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Abstract

Language diversity presents a significant chal-001
lenge in speech-to-text (S2T) tasks, such as002
automatic speech recognition and translation.003
Traditional multi-lingual multi-task training ap-004
proaches aim to address this by jointly optimis-005
ing multiple speech recognition and translation006
tasks across various languages. While models007
like Whisper, built on these strategies, demon-008
strate strong performance, they still face issues009
of high computational cost, language interfer-010
ence, suboptimal training configurations, and011
limited extensibility. To overcome these chal-012
lenges, we introduce LoRS-Merging (low-rank013
and sparse model merging), a novel technique014
designed to efficiently integrate models trained015
on different languages or tasks while preserv-016
ing performance and reducing computational017
overhead. LoRS-Merging combines low-rank018
and sparse pruning to retain essential structures019
while eliminating redundant parameters, mit-020
igating language interference, and enhancing021
extensibility. Experimental results across 10022
languages demonstrate that LoRS-Merging sig-023
nificantly outperforms multi-lingual multi-task024
training, sequential training, and other merg-025
ing methods, achieving over 20% improvement026
in normalised performance. Our findings sug-027
gest that model merging, particularly LoRS-028
Merging, is a scalable and effective comple-029
ment to traditional multi-lingual training strate-030
gies for S2T applications1.031

1 Introduction032

Language diversity poses a significant challenge033

in speech-to-text (S2T) tasks, such as automatic034

speech recognition (ASR) (Prabhavalkar et al.,035

2023) and speech translation (ST) (Xu et al., 2023).036

With over 7,000 languages spoken worldwide, de-037

veloping robust S2T systems that generalise across038

varied linguistic structures remains a fundamen-039

tal research goal (Liu and Niehues, 2024; Cheng040

1The detailed data and code will be released at [URL]

et al., 2023; Sun et al., 2023; Saif et al., 2024; 041

Wang et al., 2021; Le et al., 2021). The transition 042

from pipeline systems to end-to-end (E2E) models 043

(Chan et al., 2016; Gulati et al., 2020; Barrault et al., 044

2023) has marked a paradigm shift in S2T tasks, en- 045

abling direct speech-to-text mapping across multi- 046

ple languages within a unified framework. A promi- 047

nent example is Whisper (Radford et al., 2023), 048

an advanced multi-lingual speech model trained 049

on a large-scale, diverse dataset covering multi- 050

ple languages and tasks. Despite these advances, 051

existing multi-lingual models still encounter sig- 052

nificant challenges in scalability, efficiency, and 053

performance trade-offs. 054

To address these challenges, multi-lingual train- 055

ing strategies (Saif et al., 2024; Xiao et al., 2021; 056

Bai et al., 2018) have been adopted, aiming to 057

enhance model generalisation across languages. 058

These approaches typically rely on joint optimisa- 059

tion of diverse S2T tasks across multiple languages, 060

leveraging shared representations to improve per- 061

formance. Nevertheless, multi-lingual training is 062

subject to inherent limitations, including substan- 063

tial training costs, complex model configurations, 064

and limited access to training data across multiple 065

languages and tasks. Moreover, when handling new 066

languages, the training methods typically require 067

training from scratch, leading to poor extensibility. 068

To mitigate these issues, this paper proposes 069

to use model merging (Ilharco et al., 2023; Yang 070

et al., 2024a; Khan et al., 2024) to integrate models 071

trained on different languages or tasks while main- 072

taining performance and reducing computational 073

overhead. Model merging merges the parameters 074

of multiple separate models with different capa- 075

bilities to build a universal model. With its high 076

flexibility, model merging enables the seamless in- 077

corporation of new languages or tasks without the 078

need for retraining the entire model. Additionally, 079

since model merging allows models for different 080

languages or tasks to be trained independently, it 081
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can effectively alleviate negative transfer issues082

(Wang et al., 2019; Zhang et al., 2023b; Wang et al.,083

2020b) commonly observed in multi-lingual train-084

ing. This training independence also enables op-085

timal training configurations for each language or086

task to improve performance, instead of the unified087

settings required in multi-lingual training.088

Moreover, we propose Low-Rank and Sparse089

model Merging (LoRS-Merging), which uses a090

low-rank component to capture the compact struc-091

ture and a sparse component to capture the scat-092

tered details in the weights. LoRS-Merging retains093

effective parts of structure and details while reduc-094

ing redundant parts to reduce language interference.095

Specifically, coarse-grained singular value prun-096

ing is used to retain the low-rank structure, while097

fine-grained magnitude pruning is used to remove098

redundant details. The main contribution of this099

paper can be summarised as follows.100

• To the best of our knowledge, this work is the first101

to explore model merging for speech-to-text mod-102

els. Specifically, we treat speech tasks (recogni-103

tion and translation) and different languages as104

two separate merging levels and explore different105

hierarchies for model merging.106

• We propose LoRS-Merging, which exploits the107

low-rank structure and sparsity of model weights108

to minimise model redundancy and language109

conflicts as well as providing an efficient way110

to incorporate new knowledge from a task- or111

language-specialised model.112

• Experiments are performed across 10 languages,113

where LoRS-Merging significantly outperforms114

multi-lingual multi-task training, sequential train-115

ing, and other merging methods, achieving over116

20% improvement in normalised performance.117

2 Related Work118

2.1 Multi-Lingual ASR and ST119

Multi-lingual speech models inherently face a120

trade-off between knowledge sharing and negative121

interference. Early studies adopted hand-picked122

sub-network sharing strategies, such as language-123

specific decoders (Dong et al., 2015), attention124

heads (Zhu et al., 2020), and layer norm/linear125

transformation (Zhang et al., 2020). Recent re-126

search has shifted toward approaches such as127

mixture-of-experts (Kwon and Chung, 2023; Wang128

et al., 2023), adapters (Le et al., 2021; Kannan129

et al., 2019), and pruning (Lu et al., 2022; Lai et al.,130

2021). To enhance multi-lingual representation 131

learning, language tokens (Johnson et al., 2017), 132

embeddings (Di Gangi et al., 2019) or output fac- 133

torisations (Zhang et al., 2023a) are introduced to 134

encode language identity, helping the model distin- 135

guish between languages. 136

The more effective approach is to adopt multi- 137

lingual training strategies, such as multi-objective 138

optimisation (Saif et al., 2024; Zhang et al., 2022), 139

adversarial learning (Xiao et al., 2021), meta learn- 140

ing (Hsu et al., 2020), and reinforcement learning 141

(Bai et al., 2018). Moreover, large-scale pretrain- 142

ing by leveraging massive amounts of multi-lingual 143

and multi-task data enables models to learn robust 144

and transferable representations across languages, 145

e.g. Whisper (Radford et al., 2023), SeamlessM4T 146

(Barrault et al., 2023), and AudioPaLM (Ruben- 147

stein et al., 2023). LoRS-Merging, as an efficient 148

post-training method proposed in this paper, fur- 149

ther advances multi-lingual ASR and ST based on 150

pretrained speech models. 151

2.2 Model Merging 152

Model merging (Yang et al., 2024a; Khan et al., 153

2024) is an efficient post-training technique that 154

integrates knowledge from models trained on dif- 155

ferent domains. One stream of research focuses 156

on the loss landscape geometry (Khan et al., 2024) 157

and studies the linear mode connectivity (LMC) 158

(Frankle et al., 2020; Draxler et al., 2018) prop- 159

erty that demonstrates the existence of a linearly 160

connected path between local minima within the 161

same loss basin. Many studies (Nagarajan and 162

Kolter, 2019; Izmailov et al., 2018; Frankle et al., 163

2020) indicate that if two neural networks share 164

part of their optimisation trajectory, such as dif- 165

ferent finetuned models from the same pretrained 166

model, they typically satisfy LMC, allowing inter- 167

polation without sacrificing accuracy and forming 168

the basis of our model merging method. For local 169

minima in different loss basins, inspired by the per- 170

mutation invariance (Entezari et al., 2021) of neural 171

networks, neuron alignment techniques (Ainsworth 172

et al., 2023; Singh and Jaggi, 2020; Tatro et al., 173

2020) can be used to place them into the same 174

basin, thereby reducing merging loss. 175

Another stream considers the model spaces, in- 176

cluding activation spaces and weight spaces. Re- 177

search on activation spaces seeks to align the output 178

representations or loss of the merged model with 179

those of each single model as closely as possible 180

(Yang et al., 2024b; Wei et al., 2025; Xiong et al., 181
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2024). Studies based on weight spaces aim to lo-182

calise effective parameters or remove redundant183

parameters to resolve task interference. TALL-184

masks (Wang et al., 2024) and Localise-and-Stitch185

(He et al., 2024) optimise binary masks to localise186

sparse and effective task-specific parameters. TIES-187

Merging (Yadav et al., 2024) and DARE (Yu et al.,188

2024) perform magnitude or random pruning on189

each single model to reduce redundancy at the de-190

tailed parameter level. TSV-M (Gargiulo et al.,191

2024), on the other hand, adopts singular value192

pruning to reduce redundancy at the structural level.193

In contrast, LoRS-Merging explores weight space194

merging by considering not only the detailed pa-195

rameter redundancy as well as maintaining the ef-196

fective structure of the weight space.197

3 Methodology198

3.1 Preliminaries199

3.1.1 Task Arithmetic200

Among diverse model merging methods, Task201

Arithmetic (TA) (Ilharco et al., 2023) has become202

a fundamental technique in this field due to its203

simplicity and effectiveness. TA introduces the204

concept of "task vector", defined as the delta pa-205

rameter derived by subtracting pretrained weights206

from finetuned weights. By performing simple207

arithmetic operations on task vectors, TA enables208

task learning, forgetting, and analogising.209

Assume that θ = {Wl}Ll=1 represents the pa-210

rameters of the model, where Wl is the weight211

of l-th layer, and L is the total number of lay-212

ers. Given a pretrained model θ0 and a model θi213

finetuned on task ti, the task vector is computed214

as τi = θi − θ0. Multiple task vectors can be215

summed to form a multi-task model, expressed as216

θmerged = θ0 + λ
∑n

i=1 τi, where λ is a scaling217

coefficient for the task vectors.218

3.1.2 Pruning219

Given that neural networks are typically over-220

parameterised and exhibit high redundancy, a con-221

siderable number of neurons or connections can be222

pruned without affecting accuracy (LeCun et al.,223

1989). In model merging, pruning methods can re-224

duce redundant parameters to mitigate task interfer-225

ence, thereby improving the merging performance.226

Magnitude Pruning (MP) is an unstructured227

pruning method that prunes connections based on228

the magnitude of parameters as a measure of im-229

portance. Specifically, MP prunes the parameters230

according to a specific ratio p, as follows. 231

Mij =

{
1 if |wij | ∈ top p%

0 o.w.
(1) 232

233
Wpruned = M ⊙W (2) 234

where W,M ∈ Rd×k, and ⊙ denotes the element- 235

wise multiplication. However, MP only focuses on 236

the redundancy at the parameter level, overlooking 237

the crucial structural information, which may lead 238

to the disruption of the weight structure. 239

Singular Value Pruning (SVP) is a structured 240

pruning method that removes smaller singular val- 241

ues and their corresponding singular vectors. In 242

particular, SVP retains only the top r singular val- 243

ues while discarding the others. 244

W = UΣV T (3) 245
246

Wpruned = UrΣrV
T
r (4) 247

where U ∈ Rd×d and V ∈ Rk×k are the left and 248

right singular vector matrices of W , and Ur, Vr de- 249

note their first r columns. Although SVP preserves 250

a compact weight structure, its coarse pruning gran- 251

ularity makes it challenging to reduce redundancy 252

at a fine-grained parameter level. 253

3.2 Model Merging for Speech Models 254

The model merging process for speech model on 255

S2T tasks with LoRS-Merging as an example is 256

shown in Fig. 1, which comprises four steps. In 257

step 1, a suitable pretrained speech model is se- 258

lected. In step 2, for each target language and target 259

task combination, e.g. Catalan ASR, the pretrained 260

model is finetuned with the task-language-specific 261

data and the delta weight is obtained. In step 3, 262

weight pruning is applied to remove redundant and 263

conflicting delta parameters. In step 4, task arith- 264

metic is applied to combine pruned delta weights 265

into each single merged matrix and hence obtain 266

the merged model. 267

Model merging allows new language or task 268

knowledge to be integrated into the model in a 269

flexible post-training manner. Compared to multi- 270

lingual or multi-task training methods, model merg- 271

ing is a simpler and more efficient approach, en- 272

abling the seamless incorporation of new languages 273

or tasks without the need for retraining. Addition- 274

ally, due to its training independence, it mitigates 275

language conflicts and provides optimal training 276

configurations for each language or task to improve 277

performance. Compared to sequential training, 278
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Figure 1: Model merging process with the proposed LoRS-Merging for speech models on multi-lingual ASR and
ST tasks. In step 1, a suitable pretrained speech model is selected. In step 2, the pretrained model is finetuned with
the task-language-specific data. In step 3, apply LoRS to the delta parameters to reduce model redundancy. In step
4, merge the delta parameters to get a multi-lingual and multi-task merged model.

SVD

SVP

+ 
MP

Low-Rank SparseResidual

Figure 2: Illustration of LoRS-Merging method in detail.
SVD stands for singular value decomposition and SVP
for singular value pruning. MP is magnitude pruning
operating on residual of the original weight matrix and
the low-rank matrix.

model merging eliminates the need for additional279

training data to avoid catastrophic forgetting. Our280

experiments thoroughly demonstrate these benefits.281

3.3 Low-Rank and Sparse Model Merging282

The weights of neural networks contain informa-283

tion on both structure and details. Structural infor-284

mation is coherent, compact, and coarse-grained,285

whereas detail information is incoherent, scattered,286

and fine-grained. Both structural and detail infor-287

mation include effective and redundant parts. To288

reduce redundant parts in both the structure and de-289

tail aspects of the weights while retaining effective290

parts, the LoRS-Merging method is introduced as291

shown in detail in Fig. 2, which exploits the com-292

bination of low-rank structure by SVP and sparsity293

by MP. SVP performs coarse-grained pruning at294

the structure level, while MP enables fine-grained295

pruning at the detail level. 296

In the implementation, we approximate the orig- 297

inal weights as the sum of a low-rank component 298

and a sparse component, where the low-rank com- 299

ponent captures the compact structure, and the 300

sparse component captures the scattered details, 301

as shown in Eqn. (5). 302

W ≈ L+ S (5) 303

where L represents the low-rank component, and S 304

represents the sparse component. Specifically, L is 305

the low-rank matrix obtained by retaining the top 306

r singular values and their corresponding singular 307

vectors from W : 308

L = UrΣrV
T
r (6) 309

and S is the sparse matrix obtained by performing 310

MP on the residual of W and L: 311

S = M ⊙ (W − L) (7) 312

To simplify the description, we refer to this entire 313

process as LoRS(·). In this manner, SVP decouples 314

the structure and details of the weight, preserving a 315

compact structure while allowing fine-grained MP 316

to remove redundant parts in the details. 317

For each model finetuned on single specific 318

language or task data, we apply LoRS(·) to its 319

task vector as a preprocessing step to reduce lan- 320

guage or task interference in model merging. A 321

multi-lingual or multi-task model can be achieved 322

through simple merging, expressed as: 323

θmerged = θ0 + λ

n∑
i=1

LoRS(τi) (8) 324

4



4 Experimental Setup325

4.1 Data326

CoVoST-2 (Wang et al., 2020a) is a large-scale327

multi-lingual ST corpus based on Common Voice.328

It covers translations from English into 15 lan-329

guages and from 21 languages into English, with330

a total of 2,880 hours of speech from 78k speak-331

ers. We selected 5 high-resource languages and332

5 low-resource languages as two language sets to333

investigate their ASR tasks and the from X to En-334

glish ST tasks. The high-resource language set335

includes Catalan (ca), German (de), Spanish (es),336

French (fr), and Italian (it), while the low-resource337

language set includes Indonesian (id), Dutch (nl),338

Portuguese (pt), Russian (ru), and Swedish (sv).339

Due to the more abundant data in the high-resource340

language set, our main experimental results are341

obtained on the high-resource language set, while342

the low-resource language set serves as an auxil-343

iary evaluation set. To balance the amount of data344

across different languages, we fixed the duration345

of traning data for each language, with 5 hours for346

the high-resource language set and 1 hour for the347

low-resource language set. The dev and test sets of348

both language sets are 1 hour in duration.349

4.2 Model and Training Specifications350

Whisper (Radford et al., 2023) is a general-purpose351

multi-lingual ASR and ST model, a Transformer-352

based model trained on 680k hours of diverse audio.353

We chose the small version as the foundation model354

for the experiments because it achieves a good bal-355

ance between performance and cost. It has 244356

million parameters, with the encoder and decoder357

each consisting of 12 Transformer blocks. The358

weight matrices of the attention layers are all 768359

by 768, and the MLP layers are 768 by 3072.360

For each language-specific or task-specific fine-361

tuned model, we use a different, optimal learning362

rate for each during training, and these models are363

subsequently used for model merging. Finetuning364

involves updating all parameters. We choose Adam365

as the optimiser, set the batch size to 8, the accumu-366

lation iterations to 4, and train for 10 epochs. The367

beam size for decoding is set to 20 across all lan-368

guages and tasks. We use Sclite and SacreBLEU369

tools to score the ASR and ST results, respectively.370

In addition, we perform statistical significance test-371

ing using a paired bootstrap test with 1,000 resam-372

pling iterations, each sampling 300 examples with373

replacement, and report the results in the caption374

of each table. See Appendix A for more details 375

on the experimental setup. Our experiments are 376

performed on a single RTX 4090 GPU where train- 377

ing on one language and one task with 5 hours of 378

speech data requires 1 hour. 379

4.3 Baseline and Merging Methods 380

We use the pretrained model as the baseline and 381

multi-lingual multi-task training as the stronger 382

baseline, which is trained on data mixed from both 383

multi-lingual and multi-task sets. Note that fine- 384

tuned models are typically available, so model 385

merging requires no finetuning and only adjusts 386

merging coefficients on a small development set. 387

Even if finetuning is needed, the complex train- 388

ing configurations of multi-lingual and multi-task 389

training require more hyperparameter tuning steps. 390

Overall, model merging consumes significantly 391

fewer computational resources than multi-lingual 392

and multi-task training. 393

In addition to LoRS-Merging, we investigate the 394

following model merging methods: 395

Weight Averaging (WA) (Wortsman et al., 2022) 396

merges multiple single models by a uniform aver- 397

aging of their weights. 398

Task Arithmetic (TA) (Ilharco et al., 2023) uses 399

a scaling factor, estimated on a small development 400

set, to weight multiple task vectors. 401

TIES-Merging (Yadav et al., 2024) merges sin- 402

gle models via Trim, Elect, and Disjoint Merge 403

steps to reduce parameter interference. 404

DARE (Yu et al., 2024) drops and rescales delta 405

parameters to mitigate parameter interference. 406

TSV-M (Gargiulo et al., 2024) proposes Task 407

Singular Vectors and reduces structural redundancy 408

to reduce task interference. 409

In addition, we report the normalised perfor- 410

mance difference defined in Eqn. (9). 411

∆norm =
|M −Mpretrained|

|Mfinetuned −Mpretrained|
× 100% (9) 412

where M is the performance metric of the tar- 413

get system, Mpretrained and Mfinetuned are for the 414

pretrained (baseline performance) and finetuned 415

(topline performance) systems respectively. Note 416

that ∆norm better reflects the performance gains for 417

model merging since the pretrained system already 418

achieves competitive performance. 419
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Table 1: Multi-lingual ASR model merging. Avg. de-
notes average WER. ∗ LoRS-Merging outperforms all
others in ∆norm by >20% (p < 0.05).

System WER↓
ca de es fr it Avg. ∆norm

Pretrained 20.6 19.6 14.7 24.5 19.4 19.88 -
Finetuned 19.5 19.7 14.4 22.1 19.2 19.05 100.0%

Multi-lingual training 17.1 21.8 15.1 22.6 21.9 19.69 22.9%
Sequential training 20.6 19.6 14.6 24.4 19.4 19.84 4.8%

Weight Averaging 19.1 19.1 14.2 24.5 20.3 19.55 39.8%
Task Arithmetic 19.1 18.8 13.9 24.0 19.8 19.23 78.3%
TIES-Merging 19.3 19.3 13.9 23.8 18.1 18.99 107.2%
DARE 18.9 18.9 13.9 23.8 19.8 19.16 86.7%
TSV-M 19.5 19.5 14.1 23.5 18.4 19.10 94.0%
LoRS-Merging 18.9 18.8 13.9 23.6 18.1 18.77 133.7%

Table 2: Multi-lingual ST model merging. Avg. denotes
average BLEU. ∗ LoRS-Merging outperforms all others
in ∆norm by >20% (p < 0.05).

System BLEU↑
ca de es fr it Avg. ∆norm

Pretrained 21.1 24.1 28.6 26.8 26.8 25.48 -
Finetuned 22.6 24.6 29.2 27.2 27.3 26.18 100.0%

Multi-lingual training 21.4 24.4 28.8 26.8 27.2 25.72 34.3%
Sequential training 21.5 24.3 28.9 26.9 27.3 25.78 42.9%

Weight Averaging 22.3 24.1 28.6 27.2 26.9 25.82 48.6%
Task Arithmetic 22.1 24.3 28.9 27.3 26.8 25.88 57.1%
TIES-Merging 22.1 24.7 29.0 27.1 26.9 25.96 68.6%
DARE 22.1 24.5 28.9 27.2 26.8 25.90 60.0%
TSV-M 22.0 24.6 29.0 27.3 26.8 25.94 65.7%
LoRS-Merging 22.4 24.8 28.9 27.6 27.0 26.14 94.3%

5 Evaluation Results and Analysis420

5.1 Multi-Lingual Model Merging421

First, we investigate the merging of finetuned mod-422

els for different languages on the same task, which423

corresponds to multi-lingual single-task learning.424

Language knowledge interference yields im-425

balanced improvements: Table 1 shows the multi-426

lingual results of the ASR task with the high-427

resource language set. On average, multi-lingual428

training slightly improves the pretrained model but429

significantly underperforms the finetuned models430

and merging methods. This may be due to nega-431

tive interference between the knowledge of differ-432

ent languages, leading to gradient conflicts during433

training (Wang et al., 2020b). From a per-language434

perspective, it is observed that ca and fr achieve the435

largest improvements during finetuning while still436

showing significant improvements in multi-lingual437

training, whereas languages with smaller improve-438

ments during finetuning exhibit a substantial perfor-439

mance drop in multi-lingual training, even worse440

than the pretrained model. This indicates a strong441

language conflict in multi-lingual training, with442

ca and fr dominating. Additionally, we observe443

that the optimal learning rates for finetuned models444

Table 3: Multi-task model merging performed on
each language independently. Avg. denotes average
WER/BLEU. ∗ LoRS-Merging outperforms all others
in ∆norm by >20% (p < 0.05). Per-language results are
shown in Appendix C.

System Avg. WER↓ ∆norm Avg. BLEU↑ ∆norm

Pretrained 19.88 - 25.48 -
Finetuned 19.05 100.0% 26.18 100.0%

Multi-task training 19.00 106.0% 25.90 60.0%
Sequential training 18.95 112.0% 26.12 91.4%

Weight Averaging 18.84 125.3% 26.18 100.0%
Task Arithmetic 18.76 134.9% 26.30 117.1%
TIES-Merging 18.60 154.2% 26.38 128.6%
DARE 18.71 141.0% 26.28 114.3%
TSV-M 18.70 142.2% 26.40 131.4%
LoRS-Merging 18.39 179.5% 26.56 154.3%

vary significantly across languages (see Appendix 445

A), while the unified learning rate configuration 446

required by multi-lingual training prevents each 447

language from reaching its optimal performance. 448

Moreover, the substantially inferior performance of 449

sequential training indicates the presence of catas- 450

trophic forgetting. 451

Model merging mitigates language conflicts: 452

In contrast, model merging methods show signif- 453

icant improvements across almost all languages, 454

demonstrating reduced conflict and better stabil- 455

ity. Among model merging methods, TA outper- 456

forms WA due to its flexible scaling factor. TIES- 457

Merging and DARE reduce redundancy at the de- 458

tail level, while TSV-M addresses redundancy at 459

the structural level, thereby achieving obvious im- 460

provements over TA. Furthermore, LoRS-Merging 461

reduces redundancy at the detail level while pre- 462

serving critical structures, resulting in the best per- 463

formance. 464

Table 2 provides the multi-lingual results on 465

ST task with the high-resource language set. The 466

main conclusion is consistent with the ASR task: 467

model merging methods still significantly outper- 468

form multi-lingual training and sequential train- 469

ing, with LoRS-Merging achieving the best perfor- 470

mance, demonstrating superior multi-lingual and 471

continual learning capabilities. 472

5.2 Multi-Task Model Merging 473

Next, we merge finetuned models for different tasks 474

(ASR and ST) with the same language which cor- 475

responds to multi-task single-language learning. 476

ASR and ST tasks for the same language 477

can mutually benefit from each other: Table 478

3 presents the multi-task results with the high- 479
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Table 4: Multi-lingual multi-task model merging. Avg. denotes average WER/BLEU.

System WER↓ BLEU↑
ca de es fr it Avg. ∆norm ca de es fr it Avg. ∆norm

Pretrained 20.6 19.6 14.7 24.5 19.4 19.88 - 21.1 24.1 28.6 26.8 26.8 25.48 -
Finetuned 19.5 19.7 14.4 22.1 19.2 19.05 100.0% 22.6 24.6 29.2 27.2 27.3 26.18 100.0%

ML and MT training 20.5 19.7 14.6 24.5 19.4 19.86 2.4% 21.3 24.3 28.3 27.1 26.9 25.58 14.3%

ML and MT Task Arithmetic 18.9 19.2 14.1 23.7 18.4 18.96 110.8% 22.2 24.4 29.0 27.3 26.9 25.96 68.6%
ML and MT LoRS-Merging 18.7 19.1 14.0 23.8 18.0 18.82 127.7% 22.2 24.8 29.0 27.5 27.0 26.10 88.6%

MT training 17.0 19.7 14.4 24.2 19.4 19.00 - 22.3 24.6 28.7 27.0 26.9 25.90 -
↪→ + ML Task Arithmetic 18.1 19.0 14.2 24.5 20.6 19.37 61.4% 22.7 24.7 28.6 27.3 26.5 25.96 68.6%
↪→ + ML LoRS-Merging 18.1 19.0 14.1 24.2 20.3 19.23 78.3% 22.4 24.5 29.1 27.6 26.7 26.06 82.9%

ML training 17.1 21.8 15.1 22.6 21.9 19.69 - 21.4 24.4 28.8 26.8 27.2 25.72 -
↪→ + MT Task Arithmetic 17.1 18.5 13.3 22.7 18.0 18.00 226.5% 22.6 25.0 29.2 27.5 26.9 26.24 108.6%
↪→ + MT LoRS-Merging 16.9 18.3 13.3 22.4 17.8 17.82 248.2% 22.8 25.2 29.3 27.6 27.0 26.38 128.6%

resource language set. In general, multi-task train-480

ing performs similarly to finetuned models on ASR481

but is a lot worse on ST. This is likely due to the sub-482

stantial differences in optimal hyper-parameter con-483

figurations between the two tasks. Sequential train-484

ing performs similarly to finetuned models over-485

all, as it also benefits from training independence.486

Model merging methods clearly outperform fine-487

tuned models, which not only demonstrates their488

effectiveness but also shows the mutual benefits be-489

tween ASR and ST. In terms of performance gains,490

the improvement in ASR is greater than in ST. We491

attribute this to the fact that ASR is inherently sim-492

pler than ST and can be viewed as a step in the ST493

task. Furthermore, as before, model merging meth-494

ods combined with pruning further improve perfor-495

mance, and the proposed LoRS-Merging achieves496

the best performance across the table.497

5.3 Multi-Lingual Multi-Task Model Merging498

Then, we investigate the merging of finetuned mod-499

els for both different languages and tasks, which500

correspond to multi-lingual (ML) and multi-task501

(MT) learning. Specifically, we explore 4 different502

training and merging settings:503

ML and MT training: Finetuning on all lan-504

guages and both tasks jointly.505

ML and MT merging: Finetuning on each lan-506

guage for each task separately and merging all.507

MT training and ML merging: Finetuning508

both tasks jointly for each language, and merging509

models from different languages.510

ML training and MT merging: Finetuning on511

all languages jointly for each task, and merging512

models from different tasks.513

Table 4 displays the multi-lingual and multi-514

task results with the high-resource language set.515

Multi-lingual and multi-task training shows little516

improvement over the pretrained model, due to lan-517

guage interference during training and the use of518

2 3 4 5
Numbers of Languages

18.4

18.8

19.2

19.6

20.0

W
ER

ASR

2 3 4 5
Numbers of Languages

25.4

25.6

25.8

26.0

26.2

B
LE

U

ST
Pretrained Finetuned Task Arithmetic LoRS-Merging

Figure 3: WER and BLEU against the number of lan-
guages. Performance is averaged across all languages
and all training runs of language combinations.

a unified training configuration for all languages 519

and tasks. Nevertheless, the performance of multi- 520

lingual and multi-task merging is on par with that 521

of finetuned models, further underscoring the supe- 522

riority of model merging. ML training followed by 523

MT merging achieves the best performance, even 524

significantly outperforming finetuned models. Al- 525

though we did not observe the same phenomenon 526

on the low-resource language set, this suggests the 527

potential of using a combination of training and 528

merging to achieve better performance. We pro- 529

vide additional experiments on the low-resource 530

language set in Appendix B to demonstrate the ro- 531

bustness and generalisability of model merging and 532

LoRS-Merging. 533

5.4 Effect of Numbers of Languages 534

To further demonstrate the robustness of LoRS- 535

Merging to language selection, experiments are 536

performed using different numbers of languages. 537

Figure 3 shows the average performance across 538

all languages and all training runs with possible 539

combinations of 2, 3, 4 or 5 languages. 540

LoRS-Merging improvements are consistent 541

across different numbers of languages: As the 542

number of languages increases, the performance 543

of both TA and LoRS-Merging degrades due to 544

negative interference between languages. LoRS- 545
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Figure 4: Performance variation against different train-
ing data sizes (number of hours for each language) on
ASR (top) and ST (bottom) tasks.

Merging consistently outperforms TA in both ASR546

and ST tasks. Notably, in the ASR task, it even547

surpasses the finetuned models. This is primarily548

because finetuned models contain substantial redun-549

dancy (see Fig. 5), whereas LoRS-Merging reduces550

redundancy through pruning, leading to significant551

performance improvements. Additionally, we ob-552

serve that the optimal learning rate for the finetuned553

ASR model is significantly larger compared to the554

ST task. This may lead to overfitting in ASR. In555

contrast, LoRS-Merging improves generalisation556

through model merging, thus outperforming the557

finetuned models for the ASR task.558

5.5 Effect of Language Data Scale559

We then demonstrate the robustness of merging560

methods to different training data sizes for both561

tasks. Fig. 4 shows the WER (top) and BLEU (bot-562

tom) scores for ASR and ST at different data scales,563

respectively. As the data scale increases, the perfor-564

mance of multi-lingual training does not always im-565

prove. This is because the multi-lingual capabilities566

of pretrained models are already near convergence,567

and only meticulous training can further improve568

performance. Increased training data amplifies569

both language interference and the negative effects570

of uniform training configurations, thereby offset-571

ting the gains from increased data. Furthermore,572

the performance loss of model merging increases573

with data scale, compared to finetuned models. It574

1 0.2 0.1 0.05 0.02 0.01
Ratio

17.2

17.7

18.2

18.7

19.2

W
ER

SVP

1 0.8 0.6 0.4 0.2 0.1
Ratio

16.4

16.9

17.4

17.9

18.4

18.9

19.4

W
ER

MP
5 hours 10 hours 20 hours

Figure 5: Model performance against the retain ratio in
SVP (left) and MP (right) for ASR finetuned models.
Three different training data sizes are used.

can be explained by the fact that larger training 575

data tends to increase the divergence in the opti- 576

misation trajectories of different finetuned models, 577

resulting in the breakdown of linear mode connec- 578

tivity, which leads to a greater performance loss. 579

Moreover, LoRS-Merging still achieves obvious 580

and stable improvement compared to TA. 581

5.6 Analysis of Model Redundancy 582

Furthermore, we justify the necessity of SVP and 583

MP to remove model redundancy by showing the 584

model performance against the pruning ratio of 585

finetuned models for ASR as shown in Fig. 5. As 586

shown, both SVP and MP significantly improve the 587

performance of finetuned models, indicating the 588

presence of substantial redundancy in the structure 589

and details of the finetuned models, respectively. 590

The model performance reaches the best at a high 591

pruning level, indicating that the redundancy is 592

particularly large for ASR. We observed a much 593

smaller redundancy in ST, which also explains 594

the observation that LoRS-Merging achieves more 595

salient improvement on ASR than ST. Moreover, 596

redundancy increases with training data, possibly 597

due to the accumulation of gradient noise during 598

training. MP achieves greater performance gains 599

than SVP, indicating more redundancy at the detail 600

level, which is better addressed by fine-grained MP. 601

6 Conclusion 602

This paper explores model merging for multi- 603

lingual ASR and ST on pretrained speech models 604

and proposes the LoRS-Merging approach. LoRS- 605

Merging combines low-rank and sparse pruning 606

to retain essential structures and reduce redundant 607

parameters. Experiments across 10 languages show 608

that LoRS-Merging effectively alleviates language 609

interference and significantly outperforms multi- 610

lingual multi-task training, sequential training, and 611

other merging methods. 612
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7 Limitations613

There are three main limitations of this work. First,614

as a common limitation of all model merging meth-615

ods, the same model structure is required across616

all tasks and languages. This is less of a concern617

under the current trend of using the same Trans-618

former structure, but methods need to be developed619

in the future to accommodate subtle structural dif-620

ferences. Second, reasonably-sized training sets621

are required for each language, and low-resource622

languages may suffer from reduced improvements.623

Third, this work mainly explores the two most pop-624

ular S2T tasks. Other possible tasks can be ex-625

plored in future work, including spoken language626

understanding and speaker adaptation.627
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A Details of the Experimental Setup893

For multi-lingual and multi-task training, a uniform894

training configuration is used across all languages895

and tasks. For sequential training, considering that896

there are 5! = 120 possible sequences for 5 lan-897

guages, and the optimal training configuration for898

the same language differs across sequences, the899

hyper-parameter search cost for sequential training900

is much higher than that for the model merging. To901

simplify the configuration, we select 5 sequences902

for the experiments, corresponding to all cyclic per-903

mutations of the language order ca-de-es-fr-it, and904

report the results from the sequence that yields the905

best average performance.906

MP and SVP are applied to each linear layer. The907

detailed hyper-parameter settings for each language908

are shown in Table 5 for ASR and Table 6 for ST,909

respectively.910

Table 5: ASR hyper-parameters for high-resource lan-
guages.

System ASR
ca de es fr it

Finetuned
learning rate 1× 10−6 5× 10−8 1× 10−7 1× 10−6 5× 10−6

Multi-lingual training
learning rate 1× 10−5

Task Arithmetic
scaling factor λ 0.15

LoRS-Merging
scaling factor λ 0.15
SVP ratio r 5% 3% 2% 1% 1%
MP ratio p 40% 60% 40% 10% 10%

Table 6: ST hyper-parameters for high-resource lan-
guages.

System ST
ca de es fr it

Finetuned
learning rate 1× 10−6 2× 10−8 2× 10−8 5× 10−8 5× 10−8

Multi-lingual training
learning rate 5× 10−9

Task Arithmetic
scaling factor λ 0.15

LoRS-Merging
scaling factor λ 0.15
SVP ratio r 5% 3% 5% 2% 1%
MP ratio p 60% 40% 20% 20% 20%

B Results of Low-Resource Language Set911

The results of the low-resource language set are912

shown in this section. Specifically, Table 7 and913

8 show the multi-lingual single-task training and914

merging for ASR and ST respectively.915

Table 7: Multi-lingual ASR model merging with the
low-resource language set. Avg. denotes average WER.

System WER↓
id nl pt ru sv Avg.

Pretrained 16.9 16.0 10.1 17.1 17.1 15.43
Finetuned 15.0 14.8 9.7 16.8 14.7 14.20

Multi-lingual training 16.7 15.5 10.0 17.0 16.6 15.14

Weight Averaging 15.7 15.2 10.1 17.1 15.8 14.77
Task Arithmetic 15.7 15.1 9.9 17.0 15.8 14.69
MP-Merging 15.7 15.1 10.0 16.7 15.7 14.63
SVP-Merging 15.7 15.1 9.9 16.9 15.7 14.65
LoRS-Merging 15.7 15.1 9.7 16.8 15.6 14.57

Table 8: Multi-lingual ST model merging with the low-
resource language set. Avg. denotes average BLEU.

System BLEU↑
id nl pt ru sv Avg.

Pretrained 32.5 31.6 43.3 35.5 32.1 35.00
Finetuned 35.2 34.0 43.8 36.7 37.6 37.46

Multi-lingual training 32.3 33.2 43.5 35.4 34.3 35.74

Weight Averaging 33.6 32.2 43.2 35.3 34.2 35.70
Task Arithmetic 33.9 32.8 43.1 35.5 34.3 35.92
MP-Merging 33.8 32.8 43.5 35.8 34.0 35.98
SVP-Merging 33.6 32.6 43.4 35.6 34.3 35.90
LoRS-Merging 33.9 32.8 43.2 35.9 34.5 36.06

Then, Table 9 shows the multi-task single- 916

language training and merging performance (c.f. 917

compare to Table 3 for high-resource languages). 918

Last, Table 10 shows the results of multi-lingual 919

and multi-task training and merging results for low- 920

resource languages (compare to Table 4 for high- 921

resource languages.). LoRS-Merging achieved the 922

best performance across all merging and training 923

methods in all tables. 924

C Detailed Results on Multi-Task Model 925

Merging 926

Detailed per-language results of Table 3 are shown 927

in Table 11. 928
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Table 9: Multi-task model merging with the low-resource language set. WER/BLEU scores are averaged across
languages.

System WER↓ BLEU↑
id nl pt ru sv Avg. id nl pt ru sv Avg.

Pretrained 16.9 16.0 10.1 17.1 17.1 15.43 32.5 31.6 43.3 35.5 32.1 35.00
Finetuned 15.0 14.8 9.7 16.8 14.7 14.20 35.2 34.0 43.8 36.7 37.6 37.46

Multi-task training 15.4 15.0 9.3 16.6 14.3 14.12 35.3 33.7 43.6 36.2 35.8 36.92

Weight Averaging 14.7 14.9 9.3 16.6 13.8 13.88 35.4 33.9 44.1 36.3 35.9 37.12
Task Arithmetic 14.6 14.9 9.3 16.5 14.0 13.88 35.3 33.8 44.3 36.1 36.4 37.18
MP-Merging 14.4 14.7 9.4 16.5 13.8 13.78 35.7 33.9 44.3 36.1 36.1 37.22
SVP-Merging 14.6 14.8 9.2 16.4 13.9 13.80 35.3 33.9 44.3 36.2 36.3 37.20
LoRS-Merging 14.4 14.7 9.2 16.4 13.8 13.72 35.6 33.9 44.3 36.3 36.4 37.30

Table 10: Multi-lingual multi-task model merging with the low-resource language set. WER/BLEU scores are
averaged across languages.

System WER↓ BLEU↑
id nl pt ru sv Avg. id nl pt ru sv Avg.

Pretrained 16.9 16.0 10.1 17.1 17.1 15.43 32.5 31.6 43.3 35.5 32.1 35.00
Finetuned 15.0 14.8 9.7 16.8 14.7 14.20 35.2 34.0 43.8 36.7 37.6 37.46

ML and MT training 16.9 15.7 9.6 17.0 16.3 15.08 32.8 32.9 43.3 35.4 32.6 35.40

ML and MT Task Arithmetic 16.4 15.5 9.6 16.8 15.7 14.79 33.7 33.1 43.2 35.7 34.9 36.12
ML and MT LoRS-Merging 16.1 15.5 9.5 16.8 15.7 14.72 33.7 33.2 43.5 35.8 34.9 36.22

MT training 15.4 15.0 9.3 16.6 14.3 14.12 35.3 33.7 43.6 36.2 35.8 36.92
↪→ + ML Task Arithmetic 16.0 15.5 9.5 16.9 15.4 14.66 34.1 32.8 43.7 35.6 33.3 35.90
↪→ + ML LoRS-Merging 16.1 15.3 9.4 16.8 15.3 14.57 34.2 32.7 43.8 35.8 33.5 36.00

ML training 16.7 15.5 10.0 17.0 16.6 15.14 32.3 33.2 43.5 35.4 34.3 35.74
↪→ + MT Task Arithmetic 17.1 15.5 9.5 17.0 15.5 14.89 32.1 33.1 43.6 35.7 33.6 35.62
↪→ + MT LoRS-Merging 16.9 15.5 9.4 16.8 15.5 14.80 32.6 33.2 43.6 35.9 33.6 35.78

Table 11: Multi-task model merging with the high-resource language set. WER/BLEU scores are averaged across
languages.

System WER↓ BLEU↑
ca de es fr it Avg. ca de es fr it Avg.

Pretrained 20.6 19.6 14.7 24.5 19.4 19.88 21.1 24.1 28.6 26.8 26.8 25.48
Finetuned 19.5 19.7 14.4 22.1 19.2 19.05 22.6 24.6 29.2 27.2 27.3 26.18

Multi-task training 17.0 19.7 14.4 24.2 19.4 19.00 22.3 24.6 28.7 27.0 26.9 25.90
Sequential training 16.7 19.4 14.3 24.6 19.4 18.95 22.9 24.8 28.7 27.3 26.9 26.12

Weight Averaging 17.1 19.6 13.9 23.7 19.6 18.84 22.9 24.4 29.0 27.7 26.9 26.18
Task Arithmetic 17.2 19.3 14.0 23.3 19.7 18.76 23.4 24.5 28.9 27.7 27.0 26.30
TIES-Merging 17.7 19.5 14.4 23.6 17.4 18.60 23.1 24.5 29.1 27.7 27.5 26.38
DARE 17.5 19.4 14.2 23.5 18.6 18.71 23.2 24.5 29.0 27.6 27.1 26.28
TSV-M 17.8 19.4 14.3 23.7 17.9 18.70 23.0 24.7 29.2 27.7 27.4 26.40
LoRS-Merging 17.3 19.4 14.1 23.1 17.7 18.39 23.3 24.6 29.3 28.0 27.6 26.56
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