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The timed position of documents retrieved by learning to rank models can be seen as signals. Signals
carry useful information such as drop or rise of documents over time or user behaviors. In this work,
we propose to use the logic formalism called Signal Temporal Logic (STL) to characterize document
behaviors in ranking accordingly to the specified formulas. Our analysis shows that interesting
document behaviors can be easily formalized and detected thanks to STL formulas. We validate our
idea on a dataset of 100K product signals. Through the presented framework, we uncover interesting
patterns, such as cold start, warm start, spikes, and inspect how they affect our learning to ranks
models.

1 Introduction

Learning to rank (LTR) [15] is family of machine learning techniques to solve ranking problems. Given
a training set of queries and documents sorted by some relevance degree, the goal of an LTR model
is to learn a model that, given a query, sorts documents while maximizing the relevance score. The
relevance score can be either manually prepared from human labelling or automatically derived from
users interactions logs. Automatic labelling is best suited for large amount of data since it both relieves
humans from the labelling task and objectively measures the user preferences. In the e-commerce context,
clickthrough rate, that is the rate of the clicks received by a retrieved product for a given query, is a
common example of automatic relevance score. In general, we call behavioral signals the signals generated
by user-ranker interactions that can be used as relevance scores. A drawback of using behavioral signals
for training ranking models is that products with low user interaction, such as new or rare products, lack
of behavioral signals and hence are ranked as irrelevant. It takes time to gather enough information so
that the ranker can place the products in their right position. This also leads to the causality dilemma: No
behavioral signals causes poor ranking which in turn results in new products having a reduced likelihood
of accruing behavioral data. This particular phenomenon is referred to as cold start which leads to a poor
customer experience.

Cold start is just one particular problem rising from learning from behavioral signals. Other examples
are warm start (product ranks too high too early), instability (sudden spikes or ditches in ranking position),
or uncertainty (the ranker does not know how to rank due to lack of user interaction). These are examples
of well know unwanted phenomena that an LTR model should avoid. Being able to isolate and measure
these phenomena plays an important role in designing LTR rankers and preventing unwanted signal
patterns.
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Unluckily, there are few efficient tools for isolating known signal patterns. Some examples are:
probabilistic anomaly detection methods [10], where a signal is considered to be an outlier accordingly to
its probability of being observed; k-means-based approaches [14], where the distance of a signal from
cluster centroids is a measure of diversity; ad-hoc classification or regression models [20], where a model
is trained to detect a specific behavior. Note how these techniques either do not provide the flexibility for
identifying a particular signal pattern or require to build rigid ad-hoc solutions.

In this work we present use of Signal Temporal Logic (STL) [16], as a tool for isolating and analyzing
product and behavioral signals in the LTR context. In particular, we show how STL can be used to
formally characterize well known signal behaviors, such as the undesirable cold start, warm start, product
instability, etc., isolate them from a collection of signals, and afterwards analyze them so that we can take
countermeasures in our LTR model. Intuitively, STL is temporal logic [19] (i.e., mathematical formalism
for representing and monitoring properties involving time) particularly suitable for characterizing real-
valued signals defined over real-time intervals. Examples of signals patterns in natural language that can
be easily described by STL formulas are “some products always rank at position 1” or “every product will
eventually rank at position 1”.

The main contributions of this work are:

• Propose STL as a flexible tool for formally describing known signal patterns as formal logic
formulas;

• Define a library of STL formulas encoding common unwanted signal behaviors in the LTR context
(such as cold start, warm start, sudden ranking ditches or spikes, instability, etc.);

• Cluster a large set of product signals collected from a popular e-commerce website using the defined
STL properies and analyze how performance metrics, such as clicks, impressions, and purchases
are distributed across different clusters and product categories;

• Compare the expressivity and succinctness of STL with common signal clustering/filtering tools
(such as k-means, Pandas queries, propositional logics, etc.)

Researchers have widely used temporal logics for formal verification purposes, where hardware and
software systems are tested against properties that characterize the system’s correctness [9, 11]. Over the
years, researchers defined several types of temporal logics that usually vary in expressive power. Some
examples are Linear Temporal Logic [19], Computation Tree Logic [4], or Metric Temporal Logic [13].
STL has been successfully applied to the cyber-physical system domain [9, 11], specifically for monitoring
and testing devices that involve physical and computational components, such as drones [5, 18], self-
driving vehicles [8, 21], and even medical devices [2]. The success of STL in these domains is mainly
due to its expressiveness and the efficiency of tools, such as S-TaLiRo [1] and Breach [6], for reasoning
with STL formulas. To the best of our knowledge, this is the first time that STL is used in the context of
Information Retrieval and LTR rankers.

The paper is organized as follows. In Sec. 2 we explain the theoretical promise of STL. In Sec. 3 we
define a library of STL properties useful for analyzing ranking signals. In Sec. 3.4 we also compare the
expressiveness and succinctness of STL to other common formalisms. In Sec. 4, we present experiments
on evaluating and analyzing the defined STL ranking properties on product signals collected from a
popular e-commerce website. Finally, we draw concluding remarks in Sec. 5.
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2 Signal Temporal Logic

In this section we define the Signal Temporal Logic [16], a formalism particularly suitable for properties
of real-valued signals.

A signal is a function s : D→ S with D ⊆ R≥0 an interval and S ⊆ R. A trace w = (s1, . . . ,sn) is a
tuple of real-values signals defined over D.

Let Σ = {σ1, . . . ,σk} be a set of predicates σi : Rn→ B, with σi := pi(x1, . . . ,xn)C 0, C ∈ {<,≤},
and pi : Rn→ R.
Definition 1 (STL syntax). An STL formula is defined by the grammar:

ϕ := σ |¬ϕ|ϕ ∧ϕ|ϕUIϕ (1)

where σ ∈ Σ and I ⊂ R≥0 is a closed non-singular interval.
A shifted interval I is defined as t + I = {t + t ′|t ′ ∈ I}.

Definition 2 (STL qualitative semantics). Let w be a trace, t ∈ R≥0, and ϕ be an STL formula. The
qualitative semantics of ϕ is defined as follows:

w, t |=>
w, t |= p(x1, . . . ,xn)C0 iff p(w(t))C0 with C ∈ {<,≤}
w, t |= ¬ϕ iff w, t 6|= ϕ

w, t |= ϕ1∧ϕ2 iff w, t |= ϕ1 and w, t |= ϕ2

w, t |= ϕ1UIϕ2 iff ∃t ′ ∈ t + I s.t. w, t ′ |= ϕ2

and ∀t ′′ ∈ [t, t ′]w, t ′′ |= ϕ1

(2)

The peculiarity of STL is the interval-decorated until operator. Intuitively, ϕ1UIϕ2 holds if ϕ1 is true
until ϕ2 becomes true at a time instant in I.

We can define other common operators as syntactic abbreviations: ⊥ := ¬>, p(x)> 0 := ¬(p(x)≤
0), p(x) ≥ 0 := ¬(p(x) < 0),ϕ1∨ϕ2 := ¬(¬ϕ1∧¬ϕ2),ϕ1 =⇒ ϕ2 := ¬ϕ1∨ϕ2,FIϕ := >UIϕ,GIϕ :=
¬FI¬ϕ .

The “eventually” operator FIϕ (also called “future”) forces ϕ to be true at least once in I. The
“always” operator GIϕ (also called “globally”) requires ϕ to be always true in I. We will omit the interval
decoration I from temporal operators when the property predicates over the entire life of trace (e.g., we
write Gϕ as a shorthand for G[0,+∞]ϕ).

We say that a trace w satisfies ϕ if w,0 |= ϕ . The satisfaction of a formula can be determined by
recursively computing the satisfaction of its subformulas [16]. The evaluation of an STL formula is linear
in the signal length [7].

STL has also several alternative semantics. The most popular is the qualitative semantics that, instead
of a boolean satisfaction value, returns a real value encoding how robustly a trace satisfies a formula (i.e.,
the distance from satisfaction or violation). In this work, we consider only the qualitative semantics since
we are interested in the binary classification of our signals. For more details on qualitative semantics see,
e.g., [7].

3 Ranking Signal Properties

We now define three groups of specifications: 1) local properties, that predicate over parts of signals, 2)
global properties, that involve whole signals, and 3) correctness properties, that monitor faulty behaviors
such as missing data.
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(a) f lat start (Eq. 3) (b) cold start (Eq. 4) (c) steady state (Eq. 6)

Figure 1: Ranking signals that satisfy (green) and do not satisfy (red) the STL specifications f lat start
(Eq. 3), cold start (Eq. 4), and steady state (Eq. 6).

In the following experiments, we assume that the average daily ranking position of a products is given
by a function x : N→ R≥1, i.e., given a day ti ∈ N, x(ti) is the daily average position of a document. Let
x′(ti) be the discrete-time derivative of x, i.e., x′(ti) = (x(ti+1)− x(ti))/(ti+1− ti).

3.1 Local Properties

We begin with properties that predicate over the initial days of products. We are interested in determining
if products are ranked at a stable position (flat start) or if they gain (cold start) or loose (warm start)
positions in the days after launch:

f lat start := G[0,w](|x′|< ε) (3)

cold start := G[0,w](x
′ ≤ 0)∧F[0,w](x

′ < 0) (4)

warm start := G[0,w](x
′ ≥ 0)∧F[0,w](x

′ > 0) (5)

where w ∈ N and ε ∈ R≥0 are tunable parameters that define the length of the initial time window and
noise tolerance.

The f lat start specification (Eq. 3) forces the first derivative x′ to be always ε-close to zero (we
include the ε tolerance to account for noise). The ranking signals that satisfy this specification are those
that found their steady ranking position on launch day, i.e., those that experienced a flat start. Similarly,
we define cold start (Eq. 4) and warm start (Eq. 5) specifications by requiring the ranking signals to
always decrease/increase. The right-most conjunct (F[0,w]) forces the signals to strictly grow/decrease at
least once.

Fig. 1 shows some examples of trajectories that do and do not satisfy (green and red, respectively)
the flat and cold start STL specifications with parameters w = 3 and ε = 1 for f lat start and w = 3 and
ε = 0 for cold start.

3.2 Global Properties

We now increase the scope of our specifications by predicating over entire ranking signals.
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(a) reach (Eq. 7) (b) ditch (Eq. 8) (c) no long miss (Eq. 11)

Figure 2: Ranking signals that satisfy (green) and do not satisfy (red) the STL specifications reach (Eq. 7),
ditch (Eq. 8), and no long miss (Eq. 11).

In learning to rank, we often assume that a document reaches a steady state ranking position after an
initial period during which behavioral data is collected. The following STL formula characterizes the
existence of a steady state:

steady state := F[0,w]G(|x′|< ε) (6)

where w ∈ R≥0 defines the maximum stabilization time and ε ∈ R≥0 the tolerance to noise. The
steady state formula holds if there is a day in [0,w] after which |x′| is always smaller than ε , i.e.,
the trajectory maintains a steady state with ε tolerance. Fig. 1(c) shows two trajectories evaluated on
steady state with parameters w = 3 and ε = 1. The green signal satisfies the specification because it
stabilizes after day 3 at position 2. On the other hand, the red trajectory does not satisfy the specification
because on day 4 it experiences a drop in positions and thus it is not stable after day 3.

Next, we define a liveness property that checks if a product that reaches a certain ranking interval
eventually hits a critical position:

reach := G((x < s) =⇒ F(x = r)) (7)

with s,r ∈ R. For instance, with parameters s = 10 and r = 1 we check whether products that reached the
top 10 positions eventually rank in first position too. Fig. 2(a) depicts two signals that satisfy the reach
specification and one that does not with parameters s = 10 and r = 1. The upper green signal satisfies
the specification because it enters the [1,10] ranking interval and eventually reaches position 1 on day 12.
The lower green signals also satisfies the requirement since it never enters the [1,10] range. However, the
red signal does not satisfy the specification because its values become smaller than 10 but never reach the
first position.

Finally, we analyze the stability of products. We define two specifications that capture signals with
large bouncing drops or rises in a short time frame:

ditch := F((x′ > d)∧F[0,w](x
′ < d)) (8)

spike := F((x′ < d)∧F[0,w](x
′ > d)) (9)

The parameters d,w ∈ R>0 determine the signal drop/rise width and amplitude, respectively. These
two formulas check if at any point in time there is a drop/rise of at least d positions followed by a rise/drop
of at least d position within w days. Fig. 2(b) shows some signals evaluated on ditch with parameters
d = 10 and w = 2. The green signal satisfies the specification since it experiences a ditch of at least 10
positions on day 3. The red signal does not satisfy the property since its ditch is not deep enough.
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3.3 Correctness Properties

Finally, we hypothesize a scenario where some data might miss, i.e., the ranking position might be
unknown. Let −1 denote the ranking position of a product on a day for which data is missing. The atomic
predicate that holds if the ranking position is unknown is miss := x =−1.

In learning to rank systems, the first days after a product launch are crucial for the collection of
behavioral data and the subsequent correct ranking. Hence, we do not want too much missing data in the
days after a product launch:

no init miss := ¬(G[0,w]miss) (10)

where w ∈ N defines the initial time window. no init miss ensures that there are no w consecutive initial
days of missing data. We can also extend this requirement to any part of a ranking signal and not just to
its prefix. We define a specification that ensures that are no windows with too many consecutive days with
missing data:

no long miss := G(miss =⇒ F[0,w]¬miss) (11)

where w ∈N. no long miss ensures that if there is a missing data day, then eventually within w days there
will be non missing data day. In Fig. 2(c), the red signal does not satisfy no long miss for w = 3, since
after day 4 there are 4 consecutive days of missing data. On the other hand, the green signal satisfies the
specification since it never has 3 consecutive days of missing data.

3.4 On STL’s Succinctness and Efficiency

Figure 3: k-means (with k= 10) centroid signals for
our product ranking signals dataset. From this analy-
sis it seems most products have smooth trajectories.
However, our STL-based analysis reveals that more
that 50% of the signals experiences a spike or ditch
of at least 10 ranking positions.

Before proceeding with the evaluation of our STL
specifications, it is worth noticing how STL is both
succinct and efficient when compared with stan-
dard logics.

For instance, we ran the clustering algorithm
k-means (with k=10) on our dataset of product
signals with the goal of mining the most represen-
tative signals. Fig. 3 shows the centroid signals
of the clusters obtained by running k-means (with
k=10) on product ranking signals dataset. From
this analysis it seems most products have smooth
trajectories. However, as we will later discover in
Sec. 4 , our STL-based analysis reveals that 50%
of all the analyzed products in this test experience
a shift in ranking position over two consecutive
days. This shows how clustering techniques might
fail in isolating important signal patterns.

We also compared STL with classic logics and
query formalisms. For instance, the translation of
the ditch property (Eq. 8) in propositional logics
is

∨T
i=0(xgdi∧

∨w
j=0 xld j) where xgdi := x′(i)> d

and xldi := x′(i) < d. For this formulation, we must know in advance the length T of the signal. In
addition, it involves T (1+w) operators against the 3 operators of Eq. 8.

The encoding of Eq. 8 in a first-order logic, e.g., semi-algebraic logics, would result in a formula with
less operators ∃t(x′(t) > d ∧∃t ′(t ≤ t ′ ≤ t +w∧ x′(t ′) < d)) which is still less compact than Eq. 8 and
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less efficient to evaluate. The evaluation of semi-algebraic formulas is generally doubly exponential in the
number of quantifier alternations while the evaluation of an STL formula is linear in the signal length [7].

For completeness, we also include the translation of Eq. 8 into a pandas [17] query, a Python library
for data manipulation and analysis. Let d f be the dataframe with our signals where posi is the column with
the ranking position on day i. The pandas query that isolates the signals that satisfy the ditch property
is d f [((d f .pos0 > d) & (d f .pos1 < d | . . . | d f .posw < d)) | . . . | ((d f .posT−w > d) & (d f .posT−w+1
< d | . . . | d f .posT < d))] . The structure of this query is similar to the propositional encoding. Also in
this case, we are dealing with a long query, we need to know in advance the length of the signal, and any
parametric change of our requirement affects the query’s structure. Finally, note that the encoding formula
length explosion occurs for any specification that involves temporal operators and not just this particular
case.

4 Experimental Evaluation

We now evaluate the STL specifications defined in Sec. 3 against a dataset of product signals. We conduct
two analyses:

1. Product categories: Explore the correlation between query-product signals and product categories;

2. Performance metrics: Analyze how metrics such as impressions, clicks, and purchases distribute
across different clusters of query-product signals.

Our analyses highlight how STL can be used to easily isolate unwanted signals behaviors. We will also
discover that not all product categories are equally affected by LTR anomalies (e.g., cold start, instability,
etc.) and that clicks, impressions, and purchases are not evenly distributed across signal patterns. Our
dataset contains 100K examples from ten different product categories. Each data point contains the
product’s position for 14 days, number of searches, clicks, and purchases.

For the evaluation of the specifications, we relied on the py-metric-temporal-logic library [22].
Specifically, we implemented a pandas [17] user-defined function that, for each entry of our dataset,
invokes py-metric-temporal-logic and evaluates our STL specifications.

4.1 Product Categories

Do satisfaction rates of our STL specifications vary across categories? To address this question we
compute the percentage of product signals that satisfies a given STL specification for each product
category and STL specification combination. Results, reported in Fig. 4(a), highlight how satisfaction
rates are not equally distributed across different categories.

c9 and c4 are the categories less affected by cold start with a 2% satisfaction rate opposed to c8, c7,
and c5 with satisfaction rates 5%. c4 and c9 have also the highest flat start and steady state rates (5% and
8%, respectively) in contrast to the other categories. This means that c4 and c9 are the categories whose
products most frequently find their natural ranking position from launch day and keep it constant over
time.

Interestingly, c9, c4, together with c0, are the most affected by warm start (1.50%) suggesting that
products from these categories might rank too high after launch or might include a high number of low
engagements products (e.g., spam).

Finally, spike and ditch satisfaction rates are almost equally distributed. Remarkably, 60% of all the
analyzed products experience a drop or ditch of at least 10 ranking position within two consecutive days.
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(a) (b)

Figure 4: Specification satisfaction rates across product categories (left) and average total impressions,
clicks, and purchases garnered by query-products that satisfy STL specifications (right).

4.2 Performance Metrics

We now analyze how impressions, clicks, and purchases are distributed across different specifications. We
compute the average number of impressions, clicks, and purchases for query-documents tuples that satisfy
a given STL specification. Fig. 4(b) shows the obtained distributions.

The signals within this test that garner the highest and lowest average number of impressions (400 and
250, respectively) are those that satisfy the warm start and cold start specifications, respectively. The most
clicked products satisfy flat start and steady start (30 clicks) while the least clicked ones satisfy warm
start, reach, ditch, and spike (5 clicks). The products that collect highest purchases satisfy flat start and
steady state (90) followed by cold start (35), while the products with lowest purchases are those affected
by warm start (5).

This analysis suggests that products affected by warm start, despite receiving the highest number of
impressions, tend not to be clicked and consequently gather low purchases. We could speculate that warm
start products are either not relevant to customer’s searches or are low quality products that do not attract
customer’s attention. cold start products show the symmetric phenomenon. They receive a low number of
impressions, they are clicked twice as much as warm start and gather 5x purchases compared to warm
start. This might mean that cold start products are eventually discovered and purchased by customer
despite being initially poorly ranked.

Outliers are flat start and steady state specifications. They receive 3x clicks (30 vs 10) and 4x purchases
(100 vs 25) compared to the second mostly clicked and highest purchases cold start, no init miss, and
no long miss. Products that have early flat and steady positions tend to rank very high and consequently
collect the highest amount of clicks and purchases.

Note how both the product categories and performance metrics STL analyses revealed interesting
behaviors of our learning to rank model. The obtained insights can be used, for instance, to rebalance our
training sets by focusing on particular product segments or redesign relevance scores. Note also that these
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are just demonstrative examples of how STL can be used to reason over ranking signals. Nothing prevents
STL from being applied to more complex temporal properties or more sophisticated analyses.

5 Remarks

In this work, we proposed for the first time STL in the learning to rank context to cluster and analyze
product ranking signals. We defined a library of properties that characterize unwanted product behaviors
and analyzed the distribution of the satisfaction of properties over a dataset of 100K product signals. Our
analysis showed how STL can be used to reason over ranking traces and reveal insights on the model
under study. In the future, we plan to explore STL for online monitoring where the real-time detection of
faulty behaviors can be used to trigger alarms and actuate repairing procedures.
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