

simplify the second term in F2 as

log E
µz

[
exp(‖Zk‖22 /4)

]
= log Mχ2

d

(
1

4

)
=
d log 2

2
. (126)

The KL divergence term can be simplified as follows.

KL (ψtµt,z‖µt,z) =

∫ ∫
ψtµt,z(θt, z) logψt(θt)dθtdz

=

∫
ψtµt log

ρq−1
t

Eq (µt‖π(D))
dθt (On marginalization of z)

=
q − 1

q

∫
µtψt log

{
ρqt

Eq (µt‖π(D))
− log Eq (µt‖π(D))

1/(q−1)

}
dθt

=
q − 1

q
{KL (µtψt‖π(D))− Rq (µt‖π(D))}

≤ KL (µtψt‖π(D)) (Since Rq (µt‖π(D)) > 0)
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Note that under the assumptions of the Theorem, π(D) satisfies log-Sobolev inequality (74)
with constant λ/B (i.e. satisfies LS(λ/B)). To see this, recall from Lemma 18 that the
Gaussian distribution ρ(θ) = N

(
0, σ

2

λ Id
)

satisfies LS(λ) inequality. Since loss `(θ;x)

is (σ2 log(B)/4)-bounded, the density ratio π(D)(θ)
ρ(θ) ∈

[
1√
B
,
√
B
]
. The claim therefore

follows from Lemma 20. Using this inequality, from Lemma 21 we have

KL (µtψt‖π(D)) ≤ σ2B

2λ

∫
µtψt

∥∥∥∥∇ log

(
µtψt
π(D)

)∥∥∥∥2

2

dθt

=
σ2B

2λ

∫
ρqt

Eq (µt‖π(D))
‖∇ log(ρqt )‖

2
2 π(D)dθt

=
2σ2B

λ

1

Eq (µt‖π(D))

∫ ∥∥∥∇(ρ
q/2
t )

∥∥∥2

2
π(D)dθt

=
q2σ2B

2λ

Iq (µt‖π(D))

Eq (µt‖π(D))

On combining all the two bounds on F1 and F2 and rearranging, we have

E
[
ψt(Θt) ‖∇LD(Θηk)−∇LD(Θt)‖22

]
≤ 8ηq2σ4(β + λ)2 Iq (µt‖π(D))

Eq (µt‖π(D))

(
η +

2B

λ

)
+ 16ηdσ2(β + λ)2 (η(β + λ) + log 2)

Let step size be η ≤ min
{

2B
λ ,

λ
64Bq2(β+λ)2

}
. Then, the first term above is bounded as

8ηq2σ4(β + λ)2 Iq (µt‖π(D))

Eq (µt‖π(D))

(
η +

2B

λ

)
≤ σ4

2

Iq (µt‖π(D))

Eq (µt‖π(D))
. (127)

Let η ≤ 1
4(β+λ) . Then, in the third term, (η(β + λ) + log 2) ≤ 1. Plugging the bound on discretiza-

tion error back in the PDI (121), we get

∂tRq (µt‖π(D)) ≤ −qσ
2

4

Iq (µt‖π(D))

Eq (µt‖π(D))
+ 16ηdq(β + λ)2. (128)

Since π(D) satisfies LS(λ/B) inequality, from Lemma 23 this PDI reduces to

∂tRq (µt‖π(D)) +
λ

2B

(
Rq (µt‖π(D))

q
+ (q − 1)∂qRq (µt‖π(D))

)
≤ 16dηq(β + λ)2. (129)

Let c1 = λ
2B and c2 = 16dη(β + λ)2. Additionally, let u(q, t) =

Rq(µt‖π(D))
q . Then,

∂tRq (µt‖π(D)) + c1

(
Rq (µt‖π(D))

q
+ (q − 1)∂qRq (µt‖π(D))

)
≤ c2q

=⇒ ∂tRq (µt‖π(D))

q
+ c1

Rq (µt‖π(D))

q
+ c1(q − 1)

(
∂qRq (µt‖π(D))

q
− Rq (µt‖π(D))

q2

)
≤ c2

=⇒ ∂tu(q, t) + c1u(q, t) + c1(q − 1)∂qu(q, t) ≤ c2.
For some constant q̄ ≥ 1, let q(s) = (q̄ − 1) exp(c1(s− ηK)) + 1, and t(s) = s. Note that
dq(s)

ds = c1(q(s) − 1) and dt(s)
ds = 1. Therefore, for any 0 ≤ t ≤ ηK, the PDI above implies the

following differential inequality is followed along the path u(s) = u(q(s), t(s)).

du(s)

ds
+ c1u(s) ≤ c2 =⇒ d

ds
{ec1su(s)} ≤ c2ec1s

=⇒ [ec1su(s)]ηK0 ≤
∫ ηK

0

c2e
c1sds

=⇒ ec1ηKu(ηK)− u(0) ≤ c2(ec1ηK − 1)

c1

=⇒ u(ηK) ≤ e−c1ηKu(0) +
c2
c1

(1− e−c1ηK).
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On reversing the parameterization of q and t, we get

Rq(ηK) (µηK‖π(D)) ≤ q(ηK)

q(0)
e−c1ηKRq(0) (µ0‖π(D)) +

c2
c1
q(ηK)

≤ q(ηK)

q(0)
exp

(
−ληK

2B

)
Rq(0) (µ0‖π(D)) +

32dηB(β + λ)2

λ
q(ηK).

Since q(0) > 1 and q̄ = q(ηK) > q(0), from monotonicity of Rényi divergence in q, we get

Rq̄ (µηK‖π(D)) ≤ q̄ exp

(
−ληK

2B

)
Rq̄ (µ0‖π(D)) +

32dηq̄B(β + λ)2

λ
. (130)

Finally, noting that for constants B, q > 1 and β, λ ≥ 0, step size
η ≤ min{ 1

2
√

2(β+λ)
, 1

4(β+λ) ,
2B
λ ,

λ
64Bq2(β+λ)2 } = λ

64Bq2(β+λ)2 completes the proof.

We will use Theorem 38 for proving the data-deletion and utility gaurantee on (ANoisy-GD, ĀNoisy-GD).
We need the following result that shows that Gibbs distributions enjoy strong indistinguishability on
bounded perturbations to its potential function (which is basically why the exponential mechanism
satisfies (ε, 0)-DP (Wang et al., 2015; Dwork et al., 2014)).
Lemma 39 (Indistinguishability under bounded perturbations). For two potential functions L,L′ :

Rd → R and some constant σ2, let ν ∝ e−L/σ
2

and ν′ ∝ e−L
′/σ2

be the respective Gibbs
distributions. If |L(θ)− L′(θ)| ≤ c for all θ ∈ Rd, then Rq (ν‖ν′) ≤ 2c

σ2 for all q > 1.

Proof. The Gibbs distributions ν,ν′ have a density

ν(θ) =
1

Λ
e−L(θ)/σ2

, and ν′(θ) =
1

Λ′
e−L

′(θ)/σ2

,

where Λ,Λ′ are the respective normalization constants. If for all θ ∈ Rd, the potential difference
|L(θ)− L′(θ)| ≤ c, then

Rq (ν‖ν′) =
1

q − 1
log

∫
νq

ν′q−1
dθ

=
1

q − 1
log

∫ (
Λ′

Λ

)q−1

exp

(
q − 1

σ2
(L′(θ)− L(θ))

)
× ν(θ)dθ

≤ 1

q − 1

{
(q − 1) log

Λ′

Λ
+ log exp

(
c(q − 1)

σ2

∫
νdθ

)}

=
1

q − 1

(q − 1) log

∫
exp

(
−L(θ)

σ2 + L(θ)−L′(θ)
σ2

)
dθ∫

exp
(
−L(θ)

σ2

)
dθ

+
c(q − 1)

σ2


≤ 2c

σ2
.

In Theorem 7, we show that (ANoisy-GD, ĀNoisy-GD) solves the data-deletion problem described in
Section 4 even for non-convex losses. Our proof uses the convergence Theorem 38 and indistin-
guishability for bounded perturbation Lemma 39 to show that the data-deletion algorithm ĀNoisy-GD
can consistently produce models indistinguishable to the corresponding Gibbs distribution (117) in
the online setting at a fraction of computation cost of ANoisy-GD. As discussed in Remark 3, such
an indistinguishability is sufficient for ensuring data-deletion for non-adaptive requests. As for
adaptive requests, the well-known RDP guarantee of Abadi et al. (2016) combined with our reduction
Theorem 5 offers a data-deletion guarantee for (ANoisy-GD, ĀNoisy-GD) under adaptivity.

Our proof of accuracy for the data-deleted models leverages the fact that Gibbs distribution (117)
is an almost excess risk minimizer as shown in the following Theorem 40. Since our data-deletion
guarantee is based on near-indistinguishability to (117), this property also ensures near-optimal
excess risk of data-deleted models.
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Theorem 40 (Near optimality of Gibbs sampling). If the loss function `(θ;x) is σ2 log(B)/4-
bounded and β-smooth, the regularizer is r(θ) = λ

2 ‖θ‖
2
2, then the excess empirical risk for a model

Θ̄ sampled from the Gibbs distribution π(D) ∝ e−LD/σ2

is

err(Θ̄;D) = E
[
LD(Θ̄)− LD(θ∗D)

]
≤ dσ2

2

(
log

β + λ

λ
+
√
B

)
. (131)

Proof. We simplify expected loss as

E
[
LD(Θ̄)

]
=

∫
LDπ(D)dθ = σ2(H(π(D))− log(ΛD)), (132)

where

H(π(D)) = −
∫

π(D) logπ(D)dθ = −
∫
e−LD/σ

2

ΛD
log

e−LD/σ
2

ΛD
dθ (133)

is the differential entropy of π(D), and ΛD =
∫
e−LD/σ

2

dθ is the normalization constant. Since the
potential function LD is (λ+ β)-smooth, we have

−σ2 log(ΛD) = −σ2 log

∫
e−LD/σ

2

dθ

= LD(θ∗D)− σ2 log

∫
e(LD(θ∗D)−LD(θ))/σ2

dθ

≤ LD(θ∗D)− σ2 log

∫
e−(β+λ)‖θ−θ∗D‖

2
2/2σ

2

dθ

= LD(θ∗D)− dσ2

2
log

(
2πσ2

λ+ β

)
.

Since `(θ;x) is σ2 log(B)/4-bounded, note that for the Gaussian distribution ρ ∼ N
(

0, σ
2

λ Id
)

, the

density ratio lies in π(D)(θ)
ρ(θ) ∈

[
1√
B
,
√
B
]

for all θ ∈ Rd. We decompose entropy H(π(D)) into
cross-entropy and KL divergence to get

H(π(D)) = −
∫

π(D) log ρdθ −KL (π(D)‖ρ)

≤ −
∫

π(D) log

[(
λ

2πσ2

)d/2
e−

λ‖θ‖22
2σ2

]
dθ (Since KL (π(D)‖ρ) ≥ 0)

=
d

2
log

2πσ2

λ
+

λ

2σ2

∫
‖θ‖22 π(D)(θ)dθ

≤ d

2
log

2πσ2

λ
+
λ
√
B

2σ2

∫
‖θ‖22 ρ(θ)dθ (Since π(D)(θ)

ρ(θ) ∈
[

1√
B
,
√
B
]
)

=
d

2
log

2πσ2

λ
+
d
√
B

2
.

On combining the bounds, we get

err(Θ̄;D) = E
[
LD(Θ̄)− LD(θ∗D)

]
≤ dσ2

2

(
log

β + λ

λ
+
√
B

)
. (134)

Theorem 7 (Accuracy, privacy, deletion, and computation tradeoffs). Let constants λ, β, L, σ2, η > 0,
q,B > 1, and 0 < εdd ≤ εdp < d. Let the loss function `(θ;x) be σ2 log(B)

4 -bounded, L-Lipschitz
and β-smooth, the regularizer be r(θ) = λ

2 ‖θ‖
2
2, and the weight initialization distribution be

ρ = N
(

0, σ
2

λ Id
)

. Then,
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(1.) both ANoisy-GD and ĀNoisy-GD are (q, εdp)-RDP for any η ≥ 0 and any KA,KĀ ≥ 0 if

σ2 ≥ qL2

εdpn2
· ηmax{KA,KĀ}, (135)

(2.) pair (ANoisy-GD, ĀNoisy-GD) satisfy (q, εdd)-data-deletion under all non-adaptive r-requesters
for any σ2 > 0, if learning rate is η ≤ λεdd

64dqB(β+λ)2 and number of iterations satisfy

KA ≥
2B

λη
log

(
q log(B)

εdd

)
, KĀ ≥ KA −

2B

λη
log

(
log(B)

2
(
εdd + r

n log(B)
)) , (136)

(3.) and all models in sequence (Θ̂i)i≥0 output by (ANoisy-GD, ĀNoisy-GD,Q) on any D0 ∈ Xn,

where Q is an r-requester, satisfy err(Θ̂i;Di) = Õ

(
dq

εdpn2 + 1
n

√
qεdd

εdp

)
when inequalities

in (136) and (135) are equalities.

Proof. (1.) Privacy. By Theorem 24, Noisy-GD with K iterations on an L-Lipschitz loss function
satisfies (q, εdp)-RDP for any initial weight distribution ρ and learning rate η ≥ 0 if σ2 = qL2

εdpn2 ·ηK.
Since, both ANoisy-GD and ĀNoisy-GD run Noisy-GD for KA and KĀ iterations respectively, setting the
noise variance given in the Theorem statement ensures (q, εdp)-RDP for both.

(2.) Deletion. For showing data-deletion under non-adaptive requests, recall that it is sufficient to
show that there exists a map π : Xn → O such that for all i ≥ 1,

Rq

(
Ā(Di−1, ui, Θ̂i−1)

∥∥∥π(Di)
)
≤ εdd, (137)

for all edit sequences (ui)i≥1 from Ur, where (Θ̂i)i≥0 is the sequence of models generated by the
interaction of (ANoisy-GD, ĀNoisy-GD,Q) on any database D0 ∈ Xn. For all i ≥ 0, let µ̂i denote the
distribution of Θ̂i. We prove (137) via induction.

Base step: Note that the initial weight distribution ρ = N
(

0, σ
2

λ Id
)

has a density proportional to

e−r(θ)/σ2

and the distribution π(D0) has a density proportional to e−LD0
(θ)/σ2

. Since both of these
are Gibbs distributions with their potential difference |LD0

(θ)− r(θ)| ≤ σ2 log(B)/4 for all θ ∈ Rd
due to boundedness assumption on `(θ;x), we have from Lemma 39 that

Rq (ρ‖π(D0)) ≤ 2

σ2
× σ2 log(B)

4
=

log(B)

2
. (138)

Under the stated assumptions on loss `(θ;x) and learning rate η, note that the convergence Theo-
rem 38 holds. Since Θ̂0 = ANoisy-GD(D0) = Noisy-GD(D0,Θ0,KA), where Θ0 ∼ ρ, we have

Rq (µ̂0‖π(D0)) ≤ q exp

(
−ληKA

2B

)
Rq (ρ‖π(D0)) +

32dηqB(β + λ)2

λ

≤ q exp

(
−ληKA

2B

)(
log(B)

2

)
+
εdd

2
(Since η ≤ λεdd

64dqB(β+λ)2 )

≤ εdd (Since KA ≥ 2B
λη log

(
q log(B)
εdd

)
)

Induction step: Suppose Rq (µ̂i−1‖π(Di−1)) ≤ εdd. Again, from boundedness of `(θ;x), we have
|LDi−1(θ)− LDi(θ)| ≤

rσ2 logB
2n for all θ ∈ Rd. Therefore, from Lemma 39 we have for all q > 1

that

Rq (π(Di−1)‖π(Di)) ≤
r log(B)

n
. (139)

So from the weak triangle inequality Theorem 17 of Rényi divergence,

Rq (µ̂i−1‖π(Di)) ≤ Rq (µ̂i−1‖π(Di−1)) + R∞ (π(Di−1)‖π(Di)) ≤ εdd +
r log(B)

n
. (140)
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Note that KĀ ≥ KA − 2B
λη log

(
log(B)

2(εdd+ r
n log(B))

)
≥ 2B

λη log

(
2q(εdd+ r

n log(B))
εdd

)
. Since

Θ̂i = ĀNoisy-GD(Di−1, ui, Θ̂i−1) = Noisy-GD(Di, Θ̂i−1,KĀ), from convergence Theorem 38 we
have

Rq (µ̂i‖π(Di)) ≤ q exp

(
−ληKĀ

2B

)
Rq (µ̂i−1‖π(Di)) +

32dηqB(β + λ)2

λ

≤ q exp

(
−ληKĀ

2B

)(
εdd +

r log(B)

n

)
+
εdd

2

(From (140) and constraint η ≤ λεdd

64dqB(β+λ)2 )

≤ εdd. (Since KĀ ≥ 2B
λη log

(
2q(εdd+ r

n log(B))
εdd

)
)

Hence, by induction, Rq (µ̂i‖π(Di)) ≤ εdd holds for all i ≥ 0.

(3.) Accuracy. Let θ∗Di = arg min
θ∈Rd

LDi(θ), and Θ̄i ∼ π(Di). We decompose the excess empirical

risk of Noisy-GD as follows:

err(Θ̂i;Di) = E
[
LDi(Θ̂i)− LDi(Θ̄i)

]
+ E

[
LDi(Θ̄i)− LDi(θ∗Di)

]
. (141)

The second term is the suboptimality of Gibbs distribution and by Theorem 40, it is bounded as

E
[
LDi(Θ̄i)− LDi(θ∗Di)

]
≤ dσ2

2

(
log

β + λ

λ
+
√
B

)
. (142)

Due to L-Lipschitzness and (λ+ β)-smoothness of LDi , for any coupling Π of Θ̂i and Θ̄i, the first
term is bounded as

E
[
LDi(Θ̂i)− LDi(Θ̄i)

]
≤ E

Π

[〈
∇LDi(Θ̄i), Θ̂i − Θ̄i

〉
+
λ+ β

2

∥∥∥Θ̂i −Θi

∥∥∥2

2

]
≤ L

√
E
Π

[∥∥∥Θ̂i − Θ̄i

∥∥∥2

2

]
+
λ+ β

2
E
Π

[∥∥∥Θ̂i − Θ̄i

∥∥∥2

2

]
.

(From Jensen’s inequality)

Recall that the distribution π(D) satisfies LS(λ/B) inequality. On choosing the coupling Π to be the
infimum, we get the following bound on Wasserstein’s distance from Lemma 22.

inf
Π

√
E

Θ̂i,Θ̄i∼Π

[∥∥∥Θ̂i − Θ̄i

∥∥∥2

2

]
= W2

(
Θ̂i, Θ̄i

)
≤
√

2Bσ2

λ
KL (µi‖π(Di)) ≤

√
2εddBσ2

λ
.

(143)

The last inequality above follows from monotonicity of Rényi divergence in q and the fact that
limq→1 Rq (ν‖ν′) = KL (ν‖ν′). Therefore, on combining all the bounds we get

err(Θ̂;D) ≤ Lσ
√

2εddB

λ
+
εddBσ

2(λ+ β)

λ
+
dσ2

2

(
log

β + λ

λ
+
√
B

)
= O

(
σ
√
εdd + dσ2

)
.

(144)
Note that if the constraints on KA and KĀ in (136) and on σ2 in (135) are equalities instead, we have

σ2 =
2qBL2

λεdpn2
log

(
q log(B)

εdd

)
= Õ

(
q

εdpn2

)
, (145)

where Õ(·) hides logarithmic factors. Therefore, the excess empirical risk has an order

err(Θ̂;D) = Õ

(
1

n

√
qεdd

εdp
+

dq

εdpn2

)
. (146)
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