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Abstract

Recent advances in diffusion models have revolutionized text-guided image editing,
yet existing editing methods face critical challenges in hyperparameter identifica-
tion. To get the reasonable editing performance, these methods often require the
user to brute-force tune multiple interdependent hyperparameters, such as inversion
timesteps and attention modification, etc. This process incurs high computational
costs due to the huge hyperparameter search space. We consider searching op-
timal editing’s hyperparameters as a sequential decision-making task within the
diffusion denoising process. Specifically, we propose a reinforcement learning
framework, which establishes a Markov Decision Process that dynamically ad-
justs hyperparameters across denoising steps, integrating editing objectives into
a reward function. The method achieves time efficiency through proximal policy
optimization while maintaining optimal hyperparameter configurations. Experi-
ments demonstrate significant reduction in search time and computational overhead
compared to existing brute-force approaches, advancing the practical deployment
of a diffusion-based image editing framework in the real world. Codes can be
found at https://github.com/chaupham1709/AutoEdit.git.

1 Introduction

Image generation has recently witnessed remarkable advancements through diffusion mod-
els [13, 34, 3, 32, 36], driving a growing interest in their broad applicability. Within this domain,
prompt-to-prompt image editing [12, 5, 4, 16, 45, 26, 14, 8] has emerged as a critical subfield focused
on modifying image content according to textual instructions. This task focuses on achieving two
essential objectives: (1) precisely aligning the modified image with the editing prompt, while (2) mini-
mizing unnecessary alterations to the original content beyond those required by the editing instruction.
Maintaining this delicate balance between instruction alignment and background preservation is the
primary challenge.

Despite notable advancements, current image editing methods [5, 12, 39, 15, 16, 17] suffer from
a heavy reliance on manual hyperparameter identification during the editing process. These hy-
perparameters span multiple dimensions: inversion timestep configuration [39, 15, 11], attention
modulation mechanisms [12, 16] (including layer-wise modification and semantic reweighting), and
feature blending coefficients [17, 11]. As empirically demonstrated in [45], the optimal hyperpa-
rameter combination exhibits strong sensitivity across different images. This requires exhaustive
trial-and-error iterations to identify optimal hyperparameter sets that simultaneously satisfy two
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Figure 1: Optimal hyperparameters vary significantly across images: The cat image achieves
best editing at step 30 while the bird requires step 40 in timestep experiments, with similar variance
observed in P2P [12] cross-attention ratios. Our AutoEdit automatically identifies near-optimal
configurations across these parameters, matching manual search performance (last column).

criteria: (1) achieving instruction-aligned editing results while (2) preserving original background.
Such a hyperparameter search introduces significant computational overhead and creates substantial
usability barriers for non-expert users, as evidenced by our quantitative illustration in Figure 1.

Previous work OIR [45] optimize the value of hyperparameter "inversion timestep r" , which is the
maximum timestep we try to invert image in editing process, for each pair (input images, edit prompt)
to obtain better editing result. Specifically, OIR proposes a brute-force search strategy that evaluates
all possible r ∈ {1, 2, . . . , T} (T is total denoising step) and selects the optimal r∗ to achieve the
highest editing score. Furthermore, this approach requires T denoising processes per editing sample,
which consume O(T 2) number of functional evaluation (NFEs). This method becomes impractical
when T is large, which is around 50 or 100 in case of editing process. However, OIR only focuses on
choosing hyperparameter r while neglecting other critical hyperparameters.

For each editing method, we define a hyperparameter set H = {h1, h2, ..., hK}, consisting of K
distinct hyperparameters. Assuming each hk can take on N possible values, a brute-force search for
the optimal configuration incurs a computational complexity ofO(TNK), which is impractical in real-
world scenarios. To address this, we propose an efficient hyperparameter identification framework that
reduces the search complexity from exponential O(TNK) to linear O(T ). Conceptually, a diffusion-
based editing process can be viewed as a denoising procedure influenced by the hyperparameter
set H. This perspective allows us to formulate the editing process as RL-driven Markov Decision
Process (MDP). Specifically, each denoising step t = T → 1 corresponds to a state st = (xt, t),
where xt is the noisy latent at timestep t. We treat each hyperparameter hk as a sequence {hk

t }t=T→1,
and collectively, Ht = {hk

t }Kk=1 represents a set of parallel actions taken at state st. The reward
function is designed to integrate two essential editing criteria: prompt alignment and background
preservation. Optimization is performed using Proximal Policy Optimization (PPO) [37]. At each
timestep t, the learned policy selects the optimal hyperparameter setHt, which is directly applied
during editing process. As the result, our technique could save the user from heuristically choosing
hyperparamenter.

Our core contributions are threefold: (1) First formulating optimal hyperparameter identification
as a key challenge in diffusion-based editing, exposing the computational bottleneck O(TNk) of
brute force search; (2) A reinforcement learning framework that unifies hyperparameter identification
with standard denoising, achieving efficient O(T ) optimal hyperparameter search; (3) Empirical
validation showing that our method nearly achieves optimal hyperparameter while reducing search
time by around three times versus brute-force baselines.

2 Related work

Text-prompted Image Editing. Text-based image editing [4, 5, 12, 8, 11, 40, 38, 31] modifies image
content based on editing instructions, aiming to generate edited images that faithfully adhere to the

2



editing prompts while preserving most original background from the source image. While Generative
Adversarial Networks (GANs) [27, 21, 43] achieved partial success in domain-specific datasets (e.g.,
facial images), they struggle with text-based editing due to low performance of text-to-image GAN.
This limitation has been substantially addressed by pretrained text-to-image diffusion models [34],
which have enabled the emergence of sophisticated editing frameworks [4, 5, 12, 8, 11, 40, 38, 31]
through three principal paradigms: (1) prompt-to-prompt manipulation [5, 12, 15, 16, 17, 45],
(2) instruction-based editing [4, 14, 31], and (3) image personalization [35, 9]. However, existing
methods require brute-force search for optimal editing hyperparameters, which is a non-trivial process
due to extensive trial-and-error iterations. Motivated from reinforcement learning in improving image
generation [24, 10, 46, 29], we propose an RL framework for searching optimal hyperparameter in
text-based image editing.

RL in Image Generation. Recent works have demonstrated reinforcement learning (RL) as a
powerful paradigm for enhancing text-to-image generation [41, 23, 7, 29]. Pioneering works [24,
10, 46, 29] establish RL frameworks that optimize text prompts through iterative reward feedback,
effectively aligning the generated images with the aesthetic score and semantic metric. By designing
domain-specific reward mechanisms, these methods could effectively generate high quality images
aligning with reward function. Inspired by this line of research but differently, we propose formulating
an RL environment for the image editing problem to identify the optimal hyperparameters.

3 Method

3.1 Preliminaries

Diffusion Models. Diffusion Models [13, 28, 39, 34] generate images by iteratively denoising
Gaussian noise. They consist of:

Forward Process: Add noise to a clean image x0 over T steps:

xt ∼ N
(√

αt x0, (1− αt)I
)
,

with αt decreasing from 1 to 0, thus xT ∼ N (0, I).

Reverse Process: Learn backward transitions

p(xt−1 |xt) = N
(
xt−1;µθ(xt, t), σ

2
t I
)
,

where
µθ(xt, t) =

1√
αt

(
xt − ϵθ(xt, t)

1−αt√
1−αt

)
, αt =

αt

αt−1
.

The noise prediction network ϵθ is trained by

Lsimple = Ex0, ϵ∼N (0,I), t

∥∥ϵ− ϵθ(xt, t)
∥∥2
2
.

Image Editing. Image editing [5, 12, 45, 17, 40, 1] modifies images to align with editing prompts
while preserving background. Under the prompt-to-prompt edit setting, we denote the source image
Isrc, source prompt psrc, edit prompt pedit, and edit region mask M .

The editing pipeline contains two stages: 1. Inversion: From source image Isrc and source prompt
psrc, we extract noise set using an inversion technique. 2. Denoising: Using the editing prompt pedit
and extracted noise set, we gradually denoise the edited image Iedit. During the above denoising
stage, the users often need to search for optimal hyperparameter (e.g. attention weights, inversion
steps) to obtain the edited image aligning to pedit and preserving background. Formally, for editing
method E with hyperparameter setH, we need to find

H∗ = argmin
H
D
(
Iedit(E(Isrc, pedit,H)), Itarget

)
,

where D measures how well Iedit matches the edit criteria.

Proximal Policy Optimization (PPO). PPO [37] is a popular and reliable method in Reinforcement
Learning, and is widely applied in LLM training [30], prompt optimization [24, 10]. PPO is a policy
gradient method, where the policy model is updated by the expected gradient of the policy output
and the advantage. The common technique in Policy Gradient is to train two seperate networks for
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Figure 2: Top: Overview of the proposed AutoEdit framework. A policy model is injected to predict
the step-wise hyperparameterHt at each denoising step t. The predictedHt is used with the one-step
denoising function g and current state xt to estimate xt−1. Bottom: Architecture of the policy
model. Features from the U-Net encoder under the original and edited prompts are extracted and
concatenated, followed by several trainable layers to predict the policy output.

estimating the policy output πθ (policy model) and the other network to estimate the reward to go Vτ

(value model). In PPO, the policy model is updated by:

L(θ) = Et[min(rtAt, clip(rt, 1− ϵ, 1 + ϵ)At)]

where At is the advantage computed at time t of the rollout process, and rt =
πθ(at|st)

πθold(at|st)
is the ratio

between current and old policy. The value model is updated by:

L(τ) = Et[(Vτ (st)− R̂t)
2]

where R̂t is the expected return, which can be computed through the GAE method.

Hyperparameter Selection. Given specific pedit and Isrc, editing performance heavily depend
on hyperparametersH. Naive trial-and-error tuning runs denoising for eachH, which is infeasible
as k grows. Previous methods like OIR [45] perform T editing trials for r ∈ {1, 2, ..., T}, but (1)
searching cost scales to O(T 2) NFEs and (2) they tune the only hyperparameter: the inversion
timestep. We introduce AutoEdit, a single-pass denoising framework that efficiently findsH∗.

3.2 AutoEdit: Automated Hyperparameter Identification

3.2.1 RL Environment Formulation

We formulate the problem of optimizing hyperparameters as a RL task by integrating the RL frame-
work into the diffusion denoising process. In this section, we define the key components of the RL
environment:

State. In RL environment, we define st = (xt, t) as the state, with xt is noisy latent at time
t = T → 1. The initial state is sT = (xT , T )

Action. At each state st at timestep t, selecting a hyperparameter configuration is treated as an
action. Given a set of K hyperparametersH = {h1, h2, . . . , hK}, we aim to determine the optimal
configurationHt = {hk

t }Kk=1 at every st to maximize editing performance. This naturally leads us
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to model each hyperparameter hk as a temporal sequence {hk
t }t=T→1 across the editing trajectory.

As a concrete example, consider the case where H = {r}, with r denoting the inversion timestep.
The editing process can be divided into two consecutive stages: denoising from T to r using the
source prompt psrc, followed by denoising from r to 1 using the edit prompt pedit. In this formulation,
choosing r is equivalent to defining a prompt sequenceHt = {ht}, where ht ∈ {psrc, pedit} depending
on whether t > r or t ≤ r. Other hyperparameters can be similarly represented as time-dependent
sequences similar the inversion timestep r, as elaborated in the Appendix. Therefore, at each timestep
t, the configuration Ht constitutes a set of parallel actions over all K hyperparameters at state st,
enabling flexible and fine-grained control throughout the editing process. Once the hyperparameter
configurationHt is defined, the next state xt−1 can be found by applying the diffusion denoising step
xt−1 = g(xt, t,Ht), where g is one-step denoising function.

Reward. We define the reward function to align with the measure D, which is computed from the
edited image Iedit based on two editing criteria: background preservation and prompt alignment.

Background preservation. The background region, defined as the area outside the editing mask M ,
should remain consistent with the original image Isrc. We employ the mean squared error (MSE)
to quantify this consistency since it is susceptible to subtle pixel-level changes. The background
preservation reward is formulated as:

Rnoedit = −MSE((1−M)⊙ Isrc, (1−M)⊙ Iedit), (1)

where ⊙ denotes element-wise multiplication.

Prompt Alignment. The content within the mask M of the edited image Iedit should be semantically
aligned with the edit prompt pedit. We measure this alignment using the CLIP score [33], which
computes the semantic similarity between the CLIP embeddings of the edited image and the text
prompt. Denote Redit as the reward of the prompt alignment.

The total reward is computed as a weighted combination of the prompt alignment and background
preservation rewards:

R(H, Isrc, psrc, pedit) = αRedit + βRnoedit, (2)

where α and β are coefficients that govern the trade-off between edit effectiveness and background
preservation. Empirically, we set α = β = 30 as the default configuration to achieve an optimal
equilibrium between the two objectives. This balanced weighting ensures robust alignment with
the edit prompt while minimizing undesired alterations to the background. The sensitivity of model
behavior to variations in α and β, along with further analysis of this trade-off, is detailed in Section 4.4.

Global editing and small region editing For global editing tasks, such as style transfer, we set the
mask to M = 1 across the entire image and define the reward as R = Redit, following the evaluation
protocol of the PieBench dataset. For small region editing, such as changing eye color, the CLIP score
reward is less effective on small regions. To address this, we incorporate a Large Vision-Language
Model (LVLM) to compute prompt alignment rewards. Specifically, for each edited image, given the
original and edited prompts, we pose a question related to the editing instruction and let the model
select the correct answer from multiple choices. The reward is defined as the total number of correct
answers. We provide the ablation study and the effectiveness of using LVLM as the reward compared
to the CLIP score reward in section 4.4.

Termination. The RL process terminates upon completing all T denoising steps. We employ
Proximal Policy Optimization (PPO) [37] for training, which comprises two core components: 1)
a policy model πθ(st) = πθ(xt, t) that estimates action probabilities given states st, and 2) a value
model Vτ (xt, t) that predicts state rewards. Additional implementation details are provided in
Section 3.2.3.

We frame hyperparameter optimization as a reinforcement learning problem where each denoising
timestep corresponds to a unique state. This formulation induces an exponential state space growth
(NT possible states), where N represents the possible value of state. To address the challenge
of this huge state space while leveraging the constrained range of the hyperparameters in image
editing, we propose a two-phase RL strategy: Phase 1 - Pretraining: The policy is pretrained
using hyperparameters randomly sampled from a predefined prior distribution. This constrains
exploration to a promising subspace, significantly reducing state space complexity. The resulting
model πθ1 serves as initialization for subsequent learning. Phase 2 - Online Learning: Starting
from πθ1 , the policy πθ2 engages in environment interactions while continuously optimizing through
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reward maximization. This stage enables optimal hyperparameter searching within the constrained
hyperparameter space from Phase 1.

3.2.2 Phase 1 - Policy Initialization

In image editing, we exploit known priors for each hyperparameter, e.g., inversion timesteps [15]
commonly in [20, 45] or attention-replacement ratios [12] commonly in [0.2, 0.8]. Let p0(H) denote
these priors overH = {HT , . . . ,H1}. We train the policy model πθ to align its outputs with p0 by
minimizing the objective function:

θ1 = argmin
θ

EH∼p0(H)

[
1

T

T∑
t=1

L1

(
πθ(xt, t), Ht

)]
, (3)

where L1 penalizes deviation from the sampledHt.

3.2.3 Phase 2 - Hyperparameters Identification

During online exploration, at each denoising step t, the policy samplesHt ∼ πθ(xt, t) (see Figure 2).
This action reconstructs the previous latent xt−1 = g(xt, t,Ht), advancing the denoising process.
The full hyperparameter sequenceH = {HT , . . . ,H1} yields the edited image Iedit, from which we
compute a reward R in equation 2. We then update the policy by minimizing the following objective:

L2 = −E Ht∼πθ(xt,t)
(Isrc,psrc,pedit)∼pdata

[
R(H, Isrc, psrc, pedit)− η DKL

]
, (4)

where pdata is the data distribution, and DKL regularizes the current policy Aθ2 against the stage-1
policy πθ1 [30, 24, 20]. SinceHt ∼ πθ(xt, t), we only require O(1) for each denoising step, resulting
in O(T ).
We also train the value model Vτ to predict the cumulative reward at each state by minimizing the
error between its estimation and the actual return. In PPO fashion, the policy πθ and value model Vτ

are alternately optimized to maximize expected cumulative reward. (More information of training
and testing phases could be found in the Appendix)

3.2.4 Network Design

We treat each pair (xt, t) as an RL state. We condition the policy on xt, timestep t, and prompts
psrc, pedit since the optimial hyperparameters depend on the provided prompts, which match with the
U-Net input. A pretrained U-Net Encoder Uω extracts two features fsrc = Uω(xt, t, psrc), fedit =
Uω(xt, t, pedit). These feature maps are concatenated, then passed through a 2× 2 convolution and
spatial average pooling layer to yield fcat. Timestep t is encoded sinusoidally and linearly projected
to ft. We concatenate [fcat; ft], process it with two ReLU-activated fully connected layers, then
use K separate linear heads to predict K hyperparameters. The value model shares this backbone
architecture but output a single scalar output. Only the newly added layers are trained (see Fig. 2).

4 Experiment

4.1 Dataset Setup

Our training data originates from the EditBench collection [22], with task selection strictly aligned to
PieBench [16] benchmark objectives. To establish a coherent framework for prompt-to-prompt editing,
each training datapoint requires four elements: the original image, the original prompt (generated
by ChatGPT based on image content), the edit prompt (derived through ChatGPT analysis of edited
images and instruction prompts), and the edit mask (object segmentation via SAM [19]). This curation
process involves three systematic steps: Object Localization: ChatGPT extracts target editing
objects from instruction prompts through cross-modal analysis. Prompt Engineering: Dual prompts
(original/edited) are synthesized by ChatGPT using image-object contextual relationships. Mask
Generation: SAM precisely segments identified objects from original images. The resulting dataset
contains 2,000 rigorously annotated samples. For evaluation, we adopt the PieBench dataset [16],
which contains 700 samples across diverse editing scenarios, ensuring comprehensive capability
assessment.
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4.2 Implementation Details

We choose denoising step T = 50 by default. During Phase-1 training, we implement parameter
initialization policies based on different editing method requirements. 1) For methods requiring
inversion timestep searching, we randomly sample the inversion timestep within the range of 0.35−
0.95 of the total denoising timesteps T ; 2) For methods involving cross-attention or self-attention
replacement ratios, we initialize these parameters by uniform sampling from their default range of
0.2 − 0.8; 3) For scalar hyperparameters (e.g., attention weights in [12]), we instruct the policy
model to predict their default values. More details of the prior for each type of hyperparameter can
be found in the Appendix. In Phase-2, we integrate the Phase-1 model into the training framework
to compute the KL divergence term DKL in Equation 4, following the implementation strategies
in [24, 30]. Both policy and value models are optimized using Adam [18] with a fixed learning rate
of 5× 10−5. For the reward function configuration, we set the coefficients α = 30 and β = 30 as
default values unless otherwise specified. Consistent with prior works [24, 30], the KL divergence
coefficient remains γ = 0.02 across all experiments.

4.3 AutoEdit Improves the Performance over Other Methods

Baselines. We evaluate AutoEdit across multiple image editing frameworks, including training-
free methods such as DDIM-Inversion [39], DDPM-Inversion [15], PnP-Inversion [16], Prompt-to-
Prompt [12], MasaCtrl [5], and Null-text Inversion [25], as well as training-based methods such as
InstructPix2Pix [4] and UltraEdit [47]. Our experiments span a variety of base models, including SD
1.4, SD 1.5, SDXL, and DiT. The hyperparameter settings for each method such as inversion timestep
ranges and attention replacement ratios are systematically reported in the Appendix.

Metrics. Following the PieBench benchmark [16], our evaluation protocol measures four key
aspects of editing performance: (i) structural consistency, quantified by Structure Distance (SD); (ii)
background preservation, assessed with classical metrics including PSNR, SSIM, MSE, and LPIPS;
and (iii) semantic alignment, evaluated via CLIP scores (ViT-B/32) computed separately for edited
regions and full images. To further validate the quality of edits, particularly on small regions, we
additionally incorporate an evaluation based on the judgment of a Large Vision-Language Model
(LVLM), referred to as the LLM Score. For each image and its corresponding editing instruction, the
LVLM is prompted with a question derived from the instruction, and its response is used to quantify
editing quality. Details of question construction and the LLM Score evaluation protocol are provided
in the Appendix.

Quantitative Results. We present the main experimental results in Table 1. We report the best
performance for the baseline methods with the hyperparameter configuration that yields the highest
reward. For DDIM Inversion [39] and DDPM Inversion [15], the best configuration of the inversion
timestep r is 35 and 40, respectively. Under these configurations, the models achieve high CLIP
scores but struggle with maintaining background consistency. When integrated with AutoEdit, both
methods demonstrate significantly improved background preservation, accompanied by only a slight
drop in CLIP scores. We contend that this minor decrease has minimal impact on editing fidelity due
to the inherent insensitivity of the CLIP metric. Moreover, these methods inherently face a trade-off
between editing fidelity and background preservation. Our proposed reward addresses this issue
by offering a more balanced assessment of editing performance. Additional visual evidence of this
trade-off is provided in the Appendix. Furthermore, AutoEdit consistently improves performance
on the LLM Score metric for both inversion-based methods [39, 15]. For P2P [12], PnP [16], and
MasaCtrl [5], AutoEdit leads to enhanced performance in both background preservation and CLIP
editing scores, underscoring its effectiveness in guiding hyperparameter identification.

We further evaluate training-based approaches, including InstructPix2Pix [4] and UltraEdit [47], by
applying AutoEdit to adaptively determine the CFG coefficient during the denoising process. Com-
pared to the default fixed value of 7.5, the adaptive CFG strategy improves background preservation
metrics while maintaining prompt alignment performance.

Our experiments span a diverse set of editing methods and base models, demonstrating the general-
ization of AutoEdit. More results of AutoEdit on flow-based editing method is in Table 6.

Qualitative Results. We present qualitative results in Figure 3. For each baseline, we visualize the
output generated using its default hyperparameters, as specified in Table 1. Overall, AutoEdit consis-
tently improves the performance of all editing methods by selecting more suitable hyperparameter
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Table 1: The comparison with popular image editing methods. Note that AutoEdit enables
improvement over baselines with only negligible cost.

Method Base Structure Background Preservation CLIP Score LLM
Model Distance ↓ PSNR ↑ SSIM ↑ MSE ↓ LPIPS ↓ Edited ↑ Whole ↑ Score

DDIM-Inversion [39] SD 1.4 38.10 21.36 76.67 103.95 146.60 23.30 26.31 0.96
+ AutoEdit 18.74 24.65 81.28 52.94 95.10 22.65 25.72 1.12

DDPM-Inversion [15] SD 1.4 22.12 22.66 78.95 53.33 67.66 23.02 26.22 1.03
+ AutoEdit 12.65 27.25 85.17 31.18 50.51 22.52 25.83 1.17

PnP Inversion [16] SD 1.5 11.65 27.22 84.76 35.86 60.67 22.10 25.02 1.10
+ AutoEdit 11.06 27.85 85.04 33.77 60.12 23.00 25.79 1.19

P2P [12] SD 1.4 14.75 25.82 84.02 40.93 61.78 22.29 25.44 1.08
+ AutoEdit 13.76 26.45 84.08 36.24 60.60 23.88 26.55 1.22

MasaCtrl [5] SD 1.4 28.38 22.17 79.67 86.97 79.67 21.16 23.96 0.92
+ AutoEdit 21.33 23.48 80.06 46.28 71.35 21.75 24.86 0.99

DDPM-Inversion [15] SDXL 7.12 26.13 89.88 35.32 65.62 23.0 27.11 1.19
+AutoEdit 6.46 27.86 90.50 20.44 53.51 22.9 26.7 1.27

UltraEdit [47] MM-DiT 10.82 26.5 84.7 46.7 75.8 22.4 25.6 1.20
+AutoEdit 7.61 27.3 86.2 37.6 64.9 22.6 25.7 1.26

InstructPix2Pix [4] SD 1.5 35.37 20.8 76.4 226.8 157.3 22.1 24.5 0.65
+AutoEdit 28.68 22.2 78.5 181.4 132.8 22.3 24.7 0.82

Null-text [25] SD 1.4 19.87 23.8 79.9 64.4 109.8 22.3 25.9 1.12
+AutoEdit 10.91 25.7 82.4 45.4 82.3 22.6 26.3 1.21

configurations. Our qualitative analysis highlights several common failure cases resulting from sub-
optimal hyperparameter choices: inaccurate background reconstruction (e.g., the stone background
in the cat image for DDIM-Inversion and DDPM-Inversion), unnatural object synthesis (e.g., the
distorted rock in P2P), failure to execute the desired edit (e.g., the unaltered stone in MasaCtrl or the
unchanged noodles in MasaCtrl, PnP, and DDIM-Inversion), and noticeable facial discrepancies (e.g.,
the altered woman’s face in DDPM-Inversion and P2P). These findings demonstrate that improved
hyperparameter selection, facilitated by AutoEdit, can substantially enhance editing quality, even for
weak baseline methods such as DDIM-Inversion.

Policy Model Behavior in Inference. We analyze the behavior of key hyperparameters predicted
by the policy model during inference. For the inversion timestep t in DDPM-Inversion [15], where
the policy chooses between psrc and pedit, we define the inversion timestep as the first step t where
the policy selects pedit. Figure 4a shows the distribution of inversion timesteps chosen by the policy
model. We observe that the policy most frequently selects t between 25 and 40, which aligns with
common choices in prior editing methods. A similar analysis is conducted for the cross-attention
replacement ratio r in P2P [12], with results shown in Figure 4b. We find that r is most often selected
between 0.3 and 0.6. Importantly, both t and r vary significantly across samples, indicating that
AutoEdit adapts its hyperparameter predictions for each specific image to optimize the final reward.

Reward Across Training Episodes. We plot the reward of AutoEdit on DDPM-Inversion [15] over
the first 3000 training episodes. The results are shown in Figure 4c, where episode 0 corresponds
to the Phase-1 model Aθ1 . We observed a consistent increase in reward during PPO training up to
episode 2500, after which it slightly declined at episode 3000. Based on this trend, we limit training
to the first 2500 episodes (approximately 15 epochs).

4.4 Ablation Study Table 2: The necessity of Phase-1 (policy initialization).

P1 P2 PSNR ↑ SSIM ↑ MSE ↓ LPIPS ↓ Edited ↑Whole ↑ Reward
✓ 18.2 74.5 208.7 57.9 23.2 26.3 6.12

✓ 22.1 77.4 52.7 69.7 20.7 23.4 5.42
✓ ✓ 27.2 85.3 31.1 50.5 22.5 25.8 6.25

Effect of Reward Co-
efficients of α and β.
We investigate the im-
pact of different values
of α and β in the re-
ward function. Using
DDPM-Inversion [15] as the baseline, we fix α = 30 and train AutoEdit with varying values of β.
All models are initialized from the same Phase-1 checkpoint A1. Table 3 summarizes the behavior of
AutoEdit under different β settings. When β is small (e.g., β = 10 or β = 20), the reward function
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Figure 3: We compare the qualitative results of AutoEdit with the default hyperparameter choice
of the baseline. Overall, AutoEdit can search for better hyperparameters, resulting in better object
editing, background preservation, and more natural images.
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Figure 4: The analysis of a) inversion timestep, b) cross-attention replacement, and c) the reward
during the training of the policy model Aθ.

emphasizes the CLIP score more. As a result, AutoEdit achieves higher CLIP scores, but at the cost
of reduced background preservation. Conversely, when β is increased to 40, the model prioritizes
background preservation, as it becomes more influential in the reward signal. β = 30 strikes a good
balance between CLIP alignment and background consistency. Figure 5 provides qualitative examples
illustrating the effects of different β values.

Different choice of the reward. We find that the CLIP score performs poorly on small region image
editing tasks with a limited edit mask M , such as eye color modification. As a result, using CLIP
as the reward fails to reliably capture editing quality. In contrast, Large Vision-Language Models
(LVLMs) can effectively assess localized edits, for example, verify whether the eye color has been
correctly changed, as highlighted by recent editing benchmarks [22, 44]. Since our proposed RL
framework is generic, it can incorporate any reward function that reflects editing quality. Accordingly,
we replace the CLIP-based reward with an LVLM-based evaluation. Our LVLM reward is similar to
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origin image

photo of a goat horse and a cat standing on rocks near the ocean

Figure 5: Edited image with different value of β
Table 3: Comparison of the behavior of AutoEdit with the different choices of α and β. When we
decrease the β, AutoEdit optimizes the CLIP score. Otherwise, it tries to preserve the background.

α, β PSNR ↑ SSIM ↑ MSE ↓ LPIPS ↓ Edited ↑ Whole ↑
α = 30, β = 10 19.65 77.11 150.5 138.6 24.15 27.34
α = 30, β = 20 23.59 82.15 66.84 82.30 23.44 26.95
α = 30, β = 30 27.25 85.17 31.18 50.51 22.52 25.83
α = 30, β = 40 28.53 86.03 24.72 42.80 21.36 24.36

the LLM Score metric, which is described in detail in the Appendix. Table 4 reports the performance
of AutoEdit under LVLM evaluation. We observe consistent improvements in both background
preservation metrics and LLM Score, while maintaining strong prompt alignment performance.

Table 4: Comparison of AutoEdit performance with LLM Score as the
reward function

Method PSNR SSIM MSE LPIPS Edited Whole LLM
DDPM Inv 26.1 89.8 35.3 65.6 23.0 27.1 1.19
+ AutoEdit 27.8 90.5 20.4 53.5 22.9 26.7 1.27

+ AutoEdit + LLM 29.1 91.8 19.1 49.1 22.7 26.6 1.31

Policy Initialization.
We conduct experi-
ments to highlight the
importance of Phase-
1 training (policy ini-
tialization). Using
DDPM-Inversion [15]
as the baseline, we
compare results with
and without Phase-1. The outcomes are summarized in Table 2. As shown in the table, omit-
ting Phase-1 causes the model to apply overly strong edits while failing to preserve the background,
resulting in a substantially lower background preservation score. We attribute this behavior to
the difficulty of exploring the large state space introduced by the 50-step denoising process in
DDPM. In contrast, incorporating Phase-1 improves background preservation and CLIP alignment,
demonstrating the effectiveness of this initialization phase in guiding policy learning.

Table 5: Computational cost of AutoEdit is
negligible.

Method Inference (ms) #Params

SD Unet 20.89 86M
+AutoEdit 21.03 (+0.6%) 87.1M (+0.6%)

Computational Cost. We compare the inference
time and number of parameters between the original
U-Net and AutoEdit for a single image-prompt pair
in DDPM-Inversion. Table 5 reports the inference
time of AutoEdit on Stable Diffusion. Our method
introduces only negligible overhead in inference time
and model size compared to the original U-Net.

5 Conclusion
We propose AutoEdit, an RL-based framework for per-image hyperparameter identification in
diffusion-model editing. By casting the denoising process as a reinforcement learning problem,
AutoEdit searches within a single trajectory, eliminating the exponential overhead of trial-and-error.
Empirical results across multiple editing methods demonstrate that AutoEdit improves editing quality
while maintaining runtime efficiency.

References
[1] Yuval Alaluf, Daniel Garibi, Or Patashnik, Hadar Averbuch-Elor, and Daniel Cohen-Or. Cross-

image attention for zero-shot appearance transfer. In ACM SIGGRAPH 2024 Conference Papers,
pages 1–12, 2024.

10



[2] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

[3] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Qinsheng Zhang,
Karsten Kreis, Miika Aittala, Timo Aila, Samuli Laine, et al. ediff-i: Text-to-image diffusion
models with an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324, 2022.

[4] Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow
image editing instructions. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 18392–18402, 2023.

[5] Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinqiang Zheng.
Masactrl: Tuning-free mutual self-attention control for consistent image synthesis and editing. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 22560–22570,
2023.

[6] Yingying Deng, Xiangyu He, Changwang Mei, Peisong Wang, and Fan Tang. Fireflow: Fast
inversion of rectified flow for image semantic editing. arXiv preprint arXiv:2412.07517, 2024.

[7] Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning
for fine-tuning text-to-image diffusion models. Advances in Neural Information Processing
Systems, 36:79858–79885, 2023.

[8] Tsu-Jui Fu, Wenze Hu, Xianzhi Du, William Yang Wang, Yinfei Yang, and Zhe Gan. Guid-
ing instruction-based image editing via multimodal large language models. arXiv preprint
arXiv:2309.17102, 2023.

[9] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and
Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image generation using
textual inversion. arXiv preprint arXiv:2208.01618, 2022.

[10] Yaru Hao, Zewen Chi, Li Dong, and Furu Wei. Optimizing prompts for text-to-image generation.
Advances in Neural Information Processing Systems, 36:66923–66939, 2023.

[11] Xiaoxiao He, Ligong Han, Quan Dao, Song Wen, Minhao Bai, Di Liu, Han Zhang, Mar-
tin Renqiang Min, Felix Juefei-Xu, Chaowei Tan, et al. Dice: Discrete inversion enabling
controllable editing for multinomial diffusion and masked generative models. arXiv preprint
arXiv:2410.08207, 2024.

[12] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
Prompt-to-prompt image editing with cross-attention control. In ICLR, 2023.

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[14] Yuzhou Huang, Liangbin Xie, Xintao Wang, Ziyang Yuan, Xiaodong Cun, Yixiao Ge, Jiantao
Zhou, Chao Dong, Rui Huang, Ruimao Zhang, et al. Smartedit: Exploring complex instruction-
based image editing with multimodal large language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 8362–8371, 2024.

[15] Inbar Huberman-Spiegelglas, Vladimir Kulikov, and Tomer Michaeli. An edit friendly ddpm
noise space: Inversion and manipulations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12469–12478, 2024.

[16] Xuan Ju, Ailing Zeng, Yuxuan Bian, Shaoteng Liu, and Qiang Xu. Pnp inversion: Boosting
diffusion-based editing with 3 lines of code. In The Twelfth International Conference on
Learning Representations.

[17] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri,
and Michal Irani. Imagic: Text-based real image editing with diffusion models. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 6007–6017,
2023.

11



[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[19] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 4015–4026,
2023.

[20] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of
mathematical statistics, 22(1):79–86, 1951.

[21] Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip HS Torr. Manigan: Text-guided image
manipulation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 7880–7889, 2020.

[22] Yiwei Ma, Jiayi Ji, Ke Ye, Weihuang Lin, Zhibin Wang, Yonghan Zheng, Qiang Zhou, Xiaoshuai
Sun, and Rongrong Ji. I2ebench: A comprehensive benchmark for instruction-based image
editing. arXiv preprint arXiv:2408.14180, 2024.

[23] Zichen Miao, Jiang Wang, Ze Wang, Zhengyuan Yang, Lijuan Wang, Qiang Qiu, and Zicheng
Liu. Training diffusion models towards diverse image generation with reinforcement learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10844–10853, 2024.

[24] Wenyi Mo, Tianyu Zhang, Yalong Bai, Bing Su, Ji-Rong Wen, and Qing Yang. Dynamic
prompt optimizing for text-to-image generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 26627–26636, 2024.

[25] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion
for editing real images using guided diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 6038–6047, 2023.

[26] Chong Mou, Xintao Wang, Jiechong Song, Ying Shan, and Jian Zhang. Dragondiffusion:
Enabling drag-style manipulation on diffusion models. arXiv preprint arXiv:2307.02421, 2023.

[27] Seonghyeon Nam, Yunji Kim, and Seon Joo Kim. Text-adaptive generative adversarial networks:
manipulating images with natural language. Advances in neural information processing systems,
31, 2018.

[28] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In International conference on machine learning, pages 8162–8171. PMLR, 2021.

[29] Owen Oertell, Jonathan Daniel Chang, Yiyi Zhang, Kianté Brantley, and Wen Sun. Rl for con-
sistency models: Reward guided text-to-image generation with fast inference. In Reinforcement
Learning Conference, 2024.

[30] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730–27744, 2022.

[31] Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun Li, Jingwan Lu, and Jun-Yan
Zhu. Zero-shot image-to-image translation. In ACM SIGGRAPH 2023 conference proceedings,
pages 1–11, 2023.

[32] Hao Phung, Quan Dao, and Anh Tran. Wavelet diffusion models are fast and scalable image
generators. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 10199–10208, 2023.

[33] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PmLR, 2021.

12



[34] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[35] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
22500–22510, 2023.

[36] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,
Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al.
Photorealistic text-to-image diffusion models with deep language understanding. Advances in
neural information processing systems, 35:36479–36494, 2022.

[37] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[38] Yujun Shi, Chuhui Xue, Jun Hao Liew, Jiachun Pan, Hanshu Yan, Wenqing Zhang, Vincent YF
Tan, and Song Bai. Dragdiffusion: Harnessing diffusion models for interactive point-based
image editing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8839–8849, 2024.

[39] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations.

[40] Linoy Tsaban and Apolinário Passos. Ledits: Real image editing with ddpm inversion and
semantic guidance. arXiv preprint arXiv:2307.00522, 2023.

[41] Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
direct preference optimization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8228–8238, 2024.

[42] Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma, Nisha Huang, Yuxin Chen,
Xiu Li, and Ying Shan. Taming rectified flow for inversion and editing. arXiv preprint
arXiv:2411.04746, 2024.

[43] Weihao Xia, Yujiu Yang, Jing-Hao Xue, and Baoyuan Wu. Tedigan: Text-guided diverse face
image generation and manipulation. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 2256–2265, 2021.

[44] Zitong Xu, Huiyu Duan, Bingnan Liu, Guangji Ma, Jiarui Wang, Liu Yang, Shiqi Gao, Xiaoyu
Wang, Jia Wang, Xiongkuo Min, et al. Lmm4edit: Benchmarking and evaluating multimodal
image editing with lmms. arXiv preprint arXiv:2507.16193, 2025.

[45] Zhen Yang, Ganggui Ding, Wen Wang, Hao Chen, Bohan Zhuang, and Chunhua Shen. Object-
aware inversion and reassembly for image editing. In The Twelfth International Conference on
Learning Representations.

[46] Yinan Zhang, Eric Tzeng, Yilun Du, and Dmitry Kislyuk. Large-scale reinforcement learning
for diffusion models. In European Conference on Computer Vision, pages 1–17. Springer, 2024.

[47] Haozhe Zhao, Xiaojian Shawn Ma, Liang Chen, Shuzheng Si, Rujie Wu, Kaikai An, Peiyu Yu,
Minjia Zhang, Qing Li, and Baobao Chang. Ultraedit: Instruction-based fine-grained image
editing at scale. Advances in Neural Information Processing Systems, 37:3058–3093, 2024.

13



A AutoEdit baselines

In this section, we provide the details of the hyperparameters used in each baseline method:

Baselines

DDIM/DDPM Inversion [39, 15]: These methods first invert the image to a latent representation xr

using the source prompt psrc, followed by a denoising process from timestep r to 0 conditioned on
the edit prompt pedit. The only required hyperparameter in this process is the inversion timestep,
i.e.,H = {r}. Due to the reversibility of the DDIM/DDPM framework, each denoising step can be
viewed as an actionHt = {ht}, where ht ∈ {psrc, pedit}. By default, the inversion timestep is set to
r = 35 for DDIM-Inversion and r = 40 for DDPM-Inversion.

P2P [12]: introduces three key hyperparameters: the inversion timestep r, the cross-attention
replacement ratio u, and the attention weight w, summarized as H = {r, u, w}. The inversion
timestep r can be handled similarly to the strategy used in DDIM/DDPM-Inversion. The cross-
attention ratio u modifies the attention mechanism in the U-Net by replacing the cross-attention
conditioned on pedit with that of psrc during the first u · T denoising steps, where T is the total
number of steps. This decision is modeled as a binary action at each timestep: whether to replace the
cross-attention or not. The attention weight w scales the cross-attention values for the edited word,
determining the emphasis placed on that word in the output image. We discretize w by allowing
the policy to select from a fixed set of values {0.5, 1.0, 1.5, 2.0, 3.0, 5.0}. Formally, we define the
action space at each timestep as Ht = {h1

t , h
2
t , h

3
t}, where h1

t ∈ {psrc, pedit}, h2
t ∈ {0, 1} (with 1

indicating replacement), and h3
t ∈ {0.5, 1.0, 1.5, 2.0, 3.0, 5.0}. By default, the inversion timestep is

set to r = 10, the cross-attention ratio to u = 0.4, and the attention weight to w = 1.0.

PnP Inversion [16]: In this method, two binary hyperparameters are defined at each denoising
step, denoted as Ht = {h1

t , h
2
t}. The first, h1

t ∈ {0, 1}, determines whether to replace the self-
attention computation in the edit branch with that from the unconditional branch. The second,
h2
t ∈ {0, 1}, controls whether to replace the convolutional features of the edit branch with those from

the unconditional branch. In the default setting of PnP Inversion, self-attention is replaced during the
first 80% of the denoising process, while convolutional features are replaced during the first 50% of
the steps.

MasaCtrl [5]: At each denoising step, the method decides whether to replace the self-attention in
the edit branch with that from the unconditional branch. This decision is represented by a binary
hyperparameterHt = {ht}, where ht ∈ {0, 1}. By default, the replacement is applied starting from
timestep t = 4 of the denoising process.

UltraEdit [47] and InstructPix2Pix [4] Both methods are training-based editing method. Our RL
framework is used to optimize the CFG coefficient during the sampling process of both methods. The
default CFG coefficient is set to 7.5.

Null-text inversion [25] Null-text is an inversion method that addresses the mismatch between
inversion and denoising process through CFG by optimizing the null embedding. In this method,
we use P2P as the editing operation. We only use RL to optimize the inversion timestep and cross
attention ratio u. Similar to P2P, we set the default value of r = 40 and u = 0.4.

Phase-1 prior for each type of hyperparameters: The inversion timestep r is randomly sampled
from the range [50 − 0.65T, 50 − 0.05T ]. The cross-attention ratio is similarly sampled from the
range [0.2, 0.6]. The prior for the attention weight w is fixed at 1.0. For PnP Inversion [16], the
ratios for replacing self-attention and convolutional features are randomly sampled from the range
[0.2T, 0.8T ]. Lastly, in MasaCtrl [5], self-attention replacement begins at timestep t, where t is
randomly selected between step 4 and step 20.

Phase-1 loss: Since all the parameterizations ofHt are discrete, we choose the loss L1 for Phase-1
training to be the cross-entropy loss. After sampling H ∼ p0(H), the loss L1 is applied at each
timestep to enforce the policy model’s prediction to matchHt, the timestep-specific parameterization
ofH at t.
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Table 6: Results of AutoEdit on a Flow-based image editing method
Method PSNR SSIM CLIP Edit CLIP Whole LLM Score

Taming flow [42] 23.4 81.5 22.9 26.0 1.22
+AutoEdit 25.7 85.2 23.4 26.1 1.30
Fireflow [6] 23.1 82.2 22.4 25.2 1.20
+AutoEdit 26.2 86.2 22.9 25.2 1.27

B More results on flow-based editing

We present the results of AutoEdit applied to flow-based editing methods, as shown in Table 6.
Specifically, AutoEdit is used to search for the optimal injection timestep, a key hyperparameter
in both Taming Flow [42] and Fireflow [6]. Overall, AutoEdit enhances the baseline performance
in terms of both background preservation and prompt alignment, demonstrating its effectiveness in
automatically identifying hyperparameters that improve editing results.

C Global editing

Table 7: AutoEdit on global editing task

Base model Editing method CLIP score
SDXL DDPM-Inv [15] 26.5
SDXL +AutoEdit 28.3
SD 1.4 P2P 25.5
SD 1.4 +AutoEdit 26.7

For global editing tasks, such as style transfer, the
editing mask is set to M = 1 for the entire im-
age. In this case, Rnoedit = 0, and the reward
function R reduces to the CLIP score. To assess
the effectiveness of AutoEdit in this setting, we
report CLIP scores in Table 7, comparing against
the baseline methods DDPM-Inversion [15] and
P2P [12]. The results show that AutoEdit consis-
tently improves editing performance on the style
transfer task relative to the baselines.

D Convergence of PPO.

Table 8: Comparison of AutoEdit ’s reward with baselines
using multiple optimal hyperparameter sets. AutoEdit
achieves performance comparable to the best of three
hyperparameters, demonstrating its convergence to a near-
optimal reward.

Method #Trials AutoEdit Optimal1 2 3

DDIM-Inversion 5.81 6.03 6.11 6.09 6.17
DDPM-Inversion 6.11 6.21 6.23 6.25 6.32

P2P 6.17 6.31 6.37 6.38 6.45
MasaCtrl 5.47 5.59 5.65 5.65 5.75

We evaluate how closely AutoEdit ap-
proaches the optimal reward through
PPO training. In this experiment, we
compare the reward achieved by Au-
toEdit against the best possible reward
obtained from combinations of k differ-
ent hyperparameter values, where k ∈
{1, 2, 3}. We compute the reward for
each image using k different hyperpa-
rameter settings and select the maximum
among them. The k values are selected
from the set that yields the highest possi-
ble reward.

E LLM Score

For small-region editing, the CLIP score fails to reliably capture editing quality. As illustrated in
Figure 6, when the objective is to change a dog’s eye color to blue, computing the CLIP score on a
small mask M with the prompt “blue eye” yields a lower score for the correctly edited image. This
highlights the inaccuracy of CLIP-based rewards in such scenarios.

Previous evaluation benchmarks [22, 44] have adopted LLM judgment as an evaluation tool. A key
advantage of LLM-based evaluation is its ability to verify whether small region edits are correct, as
illustrated in Figure 6. Since our RL framework is generic, we replace the CLIP based reward with
an LLM-based evaluation, which we denote as LLMScore. This score not only measures the quality
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black eyes blue eyes

LLM query: Is the eye color of
the dog blue?CLIP: 0.232

MSE: -0.0011
Reward: 6.97

Change the eye color of the dog to blue

CLIP: 0.226
MSE: -0.0011
Reward: 6.79

LLMEval: 0.
LLMScore: 0.25

LLMEval: 1.
LLMScore: 1.25

CLIP evaluation

LLM evaluation

Figure 6: The advantage of LLM evaluation compared with CLIP score in small editing region

of an edited image but also serves directly as a reward function. More specifically, similar to the
original reward, LLMScore consists of two components:

• Prompt alignment For each editing instruction, we construct a binary (“Yes/No”) question
to verify whether the required edit is present in the generated image. The edited image is
then provided to the LLM, which outputs a response. We assign Redit = 1 if the response is
correct and Redit = 0 otherwise.

• Background preservation For background preservation, we adopt MSE as the primary
metric, as it is most sensitive to small changes in the background region. Accordingly, we
define the background preservation reward as: Rnoedit = 1−γMSE((1−M)⊙Iedit, (1−
M)⊙ Isrc)

The LLM score is computed as LLM Score = Redit +Rnoedit. We found α = 5 works best in the
editing task. For the LLM model, we adopt QwenVL-2.5-7B [2] as the LLM model.

F Trade-off between edit alignment and background preservation in
DDIM/DDPM Inversion

In DDIM and DDPM Inversion [39, 15], a trade-off arises between alignment with the edit prompt
and preservation of the original background. A high CLIP score typically indicates strong alignment
with the edit prompt, but often at the cost of background fidelity, and vice versa. This trade-off is
illustrated in Figure 7. Our proposed reward function offers a meaningful evaluation of edited images
by explicitly balancing CLIP-based semantic alignment and background preservation (see Figure 7).

G Training and inference algorithm

We present the training and inference of AutoEdit in Algorithm 1, 2.

H Limitation

We illustrate the limitation of our approach in Figure 8. AutoEdit relies on the underlying editing
method E . Consequently, if E fails to perform a given edit, AutoEdit inherits this limitation. This
issue is exemplified by the parrot case shown in Figure 8.
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MSE: 0.111.
CLIP: 0.252

Reward: 4.23

MSE: 0.024
CLIP: 0.207

Reward: 5.48

MSE: 0.0054
CLIP: 0.174

Reward: 5.17

photo of a goat horse and a cat standing on rocks near the ocean

Figure 7: We provide the visualization of the trade-off between edit alignment and background
preservation in DDIM-Inversion. Our reward can better reflect how good an edited image is.

Algorithm 1: AutoEdit Inference
Input: Editing method E with denoising function g and inversion function g−1, input image

Isrc, origin and edit prompts psrc, pedit, pretrained policy model πθ, pretrained Stable
Diffusion Model

Output: Edit image Iedit

for t← 1 to T do
Perform diffusion inversion: xsrc

t+1 = g−1(xt, t, psrc).
end
xedit
T = xsrc

T
for t← T to 1 do

Sampling from the policy: Ht ∼ πθ(x
edit
t , t).

Denoise to get the previous noisy sample: xedit
t−1 = g(xedit

t , t,Ht)
end
VAE decode: Iedit = V AE(xedit

0 )
return Iedit;

Original image DDPM-Inversion AutoEdit

two kissing parrots sitting on a stick, city street background

Figure 8: The limitation of our approach. A key limitation of our approach is that if the underlying
editing method performs poorly on a given image, AutoEdit is also likely to inherit and suffer from
the same image.
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Algorithm 2: PPO Training of AutoEdit

Input: Editing method E with denoising function g and inversion function g−1, policy model
πθ2 , Phase 1 model πθ1 ,pretrained Stable Diffusion Model, coefficient
β = 0.02, γ = 0.999, λ = 0.95, ϵ = 0.2

Inversion:
Isrc, psrc, pedit ∼ pdata
for t← 1 to T do

Perform diffusion inversion: xsrc
t+1 = g−1(xt, t, psrc).

end
PPO exploration phase:
for t← T to 1 do

Get the distribution of action at current policy model: π2
t = πθ2(x

edit
t , t).

Get the distribution of action at Phase-1 policy model: π1
t = πθ1(x

edit
t , t).

Sampling the hyperparameter: Ht ∼ π2
t .

Compute the value: vt = Vτ (x
edit
t , t).

Denoise to get the previous noisy latent: xedit
t−1 = g(xedit

t , t,Ht)
end
Reward computation:
Get the edit image Iedit = V AE(xedit

0 )
Compute the reward R = αRedit(I

edit, pedit,M) + βRnoedit(I
edit, Isrc,M)

Compute the return value and advantage recursively from the end of the denoising
trajectory:
A0 = 0
for t← 1 to T do

δ = R+ γvt−1 − vt
Compute the advantage: At = δ + γλAt−1

Compute the return: rt = At + vt
end
Training value model: Lvf = Et[(Vτ (xt, t)− rt)

2]
Training the policy model:
Compute ratio ut = exp(log πθ2(xt, t)− log(π2

t )).
Clip objective: Lclip = min(Atut, Atclip(ut, 1− ϵ, 1 + ϵ))
Policy loss: Lpg = −Et[Lclip − βDKL(π

2
t ∥π1

t )]
Update θ2, τ based on gradient optimization.
return πθ2

I User study

We conducted a user study involving 50 participants to evaluate the performance of AutoEdit. Each
survey question presented a side-by-side comparison between AutoEdit and the same editing method
with two different sets of hyperparameters. The survey comprised a total of 30 questions. Overall,
82.78% of the responses favored the results produced by AutoEdit over the baseline, indicating a
clear human preference for the outputs generated by our method.

J Additional qualitative examples

We present additional qualitative examples comparing the editing baselines with and without AutoEdit
in Figures 9, 10, 11, 12. Furthermore, we compare AutoEdit against the same methods using different
hyperparameter settings in Figures 14 and 15. Overall, AutoEdit achieves consistently strong editing
results across various hyperparameter configurations, thereby significantly reducing the manual
tuning effort required by practitioners. We also include the qualitative results of AutoEdit applying to
the Flux-based editing [42, 6] methods, as shown in Figure 13
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Original image DDIM-Inversion DDPM-Inversion P2P PnP MasaCtrl

A yellow crochet bird with red beak sitting on a branch

A cat sitting with beads collar putting hands down

a round square cake with orange frosting on a wooden plate

a cat dog sitting on a wooden chair

AutoEdit

AutoEdit

AutoEdit

AutoEdit

Figure 9: Additional qualitative samples
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Original image DDIM-Inversion

A group of pink red flowers hanging from a tree

DDPM-Inversion P2P

AutoEdit

PnP MasaCtrl

A cartoon of a boy girl walking his her dog in the autumn

AutoEdit

A painting of a woman hold pink flowers teddy bear

a watercolor painting of a woman sitting in a living room

AutoEdit

AutoEdit

Figure 10: Additional qualitative results
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Original image DDIM-Inversion DDPM-Inversion P2P PnP

A woman with gold blue makeup

MasaCtrl

AutoEdit

Fishes Sharks in the ocean

AutoEdit

AutoEdit

A beautiful woman with garland hat on her head

An orange cat play with a black and white cat big pink yarn ball on the grass

Figure 11: Additional qualitative examples
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Original image DDIM-Inversion DDPM-Inversion P2P PnP MasaCtrl

a cat tiger sitting next to a mirror

a horse zebra in the grass field

a black skin man with a tree head and branches on his face and eyes closed

a detailed oil painting of a calm laughing beautiful woman with stars in her hair

Figure 12: Additional qualitative examples
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closed eyes grassy floor raising hand Ghibli anime style

horse forest cartoon grassy land

blue wearing crown Ghibli anime style looking at camera

AutoEdit

AutoEdit

AutoEdit

Figure 13: Qualitative Results on the Flux-based editing. Top row: The baseline with the default
hyperparameter choice. Bottom row: AutoEdit performance. The prompt indicates the modification
to the original image. This demonstrates the AutoEdit capability to reduce the running required to
choose a good hyperparameter.
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A round square with orange frosting on wooden plate

a cat dog sitting on a wooden chair

blue light, black and white cat dog is playing with flowers

Original image 10 20 30 AutoEdit

Figure 14: Compare DDPM-Inversion with different values of inversion timestep. In general,
AutoEdit can achieve on par or better performance without tuning the inversion timestep
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Original image 0.2 0.6 AutoEdit

a round square cake with orange frosting on a wooden plate

a cat dog sitting on a wooden chair

a cup of coffee with drawing of tulip lion putted on the wooden table

a stream road in a lush green forest with rocks

Figure 15: Compare P2P with different values of cross attention ratio. AutoEdit can be on par or
better in terms of editing results without needing to tune the hyperparameters
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction provide a comprehensive overview of the
background and motivation of this study, effectively outlining its main contributions point-
by-point, thus accurately reflecting the paper’s scope and significance.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We primarily focused on discussing the limitations associated with this study
in the Supplementary Material.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper includes the full set of assumptions and correct proofs for each
theoretical result which mainly focuses on the complexity of the trial-and-error method and
formulating the RL environment.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in Appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All key contributions of this paper are fully reproducible. We provide detailed
implementation and hyperparameter settings for each component in Section 4 and the
Supplementary Materials. In addition, we include pseudocode for both training and inference
to facilitate understanding and reproducibility of our method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Due to code privacy restrictions, we do not include the source code in the
Supplementary Materials. However, our method remains fully reproducible based on the
detailed instructions provided in the paper, along with the pseudocode for both the training
and testing phases included in the Supplementary Materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies detailed experimental configurations in Section 4 and more
details are provided in Suppelementary, providing readers with essential information to
comprehend the results. The setting of the training dataset, and baselines can also be found
in the Section 4 and the Supplementary Material.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in Appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We did not include an analysis of the statistical significance of the experiments,
as our method does not rely on specific initialization schemes or fixed random seeds.
Moreover, it does not make assumptions such as normally distributed errors.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were carried out on a 2 × RTX A6000 GPU server.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: After carefully reviewing the referenced document, we certify that the research
conducted in the paper conforms, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: While this paper primarily focuses on the image editing problem, we ac-
knowledge the potential for negative social impacts, such as the creation of misleading or
fake images. We strongly encourage users to exercise caution and refrain from using our
approach for harmful purposes, including generating DeepFakes or other deceptive content.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper uses EditBench and PieBench datasets for training and evaluation,
which are common and published datasets in the image editing problem.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In the paper, we specified the datasets (Pie Bench and Edit Bench) and
implementation (Stable Diffusion), and we cite to all of the datasets and the code used in
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our implementation. In addition, we also cite other work that we use their code, as well as
other related work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: We did not include the code in the Supplementary Material. However, the
algorithm is reproducible with the instructions from the main paper and the pseudo code
from the Supplementary.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not conduct any crowdsourcing experiments and research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not conduct any crowdsourcing experiments and research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We only employ the LLM to generate the caption for the image. It does not
impact the core methodology, scientific rigorousness, or originality of the research and
declaration
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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