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Abstract

We study defense strategies against reward poisoning attacks in reinforcement learning.
As a threat model, we consider cost-effective targeted attacks—these attacks minimally
alter rewards to make the attacker’s target policy uniquely optimal under the poisoned
rewards, with the optimality gap specified by an attack parameter. Our goal is to design
agents that are robust against such attacks in terms of the worst-case utility w.r.t. the
true, unpoisoned, rewards while computing their policies under the poisoned rewards. We
propose an optimization framework for deriving optimal defense policies, both when the
attack parameter is known and unknown. For this optimization framework, we first provide
characterization results for generic attack cost functions. These results show that the
functional form of the attack cost function and the agent’s knowledge about it are critical
for establishing lower bounds on the agent’s performance, as well as for the computational
tractability of the defense problem. We then focus on a cost function based on `2 norm,
for which we show that the defense problem can be efficiently solved and yields defense
policies whose expected returns under the true rewards are lower bounded by their expected
returns under the poison rewards. Using simulation-based experiments, we demonstrate the
effectiveness and robustness of our defense approach.

1 Introduction

One of the key challenges in designing trustworthy AI systems is ensuring that they are technically robust and
resilient to security threats European Commission (2019). Amongst many requirements that an AI system
ought to satisfy in order to be deemed trustworthy is robustness to adversarial attacks Hamon et al. (2020).
Standard approaches to reinforcement learning (RL) Sutton & Barto (2018) have shown to be susceptible to
adversarial attacks which manipulate the feedback that an agent receives from its environment. These attacks
broadly fall under two categories: a) test-time attacks, which manipulate an agent’s input data at test-time
without changing its policy Huang et al. (2017); Lin et al. (2017); Tretschk et al. (2018); Kumar et al. (2021),
and b) training-time attacks that manipulate an agent’s input data at training-time, influencing the agent’s
learned policy Zhang & Parkes (2008); Ma et al. (2019); Huang & Zhu (2019); Rakhsha et al. (2020; 2021);
Zhang et al. (2020b); Sun et al. (2020); Liu & Lai (2021); Rangi et al. (2022). In this paper, we focus on training-
time attacks, and more specifically, on targeted reward poisoning attacks that modify (i.e., poison) rewards
to force an agent into adopting a target policy Ma et al. (2019); Rakhsha et al. (2021); Rangi et al. (2022).
Prior work on reward poisoning attacks on RL primarily focuses on designing optimal attacks. In this paper,
∗This work was done as a part of an internship project at Max Planck Institute for Software Systems.
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we take a different perspective on targeted reward poisoning attacks, and focus on designing defense strategies
against such attacks. This is challenging, given that the attacker is typically unconstrained in poisoning the
rewards to force the target policy, while the agent’s performance is measured under the true reward function,
which is unknown. The key idea that we exploit in our work is that the poisoning attacks have an underlying
structure arising from the attacker’s objective to minimize the cost of the attack needed to force the target
policy. We therefore ask the following question:

Can we design an effective defense strategy against targeted reward poisoning attacks by exploiting the cost-
effective nature of these attacks?
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(d) Scores of policies π∗, π†, πD in MDPs w.r.t. R, R̂

Figure 1: A simple chain environment with 4 states and two possible actions: left and right. s0 is the initial
state. The agent goes in the direction of its action with probability 90%, and otherwise the next state is
selected uniformly at random from the other 3 states. Weights on edges indicate rewards for the action taken.
For example in Fig. 1a, if the agent takes left in state s1, it receives 0.5. We denote the true rewards by R,
the poisoned rewards by R̂, the optimal policy under R by π∗, the target policy (which is uniquely optimal
under R̂) by π†, and the defense policy (which is derived from our framework) by πD. (a) shows R and
π∗. In particular, the numbers above the arrows and the different shades of gray show the probabilities of
taking actions left and right under π∗. (b) shows R̂ and π†. (c) shows πD that our optimization framework
derived from R̂, and by reasoning about the goal of the attack (π†). In particular, our optimization framework
maximizes the worst-case performance under R: while the optimization procedure does not know R, it can
constrain the set of plausible candidates for R using R̂. (d) Table. 1d): Each entry in the table indicates the
score of a (policy, reward function) pair, where the score is a scaled version of the total discounted return
(see Section 3). For example, the score of policy π† equals −0.42 and 0.11 under R̂ and R respectively. Our
defense policy significantly improves upon this and achieves a score of 0.03. For comparison, the score of π∗
equals 0.34. Moreover, unlike for the target policy π†, the score of our defense policy πD under R is always at
least as high as its score under R̂, as predicted by our results (see Theorem 5.1). The results are obtained
with parameters ε† = 0.1, εD = 0.2 and γ = 0.99 (see Section 3).

In this paper, we study this question in depth and under different assumption on the agent’s knowledge about
the attack cost function. Perhaps surprisingly, the answer to this question is sometimes affirmative. While an
agent only has access to the poisoned rewards, it may still be able infer some information about the true
reward function, using the fact that the attack is cost-effective. By maximizing the worst-case utility over the
set of plausible candidates for the true reward function, the agent can substantially limit the influence of the
attack. The approach we study can be understood from Figure 1 which uses the chain environment from
Rakhsha et al. (2021) to demonstrate the main ideas.
Contributions. We formalize this reasoning, and characterize the utility of our novel framework for designing
defense policies. In summary, the key contributions include:

• We formalize the problem of designing defense policies against targeted and cost-effective reward poisoning
attacks, which minimally modify the original reward function to achieve their goal (force a target policy).
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• We introduce a novel optimization framework for finding optimally robust defense policies—this framework
focuses on optimizing the agent’s worst-case utility among the set of reward functions that are plausible
candidates of the true reward function.

• We provide characterization results that establish feasibility and computational complexity of finding
optimally robust defense policies for different classes of attack cost functions. These results show that
the functional form of the attack cost function and the agent’s knowledge about it play a critical role
in deriving optimally robust defense policies with provable performance guarantees.

• Focusing on a cost function based on `2 norm, we show that optimally robust defense policies can be
efficiently computed. We further establish lower bounds on the true performance of defense policies derived
from our framework and computable from the poisoned rewards.

• We empirically demonstrate the effectiveness and robustness of our approach using numerical simulations.

To our knowledge, this is the first framework for studying this type of defenses against reward poisoning
attacks that try to force a target policy at a minimal cost.

2 Related Work

While this paper is broadly related to the literature on adversarial machine learning (e.g., Huang et al. (2011)),
we recognize four themes in supervised learning (SL) and reinforcement learning (RL) that closely connect to
our work.
Poisoning attacks in SL and RL. This paper is closely related to data poisoning attacks, first introduced
and extensively studied supervised learning Biggio et al. (2012); Xiao et al. (2012); Mei & Zhu (2015); Xiao
et al. (2015); Li et al. (2016); Koh & Liang (2017); Biggio & Roli (2018). These attacks are also called
training-time attacks, and unlike test time attacks Szegedy et al. (2014); Pinto et al. (2017); Behzadan &
Munir (2017); Zhang et al. (2020a); Moosavi-Dezfooli et al. (2016); Nguyen et al. (2015); Madry et al. (2018),
which attack an already trained agent, they change data points during the training phase, which in turn
affects the parameters of the learned model. Data poisoning attacks have also been studied in the bandits
literature Jun et al. (2018); Ma et al. (2018); Liu & Shroff (2019) and in RL (see Section 1).
Defenses against poisoning attacks in SL. In supervised learning, defenses against data poisoning
attacks are often based on data sanitization that removes outliers from the training set Cretu et al. (2008);
Paudice et al. (2018), trusted data points that support robust learning Nelson et al. (2008); Zhang et al.
(2018), or robust estimation Charikar et al. (2017); Diakonikolas et al. (2019). Recently, Wu et al. (2022)
have considered aggregation based defenses that can certify an RL agent’s policy against a limited number of
changes in the training dataset. While such defenses can mitigate some attack strategies, they are in general
susceptible to data poisoning attacks Steinhardt et al. (2017); Koh et al. (2018).
Robustness to model uncertainty. There is a rich literature that studies robustness to uncertainties in
reward functions McMahan et al. (2003); Regan & Boutilier (2010), and transition models Nilim & El Ghaoui
(2005); Iyengar (2005); Bagnell et al. (2001) for MDP models. Typically, these works consider settings
in which instead of knowing the exact parameters of the MDP, the agent has access to a set of possible
parameters (uncertainty set). These works design policies that perform well in the worst case. More recent
works have proposed ways to scale up these approaches via function approximation Tamar et al. (2014), as
well as utilize them in online settings Lim et al. (2013). While our work uses the same principles of robust
optimization, we do not assume that the uncertainty set, i.e., the set of all possible rewards, is directly given.
Instead, we show how to derive it from the poisoned reward function.
Robustness to corrupted episodes. Another important line of work is the literature on robust learners
that receive corrupted input during their training phase. Such learners have recently been designed for
bandits and experts settings Lykouris et al. (2018); Gupta et al. (2019); Bogunovic et al. (2020); Amir et al.
(2020), and episodic reinforcement learning Lykouris et al. (2019); Zhang et al. (2021). Typically, these works
consider an attack model in which the adversary can arbitrarily corrupt a limited number of episodes. As we
operate in the non-episodic setting and do not assume a limit in the attacker’s poisoning budget, these works
are orthogonal to the aspects we study in this paper. Instead, we utilize the structure of the attack in order
to design a defense algorithm.
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3 Formal Setting

In this section, we describe our formal setting, and identify relevant background details on reward poisoning
attacks, as well as our problem statement. The problem formulation specifies our objectives that we establish
and formally analyze in the next sections.

3.1 Preliminaries

We consider a standard reinforcement learning setting in which the environment is described by a discrete-time
discounted Markov Decision Processes (MDP) Puterman (1994), defined as M = (S,A,R, P, γ, σ), where:
S is the state space, A is the action space, R : S × A → R is the reward function, P : S × A × S → [0, 1]
is the transition model with P (s, a, s′) defining the probability of transitioning to state s′ by taking action
a in state s, γ ∈ [0, 1) is the discount factor, and σ is the initial state distribution. We consider state and
action spaces, i.e., S and A, that are finite and discrete, and due to this we can adopt a vector notation for
quantities dependent on states or state-action pairs. W.l.o.g., we assume that |A| ≥ 2.
A generic (stochastic) policy is denoted by π, and it is a mapping π : S → P(A), where P(A) is the probability
simplex over action space A. We use π(a|s) to denote the probability of taking action a in state s. While
deterministic policies are a special case of stochastic policies, when explicitly stating that a policy π is
deterministic, we assume that it is a mapping from states to actions, i.e., π : S → A. We denote the set of
all policies by Π and the set of all deterministic policies by Πdet. For policy π, we define its score, ρπ, as
E
[
(1− γ)

∑∞
t=1 γ

t−1R(st, at)|π, σ
]
, where state s1 is sampled from the initial state distribution σ, and then

subsequent states st are obtained by executing policy π in the MDP. The score of a policy is therefore its
total expected return scaled by a factor of 1− γ.
Finally, we consider occupancy measures. We denote the state-action occupancy measure in the Markov
chain induced by policy π by ψπ(s, a) = E

[
(1− γ)

∑∞
t=1 γ

t−11 [st = s, at = a] |π, σ
]
. Given the MDP M , the

set of realizable state-action occupancy measures under any (stochastic) policy π ∈ Π is denoted by Ψ. Score
ρπ and ψπ satisfy ρπ = 〈ψπ, R〉, where 〈., .〉 computes the dot product between two vectors of sizes |S| · |A|.
We denote by µπ(s) = E

[
(1− γ)

∑∞
t=1 γ

t−11 [st = s] |π, σ
]
the state occupancy measure in the Markov chain

induced by policy π ∈ Π. State-action occupancy measure ψπ(s, a) and state occupancy measure µπ(s) satisfy
ψπ(s, a) = µπ(s) · π(a|s). We focus on ergodic MDPs, which in turn implies that µπ(s) > 0 for all π and s
Puterman (1994). This is a standard assumption in this line of work (e.g, see Rakhsha et al. (2021)) and is
used to ensure the feasibility of the attacker’s optimization problem.

3.2 Reward Poisoning Attacks

We consider reward poisoning attacks on an offline learning agent that optimally change the original reward
function with the goal of deceiving the agent to adopt a deterministic policy π† ∈ Πdet, called target policy.
This type of attack has been extensively studied in the literature, and here we utilize the attack formulation
based on the works of Ma et al. (2019); Rakhsha et al. (2020; 2021); Zhang et al. (2020b). In the following,
we introduce the necessary notation, the attacker’s model, and the agent’s model (without defense).
Notation. We use M to denote the true or original MDP with true, unpoisoned, reward function R, i.e.,
M = (S,A,R, P, γ, σ). We use M̂ to denote the modified or poisoned MDP with poisoned reward function R̂,
i.e., M̂ = (S,A, R̂, P, γ, σ). Note that only the reward function R changes across these MDPs. Quantities
that depend on reward functions have analogous notation. For example, the score of policy π under R is
denoted by ρπ, whereas its score under R̂ is denoted by ρ̂π. We denote an optimal policy under R by π∗, i.e.,
π∗ ∈ arg maxπ∈Π ρ

π.
Attack model. The attacker we consider in this paper has full knowledge of M . It can be modeled by a
function A(c,R′, π†, ε†) that returns a set of poisoned rewards functions for a given attack cost function c,
reward function R′, target policy π†, and a desired attack parameter ε†.1 In particular, the attack problem is
defined by the following optimization problem:

min
R

c(R,R′) s.t. ρπ† ≥ ρπ + ε† ∀π ∈ Πdet\{π†}. (P1)

1For cost functions cp defined by (1) with finite p > 1, this set has a single element.
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A common class of cost functions are `p-norms of manipulations Ma et al. (2019); Rakhsha et al. (2020; 2021),
i.e.,

c(R,R′) = cp(R,R′) = ‖R−R′‖p , (1)

with p ≥ 1. As shown by Rakhsha et al. (2021), the attack problem (P1) is feasible for this class of cost
functions and ergodic MDPs. Furthermore, instead of considering all deterministic policies, it is sufficient to
consider policies that differ from π† in a single action. Using π†{s; a} to denote a policy that follows a 6= π†(s)
in state s and π†(s̃) in states s̃ 6= s, (P1) can be rewritten as follows:

min
R

c(R,R′) s.t. ρπ† ≥ ρπ†{s;a} + ε† ∀s, a 6= π†(s). (P1’)

The equivalence between (P1) and (P1’) is shown by Rakhsha et al. (2021), but we also provide further
details in Appendix. Intuitively, (P1) and (P1’) are equivalent because in order for a policy to be optimal it
is sufficient (and necessary) that the policy is better than any of its neighbor policies. This fact allows us to
reduce the number of constraints. Whereas the number of constraints in (P1) is exponential in |S| and |A|,
the number of constraint in (P1’) is polynomial in |S| and |A|, which in turn implies that (P1’) is tractable
(for a fixed p).

To better understand the optimization problem (P1’), we can consider `2 attack cost (i.e., c2) defined as the
Euclidean distance between R′ and R. By solving this problem, i.e., setting R̂ ∈ A(c2, R, π†, ε†), the attacker
finds the closest reward function to R for which π† is a uniquely optimal policy (with attack parameter ε†).
Remark 3.1. Note that the optimization problem (P1) may not be feasible if we lift the assumption that
underlying MDP is ergodic. This can be seen from the constraints of the optimization problem (P1’): if
target policy π† does not visit a certain state s, then it has the same score as its neighbor policies π†{s; a}.
Hence, the primary reason for assuming ergodicity is to make the attack problem feasible.

Agent without defense. The agent receives the poisoned MDP M̂ := (S,A, R̂, P, γ, σ) where the underlying
true reward function R (unknown to the agent) has been poisoned to R̂. In the existing works on reward
poisoning attacks, an agent naively optimizes score ρ̂ (score w.r.t. R̂). Because of this, the agent ends up
adopting policy π†.

3.3 Problem Statement

Perhaps unsurprisingly, the agent without defense, could perform arbitrarily badly under the true reward
function R. Our goal is to design a robust agent that derives its policy using the poisoned MDP M̂ :=
(S,A, R̂, P, γ, σ), but has provable worst-case guarantees w.r.t. R. This agent has access to the poisoned
reward vector R̂ ∈ A(c,R, π†, ε†), but R, π†, and ε† are not given to the agent. Figure 2 illustrates a generic
problem setting studied in this paper. In general, the agent does not know c, but is given a class of cost
functions C that contains c, i.e., c ∈ C. C represents’ the agent’s knowledge about the attack cost function;
in a special case when C contains only one element, the agent knows the cost function. Notice that π† is
obtainable by solving the optimization problem arg maxπ ρ̂π as π† is uniquely optimal in M̂ . On the other
hand, R is unknown to the agent. In terms of ε†, we will focus on two cases, the case when ε† is known to
the agent, and the case when it is not.

In the first case, we can formulate the following optimization problem of maximizing the worst case performance
of the agent, given that R is unknown:

max
π

min
R,c∈C

ρπ s.t. R̂ ∈ A(c,R, π†, ε†). (P2a)

In other words, we calculate the set of all possible reward functions R such that an attack on R could lead to
the solution R̂, i.e., R̂ ∈ A(c,R, π†, ε†). We then find a policy π for which the worst-case score, i.e., minR,c ρπ
is maximized, where the minimum is over all reward functions R calculated previously and all cost functions
c ∈ C.
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True reward 
function 𝑅"

Poisoned reward 
function 𝑅#

Attack 𝒜
(cost 𝑐, target 𝜋')

Defense 𝒟
(score under 𝑅")

Defense policy 
𝜋𝒟

Poisoned reward 
function 𝑅#

Defense policy 
𝜋𝒟

Find the set of reward functions 
consistent with 𝑅# and 𝒜

Find a policy that maximizes the 
worst-case score over this set

Figure 2: The problem setting studied in this paper. The attack A modifies the original (true) reward
function R to force π† while minimizing its cost. The defense D aims to optimize the agent’s score under R,
but it only sees the poisoned reward R̂. Nevertheless, it can (in principle) find the set of all reward functions
consistent with R̂ and A, and search for a policy that maximizes the worst-case score of the agent over this
consistent set.

Knowledge about attack cost Guarantees on the value Complexity
General C (e.g., s.t. cconst ∈ C) No for any R̂, Proposition 4.2 —
C = {‖R−R′‖p s.t. p ∈ [1,∞)} Yes, Theorem 4.4 NP-hard, Theorem 4.5
C = {‖R−R′‖∞} No for some R̂, Theorem 4.3 NP-hard, Appendix
C = {‖R−R′‖2} Yes, Section 5 Convex, Section 5
C = {‖R−R′‖1} Yes, Appendix Convex, Appendix

Table 1: Characterization results for different levels of the agent’s knowledge about the attack cost function,
expressed through C. In general, if C can be arbitrary, the optimization problem (P2a) may be unbounded
from below regardless of R̂. For some classes C, e.g., that contain `p-norm attack costs (p 6=∞), (P2a) has
the optimal solution, but this solution may be computationally hard. When the attack cost function is known,
properties of problem (P2a) depend on the functional form of the attack cost function, as indicated by the
`1-norm, `2-norm, and `∞-norm attack costs.

For the case when the agent does not know ε†, we use the following optimization problem:

max
π

min
R,ε,c∈C

ρπ s.t. R̂ ∈ A(c,R, π†, ε) and 0 < ε ≤ εD. (P2b)

where the agent uses εD as an upper bound on ε†. We denote solutions to the optimization problems (P2a)
and (P2b) by πD, and it will be clear from the context which optimization problem we are referring to with
πD.
Remark 3.2. We note that some structural assumptions on the attack model are needed to guarantee
robustness. For example, prior work typically considers untargeted attacks with budget constraints, e.g.,
that put an upper limit on the cost of the attack or the number of episodes in which the attacker can attack
Lykouris et al. (2019); Zhang et al. (2021). This paper focuses on targeted attacks that minimize the cost of
the attack. Given the strategic nature of the attacker, the structural assumptions on the attack model that
(P2a) and (P2b) rely on are fairly natural.

4 Characterization Results for Generic Attack Cost

In this section, we provide characterization results showing the importance of the agent’s knowledge about
the attack cost function. The overview of the characterization results is shown in Table 1. To corresponding
proofs can be found in Appendix.
Remark 4.1. The results presented in this section are stated for the optimization problem (P2a). However,
the same results also hold for the optimization problem (P2b).

4.1 General Attack Cost

We start by stating what is perhaps an expected result: if the attack cost function can be arbitrary, then no
defense can achieve any provable guarantee. It is relatively easy to see why this claim should hold. If the
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agent believes that the attack cost function can be constant, then from the agent’s perspective, R can be any
reward function. Since rewards are not bounded, this in turn implies that no matter which policy the agent
selects, no worst-case guarantees are possible. More formally, we obtain the following claim.
Proposition 4.2. Let cconst(R,R′) be a constant cost function, and assume that cconst ∈ C. Then the
optimization problem (P2a) is unbounded from below.

Given this result, it is clear that for provable defenses: a) the attack cost function cannot not be arbitrary
in that R̂ has to be informative about R; b) the agent should have some knowledge about the attack cost
function. In the next subsection, we consider cost functions based on `p norms, i.e., cp, commonly adopted
by prior work on reward poisoning attacks Ma et al. (2019); Rakhsha et al. (2020; 2021).

4.2 `p Attack Cost

In contrast to constant cost functions, the strategic nature of the attacker is more apparent when it optimizes
cp, so the agent may infer some information about the true reward function R from the poisoned rewards R̂
which it can access. Our first result shows that for p =∞ the success of such an inference procedure depends
on R̂. This is formally captured by the following theorem.
Theorem 4.3. There exists an instance of the problem setting, i.e., MDP M = (S,A, R̂, P, γ, σ) for which
the optimization problem (P2a) is unbounded from below when c∞ ∈ C.

This theorem paints a relatively bleak picture for the possibility of achieving provable guarantees. Note two
important observations. First, the impossibility result is a weaker variant of the result stated in Proposition
4.2 as it holds only for some MDPs. Second, c∞ is measuring the maximum modification of reward function
R, so critical information about R may be lost—this also provides intuition behind the impossibility results.
In contrast, when p 6=∞, cp is affected by all the modifications of R. In fact, when p is restricted to take
values in [1,∞), a lower bound on the optimal value of (P2a) can always be derived from R̂.
Theorem 4.4. Consider any policy π 6π† s.t. π 6π†(π†(s)|s) = 0. For C = {cp s.t. p ∈ [1,∞)}, the optimal
value of the optimization problem (P2a) is bounded from below by ρ̂π 6π† .

A direct consequence of Theorem 4.4 is that the optimal solution to (P2a) always exists, and its worst case
performance under R is at least ρ̂π6π† . Note that we can easily find a (deterministic) policy π 6π† that maximizes
the lower bound by solving maxπ s.t. π(s) 6=π†(s) ρ̂

π.2 Furthermore, for any policy π 6π† s.t. π 6π†(π†(s)|s) = 0 we
have that ρ 6π† ≥ ρ̂ 6π† . This means that we can efficiently find a defense policy with provable performance
guarantees. However, such a defense policy may not be optimally robust in that its performance lower bound
would not match the optimal one. We now turn to computational complexity challenges in deriving optimally
robust defense policies: the next theorem provides a hardness result for C = {cp s.t. p ∈ [1,∞)}, which
admits guarantees on the optimal solution to (P2a).
Theorem 4.5. For C = {cp s.t. p ∈ [1,∞)}, it is NP-hard to determine whether the optimal value of the
optimization problem (P2a) is greater than or equal to ρ̂π† .

Given that even for this natural choice of cost functions, C = {cp s.t. p ∈ [1,∞)}, the problem of finding
optimally robust policies is computationally hard, in the next section we focus on `2 attack cost that is known
to the agent, i.e., C = {c2}. In Appendix, we provide similar analysis for `1 attack cost, i.e., C = {c1}.

5 Characterization Results for `2 Attack Cost

In this section, we consider the attack cost function c2, and assume that it is known to the agent (C = {c2}).
In the first part, we focus on characterization results for the case when the attack parameter ε† is known to
the agent, i.e., the optimization problem (P2a). In the second part, we focus on the optimization problem
(P2b), and generalize the results from the first part to the unknown attack parameter setting. The proofs of
our formal results can be found in Appendix. Figure 3 provides intuition behind the results of this section.

2Stochastic policies are not necessary in this case since we can think of this problem as searching for an optimal policy over a
truncated actions space (because actions π†(s) are not admissible), so an optimal deterministic policy always exists.
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In particular, it illustrates attack and defense strategies for a single-state MDP with action set {a1, ...a7} and
the `2 cost function. We refer the reader to Appendix for more details.

a1 a2 a3 a4 a5 a6 a7
0

2

4

6

8

10

Actions

R

π∗ 1 0 0 0 0 0 0
(a) R, π∗

a1 a2 a3 a4 a5 a6 a7
0

2

4

6

8

10

Actions

R̂
π† 0 0 0 1 0 0 0

(b) R̂, π†

a1 a2 a3 a4 a5 a6 a7
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4

6

8

10

Actions

R̂

πD 1
3 0 0 1

3 0 0 1
3

(c) R̂, πD

Figure 3: A single-state environment environment with 7 actions and state s. In each figure, the denoted
policy is uniform over actions on or above the dashed line. (a) shows R and π∗. Here, the optimal policy
selects action a1. (b) shows R̂ and target policy π† with ε† = 1. Here, the target policy selects action a4. R̂
is obtained by solving (P1) (or (P1’)) with the `2 cost function and R′ = R. In this case, the attack only
modifies the rewards of three actions, a1, a4, and a7. (c) shows R̂ and πD with εD = 2. The defense strategy
only sees poisoned rewards R̂. It first calculates the optimal action and the set of all second-best actions
under R̂, in this case {a1, a7}. If the reward of the second-best actions are no worse than εD, they form the
set Θε = {(s, a1), (s, a7)} or simply Θε

s = {a1, a7}. We show in Appendix that the defense strategy, i.e., the
solution to (P2b), selects an action uniformly at random from the set {π†(s)} ∪ Θε

s = {a1, a4, a7}. As we
show in this section, the expected reward of the defense policy under R is at least as much as its expected
reward under R̂, which can be easily verified from the figures: in this case, both are equal to 22/3.

5.1 Known Parameter Setting

We begin by analyzing the optimization problem (P2a). Denote by Θε state-action pairs (s, a) for which the
difference between ρ̂π† and ρ̂π†{s;a} is equal to ε, i.e., Θε =

{
(s, a) : ρ̂π†{s;a} − ρ̂π† = −ε

}
.3 For the results

of this section, Θε with ε = ε† plays a critical role—as we show in our formal analysis, it characterizes the
feasible set of the optimization problem (P2a). In particular, in our analysis we show that R̂ is the solution
to the attack problem for an underlying reward function R, i.e., R̂ = A(R, π†, ε†), if and only if R can be
expressed as

R = R̂+
∑

(s,a)∈Θε†
αs,a ·

(
ψπ†{s;a} − ψπ†

)
,

with αs,a ≥ 0. To see the importance of this result, let us instantiate R = R and calculate ρπ:

ρπ =
〈
ψπ, R

〉
=
〈
ψπ, R̂

〉
+

∑
(s,a)∈Θε†

αs,a ·
〈
ψπ†{s;a} − ψπ† , ψπ

〉
.

When the occupancy measure of πD is positively aligned with vectors ψπ†{s;a} − ψπ† , the performance of
πD under the original reward function R is at least ρ̂πD =

〈
ψπD , R̂

〉
. Hence, constraining πD to satisfy〈

ψπ†{s;a} − ψπ† , ψπD
〉
≥ 0 for all s, a ∈ Θε† yields a guarantee on the score ρπD , i.e., ρπD ≥ ρ̂πD . These

insights are formalized by Theorem 5.1, which also describes a procedure for solving (P2a). In Appendix, we
provide intuition behind our analysis using a special case of our setting.

3In practice, Θε should be calculated with some tolerance due to numerical imprecision (See Section 6).
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Theorem 5.1. Consider the following optimization problem parameterized by ε:

max
ψ∈Ψ

〈
ψ, R̂

〉
s.t.

〈
ψπ†{s;a} − ψπ† , ψ

〉
≥ 0 ∀s, a ∈ Θε. (P3)

For ε = ε†, this optimization problem is always feasible, and its optimal solution ψmax specifies an optimal
solution to the optimization problem (P2a) for C = {c2} with

πD(a|s) = ψmax(s, a)∑
a′ ψmax(s, a′) . (2)

The score of πD(a|s) is lower bounded by ρπD ≥ ρ̂πD .

In addition to providing a characterization of the solution to (P2a), the above theorem provides an efficient
algorithm for finding this solution using linear programming. As we discuss in Appendix D.3, the set of
vectors ψπ† and ψπ†{s;a} can be precomputed since the agent is given a poisoned model M̂ (and hence,
knows the transition probabilities); for any policy π, the state-action occupancy measure ψπ satisfies
ψπ(s, a) = µπ(s) · π(a|s) where the state occupancy measure µπ is the unique solution to the following
Bellman identity

µπ(s) = (1− γ)σ(s) + γ
∑
s̃,ã

µπ(s̃)π(ã|s̃)P (s̃, ã, s).

In addition, the set of valid occupancy measures Ψ is the set of all vectors ψ ∈ R|S|·|A| satisfying the following
Bellman flow constraints

∀s :
∑
a

ψ(s, a) = (1− γ)σ(s) +
∑
s̃,ã

γ · P (s̃, ã, s) · ψ(s̃, ã),

∀(s, a) : ψ(s, a) ≥ 0.

Therefore, since occupancy measures ψπ†{s;a} and ψπ† can be precomputed, the optimization problem (P3)
can be efficiently solved using linear programming. In other words, computing optimally robust defense
policy is computationally tractable. In order to calculate each µπ, we need to solve a |S| × |S| system
of linear equations, which requires |S|3 operations in the worst case. Therefore, finding each ψπ for
π ∈ {π†} ∪ {π†{s; a} : a 6= π†(s)} requires at most |S|4 · |A| operations. The linear program (P3) takes
O(|S|4 ·|A|4) time in the worst case as it has |S|· |A| constrains and variables. Therefore, the overall complexity
of the approach is O(|S|4 · |A|4) in the worst case.

Theorem 5.1 also provides a performance guarantee of the defense policy w.r.t. the true reward function, i.e.,
ρπD ≥ ρ̂πD . Such a bound is important in practice since it provides a certificate of the worst-case performance
under the true reward function R, even though the agent can only optimize over R̂. In contrast to the lower
bound in Theorem 4.4, the lower bound in Theorem 5.1 is optimal.

5.2 Unknown Parameter Setting

In this subsection, we focus on the optimization problem (P2b). First, note the structural difference between
(P2a) and (P2b). In the former case, ε† is given, and hence, the defense can infer possible values of R by
solving an inverse problem to the attack problem (P1). In particular, we know that the original reward
function R has to be in the set {R : R̂ ∈ A(R, π†, ε†)}. In the latter case, ε† is not known, and instead we use
parameter εD as an upper bound on ε†. We distinguish two cases:

• Overestimating Attack Parameter: If ε† ≤ εD, then we know that R is in the set {R : R̂ ∈ A(R, π†, ε) s.t. 0 <
ε ≤ εD}. Note that this set is a super-set of {R : R̂ ∈ A(R, π†, ε†)}, which means that it is less informative
about R.

• Underestimating Attack Parameter: If ε† > εD, then the set {R : R̂ ∈ A(R, π†, ε) s.t. 0 < ε ≤ εD} will
have only a single element, i.e., R̂. In other words, this set typically contains no information about R.

We analyze these two cases separately, first focusing on the former one.
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5.2.1 Overestimating Attack Parameter

When εD ≥ ε†, our formal analysis builds on the one presented in Section 5.1, and we highlight the main
differences. Given that ε† is not exactly known, we cannot directly operate on the set Θε† . However, since
εD upper bounds ε†, the defense can utilize the procedure from the previous section (Theorem 5.1) with
appropriately chosen ε to solve (P2b) as we show in the following theorem.
Theorem 5.2. Assume that εD ≥ ε†, and define ε̂ = mins,a6=π†(s)

[
ρ̂π† − ρ̂π†{s;a}

]
. Then, the optimization

problem (P3) with ε = min{εD, ε̂} is feasible and its optimal solution ψmax identifies an optimal policy πD for
the optimization problem (P2b) with C = {c2} via Equation (2). This policy πD satisfies ρπD ≥ ρ̂πD .

To interpret the bounds, let us consider three cases:

• R 6= R̂: If the attack indeed poisoned R, then the smallest ε′ ∈ (0, εD] such that Θε′ 6= ∅ corresponds
to ε†. In this case, it turns out that ε† = ε̂, and somewhat surprisingly, the defense policies of (P2a) and
(P2b) coincide. (Note that this analysis assumes that εD ≥ ε†.)

• R = R̂ and εD < ε̂: This corresponds to the case when the attack did not poison R and there is no
ε′ ∈ (0, εD] such that Θε′ 6= ∅. In this case, it turns out that the optimal solution to the optimization
problem (P2b) is πD = π† (indeed π† is uniquely optimal under R).

• R = R̂ and εD ≥ ε̂: This corresponds to the case when the attack did not poison R and there is ε′ ∈ (0, εD]
such that Θε′ 6= ∅. In fact, ε̂ is the smallest such ε′. In this case, it turns out that, in general, the optimal
solution to the optimization problem (P2b) is πD 6= π†, even though π† is uniquely optimal under R.

These three cases also showcase the importance of choosing εD that is a good upper bound on ε†. When
R = R̂, the agent should select εD that is strictly smaller than ε̂. On the other hand, when R 6= R̂, the agent
should select εD ≥ ε̂, as it will be apparent from the result of the next subsection, in particular Theorem 5.3.
While the agent knows ε̂, it does not know if R = R̂ or R 6= R̂.

5.2.2 Underestimating Attack Parameter

In this subsection, we analyze the case when εD < ε†. We first state our result, and then discuss its
implications.
Theorem 5.3. If ε† > εD, then πD = π† is the unique solution of the optimization problem (P2b) with
C = {c2}.

Therefore, together with Theorem 5.2, Theorem 5.3 is showing the importance of having a good prior
knowledge about the attack parameter ε†. In particular:

• When the attack did not poison the reward function (i.e., R̂ = R), overestimating ε† implies that πD might
not be equal to π† for larger values of εD, even though π† is uniquely optimal under R. This can have a
detrimental effect since in this case ρπD < ρπ† = ρπ

∗ .
• When the attack did poison the reward function R (i.e., R̂ 6= R), underestimating ε† implies πD = π†, but
π† might be suboptimal. In this case, the defense policy does not limit the negative influence of the attack
at all, i.e., ρπD = ρπ† ≤ ρπ

∗ .

We further discuss nuances to selecting εD in Section 7.

6 Experimental Evaluation

In this section we evaluate our defense strategy in an experimental setting in order to better understand its
efficacy and robustness. We focus on the setting from Section 5.2: c2 attack cost functions, which is known
to the agent, i.e., C = {c2}, with an unknown attack parameter ε†.

Given the results in Section 5 (Theorems 5.2 and 5.3), we use the linear programming formulation (P3) together
with the CVXPY solver Diamond & Boyd (2016); Agrawal et al. (2018) for calculating the solution to the
defense optimization problem (P2b). In the experiments, due to limited numerical precision, Θε is calculated
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with a tolerance parameter, set to 10−4 by default.4. In other words, Θε = {(s, a) : |ρ̂π†−ρ̂π†{s;a}−ε| ≤ 10−4}.
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Figure 4: Experimental environments: Figures (a) and (b) show the Navigation and Grid world environment
respectively while figrues (c) and (d) show ρπD in these environments. For comparison, in the navigation
environment, ρπ† = −0.26 and ρπ∗ = 0.45 while in the grid world environment, ρπ† = −1.75 and ρπ∗ = −0.70.
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Figure 5: Robustness of the defense policy against random perturbation. Results are based on average of 100
runs for each data point. Error bars around the data points indicate standard error.

Navigation environment. Our first environment, shown in Figure 4a is the Navigation environment
taken from Rakhsha et al. (2021). The environment has 9 states and 2 possible actions. The reward
function is action independent and has the following values: R(s0, .) = R(s1, .) = R(s2, .) = R(s3, .) = −2.5,
R(s4, .) = R(s5, .) = 1 and R(s6, .) = R(s7, .) = R(s8, .) = 0. When the agent takes an action, it will
successfully navigate in the direction shown by the arrows with probability 0.9; otherwise, the next state will
be sampled uniformly at random. The bold arrows in the figure indicate the attacker’s target policy. The
initial state is s0 and the discounting factor γ equals 0.99.

Grid world environment. For our second environment, shown in Figure 4b, we use the grid world
environment from Ma et al. (2019) with slight modifications in order to ensure ergodicity — we add a 10%
failure probability to each action, sampling the next state randomly in case of failure. The environment has
18 states and 4 actions: up, down, right and left. The white, gray and blue cells in the figure represent the
states and the black cells represent walls. In the white and gray states, the agent will attempt to go in the
direction specified by its action if there is a neighboring state in that direction. If there is no such state,
the agent will attempt to stay in its own place. In the blue state G, the agent will attempt to stay in its
own place regardless of the action taken. In all states, each attempt will succeed with probability 0.9; with
probability 0.1, the next state will be sampled uniformly at random. In the gray and white states, the agent’s
reward is a function of the state it is attempting to visit. Attempting to visit a gray, white and blue state
will yield a reward of −10, −1 and 2 respectively. If the agent is in a blue state, it will always receive a
reward of 0. The bold arrows in the figure specify the attacker’s target policy. The initial state is S and the
discounting factor γ equals 0.9.
Policy score for different values of parameters. We first analyze the score of our defense policy in

4The value was chosen because the CVXPY solver uses a precision of 10−5.
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both environments with different values of ε† and εD. For comparison, we also report the scores of the target
policy (π†) and the optimal policy (π∗). The results are shown in Figures 4c and 4d. As seen in the figures,
as long as εD ≥ ε†, our defense policy significantly improves the agent’s score compared to π†.
Robustness to perturbations. We now analyze our algorithm’s robustness towards uncertainties in the
reward functions used by the attacker and the defender. For our first experiment, which we call PreAttack, we
randomly perturb the attacker’s input. In particular, the input to the defender’s optimization problem R̂ is
sampled from A(c2, R +N (0, σ2I), π†, ε†) where I is the identity matrix, N denotes the multivariate normal
distribution and σ is the perturbation parameter varied in the experiment. For our second experiment, called
PostAttack, we randomly perturb the reward vector after the attack, sampling the defender’s input from
A(c2, R, π†, ε†) +N (0, σ2I). In both experiments we use ε† = 0.1 and εD =∞. As explained below, when
calculating Θε, we also experiment with a larger tolerance parameter of 10−1, denoting the defense policy in
this case with πD+.
The results can be seen in Figure 5. As seen in the figures, our defense policy πD consistently improves on
the baseline obtained with no defense (i.e, π†). It is also clear that the PostAttack perturbations have a
greater negative impact on our defense strategy’s score. Results for πD+ indicate that this is due to random
perturbations prohibiting our algorithm from identifying all of the elements in Θε. While having a higher
tolerance parameter helps with robustness, it can also lead to a lower performance when there is no noise
because Θε would falsely include additional elements. We leave choosing the tolerance parameter in a more
systematic way for future work.

7 Concluding Discussions

In this paper, we introduced an optimization framework for designing defense strategies against reward
poisoning attacks that change an agent’s reward structure in order to steer the agent to adopt a target policy.
We analyzed the utility of using such defense strategies, providing characterization results and provable
guarantees on their performance. Moving forward we see several interesting future research directions.
Beyond the worst-case utility. In this paper, we defined the defense objective as the maximization of
the agent’s worst-case utility. While this is a sensible objective, there are other objectives that one could
analyze. For example, instead of focusing on the absolute performance, one can try to optimize performance
relative to the target policy. Notice that this is a somewhat different, and possibly a weaker goal, given
that the target policy can have arbitrarily bad utility under R. Additionally, one could study the agent’s
sub-optimality gap, i.e., the difference between its score and the score of the optimal policy π∗, and compare
it to the sub-optimality gap of the target policy. Going back to the example in Figure 3, we can see that the
defense strategy can significantly reduce the suboptimality gap relative to not having a defense (in this case,
from 10− 3 = 7 to 10− 22/3 ≈ 2.7). However, when the original reward function already forces the target
policy, i.e., when R = R̂, the suboptimality gap of the target policy is equal to 0. In Figure 3, this happens if
the target policy is action a1. Nevertheless, in this case, the suboptimality gap of the defense strategy would
also be low, equal to 1/2 (since the defense would randomly select a1 or a7), and generally upper bounded by
εD = 2 if the rewards of sub-optimal actions {a2, ..., a7} were different. Providing a full theoretical treatment
for the general setting is an interesting research direction.
Informed prior. We did not model prior knowledge that an agent might have about the attacker or the
underlying reward function. In practice, the agent may have some information about the underlying true
reward function. Incorporating such considerations calls for a Bayesian approach that could improve the
agent’s defense by, e.g., ruling out implausible candidates for R in the agent’s inference of R given R̂.
Selecting εD and non-oblivious attacks. The results in Section 5.2 indicate that choosing good εD is
important for having a functional defense. In practice, a selection procedure for εD should take into account
the cost that the attacker has for different choices of ε†, as well as game-theoretic considerations: attacks
might not be oblivious in that the strategy for selecting ε† might depend on the strategy for selecting εD.
Namely, a direct consequence of Theorem 5.2 is that the attack optimization problem (P1) can successfully
achieve its goal if it chooses a large value of ε† to large enough values. However, the cost of the attack also
grows with ε†, so the attack (if strategic) also needs to reason about εD when selecting ε†. We leave the full
game-theoretic characterization of the parameter selection problem for the future work.
Unknown-model and scalability. Following prior work, we focused on attacks and defenses that have
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access to an accurate transition model and operate in tabular settings. Given Theorems 5.1, 5.2 and 5.3,
the defense problem can be solved using the linear program (P3), which is similar in size to the attack
optimization problem (P1’). As such, we expect our method to be computationally scalable as long as the
attack optimization problem can be solved.
For many RL problems however, the transition and reward functions are not known and the MDP is too large
to be modeled in tabular settings. RL solutions for such problems typically rely on function approximation.
For future work, it would be interesting to study the problem, for both attack and defense, in this more
realistic scenario. An immediate question is how the attack problem would need to change in order to
generalise to this setting. In terms of defense, while the new setting would likely pose new challenges,
we expect the general min-max formulation in Section 3, as well as the techniques used for solving the
optimization problems (P2a) and (P2b), to remain useful.
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A List of Appendices

In this section we provide a brief description of the content provided in the appendices of the paper.

• Appendix B provides an intuition of our results for the `2 attack cost using special MDPs in which the
agent’s actions do not affect the transition dynamics. The proofs of the results presented in this Appendix
can be found in Appendix I.

• Appendix C provides additional details regarding the experiments.
• Appendix D contains some background on reward poisoning attacks, and a brief overview of the MDP

properties that are important for proving our formal results.
• Appendix E contains characterization results for the attack optimization problem (P1).
• Appendix F contains proofs of the formal results in Section 5.

– The proof of Theorem 5.1 is in Section F.1.
– The proof of Theorem 5.2 is in Section F.2.
– The proof of Theorem 5.3 is in Section F.3.
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• Appendix G contains the proofs for the results in Section 4 relating to Guarantees on values. The appendix
also includes an optimization framework for solving the defense optimization problem (P2a) for the `1
norm as well as additional characterization results for the defense optimization problem for more general
cost functions which are used for proving the complexity results in Section 4.
– The characterization result for the defense optimization problem with for the `1 norm is provided in

Section G.1.
– Proof of Theorem 4.4 is provided in Section G.2.
– Additional characterization results for the defense optimization problem are provided in Section G.3.
– Proof of Proposition 4.2 is provided in Section G.4
– Proof of Theorem 4.3 is provided in Section G.5.

• Appendix H contains the proofs of the formal results in Section 4 relating to the computational complexity
of the defense optimization problem as well as the computational complexity result for the `∞ attack cost.
– The hardness result for the `∞ norm is provided in Section H.1.
– Proof of Theorem 4.5 is provided in Section H.2

• Appendix I contains a formal treatment of the results presented in Appendix B

B Intuition of Results using Special MDPs

In this Appendix, we describe characterization results on the `2 attack cost for special MDPs, in which the
agent’s actions do not affect the transitions, that is, we assume that

P (s, a, s′) = P (s, a′, s′) ∀s, a, a′, s′. (3)

Variants of the above condition have been studied in the literature (e.g., Szepesvári (1997); Dimitrakakis et al.
(2017); Sutton & Barto (2018); Radanovic et al. (2019); Ghosh et al. (2020)). Note that this assumption
implies that any two policies π and π′ have equal state occupancy measures, so we simplify the notation by
denoting µ = µπ = µπ

′ .

While the results from the previous sections incorporate this special case, we study this setting because: i) the
optimal solutions to the defense problem have a simple form, enabling us to provide intuitive explanations of
our main results from the previous sections, ii) using this setting, we show a tightness result for Theorem 5.2.

A more formal exposition of our results for this setting inlcuding the proofs can be found in Appendix I.

B.1 Optimal Defense Policy

In this subsection, we provide the intuition behind defense policies for the unknown parameter setting
with εD ≥ ε† (Section 5.2.1). The key point about the assumption in Equation (3) is that it allows us to
consider each state separately in the defense optimization problems. In particular, it can be shown that the
optimization problem (P3) is equivalent to solving |S| optimization problems of the form

max
π(·|s) ∈ P(A)

〈
π(·|s), R̂(s, ·)

〉
(P3b)

π(a|s) ≥ π
(
π†(s) | s

)
∀a ∈ Θε

s,

where Θε
s = {a : R̂(s, a)− R̂(s, π†(s)) = − ε

µ(s)}.5 If we instantiate Theorem 5.2 for special MDPs by putting
ε = min{εD, ε̂}, the set Θε

s has an intuitive description: it is the set of all “second-best” actions (w.r.t R̂) in
state s such that their poisoned reward is greater than or equal to R̂(π†(s)) − ε

µ(s) . It turns out that the
defense policy for state s selects an action uniformly at random from the set Θε

s ∪ {π†(s)}. In other words,
the defense policy πD is given by:

πD(a|s) =
{

1
|Θεs|+1 if a ∈ Θε

s ∪ {π†(s)}
0 otherwise

.

5See Lemma 8 in Banihashem et al. (2022).
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To see why, note that the objective in (P3b) only improves as we put more probability on selecting π†(s) (since
π†(s) is optimal under R̂). However, the constraints in (P3b) require that the selection probability of any
action in Θε

s has to be at least as high as the selection probability of π†(s), which in turn give us the uniform
at random selection rule. Figure 3 illustrates attack and defense policies for special MDPs using a single-state
MDP with action set {a1, ...a7}. To obtain defense policy πD, we can solve the optimization problem (P3b),
which implies that πD should select an action uniformly at random from the set {π†(s)} ∪Θε

s = {a1, a4, a7}

C Additional Details Regarding Experiments

In this section we provide additional details regarding the experiments. The source code for our experiments,
as well as instructions for replicating our results can be found in the Supplementary Material.

C.1 Implementation details

Both the attacker optimization problem (P1), and the defense optimization problems (P2a) and (P2b) are
convex since, by Theorems 5.1 and 5.2, the defense optimization problem reduces to the linear program (P3).
We use CVXPY to calculate their solutions. The code for solving these optimization problems can be found
in the file MDP.py. The specific functions used for solving these problems are as follows:

• The function attack implements the attacker’s optimization problem (P1). As explained in the main text,
this is done by solving (P1’) since (P1’) is equivalent to (P1).

• The function defend_known implements the optimization problem (P2a). As explained in Section 6, the
tolerance parameter is set to 10−4 (default value).

• The function defend_unknown implements the optimization problem (P2b).

C.2 Running time

Following prior work Rakhsha et al. (2021), to test the running times, we use the chain environment from
Rakhsha et al. (2021), but with different number of states (additional states are added between s2 and s3,
and the corresponding transitions and rewards are defined analogously to those for s2). The attack and
defense parameters are set to ε† = 0.1 and εD = 0.2. Table 2 shows the average running times (across 10
runs) of the attack optimization problem (P1’) and the defense optimization problem (P2b) for different sizes
of the chain environment.

It should be noted that the attack and defense optimization problems are similar in size, both solve a problem
with at most |S| · (|A| − 1) constraints on R|S|.|A|. However, solving the defense problem takes more time,
partly because π†, ε̂ and Θε need to be identified before (P3) can be solved.

The machine used for obtaining these results is a Macbook Pro personal computer with 4 Gigabytes of
memory and a 2.4 GHz Intel Core i5 processor.

D Background and Additional MDP Properties

In this section we briefly outline the background and MDP properties that we utilize in our proofs.

D.1 Reward Poisoning Attacks

In this section, we provide some background on the cost-efficient reward poisoning attacks, focusing on the
results from Rakhsha et al. (2021).

The setting studied in Rakhsha et al. (2021) incorporates both the average and the discounted reward
optimality criteria in a discrete-time Markov Decision Process (MDP), with finite state and action spaces.
Our MDP setting is equivalent to their MDP setting under the discounted reward optimality criteria. This
criteria can be specified by score ρ. As defined in the main text, score ρπ of policy π is the total expected
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|S|

Problem
Attack Defense

4 0.01s± 0.5ms 0.05s± 1.6ms

10 0.01s± 0.2ms 0.09s± 1.5ms

20 0.01s± 0.1ms 0.17s± 4.8ms

30 0.02s± 2.0ms 0.27s± 9.7ms

50 0.04s± 6.8ms 0.56s± 34.6ms

70 0.07s± 3.0ms 1.02s± 69.7ms

100 0.13s± 5.4ms 1.83s± 91.2ms

Table 2: Run time of the attack and defense optimization problems for the chain environment with varied
number of states |S|. Reported numbers are average of 10 runs; standard error is shown with ±.

return scaled by factor 1− γ:

ρπ = E

[
(1− γ)

∞∑
t=1

γt−1R(st, at)|π, σ
]
,

where the state s1 is sampled from the initial state distribution σ, and subsequent states st are obtained by
executing policy π in the MDP. Actions at are sampled from policy π.

As explained in the main text, the following result is important for our analysis, since it allows us to simplify
the optimization problem (P1) into the optimization problem (P1’).
Lemma D.1. (Lemma 1 in Rakhsha et al. (2021)) The score of a policy π† is at least ε† greater than all
other deterministic policies if and only if its score is at least ε† greater than the score of any policy π†{s; a}.
In other words,(

∀π ∈ Πdet\{π†} : ρπ† ≥ ρπ + ε†

)
⇐⇒

(
∀s, a 6= π†(s) : ρπ† ≥ ρπ†{s;a} + ε†

)
.

Remark D.2. As explained in Rakhsha et al. (2021), this lemma implies that the optimization problem (P1)
is equivalent to (P1’). Furthermore, the optimization problem is always feasible since any policy can be made
optimal with sufficient perturbation of the reward function as formally shown by Rakhsha et al. (2021) and
Ma et al. (2019).

D.2 Overview of Important Quantities

Next, we provide an overview of standard MDP quantities and the quantities introduced in the main text
that are important for our analysis.

In addition to score ρ, we consider state-action value function, or Q-value function, defined as

Qπ(s, a) = E

[ ∞∑
t=1

γt−1R(st, at)|s1 = s, a1 = a, π

]
.

In other words, Qπ(s, a) is the total expected return when the first state is s, the first action is a, while
subsequent states st and actions at are obtained by executing policy π in the MDP.

We consider two occupancy measures. By ψπ we denote the state-action occupancy measure in the Markov
chain induced by policy π:

ψπ(s, a) = E

[
(1− γ)

∞∑
t=1

γt−11 [st = s, at = a] |π, σ
]
.
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Given MDP M , the set of realizable occupancy measures under any (stochastic) policy π ∈ Π is denoted by
Ψ. Note that the following holds:

ρπ = 〈ψπ, R〉 , (4)

where 〈., .〉 in the above equation computes a dot product between two vectors of size |S| · |A| (i.e., two vectors
in R|S|·|A|). We also denote by µπ the state occupancy measure in the Markov chain induced policy π ∈ Π,
i.e.:

µπ(s) = E

[
(1− γ)

∞∑
t=1

γt−11 [st = s] |π, σ
]
.

Note that ∑
s,a

ψπ(s, a) =
∑
s

µπ(s) = 1.

State-action occupancy measure and state occupancy measure satisfy

ψπ(s, a) = µπ(s) · π(a|s), (5)

which for deterministic π is equivalent to

ψπ(s, a) = 1 [π(s) = a] · µπ(s). (6)

Apart from the standard MDP quantities mentioned above, we also mention quantities introduced in the
main text. We denote by Θε state-action pairs (s, a) for which the margin between ρ̂π† and ρ̂π†{s;a} is equal
to ε, i.e.:

Θε =
{

(s, a) : ρ̂π†{s;a} − ρ̂π† = −ε
}
, (7)

which can be expressed through reward function R̂ using state-action occupancy measures ψ:

Θε =
{

(s, a) :
〈
ψπ†{s;a} − ψπ† , R̂

〉
= −ε

}
.

Finally, quantity Γ{s;a}(π) measures how well the occupancy measure of π is aligned with ψπ†{s;a} relative to
ψπ† :

Γ{s;a}(π) =
〈
ψπ†{s;a} − ψπ† , ψπ

〉
. (8)

D.3 Occupancy Measures as Linear Constraints

In this subsection, we introduce the Bellman flow linear constraints that characterize ψπ and µπ. In order to
characterize ψπ, we require the following constraints:

∀s :
∑
a

ψ(s, a) = (1− γ)σ(s) +
∑
s̃,ã

γ · P (s̃, ã, s) · ψ(s̃, ã). (9)

∀(s, a) : ψ(s, a) ≥ 0. (10)

The importance of these constraints is reflected in the following lemma.
Lemma D.3. (Theorem 2 in Syed et al. (2008)) Let ψ be a vector that satisfies the Bellman flow constraints
(9) and (10). Define policy π as

π(a|s) = ψ(s, a)∑
ã ψ(s, ã) . (11)

Then ψ is the state-action occupancy measure of π, in other words ψ = ψπ. Conversely, if π ∈ Π is a policy
with state-action occupancy measure ψ (i.e, ψ = ψπ) then ψ satisfies the Bellman flow constraints (9) and
(10), as well as Equation (11).
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As for µπ, it is well-known (e.g., see Rakhsha et al. (2021)) that a vector µ is the state occupancy measure
for policy π (i.e., µ = µπ), if and only if

µ(s) = (1− γ)σ(s) + γ
∑
s̃,ã

µ(s̃)π(ã|s̃)P (s̃, ã, s). (12)

E Attack Characterization Results

E.1 Characterization results for the `2 attack cost

In this section we provide characterization results for the attack optimization problem (P1) for the `2 norm,
i.e, C = {c2}. We will later use these results for proving the formal results presented in Section 5.1 and Section
5.2. In addition, these results provide intuition for our results about the more general `p norms, which we will
discuss in the next sections. In particular, the main result of this appendix is a set of Karush–Kuhn–Tucker
(KKT) conditions that characterize the solution to the optimization problem (P1). As we focus on the cost
function c = c2 in this section, we will drop the dependence on c in A(c,R, π†, ε†).

To compactly express the KKT characterization results, let us introduce state occupancy difference matrix
Φ ∈ R|S|·(|A|−1)×|S|·|A| as a matrix with rows consisting of the vectors ψπ†{s;a} − ψπ† for all neighboring
policies π†{s; a}. Additionally, for all s, a 6= π†(s), we use Φ(s, a) to denote the transpose of the row of
Φ corresponding to (s, a). Note that Φ(s, a) is a column vector. In this notation, given Remark D.2 and
Equation (4) , the optimization problem (P1) is equivalent to

min
R

1
2 ‖R−R

′‖22 (P1")

s.t. Φ ·R 4 −ε† · 1,

where 1 is a |S| · (|A| − 1) vector whose each element equal to 1, and 4 specifies that the left hand side is
element-wise less than or equal to the right hand side. Given this notation, the following lemma states the
KKT conditions for a reward function R (i.e., an |S| · |A| vector) to be an optimal solution to the optimization
problem (P1).
Lemma E.1. (KKT characterization) R is a solution to the optimization problem (P1) if and only if there
exists an |S| · |A| vector λ such that

(R−R′) + ΦT · λ = 0 stationarity,
Φ ·R+ ε† · 1 4 0 primal feasibility,

λ < 0 dual feasibility,
∀(s, a 6= π†(s)) : λ(s, a) · (Φ(s, a)T ·R+ ε†) = 0 complementary slackness,

where 0 denotes an |S| · |A| vector whose each element equal to 0, and likewise, 1 denotes an |S| · |A| vector
whose each element equal to 0.

Proof. Since (P1) is always feasible (Remark D.2) and all of the constrains are linear, strong duality holds.
Now, the Lagrangian of the optimization problem is equal to

L = 1
2 ‖R−R

′‖22 + λT (Φ ·R+ ε† · 1),

and taking the gradient with respect to R gives us

∇RL = (R−R′) + ΦT · λ.

The statement then follows by applying the standard KKT conditions.

Remark E.2. (Uniqueness) The solution to the optimization problem (P1) is unique since the objective
1
2 ||R−R

′||22 is strongly convex.
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The above lemma, has the following important consequence.
Lemma E.3. Reward function R satisfies R̂ = A(R, π†, ε†) if and only if there exists some αs,a ≥ 0 such
that

R = R̂+
∑

(s,a)∈Θε†
αs,a ·

(
ψπ†{s;a} − ψπ†

)
.

.

Proof. To prove the statement, we use Lemma E.1. The primal feasibility condition in the lemma always
holds as R̂ ∈ A(R, π†, ε†). Therefore R̂ ∈ A(R, π†, ε†) if and only if there exists λ such that the other three
conditions hold. Note that the complementary slackness condition is equivalent to

∀(s, a 6= π†(s)) : λ(s, a) = 0 ∨Φ(s, a)T ·R+ ε† = 0 ⇐⇒ ∀(s, a) /∈ Θε† : λ(s, a) = 0.

Therefore from dual feasibility, stationarity and complemantary slackness it follows that R̂ ∈ A(R, π†, ε†) if
and only if there exists λ such that

λ < 0,

R = R̂+
∑
(s,a)

λ(s, a) ·
(
ψπ†{s;a} − ψπ†

)
,

∀(s, a) /∈ Θε† : λ(s, a) = 0.

The Lemma therefore follows by setting αs,a = λ(s, a) since setting λ(s, a) = 0 for all (s, a) /∈ Θε† is equivalent
to not summing over the terms corresponding to (s, a) /∈ Θε† in the stationarity condition.

A direct consequence of this lemma is the following result.
Corollary E.4. Assume that R̂ = A(R, π†, ε†) and R̂ 6= R. It follows that

ε̂ = ε†,

where

ε̂ = min
s,a6=π†(s)

[
ρ̂π† − ρ̂π†{s;a}

]
.

Proof. Assume to the contrary that ε̂ 6= ε†. Given the primal feasibility condition in Lemma E.1, ε̂ ≥ ε†.
Therefore ε̂ > ε†. It follows that

∀s, a 6= π†(s) : ρ̂π† − ρ̂π†{s;a} > ε† =⇒ Θε† = ∅.

Given Lemma E.3, this implies that R = R̂, which contradicts the initial assumption R 6= R̂.

F Proofs of Section 5.1

This section of the appendix contains the proofs of the formal results presented in Section 5.

F.1 Proof of Theorem 5.1

Before proving the theorem we prove some results that we need for the proof of this theorem, as well as for
the results in later sections.
Lemma F.1. Consider policy π with state-action occupancy measure ψπ. Solution ρπmin to the following
optimization problem:

min
R

ρπ s.t. R̂ = A(R, π†, ε†), (P4)
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satisfies:

ρπmin =
{
ρ̂π if ∀s, a ∈ Θε† : Γ{s;a}(π) ≥ 0
−∞ otherwise

.

Proof. We separately analyze the two cases: the case when Γ{s;a}(π) ≥ 0 for all (s, a) ∈ Θε† holds, and the
case when it does not.

Case 1: If Γ{s;a}(π) ≥ 0 for all (s, a) ∈ Θε† , then by using Equation (4) and Lemma E.3 we obtain that

ρπ − ρ̂π =
〈
ψπ, R− R̂

〉
=

∑
(s,a)∈Θε†

αs,a ·
〈
ψπ, ψπ†{s;a} − ψπ†

〉
≥ 0.

Therefore, ρπ ≥ ρ̂π. Furthermore, from Lemma E.3, we know that R = R̂ satisfies the constraint in the
optimization problem (P4), so the score of the optimal solution to (P4) is ρπmin = ρ̂π.

Case 2: Now, consider the case when Γ{s;a}(π) < 0 for a certain state-action pair (s, a) ∈ Θε† . Let αs,a be
an arbitrary positive number. From Lemma E.3, we know that

R = R̂+ αs,a ·
〈
ψπ, ψπ†{s;a} − ψπ†

〉
satisfies the constraint in the optimization problem (P4), and hence is a solution to (P4). Moreover, by using
this solution together with Equation (4), we obtain

ρπ − ρ̂π =
〈
ψπ, R− R̂

〉
= αs,a ·

〈
ψπ, ψπ†{s;a} − ψπ†

〉
= αs,a · Γ{s;a}(π). (13)

Since αs,a can be arbitrarily large and Γ{s;a}(π) < 0, while ρ̂π is fixed, ρπ can be arbitrarily small. Hence,
the score of the optimal solution to (P4) is unbounded from below, i.e., ρπmin = −∞.

We can now prove Theorem 5.1, that is the following statement.

Statement: Consider the following optimization problem parameterized by ε:

max
ψ∈Ψ

〈
ψ, R̂

〉
(P3)

s.t.
〈
ψπ†{s;a} − ψπ† , ψ

〉
≥ 0 ∀s, a ∈ Θε.

For ε = ε†, this optimization problem is always feasible, and its optimal solution ψmax specifies an optimal
solution to the optimization problem (P2a) with

πD(a|s) = ψmax(s, a)∑
a′ ψmax(s, a′) . (14)

The score of πD(a|s) is lower bounded by ρπD ≥ ρ̂πD .

Proof. The feasibility of the problem follows from Theorem 4.4 6. Note that ψmax always exists since
(P3) is maximizing a continuous function over a closed and bounded set. Concretely, the constraints〈
ψπ†{s;a} − ψπ† , ψ

〉
≥ 0 and Equations (9) and (10) each define closed sets, and since ||ψ||1 = 1, the set Ψ is

bounded.

In order to see why ψmax specifies an optimal solution to (P2a), note that we can rewrite (P2a) as

max
π

ρπmin,

6The proof of Theorem 4.4 does not rely on this result .
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where ρπmin is the solution to the optimization problem (P4). Due to Lemma F.1, this could be rewritten as

max
π

ρ̂π

s.t. Γ{s;a}(π) ≥ 0 ∀(s, a) ∈ Θε† .

Namely, maximizing a function f(x) subject to constraint x ∈ X (where X 6= ∅) is equivalent to maximizing
f̃(x), where

f̃(x) =
{
f(x) if x ∈ X
−∞ o.w.

.

Due to (4) and (8), the constrained optimization problem above can be rewritten as

max
π

〈
ψπ, R̂

〉
s.t.

〈
ψπ†{s;a} − ψπ† , ψπ

〉
∀(s, a) ∈ Θε† .

Therefore, given Lemma D.3, ψmax specifies a solution to (P2a) via (2).

Finally, note that the constraints of the optimization problem (P3) ensure that a policy π whose occupancy
measure is equal to ψmax will have Γ{s;a}(π) ≥ 0 — in other words, Γ{s;a}(πD) is non-negative for all
(s, a) ∈ Θε† . Due to Lemma F.1, we know that such policy π will have the worst case utility equal to ρ̂π.
Therefore, ρπ ≥ ρ̂π.

Remark F.2. Given Lemma D.3, the constraint ψ ∈ Ψ can equivalently be replaced with constraints (9) and
(10), making the optimization problem (P3) a linear program.

F.2 Proof of Theorem 5.2

The proof of the theorem is similar to the proof of Theorem 5.1 and builds on two lemmas which we introduce
in this section.
Lemma F.3. Set ε = min{εD, ε̂}, where

ε̂ = min
s,a6=π†(s)

[
ρ̂π† − ρ̂π†{s;a}

]
.

Reward function R satisfies R̂ = A(R, π†, ε̃) for some ε̃ ∈ (0, εD] if any only if

R = R̂+
∑

(s,a)∈Θε
αs,a ·

(
ψπ†{s;a} − ψπ†

)
,

for some αs,a ≥ 0.

Proof. We divide the proof into two parts, respectively proving the sufficiency and the necessity of the
condition.

Part 1 (Necessity): Assume that R̂ = A(R, π†, ε̃) for some ε̃ ∈ (0, εD]. From the stationariry and dual
feasibility conditions in Lemma E.1, we deduce

∃λ < 0 : R = R̂+
∑

s,a6=π†(s)

λ(s, a) · (ψπ†{s;a} − ψπ†). (15)

We claim that λ(s, a) = 0 for all (s, a) /∈ Θε. Note that this would imply the lemma’s statement by setting
αs,a = λ(s, a), since the terms corresponding to (s, a) /∈ Θε could be skipped in the summation of (15).
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To see why the claim holds, assume that λ(s, a) 6= 0 for some (s, a) where a 6= π†(s) . From complementary
slackness, we know that Φ(s, a)T ·R+ ε̃ = 0, which implies that

ε̂ = min
s̃,ã6=π†(s̃)

(−Φ(s̃, ã)T ·R) ≤ −Φ(s, a)T ·R = ε̃. (16)

However, ε̃ ≤ ε̂ holds by primal feasibility. Therefore, all the inequalities are equalities, which implies ε̃ = ε̂.
Since ε̃ ≤ εD, we conclude that ε̃ = min{εD, ε̂} = ε. Since all of the inequalities in (16) are indeed equalities,
we conclude

−Φ(s, a)T ·R = ε =⇒ (s, a) ∈ Θε,

which proves the claim.

Part 2 (Sufficiency): Assume that

R = R̂+
∑

(s,a)∈Θε
αs,a ·

(
ψπ†{s;a} − ψπ†

)
,

for some αs,a ≥ 0. Set ε̃ = ε and note that ε̃ ≤ εD by definition. Set

λ(s, a) =
{
αs,a if (s, a) ∈ Θε

0 o.w.
.

We now verify all the conditions of Lemma E.1 hold. Stationarity and dual feasibility hold because
R = R̂ +

∑
s,a λ(s, a) · Φ(s, a) and λ < 0. Primal feasibility holds because ε̃ = min{εD, ε̂} ≤ ε̂. Finally,

complementary slackness holds because

λ(s, a) 6= 0 =⇒ (s, a) ∈ Θε =⇒ Φ(s, a)TR+ ε = 0.

Lemma F.4. Let ρπmin be the solution to the following optimization problem

min
R

ρπ s.t. R̂ = A(R, π†, ε̃) ∧ 0 < ε̃ ≤ εD. (P5)

Then

ρπmin =
{
ρ̂π if ∀(s, a) ∈ Θε : Γ{s;a}(π) ≥ 0
−∞ o.w.

,

where ε = min{εD, ε̂}, and

ε̂ = min
s,a6=π†(s)

[
ρ̂π† − ρ̂π†{s;a}

]
.

Proof. The proof is similar to the proof of Lemma F.1. We separately analyze the two cases: the case when
Γ{s;a}(π) ≥ 0 for all (s, a) ∈ Θε holds, and the case when it does not.

Case 1: If Γ{s;a}(π) ≥ 0 for all (s, a) ∈ Θε, then by using Equation (4) and Lemma F.3 we obtain that

ρπ − ρ̂π =
〈
ψπ, R− R̂

〉
=

∑
(s,a)∈Θε

αs,a ·
〈
ψπ, ψπ†{s;a} − ψπ†

〉
≥ 0.

Therefore, ρπ ≥ ρ̂π. Furthermore, from Lemma F.3, we know that R = R̂ satisfies the constraint in the
optimization problem (P5), so the score of the optimal solution to (P5) is ρπmin = ρ̂π.
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Case 2: Now, consider the case when Γ{s;a}(π) < 0 for a certain state-action pair (s, a) ∈ Θε. Let αs,a be
an arbitrary positive number. From Lemma F.3, we know that

R = R̂+ αs,a ·
〈
ψπ, ψπ†{s;a} − ψπ†

〉
satisfies the constraint in the optimization problem (P5), and hence is a solution to (P5). Moreover, by using
this solution together with Equation (4), we obtain

ρπ − ρ̂π =
〈
ψπ, R− R̂

〉
= αs,a ·

〈
ψπ, ψπ†{s;a} − ψπ†

〉
= αs,a · Γ{s;a}.

Since αs,a can be arbitrarily large and Γ{s;a} < 0, while ρ̂π is fixed, ρπ can be arbitrarily small. Hence, the
score of the optimal solution to (P5) is unbounded from below, i.e., ρπmin = −∞.

We are now ready to prove Theorem 5.2.

Statement: Assume that εD ≥ ε†, and define ε̂ = mins,a6=π†(s)
[
ρ̂π† − ρ̂π†{s;a}

]
. Then, the optimization

problem (P3) with ε = min{εD, ε̂} is feasible and its optimal solution ψmax identifies an optimal policy πD for
the optimization problem (P2b) via Equation (2). This policy πD satisfies ρπD ≥ ρ̂πD .

Proof. The proof is divide into two parts, respectively proving the first and the second claim in the theorem
statement.

Part 1 (Solution to (P2b)): We prove that the optimization problem (P3) is feasible, its optimal solution
ψmax identifies an optimal solution to (P2b) via Equation (2), and satisfies ρπD ≥ ρ̂πD .

The feasibility of the problem follows from Theorem 4.4. Note that ψmax always exists since (P3) is maximizing
a continuous function over a closed and bounded set. Concretely, the constraints

〈
ψπ†{s;a} − ψπ† , ψ

〉
≥ 0 and

Equations (9) and (10) each define closed sets and since ||ψ||1 = 1, the set Ψ is bounded.

In order to see why ψmax specifies an optimal solution to (P2b), note that we can rewrite (P2b) as

max
π

ρπmin,

where ρπmin is the solution to the optimization problem (P5). Due to Lemma F.4, this could be rewritten as

max
π

ρ̂π

s.t. Γ{s;a}(π) ≥ 0 ∀(s, a) ∈ Θε,

where ε = min{εD, ε̂}. Namely, maximizing a function f(x) subject to constraint x ∈ X (where X 6= ∅) is
equivalent to maximizing f̃(x), where

f̃(x) =
{
f(x) if x ∈ X
−∞ o.w.

.

Due to (4) and (8), the constrained optimization problem above can be rewritten as

max
π

〈
ψπ, R̂

〉
s.t.

〈
ψπ†{s;a} − ψπ† , ψπ

〉
∀(s, a) ∈ Θε.

Therefore, given Lemma D.3, ψmax specifies a solution to (P2b) via (2). Finally, given Lemma F.4, ψπD
satisfies the constraints of (P5) and therefore ρ̂πD is a lower bound on ρπD .
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F.3 Proof of Theorem 5.3

Statement: If ε† > εD, then π† is the unique solution of the optimization problem (P2b), hence πD = π†.

Proof. As in Theorem 5.2, set ε = min{ε̂, εD} where

ε̂ = min
s,a6=π†(s)

[
ρ̂π† − ρ̂π†{s;a}

]
.

From the feasibility of the attack, we have that

∀s, a 6= π†(s) : ρ̂π† − ρ̂π†{s;a} ≥ ε† > εD ≥ ε =⇒ Θε = ∅.

Therefore, given Lemma F.3, the constraint in the optimization problem (P2b) is satisfied only for R = R̂.
This reduces the optimization problem (P2b) to maxπ ρ̂π, which has a unique optimal solution: π†.

G Proofs of Section 4

In this section, we provide the proofs of the results of Section 47 as well as additional results that characterize
the defense optimization problem. While our results are stated for the defense optimization problem (P2a),
all results hold for (P2b) as well with ε = min{εD, ε̂}.

G.1 Solution to the defense optimization problem for the `1 attack cost

In this section, we present a convex optimization framework for solving the defense optimization problem
(P2a) for C = {c1}. Our main result is the following theorem, the proof of which is presented in Section G.3.
Theorem G.1. Let Φ ∈ R|S|·(|A|−1)×|S|·|A| be a matrix with rows consisting of the vectors ψπ†{s;a} − ψπ† as
in Section E and let Φθ be the sub-matrix of Φ consisting of the rows corresponding to Θε† . Define the set
U ⊆ S ×A as the set of state action pairs (s̃, ã) for which the following optimization problem is feasible.

∀s, a :
∣∣(ΦT

θ λ
)

(s, a)
∣∣ ≤ 1 and

(
ΦT
θ λ
)

(s̃, ã) = −1 and λ < 0.

where < denotes coordinate-wise inequality. Consider the following optimization problem:

max
π

ρ̂π,R, s.t. π(a|s) = 0 ∀s, a ∈ U. (17)

The optimization problem (17) is always feasible and its solution is a solution to the defense optimization
problem (P2a) with C = {c1}.

G.2 Proof of Theorem 4.4

Statement: Consider any policy π 6π† s.t. π 6π†(π†(s)|s) = 0. For C = {cp s.t. p ∈ [1,∞)}, the optimal value
of problem (P2a) is bounded from below by ρ̂π 6π† .

Proof. We claim that R̂(s, a) ≤ R(s, a) for all R satisfying R̂ ∈ A(R) and all s, a 6= π†(s). To see why, assume
that if this not the case for some s̃, ã and define R̃ as

R̃(s, a) =
{
R(s, a) if s, a = s̃, ã

R̂(s, a) o.w.

It is clear that
∥∥∥R̃−R∥∥∥

p
<
∥∥∥R̂−R∥∥∥

p
for all p ∈ [1,∞). We claim that R̃ is feasible for the attack optimization

problem (P1) with parameters cp, R, π†, ε†. This would contradict the assumption, R̂ ∈ A(R) as it would
mean R̂ is not an optimal solution to (P1), finishing the proof.

7The results related to computational hardness are discussed separately in Appendix H.
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To prove the claim, since (P1) is equivalent to (P1’), we need to show that

ρR̃,π†{s̃;ã} − ρR̃,π† ≤ −ε†,

for all s̃, ã 6= π†(s̃). By definition of R̃ however, ρR̃,π†{s̃;ã} = ρR̂,π†{s̃;ã} as

ρR̃,π†{s̃;ã} − ρR̂,π†{s̃;ã} =
〈
R̃− R̂, ψπ†{s̃;ã}

〉
= 0, (18)

where the first equality follows from Equation (4), and the second equality follows from the fact that R̃ only
differs from R̂ in (s, a), ψπ†{s̃;ã}(s, a) = 0. Simliarly ρR̃,π† ≥ ρR̂,π† as

ρR̃,π† − ρR̂,π† =
〈
R̃− R̂, ψπ†

〉
≥ 0,

where the second inequality follows from the fact that R̃ is never less than R̂. Therefore,

ρR̃,π†{s̃;ã} − ρR̃,π† ≤ ρR̂,π†{s̃;ã} − ρR̂,π† ≤ −ε†,

where the second inequality follows from the assumption that R̂ ∈ A(R). We haver therefore shown (18),
finishing the proof.

G.3 Characterization of the inner minimization problem in (P2a)

We begin by providing characterisation results for the inner minimization problem in (P2a) for different
known cost functions. These results can be seen as extensions of Lemma F.1. Formally, for fixed p, consider
the following optimization problem

min
R

ρπ s.t. R̂ = A(cp, R, π†, ε†), (P4)

The following lemmas characterize the value of the above optimization problem for different values of p.
In stating these lemmas, we use Φ ∈ R|S|·(|A|−1)×|S|·|A| be a matrix with rows consisting of the vectors
ψπ†{s;a} −ψπ† as in Section E and let Φθ be the sub-matrix of Φ consisting of the rows corresponding to Θε† .
Lemma G.2. Let π be a fixed policy and assume that 1 < p < ∞ is a fixed number. Define the function
up : R → R as up(x) = sgn(x) · |x|

1
p−1 where sgn(x) = 1 [x > 0] − 1 [x < 0] and let up : Rn → Rn be its

coordinate-wise extension to Rn, i.e, up(x)i = up(xi).

The solution to (P4) equals ρ̂π if 〈
ψπ, up(ΦT

θ λ)
〉
≥ 0 ∀λ < 0,

and equals −∞ otherwise.
Lemma G.3. Let π be a fixed policy. Define the function u∞ : R→ R as

u∞(x) =
{
−1 if x ≤ 0
1 o.w.

,

and let u∞ : Rn → Rn be its coordinate-wise extension to Rn, i.e, u∞(x)i = u∞(x)i. The solution to (P4)
equals ρ̂π if 〈

ψπ, u∞(ΦT
θ λ)

〉
≥ 0 ∀λ < 0 s.t. λ 6= 0.

and equals −∞ otherwise.
Lemma G.4. Let π be a fixed policy and let U ⊆ S ×A be the set of state action pairs (s̃, ã) for which the
following optimization problem is feasible.

∀s, a :
∣∣(ΦT

θ λ
)

(s, a)
∣∣ ≤ 1 and

(
ΦT
θ λ
)

(s̃, ã) = −1 and λ < 0. (19)

Then the solution to (P4) is −∞ if π(ã|s̃) > 0 for some s̃, ã ∈ U and is ρ̂π otherwise.
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When it is clear from context, we will drop the dependence on p in up. The proof of Lemmas G.2, G.3 and
G.4 are provided below. Note that Lemma G.4 immediately implies Theorem G.1 since the feasibility of (17)
already follows from Theorem 4.4.

Proof of Lemma G.2. Throughout the proof, we will drop the dependence on cp, ε† and π† in A. The proof
follows a similar structure as the results for the `2 norm; namely, Lemmas E.1, E.3 and F.1.
We begin by analyzing the constraint A(R) = R̂ using the KKT conditions. Since 1 < p <∞, we can change
the objective to 1

p

∥∥R−R∥∥p
p
for convenience. Of the four KKT conditions, primal feasiblity holds if and only

if ΦTR 4 −ε. For the stationarity condition, forming the lagrangian of (P1), we obtain

L = 1
p

∥∥R−R∥∥p
p

+ λT (ΦR− ε†) =
∑ 1

p
(R(s, a)−R(s, a))p + λTΦR− ε†λT1

Taking the gradient,

∇RL = 0 ⇐⇒ sgn(R(s, a)−R(s, a)) ·
∣∣R(s, a)−R(s, a)

∣∣p−1 +
(
ΦTλ

)
(s, a) = 0 ∀s, a

⇐⇒
(
ΦTλ

)
(s, a) = sgn(R(s, a)−R(s, a)) ·

∣∣R(s, a)−R(s, a)
∣∣p−1 ∀s, a

⇐⇒
∣∣(ΦTλ

)
(s, a)

∣∣ 1
p−1 · sgn

((
ΦTλ

)
(s, a)

)
= R(s, a)−R(s, a) ∀s, a

(i)⇐⇒ u(ΦTλ) = R−R,

where for (i) we have used the definition of u. the complementary slackness condition states that

λ(s, a) = 0 ∀(s, a) /∈ Θε† .

Finally, dual feasible states that λ < 0.

Returning to the condition A(R) = R̂, primal feasibility always holds as R̂ = A(R). We therefore conclude
that a vector R satisfies A(R) = R̂ if and only if the following problem is feasible

R = R̂+ u(ΦTλ)
λ < 0
λ(s, a) = 0 ∀(s, a) /∈ Θε†

By definition of Φθ, this means that

A(R) = R̂ ⇐⇒ R = R̂+ u(ΦT
θ λ) for some λ < 0.

Returning back to (P4), the problem can be rewritten as

min
R,λ

〈ψπ, R〉

s.t. λ < 0
R = u(ΦT

θ λ) + R̂.

or equivalently,

min
λ<0

〈
ψπ, u(ΦT

θ λ)
〉

+ ρ̂π. (20)

Now, assume that
〈
ψπ, u(ΦT

θ λ)
〉
< 0 for some λ < 0. Observe that u(c · x) = c

1
1−p · x for positive constants

c > 0. Therefore, 〈
ψπ, u

(
ΦT
θ (c · λ)

)〉
= c

1
p−1 ·

〈
ψπ, u

(
ΦT
θ λ
)〉

Since 1 < p <∞, letting c→∞, the value of
〈
ψπ, u

(
ΦT
θ (c · λ)

)〉
can be made arbitrarily low. Therefore, the

value of (20) equals −∞. Conversely, assume that
〈
ψπ, u(ΦT

θ λ)
〉
≥ 0 for all λ < 0. It follows that the value

of (20) is bigger than equal to ρ̂π. Since λ = 0 is feasible for (20), the value is exactly ρ̂π.
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Before we prove Lemma G.3, we will state and prove the following Lemma which characterizes the subgradient
of the `∞ norm.
Lemma G.5. The vectors w, zi ∈ Rn satisfy w ∈ ∂ ‖z‖∞ if and only if (a) z = 0 and ‖w‖1 ≤ 1 or (b)
‖w‖1 = 1 and z ∈ ũ(w) where

ũ(w) :=

x ∈ Rn : xi ∈


{c} if wi > 0
{−c} if wi < 0
[−c, c] if wi = 0

for some c ≥ 0


Proof. By Proposition A.22 in Bertsekas (1971),

∂‖z‖∞ = conv{w s.t ‖w‖1 ≤ 1, zTw = ‖z‖∞} = {w s.t ‖w‖1 ≤ 1, zTw = ‖z‖∞}. (21)

analyzing the above result, note that

zTw =
∑

ziwi

(a)
≤
∑
|wi| ‖z‖∞

= ‖w‖1 · ‖z‖∞
(b)
≤ ‖z‖∞ .

Since zTw = ‖z‖∞, equality holds in (b), implying ‖w‖1 = 1 or z = 0 and in (a), implying ziwi = |wi| ‖z‖∞
for all i. This means that if |zi| < ‖z‖∞, then wi = 0, and if |zi| = ‖z‖∞, then wi ≥ 0 if zi ≥ 0 and wi ≤ 0 if
zi ≤ 0.
In other words (this time conditioning on w), if ‖w‖1 < 1, then z = 0. Otherwise, if wi > 0 then zi = ‖z‖∞,
if wi < 0, then zi = −‖z‖∞ and if wi = 0 then zi can be any value in [−‖z‖∞ , ‖z‖∞]. Therefore, the proof
follows by setting c = ‖z‖∞. (the last condition is obviously true but it is important to make explicit as will
become clear later). This brings us to the following result.

We can now prove Lemma G.3.

Proof of Lemma G.3. The main ideas of the KKT analysis in the proof of Theorem G.2 still hold and the
only condition that changes is the stationarity slackness condition. Formally, the lagrangian equals∥∥R−R∥∥∞ + λT (ΦR− ε†).

Therefore, the stationarity condition can be written as

0 ∈ ΦTλ+ ∂
∥∥R−R∥∥∞ ⇐⇒ −ΦTλ ∈ ∂

∥∥R−R∥∥∞ (22)

By Lemma G.5, and given the fact that ũ(−x) = −ũ(x), the above condition holds if and only if(
R−R ∈ ũ(ΦTλ) ∧

∥∥ΦTλ
∥∥

1 = 1
)
∨
(∥∥ΦTλ

∥∥
1 ≤ 1 ∧R−R = 0

)
Combining with the complementary slackness and dual feasibility, (P4) can be rewritten as

min
v,λ

ρ̂π + 〈ψπ, v〉

s.t λ < 0(
v ∈ ũ(ΦT

θ λ) ∧
∥∥ΦT

θ λ
∥∥

1 = 1
)
∨
(∥∥ΦT

θ λ
∥∥

1 ≤ 1 ∧ v = 0
)

Now, observe that ũ(c · x) = ũ(x) for all c > 0. Therefore, the
∥∥ΦT

θ λ
∥∥

1 = 1 inside the first clause of the last
constraint is equivalent to ΦT

θ λ 6= 0 since if ΦT
θ λ 6= 0 and

∥∥ΦT
θ λ
∥∥ 6= 1, then

∥∥ΦT
θ λ
∥∥ = 1 can be satisfied by
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replacing λ with 1
‖ΦT

θ
λ‖1
· λ. Similarly, the

∥∥ΦT
θ λ
∥∥

1 ≤ 1 inside the second clause is redundant. Therefore, the
last constraint can be rewritten as (

v ∈ ũ(ΦT
θ λ) ∧ΦT

θ λ 6= 0
)
∨ v = 0

Now, observe that ΦT
θ λ 6= 0 is equivalent to λ 6= 0 as the rows of Φθ are independent; this is becasue the

only row with nonzero (s, a 6= π†(s)) is the one corresponding to (s, a 6= π†(s)). Therefore, the optimization
problem can be rewritten as

min
v,λ

ρ̂π + 〈ψπ, v〉

s.t λ < 0(
v ∈ ũ(ΦT

θ λ) ∧ λ 6= 0
)
∨ v = 0

Assume that there exists λ 6= 0 satisfying λ < 0 such that
〈
u(ΦT

θ λ), ψπ
〉
< 0. Then for any c > 0,

c · u(ΦT
θ λ) ∈ ũ(ΦT

θ λ) and therefore, the value of the optimization problem is −∞. Otherwise, the value is
lower bounded by ρ̂π and the bound is attained with v = 0, concluding the proof.

Proof of Lemma G.4. We begin by analyzing (P1) as before. Forming the Lagrangian,

L =
∥∥R−R∥∥1 + λT (ΦR− ε†)

Therefore, the stationarity condition states that

ΦTλ ∈ −∂
∥∥R−R∥∥1

As before, the primal feasibility condition holds, dual feasibility states that λ < 0 and complementary
slackness states that λ(s, a) = 0 for all (s, a) /∈ Θε† . Therefore, A(R) = R̂ if and only if

ΦT
θ λ ∈ −∂

∥∥∥R̂−R∥∥∥
1

(23)

Note however that vectors z, w satisfy w ∈ ∂ ‖z‖1 if and only if

wi


= 1 if zi > 0,
= −1 if zi < 0,
∈ [−1, 1] if zi = 0

⇐⇒ zi


≥ 0 if wi = 1
≤ 0 if wi = −1
= 0 if wi ∈ (−1, 1)

Now, assume that π(ã|s̃) > 0 for some (s̃, ã) for which (19) is feasible and λ be the vector satisfying (19). By
(23), we conclude that the vector R(s, a) = R̂(s, a) − t · 1 [(s, a) = (s̃, ã)] satisfies A(R) = R̂ for any t > 0.
Therefore, if π(ã|s̃) > 0, the solution to (P4) is −∞. Conversely, if (19) is not feasible for any such s̃, ã, then
it follows that R(s, a) ≥ R̂(s, a) for all R, s, a satisfying A(R) = R̂ and π(a|s) > 0. Therefore, the value of
the optimization problem is lower bounded by ρ̂π. Since A(R̂) = R̂, the lower bound is attainble which proves
the lemma.

G.4 Proof of Proposition 4.2

Statement: Let cconst(R,R′) be a constant cost function, and assume that cconst ∈ C. Then problem (P2a)
is unbounded from below.

Proof. We will show that for any π, the value of the inner optimization problem of (P2a) equals −∞, thereby
proving the result.
Let π be an arbitrary policy and consider an arbitrary vector R. By definition of cconst and the fact that R̂ is
feasible for (P1), R̂ ∈ A(cconst, R, π†, ε†). Therefore, R, cconst are feasible for (P2a). Since R was arbitrary, it
can be chosen such that the ρπ is arbitrarily low, proving the claim.
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G.5 Proof of Theorem 4.3

Statement: There exists MDP M = (S,A, R̂, P, γ, σ) for which problem (P2a) is unbounded from below
when c∞ ∈ C.

Proof. Let π be an arbitrary policy. We will build an example where the value of the inner minimization
problem of (P2a) is −∞.

Consider a single-state MDP with the reward function R̂ = (1, 0, 0, 0) where π† is the first action and ε† = 1.
Since R̂ is symmetric with respect to a2, a3, a4, we assume without loss of generality that π(a2) ≤ π(a3) ≤ π(a4).
For any x, consider the reward function R′ = (1 − x, x,−x,−x) with actions a1, a2, a3, a4. We claim that
R̂ ∈ A(c∞, R′, π†, ε†). To see why, consider the attack optimization problem (P1). The cost of the attack
optimization problem is at least x because R′(π†) − R′(a2) = 1 − 2x and any feasible R̃ needs to satisfy
R̃(π†)− R̃(a2) ≥ 1, which implies∥∥∥R′ − R̃∥∥∥

∞
≥ max{R̃(π†)−R′(π†), R′(a2)− R̃(a2)}

≥ 1
2

(
R̃(π†)−R′(π†) +R′(a2)− R̃(a2)

)
= 1

2 (2x− 1 + 1) = x

Since
∥∥∥R′ − R̂∥∥∥

∞
= x, we conclude R̂ ∈ A(c∞, R′, π†, ε†) as claimed.

We now consider the score of the policy π under the reward function R′ and show that, with the proper
choice of x, it is unbounded from below. Since R̂ ∈ A(c∞, R′, π†, ε†), this would show that the value of the
inner minimization in (P2a) equals −∞, proving the theorem.

By definition, ρR′,π can be written as

ρR
′,π = π(a1) + x(π(a2)− π(a1)− π(a3)− π(a4)) = π(a1) + x(π(a2)− (1− π(a2))) = π(a1) + x(2π(a2)− 1).

Since π(a2) ≤ π(a3) ≤ π(a4) however, we conclude that π(a2) < 0.5. Therefore, tending x to infinity finishes
the proof.

H Computational hardness results

In this section, we provide computational hardness results for different choices of C, showing that the defense
optimization problem (P2a) is NP-hard in different cases. While our results are stated for the defense
optimization problem (P2a), all results hold for (P2b) as well with ε = min{εD, ε̂}. Our proofs rely on the
results of Appendix G and we therefore refer to this and rely on notation introduced in this Appendix; namely,
the notation Φθ and up as introduced in Lemma G.2.

H.1 Hardness result for p =∞

4.5 We begin by considering the case of c∞. By reducing the 3SAT problem to the defense optimization
problem (P2a), we will show that (P2a) is NP-hard. More formally, we prove the following theorem.
Theorem H.1. For C = {c∞}, it is NP-hard to determine whether the optimal value of problem (P2a) is
greater than or equal to ρ̂π† .

We assume without loss of generality that the clauses do not contain duplicate variables as the 3SAT instance
remains NP-hard in this case.

Before proving the theorem, we prove a weaker result which essentially proves hardness assuming we can set
the matrix Φθ and vector µπ† can be set arbitrarily, without the restriction that they correspond to an MDP.
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Proposition H.2. Assume we are given an instance of 3SAT with clauses c1, . . . , cm and variables (x1, . . . xm).
Define k = 2n+ 1 and ` = 4n+m+ 1. It is possible to build, in polynomial time, a matrix M̃ ∈ Rk×` , a
vector µ̃ ∈ R` such that µ̃ is strictly positive and

• If the 3SAT instance is satisfiable, then there exists a λ 6= 0 ∈ Rk satisfying λ < 0 such that〈
u∞(M̃Tλ), µ̃

〉
< −1

4 .

In addition, M̃Tλ does not contain any zero entries.
• If the 3SAT instance is not satisfiable, then for any λ 6= 0 ∈ Rk satisfying λ < 0,〈

u∞(M̃Tλ), µ̃
〉
>

1
4

Proof. We begin by an empty matrix and vector and in each step, add a value to µ̃ and add a column of size
k to M̃ .

We will let (a0, a1, . . . , an, b1, . . . , bn) be placeholder names for the coordinates of λ Since the optimization
problem we are considering involves the matrix product M̃Tλ, for ease of notation, we will specify each
column of M̃ by the linear map forming the corresponding coordinate of M̃Tλ. As an example, a0 + 4a3 + 5b3
is a column that has value 1 in a0, 4 in a3, 5 in b3 and 0 everywhere else.

Defining c := 500k, we first add the columns below.

c

(
a0 +

n∑
i=1

ai +
n∑
i=1

bi

)
(24)

0.9a0 − (ai + bi) ∀i ∈ [n] (25)
− 1.1a0 + (ai + bi) ∀i ∈ [n] (26)
4 (0.9a0 − (ai − bi)) ∀i ∈ [n] (27)
4 (0.9a0 − (bi − ai)) ∀i ∈ [n] (28)

The value of µ̃ for (24), (25), (26), (27) and (28) is (6n2 +m− 1
2 ), 3n, 3n, 1 and 1 respectively. Note that

(24) is the all-ones vector. The constant c in (24) and the constant 4 in (27) and (28) will not matter for the
proof, but will be useful for later.

Next for each clause with variables (xi, xj , xk), we will add the following column where di denotes ai if the
variable xi appears as positive in the clause and bi if the variable appears as negative.

0.95 · a0 − (di + dj + dk) (29)

The value of µ̃ in the above is 1.

We now prove that µ̃, M̃ have the mentioned properties.

If the 3SAT instance is satisfiable, this is easy to show. Set a0 = 1 and set (ai, bi) to (1, 0) if xi is
set to true in the satisfiable arrangement and to (0, 1) if xi is set to 0. It is clear that the coordinates
of u(M̃Tλ) corresponding to (24), (25) and (26) equal 1, −1 and −1 respectively. Furthermore, since
{ai− bi, bi− ai} = {1,−1}, exactly half of the coordinates of u(M̃Tλ) corresponding to (27) and (28) equal 1,
while the other half equal −1. Furthermore, all of the coordinates corresponding to (29) equal -1. Therefore,
the inner product

〈
µ̃, u(M̃Tλ)

〉
equals

(6n2 +m− 1
2)− n · 3n− n · 3n+ 0−m = −1

2

which proves the claim.
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Conversely, assume that the 3SAT instance is not satisfiable. Let s1, . . . s` denote the coordinates of µ̃ with s1

corresponding to (24) and let u[s] denote
(
u(M̃Tλ)

)
(s). Let λ 6= 0 satisfying λ < 0 be an arbitrary vector.

First note that since λ 6= 0,
(
M̃Tλ

)
(s1) is strictly positive and therefore u[s1] = 1. Since µ̃(s1) = 6n2 +m− 1

2 ,
we need to show that〈

u(M̃Tλ), µ̃
〉
>

1
4 ⇐⇒

∑
s6=s1

µ̃(s) · u[s] > −6n2 −m+ 1
2 + 1

4 (30)

⇐⇒
∑
s6=s1

µ̃(s) · (u[s] + 1)
2 >

1
2 ·
(
−6n2 −m+ 3

4 + 2n · 3n+ 2n · 1 +m

)
(31)

⇐⇒
∑
s6=s1

µ̃(s) · 1 [u[s] = 1] > n+ 3
8 (32)

Now note that since the value of µ̃ in coordinates corresponding to (25) and (26) is > n+ 3
8 , if u[s] equals

one in any of these coordinates, then the claim is proved.

Therefore, we assume w.l.o.g that for any i,

0.9a0 ≤ ai + bi ≤ 1.1a0.

This implies that if any of {ai, bi}i≥1 is strictly positive, so is a0. Since at least one of {a0, ai, bi} needs to be
strictly positive by the assumption λ 6= 0, we conclude that a0 is strictly positive.

Now note that u[s] is 1 in more than half of the coordinates corresponding to (27) and (28), then (32) will
hold. We can therefore assume w.l.o.g that at least half of these coordinates equal −1. We note however that
if u[s] equals −1 for both (27) and (28) for some 1 ≤ i ≤ n, then

0.9a0 ≤ ai − bi ∧ 0.9a0 ≤ bi − ai =⇒ a0 ≤ 0 =⇒ a0 = 0,

which is not possible. We can therefore conclude that for any fixed i, u(M̃Tλ) equals 1 in exactly one of the
two coordinates corresponding to (27) and (28). Therefore, either ai − bi ≥ 0.9a0 or bi − ai ≥ 0.9a0. Since
ai + bi ≥ 0.9a0, we get that either ai ≥ 0.9a0 or bi ≥ 0.9a0. Since ai + bi ≤ 1.1a0, the bigger one is ≥ 0.9a0
and the smaller one is ≤ 0.2a0.

Finally, note that if u[s] equals 1 for any of the coordinates corresponding to (29), then (32) would hold since
u[s] was already 1 for half of the coordinates corresponding to (27) and (28). We can therefore assume that
u[s] is −1 for all the coordinates corresponding to (29). Note however that if di + dj + dk ≥ 0.95a0, then at
least one of the di must have been > 0.2. This means that all of the clauses must hold true (in the 3SAT
sense) with xi set to

xi =
{

1, if ai ≥ 0.5
−1, otherwise

.

This is not possible however as we assumed that the 3SAT instance was not satisfiable.

Claim H.3. Define M̃ as above and let s1 denote the column of the matrix corresponding to (24). For all
rows ṽ in M̃ , we have

ṽ(s1) ≥ 50
∑
i>1
|ṽ(si)| ,

which further implies
∑
i≥1 |ṽ(si)| ≤ (1 + 1/50)ṽ(s1).

Proof. The claim follows trivially from the fact that as ṽ(s1) = c and all other entries in ṽ are less than 4.

Next, we prove the following lemma which essentially states that for any desired value of Θε† , we can find a
plausible reward function R̂ such that Θε† equals this value.
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Lemma H.4. Let M be an ergodic MDP with unspecified reward function and let π† be a policy in this MDP.
For any value of ε† > 0 and any set of state-action pairs Θ ⊆ S × A satisfying Θ ∩ {(s, π(s)) : s ∈ S} = ∅,
there is a reward function R̂ such that

1. R̂ is feasible for the attack problem (P1), i.e, ΦT R̂ 4 −ε†.

2. Θε† = Θ.

Proof. Consider the following reward function,

R̂(s, a) =


0 if a = π†(s)
− ε†

µπ†{s;a}(s)
if a ∈ Θ

− 2·ε†
µπ†{s;a}(s)

o.w.

It is clear that ρπ† = 0 and

ρπ†{s;a} =
{
−ε† if (s, a) ∈ Θ
−2ε† o.w.

, for all (s, a 6= π†(s)).

which proves the claim.

We now use the above results to construct an MDP, formally proving Theorem H.1. Given an instance of
3SAT, let M̃, µ̃ denote the values specified in Proposition H.2. Recall that M̃ ∈ Rk×` and µ̃ ∈ R` where
k = 2n+ 1 and ` = 4n+m+ 1. Let δ > 1/2, γ ∈ [1/2, 1] be parameters to be specified later. (see Claims
H.11, H.7, and H.5.) Intuitively, we need δ to be close to zero and γ to be close to one.

Given these values, we will build an MDP with reward vector R̂ with `+ 3 states and k + 1 actions for which
|Θε| = k and the 3SAT instance is satisfiable if and only if

∃λ 6= 0 ∈ Rk : λ ≥ 0 ∧
〈
u∞(ΦT

θ λ), ψπ†
〉
< 0. (33)

In our construction, the states si≥1 will each correspond to the columns of M̃ while the states s−2, s−1, s0

will be new. Furthermore, in state s0, each of the actions a 6= π†(s0) will correspond to a row of M̃ .

Let M denote the submatrix of Φθ with only columns corresponding to (s, π†(s)). We first observe that (33)
can be simplified because ψπ†(s, a) is 0 for all s, a 6= π†(s). Therefore, (33) is equivalent to

∃λ 6= 0 ∈ Rk : λ ≥ 0 ∧
〈
u∞(MTλ), µπ†

〉
< 0. (34)

In order to specify this MDP, we first specify the transition probabilities of π†. In state s0, following π† leads
to si for i ∈ {−1,−2} with probability δ/2 and leads si for i ≥ 1 with the probability (1− δ)µ̂(si) where

µ̂ = µ̃

‖µ̃‖1
. (35)

In states s 6= s0, following π† will lead back to s with probability 1. The initial distribution σ of the MDP is
chosen as σ(s0) = 1 and σ(si) = 0 for i 6= 0.

It is straightforward to see that

µπ†(s0) = (1− γ), ∀i ∈ {−2,−1} : µπ†(si) = γ · δ
2 , ∀i ≥ 1 : µπ†(si) = γ · (1− δ) · µ̃(si)

‖µ̃‖1
.

Now, for each of the rows in M̃ like ṽ, we add an action a to state s0 with the following transition probabilities.

P (s0, a, sj) =


P (s0, π†(s0), sj) if j = 0
P (s0, π†(s0), sj)− δ

4θ · (
∑
i ṽ(si)) if j ∈ {−2,−1}

P (s0, π†(s0), sj) + δ
2θ · ṽ(sj) if j ≥ 1

. (36)

35



Published in Transactions on Machine Learning Research (01/2023)

where θ is taken to be large enough such that for all ṽ,

θ ·min
i
µ̂(si) ≥ ‖ṽ‖1 .

Note that the value of θ is the same for all the rows of matrix; it is set to the maximum of 1
mini µ̂i

· ‖ṽ‖1
across all rows ṽ of M̃ .
Claim H.5. If δ ≤ 1

10 , the transition probabilities specified in (35) are valid, i.e., they are in the range [0, 1]
and

∑
s′ P (s0, a, s

′) = 1.

Proof. In order to make sure these transition probabilities are valid, they need to sum to one and they all
need to be non-negative. They sum to one by definition. As for being non-negative, it holds trivially for
j = 0 and holds for j 6= 0 by definition of δ. Formally, for j ≤ −1,

P (s0, π†(s0), s0)− δ

4 ·
(∑

i

v(si)
)

= δ ·
(

1
2 −

1
4 ·
∑
i ṽ(si)
θ

)
≥ δ

(
1
2 −

1
4 · (min

i
µ̂i) ·

∑
ṽ(si)
‖ṽ‖1

)
≥ δ(1

2 −
1
4)

> 0

and for j ≥ 1,

P (s0, π†(s0), sj) + δ

2 ·
ṽ(sj)
θ
≥ P (s0, π†(s0), sj)−

δ

2 ·
|ṽ(sj)|
θ

≥ (1− δ) min
i
µ̂i −

δ

2 ·
ṽ(sj)
‖ṽ‖1

·
(

min
i
µ̂i

)
≥ (min

i
µ̂i) · (1−

3δ
2 ) > 0

Now, using Lemma H.4, set the reward for the MDP such that Θε† consists of the added actions in s0.
Note that there are multiple actions in the states si 6=0 as well; however, given Lemma H.4, their transition
probabilities are not important and can be set arbitrarily as long as the MDP remains ergodic.

Claim H.6. For all a, 6= π†(s0),

(MTλ)(a) =
(
− δ

4θ · γ · (
∑

ṽ(sj)), − δ

4θ · γ · (
∑

ṽ(sj)), −(1− γ), γ · δ2θ · ṽ
)
,

where ṽ is the row corresponding to a and we have abused notation by using γ · δ2 · ṽ to denote the last k
entries of the vector.

Proof. As before, it is straightforward to see that µπ†{s0;a}(s0) = (1− γ) and

∀i ∈ {−2,−1} : µπ†{s0;a}(si) = γ ·
(
δ

2 −
δ

4θ · (
∑

ṽ(sj))
)
,

and

∀i ≥ 1 : µπ†{s0;a}(si) = γ ·
(

(1− δ) · µ̂(si) + δ

2θ · ṽ(si)
)
.
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Claim H.7. If max{δ, 1− γ} ≤ 1
4‖µ̃‖1

, then

‖µ̃‖1
γ(1− δ)

 0∑
j=−2

µπ†(sj)

 ≤ 1/8

Proof.

‖µ̃‖1
γ(1− δ) ·

 0∑
j=−2

µπ†(sj)

 = δ · γ + (1− γ)
γ(1− δ) · ‖µ̃‖1 (37)

≤ 1
4 · ‖µ̃‖1 · (δ + (1− γ)) ≤ 1

8 (38)

Claim H.8. The 3SAT instance is satisfiable if and only if (34) holds.

Proof. Given Claim H.6, the sub-matrix of M corresponding to columns sj≥1 equals

γ · δ
2 · θ · M̃.

Let u∞[s] denote u∞
(
(MTλ)(s)

)
. For any λ,

〈
µπ† , u(MTλ)

〉
=

0∑
j=−2

µπ†(sj)u∞[sj ] +
〈
γ · (1− δ)
‖µ̃‖1

· µ̃, u(γ · δ2 · θ · M̃
Tλ)

〉

=
0∑

j=−2
µπ†(sj)u∞[sj ] +

〈
γ · (1− δ)
‖µ̃‖1

· µ̃, u(M̃Tλ)
〉

Multiplying both sides by ‖µ̃‖1
γ(1−δ) , it follows that

∣∣∣∣ ‖µ̃‖1γ(1− δ) ·
〈
µπ† , u(MTλ)

〉
−
〈
µ̃, u(M̃Tλ)

〉∣∣∣∣ ≤ ‖µ̃‖1
γ(1− δ) ·

 0∑
j=−2

|µπ†(s)u∞[s]|

 (39)

≤
‖µ̃‖1

γ(1− δ) ·

 0∑
j=−2

µπ†(s)

 (40)

≤ 1
8 (41)

Therefore, by Lemma H.4, if the 3SAT is satisfiable, then there exists a λ such that

‖µ̃‖1
γ(1− δ) ·

〈
µπ† , u(MTλ)

〉
≤ −1

4 + 1
8 < 0.

If the 3SAT is not satisfiable, then by Lemma H.4, for all feasible λ,

‖µ̃‖1
γ(1− δ) ·

〈
µπ† , u(MTλ)

〉
≥ 1

4 −
1
8 > 0

which proves the claim.
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H.2 Proof of Theorem 4.5

Statement: For C = {cp s.t. p ∈ [1,∞)}, it is NP-hard to determine whether the optimal value of problem
(P2b) is greater than or equal to ρ̂π† We will prove the result using the same MDP as the previous Section.

We need to show the 3SAT instance is satisfiable if and only if

∃p ∈ [1,∞), λ ∈ Rk : λ ≥ 0 ∧
〈
up(ΦT

θ λ), ψπ†
〉
< 0.

As before, let M denote the submatrix of Φθ with only columns corresponding to (s, π†(s)). As in the
previous section we note that because ψπ†(s, a) is 0 for all s, a 6= π†(s), the above condition is equivalent to

∃p ∈ [1,∞), λ ∈ Rk : λ ≥ 0 ∧
〈
up(MTλ), µπ†

〉
< 0. (42)

We split the proof into two lemmas.
Lemma H.9. If the 3SAT instance is satisfiable, then (42) holds.

Proof. In this case, then the same proof as before basically holds. Formally, consider the λ used before in
the proof and consider the vector MTλ. We need to show that there exists p for which

〈
µπ† , up(MTλ)

〉
is

negative. Note however that

〈
µπ† , up(MTλ)

〉
=

k∑
i=−2

µπ†(si) · up
(
(MTλ)(si)

)
For fixed x 6= 0, up(x) is a continuous function of p and lim∞ up(x) = u∞(x). If we show that all of the
coordinates in MTλ are non-zero, this would imply that

〈
µπ† , up(MTλ)

〉
converges to

〈
µπ† , u∞(MTλ)

〉
< 0

for large enough p which proves the claim. Therefore,
〈
µπ† , up(MTλ)

〉
is continuous in p and letting p be

large enough proves the claim.

It remains to verify that all of the coordinates in MTλ used in the above proof were non-zero. Since all of
the coordinates of M̃Tλ were non-zero by our construction of λ, we conclude that MTλ is non-zero on si≥1.
For i ∈ {−2,−1}, given claim H.3, we have

∑
i≥1 ṽ(si) > 0, for all rows ṽ of M̃ , which means MTλ is strictly

negative on these states. Finally, the entry corresponding to s0 equals −µπ†(s0) in all rows of M , which
implies

(
MTλ

)
(s0) is strictly negative, proving the claim.

Lemma H.10. If (42) holds, then the 3SAT instance is satisfiable.

Proof. We assume that λ 6= 0 without loss of generality; if λ = 0 then
〈
µπ† , up(MTλ)

〉
= 0 which is not

negative.
Letting up[s] denote up

(
(MTλ)(si)

)
and dp[s] denote µπ†(s) ·up[s], then

〈
µπ† , up(MTλ)

〉
can be rewritten as

〈
µπ† , up(MTλ)

〉
=
∑̀
i=−2

µπ†(si) · up[si] (43)

=
0∑

i=−2
dp[si] +

∑
(24)

dp[s] +
∑
(25)

dp[s] +
∑
(26)

dp[s] +
∑
(27)

dp[s] +
∑
(28)

dp[s] +
∑
(29)

dp[s] (44)

where in the above, we have broken the sum in different parts, depending on what si corresponds to and we
have abused the notation by using the set (24) denote all states that correspond to Equation (24). Note that
the sum corresponding to (24) consists of a single state. We will also use s1 to denote this state.

We begin by stating some properties of up and dp.

Claim H.11. Let γ be close enough to 1 such that

cδ

4θ ≥ (1− γ).
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Then for all rows ṽ from M̃ ,

∀s 6= s1 : |up[s]| ≤ up[s1] (45)

Proof. We need to show that for all rows v in M , |v(s1)| ≥ |v(s)| for all s 6= s1. For i ≥ 1, this follows
immediately from Claim H.3 and Claim H.6.

As for s0, we need to show that

v(s1) ≥ |v(s0)| ⇐⇒ γ · δ
2θ ṽ(s1) ≥ (1− γ)

Note however that

γ · δ
2θ ṽ(s1) ≥ δ

4θ ṽ(s1) ≥ (1− γ)

by the assumption on γ.

Claim H.12. For any i ∈ [n], letting s̃i and s̃′i denote the states corresponding to (27) and (28) respectively.

dp[s̃i] + dp[s̃′i] ≥ 0.

Proof. To prove this, observe that

0.9a0 − (ai − bi) + 0.9a0 − (bi − ai) = 1.8a0 ≥ 0

There are therefore two possibilities: (a) Both 0.9a0 − (ai − bi) and 0.9a0 − (bi − ai) are non-negative.
In this case, both dp[s̃i] and dp[s̃′i] are non-negative and the claim follows. (b) 0.9a0 − (ai − bi) ≥ 0
and 0.9a0 − (bi − ai) ≤ 0 or vice versa. Assume w.l.o.g that 0.9a0 − (ai − bi) ≥ 0, i.e, dp[s̃i] ≥ 0. In
this case, |0.9a0 − (ai − bi)| ≥ |0.9a0 − (bi − ai)| and therefore, since µπ†(s̃i) = µπ†(s̃′i), we conclude that
dp[s̃i] ≥ |dp[s̃′i]| and therefore the claim follows.

We split the proof into several cases.
Case 1: There exists s ∈ (25) ∪ (26) such that dp[s] ≥ 0.
Let s be such a state In this case, define d̃p[s] as follows

d̃p[s] =


0 if s = s

0 if s ∈ (27) ∪ (28)
dp[s] if s = s1

− |dp[s]| o.w.

We first claim that
∑
dp[s] ≥

∑
d̃p[s]. To prove this, note that dp[s] ≥ d̃p[s] for all s /∈ (27) ∪ (28). We

therefore need to prove that ∑
s∈(27)∪(28)

dp[s] ≥ 0,

which follows from Claim H.12. by summing over all i ∈ [n].
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Defining S̃ := S\ ({s1, s} ∪ (27) ∪ (28)), we note that∑
s

d̃p[s] = dp[s1]−
∑
s∈S̃

|dp[si]|

= µπ†(s1) · up[s1]−
∑
s∈S̃

µπ†(s) · |up[si]|

(45)
≥ µπ†(s1) · up[s1]−

∑
s∈S̃

µπ†(s) · |up[s1]|

= |up[s1]|

µπ†(s1)−
∑
s∈S̃

µπ†(s)


Defining S̃+ := S̃\{s−2, s−1, s0},

µ̃(s1)−
∑
s∈S̃+

µ̃(s) = 6n2 +m− 1
2 − (2n− 1) · 3n−m

= 6n2 +m− 1
2 − 6n2 + 3n−m

= 3n− 1
2 >

1
4 ,

Claim H.7 now gives a contradiction as the inner product in (42) becomes positive.
Case 2: dp[s] < 0 for all s ∈ (25) ∪ (26) and |aj − bj | ≤ 0.9a0 for some j ∈ [n].
In this case, we conclude that

ai + bi ∈ [0.9, 1.1]a0 ∀i ∈ [1, n]

Since either ai or bi must be strictly positive for some i (because λ 6= 0), we conclude that a0 > 0.
Similar to case 1, we introduce a new vector d̃p such that

∑
s dp[s] ≥

∑
s d̃p[s].

Let s̃j and s̃′j denote the states corresponding to (27) and (28) respectively for i = j. Note that by assumption,
up[s̃j ], up[s̃′j ] ≥ 0. Assume without loss of generality that up[s̃j ] ≥ up[s̃′j ]. Define the vector d̃p as

d̃p[s] =


0 if s ∈ (27) ∪ (28)\{s̃j}
dp[s] if s ∈ {s1, s̃j}
− |dp[s]| o.w.

As before,
∑
dp[s] ≥

∑
d̃p[s]. More formally, for (27) and (28), we use Claim H.12 and for all the other

states, we have dp[s] ≥ d̃p[s].
We now claim that

∀s ∈ (25) ∪ (26) ∪ (29) : |up[s]| ≤ up[s̃j ]. (46)

This is because

(MTλ)(s̃j) ≥
(MTλ)(s̃j) + (MTλ)(s̃′j)

2 = 3.6a0,

while
∣∣(MTλ)(s)

∣∣ ≤ 2.35a0 for all s ∈ (25) ∪ (26) ∪ (29). This is because ai + bi ∈ [0.9 · a0, 1.1 · a0].
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Defining S̃ := (25) ∪ (26) ∪ (29), we conclude that∑
s

dp[s] ≥
∑
s

d̃p[s]

= µπ†(s1) · up[s1] + µπ†(s̃j) · up[s̃j ] +
∑
s∈S̃

µπ†(s) · − |up[s]|+
0∑

i=−2
µπ†(si) · − |up[si]|

≥ µπ†(s1) · up[s1] + µπ†(s̃j) · up[s̃j ] +
∑
s∈S̃

µπ†(s) · − |up[s̃j ]|+
0∑

i=−2
µπ†(si) · − |up[s1]|

=
(
µπ†(s1)−

0∑
i=−2

µπ†(si)
)
· up[s1] + µπ†(s̃j) · up[s̃j ] +

∑
s∈S̃

µπ†(s) · − |up[s̃j ]|

≥

(
µπ†(s1)−

0∑
i=−2

µπ†(si)
)
· up[s̃j ] + µπ†(s̃j) · up[s̃j ] +

∑
s∈S̃

µπ†(s) · − |up[s̃j ]|

= up[s̃j ] ·

µπ†(s1) + µπ†(s̃j)−
0∑

i=−2
µπ†(si)−

∑
s∈S̃

µπ†(s)


Here, for the final inequality we have used the fact that µπ†(s1) −

∑0
i=−2 µ

π†(si) ≥ 0, which follows from
Claim H.7.

As before, note that

µ̃(s1) + µ̃(s̃j)−
∑
s∈S̃

µ̃(s) = 6n2 +m− 1
2 + 1− 2n · 3n−m ≥ 1

2

Claim H.7 now gives a contradiction as the inner product in (42) becomes positive.
Case 3: dp[s] < 0 for all s ∈ (25) ∪ (26) and |ai − bi| ≥ 0.9a0 for all 1 ≤ i ≤ n.
Similar as before, define d̃p as

d̃p[s] =


0 if s ∈ (27) ∪ (28)
dp[s] if s = s1

min{dp[s], 0} if s ∈ (29)
− |dp[s]| o.w.

As before,
∑
s dp[s] ≥

∑
s d̃p[s]. Therefore,∑

s

dp[s] ≥
∑
s

d̃p[s]

= µπ†(s1) · up[s1]−
∑

s∈(25)∪(26)

µπ†(s) · |up[s]|+
∑
s∈(29)

µπ†(s) ·min{up[s], 0} −
0∑

i=−2
µπ†(si) · |up[si]|

≥ µπ†(s1) · up[s1]−
∑

s∈(25)∪(26)

µπ†(s) · |up[s1]| −
∑
s∈(29)

µπ†(s) · |up[s1]|1 [up[s] < 0]−
0∑

i=−2
µπ†(si) · |up[s1]|

= up[s1] ·

µπ†(s1)−
∑

s∈(25)∪(26)

µπ†(s)−
∑
s∈(29)

µπ†(s)1 [up[s] < 0]−
0∑

i=−2
µπ†(si)


Assume for the sake of contradiction that the 3SAT instance is not satisfiable. There are two possibilities.
The first is that for at least one s ∈ (29), we have up[s] ≥ 0. In that case,

µ̃(s1)−
∑

s∈(25)∪(26)

µ̃(s)−
∑
s∈(29)

µ̃(s)1 [up[s] < 0] ≥ 1
2
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As before, Claim H.7 gives a contradiction. Otherwise, up[s] < 0 for all s ∈ (29). In that case, we have〈
u∞(M̃Tλ), µ̃

〉
= 6n2 +m− 1/2− 2n · 3n−m < −1/2,

which contradicts Proposition H.2 as λ 6= 0.

I Proofs of Appendix B

In this section, we provide a more formal treatment of the results in Appendix B, formally stating and proving
these results.
Proposition I.1. Assume that condition (3) holds. Set ε̂ as

ε̂ = min
s,a6=π†(s)

[
ρ̂π† − ρ̂π†{s;a}

]
.

Consider the following policy

πD(a|s) = 1 [a ∈ Θε
s ∪ {π†(s)}]

|Θε
s|+ 1 . (47)

Equation (47) characterizes the solution to the optimization problems (P2a) and (P2b) with parameters ε = ε†
and ε = min{ε̂, εD} respectively. Furthermore, in both cases ρπD = ρ̂πD

Proof. Given Theorem 5.1, Theorem 5.2, and Lemma D.3, it suffices to show that if ε ≤ ε̂, the solution to the
optimization problem

max
ψ∈Ψ

〈
ψ, R̂

〉
(P4)

s.t.
〈
ψπ†{s;a} − ψπ† , ψ

〉
≥ 0 ∀s, a ∈ Θε,

corresponds to the occupancy measure of policy πD defined by Equation (47). Namely, the optimization
problems (P2a) and (P2b) correspond to the optimization problem (P3) with parameters ε = ε† and
ε = min{ε̂, εD} respectively. Since ε̂ ≤ ε†, the primal feasibility condition in Lemma E.1 implies that the
solution to the above optimization problem characterizes both cases ((P2a) and (P2b)).

Now, due to Lemma D.3, we have

ψ ∈ Ψ ⇐⇒ ψ < 0 ∧ ∀s :
∑
a

ψ(s, a) = (1− γ)σ(s) + γ
∑
s̃,ã

P (s̃, ã, s)ψ(s̃, ã).

Since P (s̃, ã, s) is independent of ã, the second condition is equivalent to

∀s :
∑
a

ψ(s, a) = (1− γ)σ(s) + γ
∑
s̃

(
P (s̃, π†(s̃), s)(

∑
ã

ψ(s̃, ã))
)
,

which, due to (12), is equivalent to ∑
a

ψ(s, a) = µ(s).

Furthermore, given the independence of the transition distributions from policies, we have the following

(
ψπ†{s;a} − ψπ†

)
(s̃, ã) =


µ(s) if (s̃, ã) = (s, a)
−µ(s) if (s̃, ã) = (s, π†(s))
0 o.w

. (48)
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Therefore, the constraint
〈
ψπ†{s;a} − ψπ† , ψ

〉
≥ 0 is equivalent to ψ(s, a) ≥ ψ(s, π†(s)). Furthermore, note

that

(s, a) ∈ Θε ⇐⇒ ρ̂π†{s;a} − ρ̂π† = −ε†
⇐⇒

〈
ψπ†{s;a} − ψπ† , R̂

〉
≤ −ε†

⇐⇒ R̂(s, a)− R̂(s, π†(s)) = − ε†
µ(s)

⇐⇒ a ∈ Θε
s.

Putting it all together, the optimization problem (P3) is equivalent to

max
ψ

〈
R̂, ψ

〉
s.t. ψ(s, π†(s)) ≤ ψ(s, a) ∀s, a ∈ Θε

s∑
a

ψ(s, a) = µ(s) ∀s ∈ S

ψ(s, a) ≥ 0 ∀(s, a).

Note that the maximization is now over all vectors ψ ∈ R|S|.|A| as the constraint ψ ∈ Ψ has been made
explicit. Furthermore, given Lemma D.3 and Equation (5), any vector ψ satisfying the last two constraints
(the bellman constraints) corresponds to a policy π through

π(a|s) = ψ(s, a)
µ(s) .

In other words, probability of choosing a in state s is proportional to ψ(s, a).

Now, let us analyze the solution to this optimization problem which we will denote by ψmax. This solution
ψmax exists, since the optimization problem is maximizing a continuous function on a closed and bounded set.

We first claim that if a /∈ Θε
s ∪ {π†(s)}, then ψmax(s, a) = 0. If this is not the case, then ψmax is not optimal.

Concretely, consider the following vector ψ

ψ(s̃, ã) =


ψmax(s̃, ã) + 1

|Θεs|+1ψmax(s, a) if s̃ = s ∧ ã ∈ Θε
s ∪ {π†(s)}

0 if s̃ = s ∧ ã = a

ψmax(s̃, ã) o.w.
.

In other words, we uniformly spread the probability of choosing action a in state s over the set Θε
s ∪ {π†(s)}.

The vector ψ still satisfies the constraints: if ã ∈ Θε
s, ψ(s, π†(s))− ψ(s, ã) = ψmax(s, π†(s))− ψmax(s, ã) and

the objective has strictly improved because

ρ̂π†{s;a} − ρ̂π† ≤ −ε̂ ≤ −ε =⇒ R̂(s, a) ≤ R̂(s, π†(s))−
ε

µ(s) .

Since a /∈ Θε
s, the inequality is strict and therefore

∀ã ∈ Θε
s ∪ {π†(s)} : R̂(s, ã) > R̂(s, a).

This means that ψ was not optimal, contradicting the initial assumption.

Now note that if ψmax(s, a) > ψmax(s, π†(s)) for some a ∈ Θε
s, then again ψmax isn’t optimal as we could

replace it with

ψ(s̃, ã) =


ψmax(s̃, ã) +

ψmax(s, a)− ψmax(s, π†(s))
|Θε
s|+ 1 if s̃ = s ∧ ã ∈ Θε

s ∪ {π†(s)}\{a}

ψmax(s̃, ã)−
|Θε
s|(ψmax(s, a)− ψmax(s, π†(s)))

|Θε
s|+ 1 if s̃ = s ∧ ã = a

ψmax(s̃, ã) o.w.

.
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Intuitively, since the action a was being chosen with strictly higher probability than action π†(s), we have
uniformly spread this excess probability among the set Θε

s ∪ {π†(s)}. This vector would still be feasible as
ψ(s, a) = ψ(s, π†(s)) and would be strictly better in terms of utility as R̂(s, π†(s)) > R̂(s, a). This contradicts
our initial assumption and therefore ψmax(s, a) = ψmax(s, π†(s)) for all a ∈ Θε

s.

Since the occupancy measure ψmax satisfies ψmax(s, a) = 0 for all a /∈ Θε
s∪{π†(s)} and ψmax(s, a) = ψ(s, π†(s))

for all a ∈ Θε
s, we conclude that it is the occupancy measure for the policy πD as defined in Equation (47).

In order to prove ρπD = ρ̂πD , first note that for (s, a) ∈ Θε〈
ψπ†{s;a} − ψπ† , ψπD

〉
= µ(s)(ψπD (s, a)− ψπD (s, π†(s))

= µ(s)2(πD(a|s)− πD(π†(s)|s)) = 0,

where we used Equation (48) and Equation (47). Therefore

ρπD − ρ̂πD =
〈
R− R̂, ψπD

〉
(i)=

∑
(s,a)∈Θε

αs,a

〈
ψπ†{s;a} − ψπ† , ψπD

〉
=

∑
(s,a)∈Θε

αs,a · 0

= 0,

where (i) follows from Lemma E.3 in the known parameter case and Lemma F.3 in the unknown parameter
case.

J Additional experiments

In this section, we provide the worst-case score of the policy from the defender’s perspective , i.e., the value
of the inner minimization in (P2b), for our policy. Given the results in Section 5.2 (Theorems 5.3 and 5.2),
by construction of πD, this minimum is achieved for R = R̂ and therefore the worst-case score equals ρ̂πD .
As mentioned in Section 5.2, ρ̂πD is a certificate in that we are guaranteed ρπD ≥ ρ̂πD as long as εD ≥ ε†.

The results are shown in Figure 6. As shown in the Figure, the value of ρ̂πD is larger when εD < ε†. This is
in line with results of Section 5.2 as in this case, πD = π† and π† is the optimal policy in R̂. In addition,
when εD < ε†, the value of ρ̂πD increases with ε†. This is because when we increase the attack parameter ε†,
the policy π† needs to become optimal in R̂ with a larger margin, which causes its score to increase.

We note that for both environments, when no defense is employed, i.e, when using the policy π†, we will
obtain the same worst-case value when εD < ε† as πD = π†, and we will obtain the worst-case score −∞
when εD ≥ ε†.
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Figure 6: The value of the worst-case score from the defense perspective, i.e., ρ̂πD under different values of
ε†, εD for the Navigation (left) and Grid world (right) environments.
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