
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MISS: REVISITING THE TRADE-OFF IN LORA WITH
AN EFFICIENT SHARD-SHARING STRUCTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Low-Rank Adaptation (LoRA) is a widely adopted technique for parameter-
efficient fine-tuning, but its slow convergence has spurred the development of
numerous variants. Nevertheless, existing methods often fail to improve perfor-
mance, memory footprint, and computational efficiency simultaneously. To ad-
dress this challenge, we revisit the causes of LoRA’s slow convergence. Building
on these insights, we propose Matrix Shard Sharing (MiSS), which updates shards
of the original weight matrix using a single shared trainable matrix D, initialized
to zeros. To simultaneously ensure computational efficiency, low memory foot-
print, and scalable serving, we introduce MiSSe. Both theoretical analysis and
empirical results demonstrate that our method reduces optimization complexity
without compromising performance, thereby achieving a more favorable trade-off
among performance, memory, and efficiency. Furthermore, we conduct a com-
prehensive comparative analysis of various PEFT methods, evaluating their mem-
ory usage, initialization overhead, and computational efficiency. By mapping the
Pareto frontier across these dimensions, we show that MiSS occupies a favorable
position, effectively capturing the advantages of prior approaches.

1 INTRODUCTION

Fine-tuning Large Language Models (LLMs) (Radford et al., 2019; Raffel et al., 2020; Yin et al.,
2024) is a prevalent methodology for adapting these models to specific downstream tasks. How-
ever, full fine-tuning of all parameters is computationally prohibitive. Consequently, numerous
Parameter-Efficient Fine-Tuning (PEFT) techniques (Xu et al., 2023) have been developed to mit-
igate the training expenditure associated with these large-scale models. Among such techniques,
Low-Rank Adaptation (LoRA) (Hu et al., 2021) has distinguished itself as one of the most promi-
nent PEFT methods. LoRA employs a low-rank approximation for the weight updates, a strategy
that offers a markedly reduced number of tunable parameters, notable efficacy when compared to
full fine-tuning, and the potential for zero inference overhead. LoRA constructs this low-rank adap-
tation matrix through an intuitive design, positing that the weight update ∆W can be approximated
by the product of two lower-rank matrices, BA ≈ ∆W . Evidently, this specific factorization is not
necessarily the optimal low-rank approximation of the original ∆W .

Many improvements to LoRA have been proposed in recent years, which can be broadly categorized
into two major streams: (1) Adaptability (Ding et al., 2023; Liu et al., 2024; Biderman et al., 2024):
This refers to the convergence speed at which the method reaches an optimal or near-optimal state.
The approximation must exhibit a representational capacity comparable to that of the original, full
∆W . Extensive experiments have shown that LoRA’s convergence is significantly slower compared
to full fine-tuning. To address this issue, researchers have proposed several LoRA variants (Hayou
et al., 2024; Meng et al., 2024; Wang et al., 2024a). By adopting different initialization strategies
to influence the model’s training gradients, they have accelerated LoRA’s convergence speed. Dif-
ferent initializations of LoRA variants accelerate convergence essentially by increasing the initial
gradients during training or aligning them with the full-scale training gradients. However, many of
these methods overlook issues of computational efficiency and overall training overhead. For ex-
ample, PiSSA (Meng et al., 2024) requires a lengthy initialization process, while LoRA-GA (Wang
et al., 2024b) depends on modifications to the optimizer, resulting in incompatibility with certain
optimizers. (2) Efficiency (Kopiczko et al., 2024; Wang et al., 2024c; 2025): This encompasses
expeditious initialization, modest memory consumption, and minimal computational overhead. Op-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: A variety of LoRA variants are listed, each with its specific update formulation and initial-
ization strategy for the low-rank matrices. The differences between these methods are compared in
a clear and intuitive manner. e denotes efficient form.

Method Forward Initialization

LoRA y = W0x+BAx A ∼ N(0, σ2)B ∼ 0

PiSSA y = W0x+BAx A = U[:,:r]S
1/2

[:r,:r], B = S
1/2

[:r,:r]V
⊤
[:,:r]

AdaLoRA y = W (0)x+ PΛQx Λ ∼ 0, P ,Q ∼ N(0, σ2)

DoRA y = m(W0x+BAx / ∥W0 +BA∥c) A ∼ Rect.KaimingUnif, B ∼ 0

ProLoRA y = W0x+ (Bu ⊕h . . . ) (Au ⊕v . . . )x Au ∼ KaimingUnif, Bu ∼ 0

MoS y = W0x+BsAsx Apub/pri,Bpub/pri ∼ 0

MiSS(Ours) y = W0x+ expand(D)x D ∼ 0

MiSSe(Ours) y = W0x+DS D ∼ 0

timizing LoRA from an efficiency perspective can lead to reduced VRAM consumption and an
accelerated training process. Although LoRA has demonstrated significant advantages in reducing
parameter scale and computational cost, its effectiveness still falls short of fully matching full fine-
tuning. To address this gap, researchers have proposed an increasing number of LoRA variants that
gradually approach the performance of full fine-tuning. This raises a natural question:

Given the inherent challenge for LoRA and its variants to balance performance, memory, and effi-
ciency, how can we achieve an effective trade-off among all three dimensions?

To strike a balance between performance, memory, and efficiency, we re-examined the key fac-
tors affecting LoRA’s slow convergence. Through an analysis of S2FT (Yang et al., 2024) and
LoRA+ (Hayou et al., 2024), we identified a critical phenomenon: During the LoRA fine-tuning pro-
cess, both matrices B and A need to be updated simultaneously, which increases the complexity of
optimization and ultimately leads to slower convergence. LoRA+ alleviates this issue by modifying
the initial gradients, allowing the fine-tuning process to approximate full fine-tuning better. In con-
trast, S2FT fixes one matrix as an orthogonal matrix, reducing the degrees of freedom in parameter
updates and lowering optimization complexity, thereby enabling faster alignment with the optimal
update direction. Inspired by these insights, we hypothesize that training only a single matrix could
simplify optimization without sacrificing expressive capacity. We therefore propose Matrix Shard
Sharing (MiSS), a method that updates a shard of the original weight matrix using a single, shared
trainable matrix D, initialized to zero. Thus, our approach maintains the low-rank property of the
matrices while offering a more efficient alternative to BA updates in terms of computation.

Gradient Norm Analysis. We analyze the initial gradient norm to verify our preliminary conclu-
sions. In the experimental sections of the PiSSA, S2FT, and LoRA-GA papers, we observed that
LoRA exhibits a very small initial gradient norm compared to full fine-tuning, which shows a much
larger one. Notably, all these improved methods share a common characteristic: their initial gradient
norms are significantly larger than LoRA, and their early-stage convergence speed is comparable to
that of full fine-tuning. Motivated by this, we evaluated the initial gradient norms of different meth-
ods across various models and datasets to examine whether MiSS follows the same pattern as other
LoRA variants. The experimental results (Figure1) confirm that MiSS indeed shares this property,
i.e., a larger initial gradient norm and faster early convergence. This also supports the hypothesis
that optimizing a single matrix is inherently simpler.

32 64 128 256
0

2

4

6

8

Matrix rank

G
ra

di
en

tN
or

m

32 64 128 256
0

1

2

3

4

Matrix rank

G
ra

di
en

tN
or

m

32 64 128 256
0

8

16

24

Matrix rank

G
ra

di
en

tN
or

m

32 64 128 256
0

4

8

12

16

Matrix rank

G
ra

di
en

tN
or

m Finetune
LoRA
PiSSA
MiSS

Figure 1: Comparison of initial gradient norms across different training methods and the effect of
rank. Results are shown for LLaMA2-7B and Qwen3-4B on the Math and Code datasets.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Efficient Implementation To achieve better computational efficiency, we introduce MiSSe, an
alternative design that maintains the core principle of parameter sharing while offering improved
time and space complexity through input-dimension aggregation. We further conduct extensive
experiments (Table 2) to validate its effectiveness.

We first evaluate MiSS on both Natural Language Understanding (NLU) and Generation (NLG)
tasks, assessing its performance and scalability. Our results show that MiSS consistently outper-
forms LoRA and its variants across diverse LLM architectures, establishing new state-of-the-art
results on a wide range of metrics. We then analyze the Pareto frontier of the adaptability-efficiency
trade-off in PEFT. We argue that an ideal PEFT method should effectively balance these two es-
sential dimensions. To this end, we conduct a series of foundational experiments, including a sim-
ulated pre-training and fine-tuning pipeline, computational complexity analysis, and initialization
time evaluation. With comprehensive empirical results, we demonstrate that MiSS achieves a favor-
able balance across three key dimensions performance, memory, and efficiency, highlighting its
practicality as a general PEFT solution.

Our contributions can be summarized as follows:

1. We propose MiSS, an efficient and adaptable structure with a shard-sharing mechanism,
striking an effective balance among three essential properties—performance, memory effi-
ciency, and computational efficiency.

2. Through large-scale experiments across diverse datasets and model architectures, we pro-
vide a comprehensive evaluation of multiple PEFT methods. Our empirical results con-
clusively demonstrate that MiSS achieves a superior balance among these three properties
compared to existing alternatives.

2 PRELIMINARIES AND RELATED WORKS

Low-Rank Adaptation (LoRA). Parameter-Efficient Fine-Tuning (PEFT) refers to a family of
techniques designed to adapt large pre-trained models to downstream tasks while minimizing the
number of trainable parameters, thereby reducing computational and memory overhead. Among
diverse methods, Low-Rank Adaptation (LoRA) has gained significant prominence. It operates on
the principle that the change in weights during model adaptation often possesses a low intrinsic rank.
Instead of fine-tuning the entire pre-trained weight matrix W0 ∈ Rd×k, LoRA introduces a low-rank
decomposition to represent the update. Consider a simple linear projection with input x ∈ Rd and
output y ∈ Rk, LoRA adapts the following forward pass:

y = (W0 +∆W )x ≈ W0x+BAx, where B ∈ Rd×r, A ∈ Rr×k. (1)

Here, A and B are low-rank matrices, with the rank r being significantly smaller than the original
dimensions i.e., r ≪ min(d, k). During the fine-tuning process, the original weights W0 are kept
frozen, and only the parameters within matrices A and B are trained. Specifically, LoRA initializes
A with Gaussian noise A ∼ N(0, σ2) with small σ and B with zeros, ensuring that BA = 0 at the
start, preserving the pre-trained model’s output.

Improvements of LoRA. LoRA is the low rank adaptation towards full-param finetuning, and
intuitively it downperforms than it. Several works propose diverse methods towards a better
convergence and adaptability of LoRA. One compelling venue is to change the form of LoRA.
PiSSA (Meng et al., 2024) optimizes the compact parameter space by representing the matrices
in the model as the product of two trainable matrices, augmented with a residual matrix for error
correction. Using Singular Value Decomposition (SVD), OLoRA (Büyükakyüz, 2024) leverages
QR decomposition to initialize the adaptation matrices during the fine-tuning process, ensuring that
these matrices are orthogonal. This orthogonal initialization helps maintain the stability of the pa-
rameter space during optimization. LoRA-GA and PiSSA are similar in form, but they differ in that
LoRA-GA initializes A and B by computing the initial gradient, thereby closely approximating full
fine-tuning. LoRA+ extended this method by introducing independent learning rates for matrices
A and B with a fixed ratio, improving the method’s efficiency. DoRA (Liu et al., 2024) decom-
poses the weight matrix into two parts: magnitude and direction, which are optimized separately.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

This approach allows for more precise control over the learning rate, making LoRA updates closer
to the effect of full fine-tuning. The improvements brought by these LoRA variants validate that
the updates to the weights exhibit a low intrinsic rank during adaptation and hold greater potential.
However, they also introduce more complex initialization steps and increase preprocessing time.

3 NO FREE LUNCH: BALANCING BETWEEN ADAPTABILITY AND
EFFICIENCY

This section elucidates the fundamental trade-off inherent in LoRA-style PEFT techniques: the del-
icate balance between their adaptability and efficiency. Adaptability, in this context, refers to the ca-
pacity of a given method to emulate the performance benchmarks set by full-parameter fine-tuning.
Conversely, efficiency encompasses the method’s judicious use of computational resources, specif-
ically time and memory. We utilize highly artificial controlled dataset and model with a relatively
small parameter count to make the verification transparently and easy for replication.

We considered diverse methods 1: (1) Full-parameter finetuning (Lv et al., 2024). (2) LoRA (Hu
et al., 2021). (3) Alternatives to LoRA w/ different architectures, including: PiSSA (Meng et al.,
2024), VeRA (Kopiczko et al., 2024), DoRA (Liu et al., 2024) and MoRA (Jiang et al., 2024).
(4) Efficent LoRA Design that keeps the LoRA BA structure: PROLORA (Wang et al., 2024c),
MoS (Wang et al., 2025). (1) An overview of their forward form, initialization method can be found
at Table 1.

3.1 EMPIRICALLY BENCHMARKING THE ADAPTABILITY OF LORA VARIANTS

Experimental Setup. Parameter-efficient adaptation methods, particularly those leveraging low-
rank principles, typically constrain trainable parameters by applying low-rank decompositions either
to newly introduced adapter matrices or to the updates of pre-existing model weights. To rigorously
evaluate such strategies, we selected a deliberately minimalistic base model: a single-layer MLP
designed to process a series of features and yield outputs. This model is initially pre-trained to
fit some sinusoidal functions using a constrained set of data points. Following this pre-training,
the target function is subtly altered, and an additional dataset sampled from this modified function
is employed for training to assess the adaptation performance of various fine-tuning techniques.
Comprehensive details regarding the experimental settings are elaborated in Appendix C.

Figure 2: No Free Launch Experiment. Left. The training loss curves of all methods. Middle.
Initialization time w/ parameters. Right. Training time w/ parameters.

Results. Figure 2 illustrates the comparative adaptability of different methods. We utilize the min-
imum validation loss achieved by each approach as an indicator of its expressive capacity when
approximating the performance of full-parameter fine-tuning. The results clearly demonstrate that
methods leveraging singular value decomposition (SVD), such as PiSSA, attain a relatively low
loss. Conversely, efficiency-focused techniques like MoS exhibit higher losses. A plausible ex-
planation for this discrepancy is that such methods further decompose LoRA matrices into shared

1We have not included methods such as LoRA-GA (Wang et al., 2024b) or LoRA+ (Hayou et al., 2024)
in our current analysis. While these approaches aim to more closely approximate the performance of full-
parameter fine-tuning, we consider MiSS to be largely orthogonal to them. Consequently, the analytical tech-
niques employed in their study may still offer valuable insights for MiSS.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

components, which may inherently constrain their expressive power. Our method MiSS reaches a
relatively advanced performance comparing to other variants.

3.2 EFFICIENCY ANALYSIS OF LORA VARIANTS

Metrics. We evaluate the efficiency of LoRA-like variants from two primary perspectives: (1)
Space and Time Complexity in Training. Space and time complexity during training are generally
considered crucial criteria for evaluating PEFT methods. To benchmark these aspects, we employ
the model architecture detailed in Section 3.1. We also test the real cost in our experiment section
i.e., Section 5.3. (2) Initialization. Initialization time is often overlooked in theoretical complexity
analyses. This oversight typically stems from the assumption that common initialization techniques
(e.g., Kaiming Initialization) are computationally inexpensive and represent a one-time cost within
the entire training pipeline. However, several recent advancements in LoRA and its variants incorpo-
rate matrix operations (e.g., Singular Value Decomposition - SVD) that are not inherently hardware-
friendly and can pose challenges for efficient optimization and computation. Consequently, we
explicitly include initialization time as a distinct evaluation metric in our experimental framework.
We then progressively scale the trainable parameter count of various approaches to meticulously
measure their respective time and space costs.

Results. The efficacy (See Figure 2) of MiSS is evident: its strategic combination of parameter
sharing and an efficient computational design culminates in rapid, scalable performance across both
initialization and training stages. In contrast, while techniques like PiSSA demonstrate commend-
able adaptability, as shown in prior experiments, their reliance on computationally intensive Singular
Value Decomposition for initialization significantly hampers their overall speed. Other approaches,
such as VeRA and AdaLoRA, offer efficient initialization and computation; however, as previously
discussed, they often achieve this at the cost of comparatively reduced adaptability.

4 MISS: SHARD SHARING FOR THE PERFORMANCE AND EFFICIENCY
TRADEOFF

4.1 METHOD OVERVIEW

In traditional low-rank adaptation methods e.g., LoRA, the weight update ∆W is approximated as
a low-rank matrix, e.g., ∆W = BA, where A ∈ Rr×k, B ∈ Rd×r, and the rank r ≪ min(d, k).
This approach achieves efficiency by limiting the number of parameters. However, we observe that
a repeating matrix—where a small matrix is replicated to form a larger one—can also be viewed as
a low-rank structure. For instance, if a matrix’s rows or shards are constructed by repeating a limited
set of independent elements, its effective rank is often much smaller than its full dimensions.

D~0

expand

MiSS

A~N(0,σ2)

B~0

LoRA

def init(in_features: int, in_features: int, rank: int):
self.r = rank
self.weight = nn.Parameter(torch.empty((out_features,

in_features)))
self.D = nn.Parameter(torch.zeros(self.r, out_features))

def forward(self, x):
result = F.linear(x, self.weight) # x: [B, T, C]
y = result + x @ self.D.expand(in_features//self.r,1)
return y

Figure 3: Left. Structural diagram of ∆W in LoRA and MiSS. Right. PyTorch-style pseudocode
illustrating the implementation of MiSS.

Based on this insight, we propose MiSS, which defines the weight update ∆W as a large matrix
generated from a small trainable matrix D through an expansion operation. The updating of W and
the forward pass can be expressed as:

W = W0 +∆W = W0 + expand(D), y = W0x+ expand(D)x. (2)

Here, x ∈ Rb×l×k, y ∈ Rb×l×d, W0 ∈ Rd×k is the pre-trained weight matrix, D ∈ Rr1×r2 is a
small trainable matrix with (r1, r2) ≪ min(d, k), and expand(D) is a function that extends D to

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Rd×k. This structure inherently exhibits low-rank properties. Since the rows within each shard are
identical, the rank of expand(D) is at most N . When N ≪ d, ∆W is a low-rank matrix, reducing
the parameter count from d× k to N × k.

Regarding the expansion method, we partition the output dimension d of W0 into N shards of sizes
{s1, s2, . . . , sN}, where

∑N
i=1 si = d. Let D ∈ RN×k, where N is the number of shards. For each

shard i, its update is determined by the i-th row of D, denoted Di ∈ R1×k, repeated si times to
form the shard’s update matrix. Formally:

(expand(D))⊺ = [(1s1D1)
⊺ (1s2D2)

⊺ . . . (1sNDN )⊺] (3)

Here, 1si ∈ Rsi×1 is an all-ones vector, and 1siDi denotes Di repeated si times vertically. The
shards are vertically concatenated to match the dimensions of W0.

4.2 EFFICIENT IMPLEMENTATION OF MISS

The above formulation is effective in the initialization process, as it only needs to initialize a small
D. However, directly computing expand(D)x has a time complexity of O(bldk) and memory
complexity of O(dk), which can be computationally intensive. It is obvious that MiSS can be
transformed into an efficient form that leverages the block structure of the input to avoid explicitly
forming the large matrix, by redefining D ∈ Rd×r, where r is a tunable rank parameter. Instead
of partitioning the output dimension d, we divide the input dimension k into r blocks, each of size
g = ⌊k/r⌋ (for simplicity, assume k is divisible by r). For an input x ∈ Rb×l×k, partition it along
the k-dimension, and sum each block along the k-dimension:

x = [x(1),x(2), . . . ,x(r)], x(i) ∈ Rb×l×g, (4)

S =

 g∑
j=1

x
(1)
[:,:,j],

g∑
j=1

x
(2)
[:,:,j], . . . ,

g∑
j=1

x
(r)
[:,:,j]

 ∈ Rb×l×r. (5)

This enjoys the following updating term and forward pass:

∆Wx = DS, y = W0x+DS, where D ∈ Rd×r. (6)

Here S ∈ Rb×l×r, and DS ∈ Rb×l×d, matching the dimensions of W0x.

This efficient form implicitly defines expand(D), such that expand(D)x = DS. Specifically,
expand(D) ∈ Rd×k has rows corresponding to rows of D, repeated across blocks in the k-
dimension. E.g., if k = 6, r = 3, and g = 2, the i-th row of expand(D) takes values Dj,i in
block j = ⌈j′/g⌉, where j′ is the column index. This structure avoids storing the d × k matrix
explicitly, requiring only D ∈ Rd×r, significantly reducing memory usage.

The efficient implementation of MiSS relies on an innovative input aggregation mechanism, namely
blockwise input summation. We highlight its advantages through the following steps: (1) Input
Partitioning and Aggregation: The aggregation exploits local redundancy in the input, preserving
critical information while reducing the computational dimensionality. (2) Fast Computation: The
cost of computing the efficient form is significantly lower than the original complexity. (3) Resource
Savings: Memory usage drops comparing to original form.

4.3 SYSTEMATIC ANALYSIS OF MEMORY AND EFFICIENCY FOR LORA AND MISS

This subsection systematically compares LoRA variants against MiSS, dissecting their intrinsic
differences in memory consumption (governed by parameter count) and computational efficiency
(governed by FLOPs and operator type). Our analysis centers on the core update formulations:
∆Wx = BAx for LoRA, versus ∆Wx = DS for the efficient form of MiSS (MiSSe), where S
denotes the blockwise input aggregation. We denote the LoRA rank as rL, MiSS rank as rM, with
input dimension k and output dimension d.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Limitations of LoRA Variants: Parameter Reduction ̸= Computational Speedup As illus-
trated in Table 2, there exists a fundamental misalignment between parameter efficiency and com-
putational cost in existing PEFT methods. While variants like AdaLoRA, DoRA, and VeRA signif-
icantly reduce Trainable Parameters (TPs) through novel initialization or decomposition strategies,
they almost universally inherit the sequential matrix multiplication logic B(Ax). Consequently,
their Space Complexity and FLOPs remain bound by the O((d+k)× r) lower limit. Furthermore,
sophisticated variants such as LoHA introduce additional structural overhead (e.g., the 2r factor),
causing actual memory occupancy and latency to exceed the original LoRA despite having fewer
trainable parameters.

Table 2: Comparison of PEFT Methods. Note that while distinct LoRA variants reduce TPs, they
fail to improve Space Complexity and FLOPs due to the unchanged sequential computation, unlike
the proposed MiSS.

Methods Space Complexity FLOPs TPs

FT O(d× k) O(d× k) d · k
LoRA O((d+ k)× r) O((d+ k)× r) (d+ k) · r
LoRA-FA O((d+ k)× r) O((d+ k)× r) d · r
AdaLoRA O((d+ k + r)× r) O((d+ k + r)× r) (d+ k) · r + r2

LoHA O(2r × (d+ k)) O(2r × (d+ k)) 2 · (d+ k) · r
VeRA O((d+ k)r + r + d) O((d+ k)r + r + d) d+ r

MiSSe O(d× r) O(k+ d× r) d · r

Single-Matrix Paradigm and Computational Decomposition MiSS fundamentally diverges
from the standard LoRA architecture by employing a single low-rank matrix D ∈ Rr1×r2 , rather
than the dual-matrix structure (A,B). Crucially, we observe that D in MiSSe is dimensionally
consistent with B in LoRA, as both correspond to the output dimension d and function as the out-
put operation matrix. This structural alignment allows us to naturally decompose the computation
into two distinct stages: Input Transformation (CStep 1) and Output Projection (CStep 2). This insight
isolates the efficiency distinction entirely to CStep 1. While LoRA relies on an expensive matrix
multiplication (Ax), MiSSe utilizes a cost-efficient block summation (sum(x)). The comparative
analysis is summarized below:

Table 3: Computational Decomposition of MiSSe vs. LoRA

Metric LoRA MiSSe

Structure Dual Matrices (A,B) Single Matrix (D)
CStep 2 (Output Projection) Matrix Mult. Bh (d× r) Matrix Mult. DS (d× r)
CStep 1 (Input Transform) Matrix Mult. Ax (O(BLkr)) Block Sum sum(x) (O(BLk))

Parameter Count (N ) O(r(k + d)) O(rd)
Total FLOPs O(BL(kr + rd)) O(BL(k + rd))

5 EXPERIMENTS

In this section, we conduct a comprehensive set of experiments to validate the effectiveness and
generalizability of MiSS across diverse domains. We assess performance on a wide range of tasks,
including language, image, and video benchmarks. Specifically, we evaluate Natural Language
Understanding (NLU) capabilities using a subset of the GLUE dataset, and Natural Language Gen-
eration (NLG) capabilities by fine-tuning various large language models (LLMs). We extend our
evaluation to multimodal settings using the VTAB-1K benchmark to demonstrate the robust adapt-
ability of MiSS beyond textual domains. Furthermore, we provide a detailed analysis of the Pareto
frontier (Section 5.3) to definitively illustrate MiSS’s superior computational efficiency and minimal
hardware overhead when compared to existing Parameter-Efficient Fine-Tuning (PEFT) methods.

5.1 SUPERIOR PERFORMANCE ACROSS LANGUAGE AND VISION DOMAINS

MiSS demonstrates exceptional versatility, maintaining a commanding lead or highly competitive
performance across diverse benchmarks in both the language and vision domains. (Setup B)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Natural Language Understanding (NLU). On the GLUE benchmark (Table 4), fine-tuning
RoBERTa-base with MiSS showcases notable strength. It achieves an outstanding result on the
challenging CoLA dataset (72.86), significantly surpassing LoRA and PiSSA. This performance
indicates superior data-fitting capabilities and faster convergence on complex linguistic tasks.

Table 4: The results of fine-tuning RoBERTa-base using MiSS and various LoRA variants were
compared on a subset of the GLUE benchmark.

Method Trainable MNLI SST-2 CoLA QNLI MRPC Avg

LoRA 0.236% 85.63±0.01 94.03±0.02 62.40±0.71 91.37±0.97 87.98±0.23 84.28

PiSSA 0.236% 85.72±0.40 93.64±0.13 67.28±0.59 91.40±0.54 88.11±0.24 85.23

MiSS 0.236% 85.71±0.32 93.60±0.07 72.86±3.13 91.43±0.76 88.14±0.60 86.35

Natural Language Generation (NLG). Across five mainstream LLMs (Llama2, Mistral, RWKV,
Qwen3), MiSS consistently achieves the best or near-best average performance (Table 5). Notably, it
demonstrates substantial gains in complex reasoning tasks, recording the highest Math score (34.82)
on Qwen3-4B and the highest average score (47.79) on Mistral-7B. These findings highlight that
MiSS is not only effective on medium-sized models but also scales robustly to larger architectures
and data-rich models.

Table 5: We conduct a systematic comparison of LoRA, DoRA, PiSSA, and MiSS across several
mainstream large language models (Llama2, RWKV, Mistral, and Qwen3). All reported results
are averaged over three independent runs to ensure robustness. The first-place entry should be
highlighted in bold, and the second-place entry should be underlined.

Model Strategy Trainable GSM8K Math HumanEval Mbpp Avg

Llama2-7B (Touvron et al., 2023)

LoRA 89.9M 40.75 5.22 17.74 35.15 24.72
DoRA 91.3M 42.93 6.51 21.95 36.53 26.48
PiSSA 89.9M 43.89 6.92 22.15 37.84 27.70
MiSS 87.0M 48.16 8.58 23.63 36.81 29.30

RWKV 6-7B (Peng et al., 2024)
LoRA 88.1M 38.13 6.06 - - 22.10
PiSSA 88.1M 40.48 6.12 - - 23.30
MiSS 88.1M 41.73 6.52 - - 24.13

Mistral-7B (Jiang et al., 2023)

LoRA 94.4M 62.85 15.82 35.71 46.11 40.12
DoRA 95.8M 63.68 13.60 38.41 48.73 41.10
PiSSA 94.4M 67.01 18.13 41.28 51.37 44.45
MiSS 87.0M 68.92 18.85 42.07 61.33 47.79

Llama2-13B (Touvron et al., 2023)

LoRA 250M 56.18 12.60 31.79 37.82 34.60
DoRA 252M 61.56 13.60 33.50 39.25 36.98
PiSSA 250M 66.64 13.82 33.57 46.03 39.52
MiSS 255M 68.64 15.74 38.15 47.91 42.11

Qwen3-4B (Yang et al., 2025)

LoRA 74.3M 84.38 15.20 73.27 78.32 62.79
DoRA 75.4M 85.11 21.73 74.20 78.77 64.95
PiSSA 74.3M 85.78 26.00 75.01 78.04 66.21
MiSS 70.1M 85.52 34.82 74.48 78.05 68.22

Vision Task To validate the ability of MiSS to adapt to non-textual tasks, we conducted experi-
ments on the VTAB-1K image and video benchmarks (Table 6). MiSS achieved an average accuracy
of 88.02 on image tasks and 72.96 on video tasks, making it highly competitive with top-performing
baseline methods like LoRA and DoRA. Crucially, this competitive performance is delivered with
a significantly lower parameter budget (≈ 0.4 #TPs) compared to LoRA/DoRA (≈ 0.8 #TPs), con-
firming that the efficiency of MiSS transcends the language domain and is applicable to multimodal
foundation models.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Performance comparison on VTAB-1K image and video benchmarks.

Method Image Video
Caltech Flowers Pets Camel. Euro. Retino. KITTI Avg #TPs UCF101 Kinetics HMDB Avg #TPs

Full 89.92 97.41 85.87 81.65 88.12 73.62 77.93 84.93 85.83 92.30 55.23 65.79 74.99 86.65
VeRA 91.53 99.19 91.04 86.45 92.97 74.25 77.92 87.62 0.240 92.28 57.21 66.77 72.09 0.242
LoRA 92.03 99.18 90.92 87.73 92.65 74.23 80.42 88.08 0.833 93.88 57.81 67.37 73.02 0.835
DoRA 91.86 99.27 91.08 85.88 91.42 75.28 80.46 87.89 0.834 92.84 57.77 67.33 72.65 0.836
MiSS 92.14 99.23 91.05 86.28 92.83 73.71 80.91 88.02 0.414 93.82 57.75 67.31 72.96 0.415

5.2 EFFECT OF RANK r

Table 7: Comparing different values of rank (r)
on LLaMA2-7B with MiSS.

Model Rank Trainable GSM8K Math

Llama2-7B

16 21.7M 45.90 3.77
32 43.5M 46.18 7.43
64 87.0M 48.16 8.58

128 174.0M 53.49 10.08

We evaluate MiSS with varying matrix ranks
to study the trade-off between tuning capacity
and parameter cost. The Table 7 reports re-
sults for ranks r ∈ {16, 32, 64, 128} (corre-
sponding to {21.7M, 43.5M, 87.0M, 174.0M}
trainable parameters). Performance on GSM8K
and the Math benchmark improves monotoni-
cally as the rank increases: GSM8K rises from
45.90 at r = 16 to 53.49 at r = 128, while
Math increases from 3.77 to 10.08. In prac-
tice, r = 64 offers a favorable trade-off (48.16
GSM8K, 8.58 Math) between performance gains and parameter overhead.

5.3 MISS’S SUPERIOR BALANCE ON THE PARETO FRONTIER: OPTIMALLY TRADING OFF
EFFICIENCY AND PERFORMANCE

The emergence of PEFT techniques is motivated by dual objectives: mitigating GPU memory con-
straints and exploring more efficient model architectures. Nevertheless, numerous contemporary
studies disproportionately focus on ultimate performance benchmarks, overlooking critical prac-
tical considerations like computational efficiency and training duration—an emphasis that clearly
diverges from the original rationale for PEFT. In this section, we undertake a multi-dimensional
investigation into the relationships among computational overhead, efficiency, and performance for
diverse models. Leveraging the official Hugging Face PEFT (Mangrulkar et al., 2022) benchmarking
framework, our evaluations are conducted under fair and reproducible conditions.

The Pareto frontiers in our evaluation provide definitive evidence of MiSS’s effectiveness. In
every experimental setting, MiSS is uniquely positioned in the top-left corner—the optimal re-
gion—signifying that it delivers the best performance with minimal efficiency cost. This consistent
advantage underscores MiSS’s unique contribution in balancing these competing objectives.

Figure 4: Pareto front of MiSS comparing with other PEFT methods. We select three more methods
as the baseline on the balancing of memory and performance.

6 CONCLUSION

This work tackles the critical inefficiency of simultaneous matrix updates in Low-Rank Adaptation
(LoRA), which leads to slow convergence and suboptimal resource use. We propose MiSS as a com-
pelling solution—a new PEFT framework that updates decomposed weight shards using a single,
shared matrix. This approach drastically reduces optimization complexity and resource demands.
Comprehensive experiments validate that MiSS consistently outperforms existing methods in accu-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 8: Experimental results across PEFT methods on Llama-3.2-3B.

PEFT Type Total Time Train Time Test Accuracy Train Loss
Accelerator Memory (Bytes)

Max Reserved 99th Reserved Avg

RSLORA 2069 1871 0.5299 0.5657 22,538,092,544 17,953,927,987 12,128,059,444
C3A 2125 1924 0.5102 0.5808 22,280,142,848 17,825,917,829 11,804,454,210
MiSS 1867 1664 0.5080 0.5776 20,248,002,560 16,303,469,363 11,170,837,063
RANDLORA 2457 2213 0.5072 0.5785 22,798,139,392 18,436,063,232 12,743,670,025
SHIRA 2085 1867 0.5072 0.5789 21,743,271,936 17,637,383,864 12,240,924,809
OFT 2494 2214 0.5057 0.5947 22,294,822,912 17,939,310,837 12,057,354,384
LORA 1993 1796 0.4822 0.6069 22,273,851,392 17,710,763,212 11,868,689,976
DORA 2287 2023 0.4807 0.6068 24,553,455,616 19,189,150,515 12,490,471,636
LORAFA 2026 1821 0.4299 0.6510 20,187,185,152 16,257,394,933 11,106,307,276
LOHA 2591 2341 0.4185 0.6570 23,886,561,280 19,247,870,771 13,446,820,344
IA3 1922 1746 0.4124 0.6569 23,135,780,864 18,398,356,439 12,023,331,867
ADALORA 2209 1986 0.3904 0.6863 22,793,945,088 18,203,426,160 12,361,399,900
LOKR 2352 2152 0.3753 0.6877 23,565,697,024 18,987,698,094 13,173,683,073
P TUNING 1918 1707 0.3707 0.6740 20,937,965,568 17,215,688,540 11,867,101,593
VBLORA 2210 1962 0.3700 0.7143 22,181,576,704 17,635,223,797 11,735,344,663
VERA 2025 1820 0.3685 0.6927 21,596,471,296 17,291,123,097 11,489,715,316
BOFT 11,114 8292 0.3647 0.7268 24,427,626,496 20,103,445,872 14,814,855,089
IA3 2005 1783 0.3450 0.7657 23,137,878,016 18,398,566,154 12,023,227,429
TRAINABLE TOKENS 1814 1572 0.2881 0.7862 20,956,839,936 16,957,675,929 12,730,137,942
PROMPT TUNING 2715 2394 0.2525 0.7790 24,408,752,128 20,650,676,715 15,297,364,466
ADAPTION PROMPT 2261 1989 0.2206 0.8317 22,410,166,272 17,907,664,814 11,893,757,234
PREFIX TUNING 1959 1662 0.1471 0.7887 20,912,799,744 16,945,051,074 11,766,684,083
FOURIERFT 2824 2422 0.1198 0.9979 23,681,040,384 19,054,869,872 13,111,221,498
PROMPT TUNING 2700 2380 0.0500 1.0655 24,379,392,000 20,669,781,770 15,297,773,830
FOURIERFT 2824 2424 0.0008 1.2480 23,653,777,408 19,017,267,937 13,104,129,350
LN TUNING 1870 1657 0.0000 1.2370 21,177,040,896 16,903,066,091 11,385,589,622

racy, memory footprint, and computational speed, offering a fundamentally more efficient pathway
for adapting large models.

7 LIMITATIONS AND FUTURE WORK

As a pioneering approach, MiSS still leaves several aspects open for deeper exploration. We hope
that future research will conduct broader and more in-depth studies to further refine PEFT techniques
and identify the most effective strategies for large language models.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor Jen-
nings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns less and
forgets less. arXiv preprint arXiv:2405.09673, 2024.

Kerim Büyükakyüz. Olora: Orthonormal low-rank adaptation of large language models. arXiv
preprint arXiv:2406.01775, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021.

10

https://arxiv.org/abs/2108.07732


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei
Deng, Feng Sun, Qi Zhang, Deqing Wang, and Fuzhen Zhuang. Mora: High-rank updating
for parameter-efficient fine-tuning, 2024. URL https://arxiv.org/abs/2405.12130.

Dawid J. Kopiczko, Tijmen Blankevoort, and Yuki M. Asano. Vera: Vector-based random matrix
adaptation, 2024. URL https://arxiv.org/abs/2310.11454.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources, 2024. URL https://arxiv.
org/abs/2306.09782.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. PEFT: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. arXiv preprint arXiv:2404.02948, 2024.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
Cheah, Teddy Ferdinan, Haowen Hou, Przemysław Kazienko, et al. Eagle and finch: Rwkv with
matrix-valued states and dynamic recurrence. arXiv preprint arXiv:2404.05892, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
arXiv preprint arXiv:2407.05000, 2024a.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation,
2024b. URL https://arxiv.org/abs/2407.05000.

11

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2405.12130
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2306.09782
https://arxiv.org/abs/2306.09782
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://arxiv.org/abs/2407.05000


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sheng Wang, Boyang Xue, Jiacheng Ye, Jiyue Jiang, Liheng Chen, Lingpeng Kong, and Chuan
Wu. Prolora: Partial rotation empowers more parameter-efficient lora, 2024c. URL https:
//arxiv.org/abs/2402.16902.

Sheng Wang, Liheng Chen, Pengan Chen, Jingwei Dong, Boyang Xue, Jiyue Jiang, Lingpeng Kong,
and Chuan Wu. Mos: Unleashing parameter efficiency of low-rank adaptation with mixture of
shards, 2025. URL https://arxiv.org/abs/2410.00938.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient
fine-tuning methods for pretrained language models: A critical review and assessment. arXiv
preprint arXiv:2312.12148, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Xinyu Yang, Jixuan Leng, Geyang Guo, Jiawei Zhao, Ryumei Nakada, Linjun Zhang, Huaxiu Yao,
and Beidi Chen. S2ft: Efficient, scalable and generalizable llm fine-tuning by structured sparsity,
2024. URL https://arxiv.org/abs/2412.06289.

Qingyu Yin, Xuzheng He, Xiang Zhuang, Yu Zhao, Jianhua Yao, Xiaoyu Shen, and Qiang
Zhang. Stablemask: Refining causal masking in decoder-only transformer. arXiv preprint
arXiv:2402.04779, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
arXiv preprint arXiv:2402.14658, 2024.

A APPENDIX

A.1 ADDITIONAL EXPERIMENTS

(a) Loss-Token (b) Loss-Time

Figure 5: Loss curves of LLaMA2-7B fine-tuned on MetaMathQA using LoRA and MiSS(̇a) Loss
vs. tokens. (b) Loss vs. training time.

12

https://arxiv.org/abs/2402.16902
https://arxiv.org/abs/2402.16902
https://arxiv.org/abs/2410.00938
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2412.06289


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 9: We fine-tuned LLMs using MiSS and various LoRA variants, and evaluated performance
on GSM8k, Math, HumanEval, and MT-Bench.

Model Strategy Trainable GSM8K Math HumanEval MT-Bench

RWKV7-3B

Base 0M 44.35 - - -
LoRA 47.2M 55.64 - - -
PiSSA 47.2M 57.16 - -
MiSS 47.2M 58.22 - - -

Table 10: Hyperparameter settings for fine-tuning llama2-7B,Mistral-7B,RWKV6-7B,Qwen3-4B
on NLG tasks

Hyperparameters LoRA DoRA PiSSA MiSS

Rank r 36 36 36 64
α 72 72 36 -

Dropout 0.0
Optimizer AdamW

LR 2e-5
LR Scheduler Cosine decay

Batch size 64
Warmup ratio 0.0

Epochs 1
Where Q,K,V,O,Up,Down,Gate

A.2 RWKV7

B SETTINGS OF EXPERIMENTS

NLU We fine-tune the RoBERTa-base model on several datasets from the GLUE benchmark, in-
cluding MNLI, SST-2, CoLA, QNLI, and MRPC. Performance is evaluated on the development set
using accuracy as the primary metric. The experimental hyperparameter settings were aligned with
those in the LoRA repository, but training was conducted using a single 4090 GPU. Each experiment
is conducted with 3 different random seeds, and the average performance is reported. As shown in
Table 4, MiSS demonstrates outstanding performance, particularly on the CoLA dataset, where it
exhibits significantly faster convergence and superior data-fitting capabilities, far surpassing LoRA
and PiSSA.

NLG To verify the generalizability of MiSS, we conducted more comprehensive experiments on
LLM. we conducted 3 more task finetuning experiments on LLM: math and code. (1) Math: We
trained our model on a 395k subset of MetaMathQA (Yu et al., 2023), a dataset bootstrapped from
other math instruction tuning datasets like GSM8K (Cobbe et al., 2021) and MATH (Yu et al., 2023),
with higher complexity and diversity. (2) Code: We train our model on a 100k subset of CodeFeed-
back (Zheng et al., 2024), a high-quality code instruction dataset, removing explanations after code
blocks. The model is tested on HumanEval (Chen et al., 2021) and Mbpp (Austin et al., 2021).
The hyperparameter settings for this experiment were kept equal, while the train steps were adjusted
according to the specific fine-tuning datasets used. It is worth noting that the attention-based archi-
tectures employed by models such as LLaMA, Qwen, and Mistral do not use fully symmetric weight
structures, which makes it impossible to achieve exact alignment of trainable parameters when com-
paring MiSS with LoRA. To address this, we set the rank r of LoRA to 36 and the rank r of MiSS
to 64, ensuring that MiSS uses fewer parameters than LoRA to demonstrate its superiority. Each
experiment is conducted with 2 different random seeds, and the average performance is reported.

Vision Task on VTAB-1K image classification using ViT-Base-Patch16-224

C SETTINGS OF EXPERIMENTS IN NO FREE LUNCH

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 11: Hyperparameter settings for fine-tuning llama2-13B on NLG tasks

Hyperparameters LoRA DoRA PiSSA MiSS

Rank r 64 64 64 128
α 128 128 64 -

Dropout 0.0
Optimizer AdamW

LR 2e-5
LR Scheduler Cosine decay

Batch size 128
Warmup ratio 0.0

Epochs 1
Where Q,K,V,O,Up,Down,Gate

Table 12: Experimental Setup: Datasets and Hyperparameters

General Configuration

Parameter Value

Random Seed (SEED) 43
Device (DEVICE) CUDA (if available, else CPU)

Base Model Architecture (MLP)

Input Dimension 64
Hidden Dimension 64
Output Dimension 64

Synthetic Dataset Generation

Base Function sin(2πx)
Modified Function sin(2πx) + 0.3 cos(3πx)
Input x Range [−1, 1]
Training Samples (N TRAIN ) 50
Validation Samples (N V ALID) 100
Training Noise Std. Dev. (NOISE STD) 0.05
Validation Noise Std. Dev. 0.0

Training Parameters

Base Model LR (BASE LR) 0.001
Adaptation LR (ADAPT LR) 0.001
Base Model Epochs (BASE EPOCHS) 250
Adaptation Epochs (ADAPT EPOCHS) 100
Evaluation Interval (EVAL INTERVAL) 10

Adapter-Specific Ranks

LoRA Rank 2
VeRA Rank 64
MiSSRank 4
PiSSA Rank 2
DoRA Rank 1
ProLoRA Rank 2
AdaLoRA Rank 2
MoS Rank 2

Note: Other adapter-specific hyperparameters (e.g., LoRA scale, VeRA d init val, DoRA
lora alpha, ProLoRA unshared rank u, MoS shard dim ratio) primarily use their default values as
defined in the respective adapter class implementations or are derived based on the rank within
benchmark functions. Refer to the provided Python code for their specific configurations during
experiments.

14


	Introduction
	Preliminaries and Related Works
	No Free Lunch: Balancing Between Adaptability and Efficiency
	Empirically Benchmarking the Adaptability of LoRA Variants
	Efficiency Analysis of LoRA Variants

	MiSS: Shard Sharing for the Performance and Efficiency Tradeoff
	Method Overview
	Efficient Implementation of MiSS
	Systematic Analysis of Memory and Efficiency for LoRA and MiSS

	Experiments
	Superior Performance across Language and Vision Domains
	Effect of Rank r
	MiSS’s Superior Balance on the Pareto Frontier: Optimally Trading Off Efficiency and Performance

	Conclusion
	Limitations and Future Work
	Appendix
	Additional Experiments
	RWKV7

	Settings of Experiments
	Settings of Experiments in No Free Lunch

