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ABSTRACT

Low-Rank Adaptation (LoRA) is a widely adopted technique for parameter-
efficient fine-tuning, but its slow convergence has spurred the development of
numerous variants. Nevertheless, existing methods often fail to improve perfor-
mance, memory footprint, and computational efficiency simultaneously. To ad-
dress this challenge, we revisit the causes of LoRA’s slow convergence. Building
on these insights, we propose Matrix Shard Sharing (MiSS), which updates shards
of the original weight matrix using a single shared trainable matrix D, initialized
to zeros. To simultaneously ensure computational efficiency, low memory foot-
print, and scalable serving, we introduce MiSSe. Both theoretical analysis and
empirical results demonstrate that our method reduces optimization complexity
without compromising performance, thereby achieving a more favorable trade-off
among performance, memory, and efficiency. Furthermore, we conduct a com-
prehensive comparative analysis of various PEFT methods, evaluating their mem-
ory usage, initialization overhead, and computational efficiency. By mapping the
Pareto frontier across these dimensions, we show that MiSS occupies a favorable
position, effectively capturing the advantages of prior approaches.

1 INTRODUCTION

Fine-tuning Large Language Models (LLMs) (Radford et al., 2019; Raffel et al., 2020; Yin et al.,
2024) is a prevalent methodology for adapting these models to specific downstream tasks. How-
ever, full fine-tuning of all parameters is computationally prohibitive. Consequently, numerous
Parameter-Efficient Fine-Tuning (PEFT) techniques (Xu et al., 2023) have been developed to mit-
igate the training expenditure associated with these large-scale models. Among such techniques,
Low-Rank Adaptation (LoRA) (Hu et al., 2021) has distinguished itself as one of the most promi-
nent PEFT methods. LoRA employs a low-rank approximation for the weight updates, a strategy
that offers a markedly reduced number of tunable parameters, notable efficacy when compared to
full fine-tuning, and the potential for zero inference overhead. LoRA constructs this low-rank adap-
tation matrix through an intuitive design, positing that the weight update ∆W can be approximated
by the product of two lower-rank matrices, BA ≈ ∆W . Evidently, this specific factorization is not
necessarily the optimal low-rank approximation of the original ∆W .

Many improvements to LoRA have been proposed in recent years, which can be broadly categorized
into two major streams: (1) Adaptability (Ding et al., 2023; Liu et al., 2024; Biderman et al., 2024):
This refers to the convergence speed at which the method reaches an optimal or near-optimal state.
The approximation must exhibit a representational capacity comparable to that of the original, full
∆W . Extensive experiments have shown that LoRA’s convergence is significantly slower compared
to full fine-tuning. To address this issue, researchers have proposed several LoRA variants (Hayou
et al., 2024; Meng et al., 2024; Wang et al., 2024a). By adopting different initialization strategies
to influence the model’s training gradients, they have accelerated LoRA’s convergence speed. Dif-
ferent initializations of LoRA variants accelerate convergence essentially by increasing the initial
gradients during training or aligning them with the full-scale training gradients. However, many of
these methods overlook issues of computational efficiency and overall training overhead. For ex-
ample, PiSSA (Meng et al., 2024) requires a lengthy initialization process, while LoRA-GA (Wang
et al., 2024b) depends on modifications to the optimizer, resulting in incompatibility with certain
optimizers. (2) Efficiency (Kopiczko et al., 2024; Wang et al., 2024c; 2025): This encompasses
expeditious initialization, modest memory consumption, and minimal computational overhead. Op-
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Table 1: A variety of LoRA variants are listed, each with its specific update formulation and initial-
ization strategy for the low-rank matrices. The differences between these methods are compared in
a clear and intuitive manner. e denotes efficient form.

Method Forward Initialization

LoRA y = W0x+BAx A ∼ N(0, σ2)B ∼ 0

PiSSA y = W0x+BAx A = U[:,:r]S
1/2

[:r,:r], B = S
1/2

[:r,:r]V
⊤
[:,:r]

AdaLoRA y = W (0)x+ PΛQx Λ ∼ 0, P ,Q ∼ N(0, σ2)

DoRA y = m(W0x+BAx / ∥W0 +BA∥c) A ∼ Rect.KaimingUnif, B ∼ 0

ProLoRA y = W0x+ (Bu ⊕h . . . ) (Au ⊕v . . . )x Au ∼ KaimingUnif, Bu ∼ 0

MoS y = W0x+BsAsx Apub/pri,Bpub/pri ∼ 0

MiSS(Ours) y = W0x+ expand(D)x D ∼ 0

MiSSe(Ours) y = W0x+DS D ∼ 0

timizing LoRA from an efficiency perspective can lead to reduced VRAM consumption and an
accelerated training process. Although LoRA has demonstrated significant advantages in reducing
parameter scale and computational cost, its effectiveness still falls short of fully matching full fine-
tuning. To address this gap, researchers have proposed an increasing number of LoRA variants that
gradually approach the performance of full fine-tuning. This raises a natural question:

Given the inherent challenge for LoRA and its variants to balance performance, memory, and effi-
ciency, how can we achieve an effective trade-off among all three dimensions?

To strike a balance between performance, memory, and efficiency, we re-examined the key fac-
tors affecting LoRA’s slow convergence. Through an analysis of S2FT (Yang et al., 2024) and
LoRA+ (Hayou et al., 2024), we identified a critical phenomenon: During the LoRA fine-tuning pro-
cess, both matrices B and A need to be updated simultaneously, which increases the complexity of
optimization and ultimately leads to slower convergence. LoRA+ alleviates this issue by modifying
the initial gradients, allowing the fine-tuning process to approximate full fine-tuning better. In con-
trast, S2FT fixes one matrix as an orthogonal matrix, reducing the degrees of freedom in parameter
updates and lowering optimization complexity, thereby enabling faster alignment with the optimal
update direction. Inspired by these insights, we hypothesize that training only a single matrix could
simplify optimization without sacrificing expressive capacity. We therefore propose Matrix Shard
Sharing (MiSS), a method that updates a shard of the original weight matrix using a single, shared
trainable matrix D, initialized to zero. Thus, our approach maintains the low-rank property of the
matrices while offering a more efficient alternative to BA updates in terms of computation.

Gradient Norm Analysis. We analyze the initial gradient norm to verify our preliminary conclu-
sions. In the experimental sections of the PiSSA, S2FT, and LoRA-GA papers, we observed that
LoRA exhibits a very small initial gradient norm compared to full fine-tuning, which shows a much
larger one. Notably, all these improved methods share a common characteristic: their initial gradient
norms are significantly larger than LoRA, and their early-stage convergence speed is comparable to
that of full fine-tuning. Motivated by this, we evaluated the initial gradient norms of different meth-
ods across various models and datasets to examine whether MiSS follows the same pattern as other
LoRA variants. The experimental results (Figure1) confirm that MiSS indeed shares this property,
i.e., a larger initial gradient norm and faster early convergence. This also supports the hypothesis
that optimizing a single matrix is inherently simpler.
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Figure 1: Comparison of initial gradient norms across different training methods and the effect of
rank. Results are shown for LLaMA2-7B and Qwen3-4B on the Math and Code datasets.
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Efficient Implementation To achieve better computational efficiency, we introduce MiSSe, an
alternative design that maintains the core principle of parameter sharing while offering improved
time and space complexity through input-dimension aggregation. We further conduct extensive
experiments (Table 2) to validate its effectiveness.

We first evaluate MiSS on both Natural Language Understanding (NLU) and Generation (NLG)
tasks, assessing its performance and scalability. Our results show that MiSS consistently outper-
forms LoRA and its variants across diverse LLM architectures, establishing new state-of-the-art
results on a wide range of metrics. We then analyze the Pareto frontier of the adaptability-efficiency
trade-off in PEFT. We argue that an ideal PEFT method should effectively balance these two es-
sential dimensions. To this end, we conduct a series of foundational experiments, including a sim-
ulated pre-training and fine-tuning pipeline, computational complexity analysis, and initialization
time evaluation. With comprehensive empirical results, we demonstrate that MiSS achieves a favor-
able balance across three key dimensions performance, memory, and efficiency, highlighting its
practicality as a general PEFT solution.

Our contributions can be summarized as follows:

1. We propose MiSS, an efficient and adaptable structure with a shard-sharing mechanism,
striking an effective balance among three essential properties—performance, memory effi-
ciency, and computational efficiency.

2. Through large-scale experiments across diverse datasets and model architectures, we pro-
vide a comprehensive evaluation of multiple PEFT methods. Our empirical results con-
clusively demonstrate that MiSS achieves a superior balance among these three properties
compared to existing alternatives.

2 PRELIMINARIES AND RELATED WORKS

Low-Rank Adaptation (LoRA). Parameter-Efficient Fine-Tuning (PEFT) refers to a family of
techniques designed to adapt large pre-trained models to downstream tasks while minimizing the
number of trainable parameters, thereby reducing computational and memory overhead. Among
diverse methods, Low-Rank Adaptation (LoRA) has gained significant prominence. It operates on
the principle that the change in weights during model adaptation often possesses a low intrinsic rank.
Instead of fine-tuning the entire pre-trained weight matrix W0 ∈ Rd×k, LoRA introduces a low-rank
decomposition to represent the update. Consider a simple linear projection with input x ∈ Rd and
output y ∈ Rk, LoRA adapts the following forward pass:

y = (W0 +∆W )x ≈ W0x+BAx, where B ∈ Rd×r, A ∈ Rr×k. (1)

Here, A and B are low-rank matrices, with the rank r being significantly smaller than the original
dimensions i.e., r ≪ min(d, k). During the fine-tuning process, the original weights W0 are kept
frozen, and only the parameters within matrices A and B are trained. Specifically, LoRA initializes
A with Gaussian noise A ∼ N(0, σ2) with small σ and B with zeros, ensuring that BA = 0 at the
start, preserving the pre-trained model’s output.

Improvements of LoRA. LoRA is the low rank adaptation towards full-param finetuning, and
intuitively it downperforms than it. Several works propose diverse methods towards a better
convergence and adaptability of LoRA. One compelling venue is to change the form of LoRA.
PiSSA (Meng et al., 2024) optimizes the compact parameter space by representing the matrices
in the model as the product of two trainable matrices, augmented with a residual matrix for error
correction. Using Singular Value Decomposition (SVD), OLoRA (Büyükakyüz, 2024) leverages
QR decomposition to initialize the adaptation matrices during the fine-tuning process, ensuring that
these matrices are orthogonal. This orthogonal initialization helps maintain the stability of the pa-
rameter space during optimization. LoRA-GA and PiSSA are similar in form, but they differ in that
LoRA-GA initializes A and B by computing the initial gradient, thereby closely approximating full
fine-tuning. LoRA+ extended this method by introducing independent learning rates for matrices
A and B with a fixed ratio, improving the method’s efficiency. DoRA (Liu et al., 2024) decom-
poses the weight matrix into two parts: magnitude and direction, which are optimized separately.
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This approach allows for more precise control over the learning rate, making LoRA updates closer
to the effect of full fine-tuning. The improvements brought by these LoRA variants validate that
the updates to the weights exhibit a low intrinsic rank during adaptation and hold greater potential.
However, they also introduce more complex initialization steps and increase preprocessing time.

3 NO FREE LUNCH: BALANCING BETWEEN ADAPTABILITY AND
EFFICIENCY

This section elucidates the fundamental trade-off inherent in LoRA-style PEFT techniques: the del-
icate balance between their adaptability and efficiency. Adaptability, in this context, refers to the ca-
pacity of a given method to emulate the performance benchmarks set by full-parameter fine-tuning.
Conversely, efficiency encompasses the method’s judicious use of computational resources, specif-
ically time and memory. We utilize highly artificial controlled dataset and model with a relatively
small parameter count to make the verification transparently and easy for replication.

We considered diverse methods 1: (1) Full-parameter finetuning (Lv et al., 2024). (2) LoRA (Hu
et al., 2021). (3) Alternatives to LoRA w/ different architectures, including: PiSSA (Meng et al.,
2024), VeRA (Kopiczko et al., 2024), DoRA (Liu et al., 2024) and MoRA (Jiang et al., 2024).
(4) Efficent LoRA Design that keeps the LoRA BA structure: PROLORA (Wang et al., 2024c),
MoS (Wang et al., 2025). (1) An overview of their forward form, initialization method can be found
at Table 1.

3.1 EMPIRICALLY BENCHMARKING THE ADAPTABILITY OF LORA VARIANTS

Experimental Setup. Parameter-efficient adaptation methods, particularly those leveraging low-
rank principles, typically constrain trainable parameters by applying low-rank decompositions either
to newly introduced adapter matrices or to the updates of pre-existing model weights. To rigorously
evaluate such strategies, we selected a deliberately minimalistic base model: a single-layer MLP
designed to process a series of features and yield outputs. This model is initially pre-trained to
fit some sinusoidal functions using a constrained set of data points. Following this pre-training,
the target function is subtly altered, and an additional dataset sampled from this modified function
is employed for training to assess the adaptation performance of various fine-tuning techniques.
Comprehensive details regarding the experimental settings are elaborated in Appendix C.

Figure 2: No Free Launch Experiment. Left. The training loss curves of all methods. Middle.
Initialization time w/ parameters. Right. Training time w/ parameters.

Results. Figure 2 illustrates the comparative adaptability of different methods. We utilize the min-
imum validation loss achieved by each approach as an indicator of its expressive capacity when
approximating the performance of full-parameter fine-tuning. The results clearly demonstrate that
methods leveraging singular value decomposition (SVD), such as PiSSA, attain a relatively low
loss. Conversely, efficiency-focused techniques like MoS exhibit higher losses. A plausible ex-
planation for this discrepancy is that such methods further decompose LoRA matrices into shared

1We have not included methods such as LoRA-GA (Wang et al., 2024b) or LoRA+ (Hayou et al., 2024)
in our current analysis. While these approaches aim to more closely approximate the performance of full-
parameter fine-tuning, we consider MiSS to be largely orthogonal to them. Consequently, the analytical tech-
niques employed in their study may still offer valuable insights for MiSS.
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components, which may inherently constrain their expressive power. Our method MiSS reaches a
relatively advanced performance comparing to other variants.

3.2 EFFICIENCY ANALYSIS OF LORA VARIANTS

Metrics. We evaluate the efficiency of LoRA-like variants from two primary perspectives: (1)
Space and Time Complexity in Training. Space and time complexity during training are generally
considered crucial criteria for evaluating PEFT methods. To benchmark these aspects, we employ
the model architecture detailed in Section 3.1. We also test the real cost in our experiment section
i.e., Section 5.3. (2) Initialization. Initialization time is often overlooked in theoretical complexity
analyses. This oversight typically stems from the assumption that common initialization techniques
(e.g., Kaiming Initialization) are computationally inexpensive and represent a one-time cost within
the entire training pipeline. However, several recent advancements in LoRA and its variants incorpo-
rate matrix operations (e.g., Singular Value Decomposition - SVD) that are not inherently hardware-
friendly and can pose challenges for efficient optimization and computation. Consequently, we
explicitly include initialization time as a distinct evaluation metric in our experimental framework.
We then progressively scale the trainable parameter count of various approaches to meticulously
measure their respective time and space costs.

Results. The efficacy (See Figure 2) of MiSS is evident: its strategic combination of parameter
sharing and an efficient computational design culminates in rapid, scalable performance across both
initialization and training stages. In contrast, while techniques like PiSSA demonstrate commend-
able adaptability, as shown in prior experiments, their reliance on computationally intensive Singular
Value Decomposition for initialization significantly hampers their overall speed. Other approaches,
such as VeRA and AdaLoRA, offer efficient initialization and computation; however, as previously
discussed, they often achieve this at the cost of comparatively reduced adaptability.

4 MISS: SHARD SHARING FOR THE PERFORMANCE AND EFFICIENCY
TRADEOFF

4.1 METHOD OVERVIEW

In traditional low-rank adaptation methods e.g., LoRA, the weight update ∆W is approximated as
a low-rank matrix, e.g., ∆W = BA, where A ∈ Rr×k, B ∈ Rd×r, and the rank r ≪ min(d, k).
This approach achieves efficiency by limiting the number of parameters. However, we observe that
a repeating matrix—where a small matrix is replicated to form a larger one—can also be viewed as
a low-rank structure. For instance, if a matrix’s rows or shards are constructed by repeating a limited
set of independent elements, its effective rank is often much smaller than its full dimensions.

D~0

expand

MiSS

A~N(0,σ2)

B~0

LoRA

def init(in_features: int, in_features: int, rank: int):
self.r = rank
self.weight = nn.Parameter(torch.empty((out_features,

in_features)))
self.D = nn.Parameter(torch.zeros(self.r, out_features))

def forward(self, x):
result = F.linear(x, self.weight) # x: [B, T, C]
y = result + x @ self.D.expand(in_features//self.r,1)
return y

Figure 3: Left. Structural diagram of ∆W in LoRA and MiSS. Right. PyTorch-style pseudocode
illustrating the implementation of MiSS.

Based on this insight, we propose MiSS, which defines the weight update ∆W as a large matrix
generated from a small trainable matrix D through an expansion operation. The updating of W and
the forward pass can be expressed as:

W = W0 +∆W = W0 + expand(D), y = W0x+ expand(D)x. (2)

Here, x ∈ Rb×l×k, y ∈ Rb×l×d, W0 ∈ Rd×k is the pre-trained weight matrix, D ∈ Rr1×r2 is a
small trainable matrix with (r1, r2) ≪ min(d, k), and expand(D) is a function that extends D to
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Rd×k. This structure inherently exhibits low-rank properties. Since the rows within each shard are
identical, the rank of expand(D) is at most N . When N ≪ d, ∆W is a low-rank matrix, reducing
the parameter count from d× k to N × k.

Regarding the expansion method, we partition the output dimension d of W0 into N shards of sizes
{s1, s2, . . . , sN}, where

∑N
i=1 si = d. Let D ∈ RN×k, where N is the number of shards. For each

shard i, its update is determined by the i-th row of D, denoted Di ∈ R1×k, repeated si times to
form the shard’s update matrix. Formally:

(expand(D))⊺ = [(1s1D1)
⊺ (1s2D2)

⊺ . . . (1sNDN )⊺] (3)

Here, 1si ∈ Rsi×1 is an all-ones vector, and 1siDi denotes Di repeated si times vertically. The
shards are vertically concatenated to match the dimensions of W0.

4.2 EFFICIENT IMPLEMENTATION OF MISS

The above formulation is effective in the initialization process, as it only needs to initialize a small
D. However, directly computing expand(D)x has a time complexity of O(bldk) and memory
complexity of O(dk), which can be computationally intensive. It is obvious that MiSS can be
transformed into an efficient form that leverages the block structure of the input to avoid explicitly
forming the large matrix, by redefining D ∈ Rd×r, where r is a tunable rank parameter. Instead
of partitioning the output dimension d, we divide the input dimension k into r blocks, each of size
g = ⌊k/r⌋ (for simplicity, assume k is divisible by r). For an input x ∈ Rb×l×k, partition it along
the k-dimension, and sum each block along the k-dimension:

x = [x(1),x(2), . . . ,x(r)], x(i) ∈ Rb×l×g, (4)

S =

 g∑
j=1

x
(1)
[:,:,j],

g∑
j=1

x
(2)
[:,:,j], . . . ,

g∑
j=1

x
(r)
[:,:,j]

 ∈ Rb×l×r. (5)

This enjoys the following updating term and forward pass:

∆Wx = DS, y = W0x+DS, where D ∈ Rd×r. (6)

Here S ∈ Rb×l×r, and DS ∈ Rb×l×d, matching the dimensions of W0x.

This efficient form implicitly defines expand(D), such that expand(D)x = DS. Specifically,
expand(D) ∈ Rd×k has rows corresponding to rows of D, repeated across blocks in the k-
dimension. E.g., if k = 6, r = 3, and g = 2, the i-th row of expand(D) takes values Dj,i in
block j = ⌈j′/g⌉, where j′ is the column index. This structure avoids storing the d × k matrix
explicitly, requiring only D ∈ Rd×r, significantly reducing memory usage.

The efficient implementation of MiSS relies on an innovative input aggregation mechanism, namely
blockwise input summation. We highlight its advantages through the following steps: (1) Input
Partitioning and Aggregation: The aggregation exploits local redundancy in the input, preserving
critical information while reducing the computational dimensionality. (2) Fast Computation: The
cost of computing the efficient form is significantly lower than the original complexity. (3) Resource
Savings: Memory usage drops comparing to original form.

4.3 SYSTEMATIC ANALYSIS OF MEMORY AND EFFICIENCY FOR LORA AND MISS

This subsection systematically compares LoRA variants against MiSS, dissecting their intrinsic
differences in memory consumption (governed by parameter count) and computational efficiency
(governed by FLOPs and operator type). Our analysis centers on the core update formulations:
∆Wx = BAx for LoRA, versus ∆Wx = DS for the efficient form of MiSS (MiSSe), where S
denotes the blockwise input aggregation. We denote the LoRA rank as rL, MiSS rank as rM, with
input dimension k and output dimension d.
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Limitations of LoRA Variants: Parameter Reduction ̸= Computational Speedup As illus-
trated in Table 2, there exists a fundamental misalignment between parameter efficiency and com-
putational cost in existing PEFT methods. While variants like AdaLoRA, DoRA, and VeRA signif-
icantly reduce Trainable Parameters (TPs) through novel initialization or decomposition strategies,
they almost universally inherit the sequential matrix multiplication logic B(Ax). Consequently,
their Space Complexity and FLOPs remain bound by the O((d+k)× r) lower limit. Furthermore,
sophisticated variants such as LoHA introduce additional structural overhead (e.g., the 2r factor),
causing actual memory occupancy and latency to exceed the original LoRA despite having fewer
trainable parameters.

Table 2: Comparison of PEFT Methods. Note that while distinct LoRA variants reduce TPs, they
fail to improve Space Complexity and FLOPs due to the unchanged sequential computation, unlike
the proposed MiSS.

Methods Space Complexity FLOPs TPs

FT O(d× k) O(d× k) d · k
LoRA O((d+ k)× r) O((d+ k)× r) (d+ k) · r
LoRA-FA O((d+ k)× r) O((d+ k)× r) d · r
AdaLoRA O((d+ k + r)× r) O((d+ k + r)× r) (d+ k) · r + r2

LoHA O(2r × (d+ k)) O(2r × (d+ k)) 2 · (d+ k) · r
VeRA O((d+ k)r + r + d) O((d+ k)r + r + d) d+ r

MiSSe O(d× r) O(k+ d× r) d · r

Single-Matrix Paradigm and Computational Decomposition MiSS fundamentally diverges
from the standard LoRA architecture by employing a single low-rank matrix D ∈ Rr1×r2 , rather
than the dual-matrix structure (A,B). Crucially, we observe that D in MiSSe is dimensionally
consistent with B in LoRA, as both correspond to the output dimension d and function as the out-
put operation matrix. This structural alignment allows us to naturally decompose the computation
into two distinct stages: Input Transformation (CStep 1) and Output Projection (CStep 2). This insight
isolates the efficiency distinction entirely to CStep 1. While LoRA relies on an expensive matrix
multiplication (Ax), MiSSe utilizes a cost-efficient block summation (sum(x)). The comparative
analysis is summarized below:

Table 3: Computational Decomposition of MiSSe vs. LoRA

Metric LoRA MiSSe

Structure Dual Matrices (A,B) Single Matrix (D)
CStep 2 (Output Projection) Matrix Mult. Bh (d× r) Matrix Mult. DS (d× r)
CStep 1 (Input Transform) Matrix Mult. Ax (O(BLkr)) Block Sum sum(x) (O(BLk))

Parameter Count (N ) O(r(k + d)) O(rd)
Total FLOPs O(BL(kr + rd)) O(BL(k + rd))

5 EXPERIMENTS

In this section, we conduct a comprehensive set of experiments to validate the effectiveness and
generalizability of MiSS across diverse domains. We assess performance on a wide range of tasks,
including language, image, and video benchmarks. Specifically, we evaluate Natural Language
Understanding (NLU) capabilities using a subset of the GLUE dataset, and Natural Language Gen-
eration (NLG) capabilities by fine-tuning various large language models (LLMs). We extend our
evaluation to multimodal settings using the VTAB-1K benchmark to demonstrate the robust adapt-
ability of MiSS beyond textual domains. Furthermore, we provide a detailed analysis of the Pareto
frontier (Section 5.3) to definitively illustrate MiSS’s superior computational efficiency and minimal
hardware overhead when compared to existing Parameter-Efficient Fine-Tuning (PEFT) methods.

5.1 SUPERIOR PERFORMANCE ACROSS LANGUAGE AND VISION DOMAINS

MiSS demonstrates exceptional versatility, maintaining a commanding lead or highly competitive
performance across diverse benchmarks in both the language and vision domains. (Setup B)
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Natural Language Understanding (NLU). On the GLUE benchmark (Table 4), fine-tuning
RoBERTa-base with MiSS showcases notable strength. It achieves an outstanding result on the
challenging CoLA dataset (72.86), significantly surpassing LoRA and PiSSA. This performance
indicates superior data-fitting capabilities and faster convergence on complex linguistic tasks.

Table 4: The results of fine-tuning RoBERTa-base using MiSS and various LoRA variants were
compared on a subset of the GLUE benchmark.

Method Trainable MNLI SST-2 CoLA QNLI MRPC Avg

LoRA 0.236% 85.63±0.01 94.03±0.02 62.40±0.71 91.37±0.97 87.98±0.23 84.28

PiSSA 0.236% 85.72±0.40 93.64±0.13 67.28±0.59 91.40±0.54 88.11±0.24 85.23

MiSS 0.236% 85.71±0.32 93.60±0.07 72.86±3.13 91.43±0.76 88.14±0.60 86.35

Natural Language Generation (NLG). Across five mainstream LLMs (Llama2, Mistral, RWKV,
Qwen3), MiSS consistently achieves the best or near-best average performance (Table 5). Notably, it
demonstrates substantial gains in complex reasoning tasks, recording the highest Math score (34.82)
on Qwen3-4B and the highest average score (47.79) on Mistral-7B. These findings highlight that
MiSS is not only effective on medium-sized models but also scales robustly to larger architectures
and data-rich models.

Table 5: We conduct a systematic comparison of LoRA, DoRA, PiSSA, and MiSS across several
mainstream large language models (Llama2, RWKV, Mistral, and Qwen3). All reported results
are averaged over three independent runs to ensure robustness. The first-place entry should be
highlighted in bold, and the second-place entry should be underlined.

Model Strategy Trainable GSM8K Math HumanEval Mbpp Avg

Llama2-7B (Touvron et al., 2023)

LoRA 89.9M 40.75 5.22 17.74 35.15 24.72
DoRA 91.3M 42.93 6.51 21.95 36.53 26.48
PiSSA 89.9M 43.89 6.92 22.15 37.84 27.70
MiSS 87.0M 48.16 8.58 23.63 36.81 29.30

RWKV 6-7B (Peng et al., 2024)
LoRA 88.1M 38.13 6.06 - - 22.10
PiSSA 88.1M 40.48 6.12 - - 23.30
MiSS 88.1M 41.73 6.52 - - 24.13

Mistral-7B (Jiang et al., 2023)

LoRA 94.4M 62.85 15.82 35.71 46.11 40.12
DoRA 95.8M 63.68 13.60 38.41 48.73 41.10
PiSSA 94.4M 67.01 18.13 41.28 51.37 44.45
MiSS 87.0M 68.92 18.85 42.07 61.33 47.79

Llama2-13B (Touvron et al., 2023)

LoRA 250M 56.18 12.60 31.79 37.82 34.60
DoRA 252M 61.56 13.60 33.50 39.25 36.98
PiSSA 250M 66.64 13.82 33.57 46.03 39.52
MiSS 255M 68.64 15.74 38.15 47.91 42.11

Qwen3-4B (Yang et al., 2025)

LoRA 74.3M 84.38 15.20 73.27 78.32 62.79
DoRA 75.4M 85.11 21.73 74.20 78.77 64.95
PiSSA 74.3M 85.78 26.00 75.01 78.04 66.21
MiSS 70.1M 85.52 34.82 74.48 78.05 68.22

Vision Task To validate the ability of MiSS to adapt to non-textual tasks, we conducted experi-
ments on the VTAB-1K image and video benchmarks (Table 6). MiSS achieved an average accuracy
of 88.02 on image tasks and 72.96 on video tasks, making it highly competitive with top-performing
baseline methods like LoRA and DoRA. Crucially, this competitive performance is delivered with
a significantly lower parameter budget (≈ 0.4 #TPs) compared to LoRA/DoRA (≈ 0.8 #TPs), con-
firming that the efficiency of MiSS transcends the language domain and is applicable to multimodal
foundation models.
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Table 6: Performance comparison on VTAB-1K image and video benchmarks.

Method Image Video
Caltech Flowers Pets Camel. Euro. Retino. KITTI Avg #TPs UCF101 Kinetics HMDB Avg #TPs

Full 89.92 97.41 85.87 81.65 88.12 73.62 77.93 84.93 85.83 92.30 55.23 65.79 74.99 86.65
VeRA 91.53 99.19 91.04 86.45 92.97 74.25 77.92 87.62 0.240 92.28 57.21 66.77 72.09 0.242
LoRA 92.03 99.18 90.92 87.73 92.65 74.23 80.42 88.08 0.833 93.88 57.81 67.37 73.02 0.835
DoRA 91.86 99.27 91.08 85.88 91.42 75.28 80.46 87.89 0.834 92.84 57.77 67.33 72.65 0.836
MiSS 92.14 99.23 91.05 86.28 92.83 73.71 80.91 88.02 0.414 93.82 57.75 67.31 72.96 0.415

5.2 EFFECT OF RANK r

Table 7: Comparing different values of rank (r)
on LLaMA2-7B with MiSS.

Model Rank Trainable GSM8K Math

Llama2-7B

16 21.7M 45.90 3.77
32 43.5M 46.18 7.43
64 87.0M 48.16 8.58

128 174.0M 53.49 10.08

We evaluate MiSS with varying matrix ranks
to study the trade-off between tuning capacity
and parameter cost. The Table 7 reports re-
sults for ranks r ∈ {16, 32, 64, 128} (corre-
sponding to {21.7M, 43.5M, 87.0M, 174.0M}
trainable parameters). Performance on GSM8K
and the Math benchmark improves monotoni-
cally as the rank increases: GSM8K rises from
45.90 at r = 16 to 53.49 at r = 128, while
Math increases from 3.77 to 10.08. In prac-
tice, r = 64 offers a favorable trade-off (48.16
GSM8K, 8.58 Math) between performance gains and parameter overhead.

5.3 MISS’S SUPERIOR BALANCE ON THE PARETO FRONTIER: OPTIMALLY TRADING OFF
EFFICIENCY AND PERFORMANCE

The emergence of PEFT techniques is motivated by dual objectives: mitigating GPU memory con-
straints and exploring more efficient model architectures. Nevertheless, numerous contemporary
studies disproportionately focus on ultimate performance benchmarks, overlooking critical prac-
tical considerations like computational efficiency and training duration—an emphasis that clearly
diverges from the original rationale for PEFT. In this section, we undertake a multi-dimensional
investigation into the relationships among computational overhead, efficiency, and performance for
diverse models. Leveraging the official Hugging Face PEFT (Mangrulkar et al., 2022) benchmarking
framework, our evaluations are conducted under fair and reproducible conditions.

The Pareto frontiers in our evaluation provide definitive evidence of MiSS’s effectiveness. In
every experimental setting, MiSS is uniquely positioned in the top-left corner—the optimal re-
gion—signifying that it delivers the best performance with minimal efficiency cost. This consistent
advantage underscores MiSS’s unique contribution in balancing these competing objectives.

Figure 4: Pareto front of MiSS comparing with other PEFT methods. We select three more methods
as the baseline on the balancing of memory and performance.

6 CONCLUSION

This work tackles the critical inefficiency of simultaneous matrix updates in Low-Rank Adaptation
(LoRA), which leads to slow convergence and suboptimal resource use. We propose MiSS as a com-
pelling solution—a new PEFT framework that updates decomposed weight shards using a single,
shared matrix. This approach drastically reduces optimization complexity and resource demands.
Comprehensive experiments validate that MiSS consistently outperforms existing methods in accu-
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Table 8: Experimental results across PEFT methods on Llama-3.2-3B.

PEFT Type Total Time Train Time Test Accuracy Train Loss
Accelerator Memory (Bytes)

Max Reserved 99th Reserved Avg

RSLORA 2069 1871 0.5299 0.5657 22,538,092,544 17,953,927,987 12,128,059,444
C3A 2125 1924 0.5102 0.5808 22,280,142,848 17,825,917,829 11,804,454,210
MiSS 1867 1664 0.5080 0.5776 20,248,002,560 16,303,469,363 11,170,837,063
RANDLORA 2457 2213 0.5072 0.5785 22,798,139,392 18,436,063,232 12,743,670,025
SHIRA 2085 1867 0.5072 0.5789 21,743,271,936 17,637,383,864 12,240,924,809
OFT 2494 2214 0.5057 0.5947 22,294,822,912 17,939,310,837 12,057,354,384
LORA 1993 1796 0.4822 0.6069 22,273,851,392 17,710,763,212 11,868,689,976
DORA 2287 2023 0.4807 0.6068 24,553,455,616 19,189,150,515 12,490,471,636
LORAFA 2026 1821 0.4299 0.6510 20,187,185,152 16,257,394,933 11,106,307,276
LOHA 2591 2341 0.4185 0.6570 23,886,561,280 19,247,870,771 13,446,820,344
IA3 1922 1746 0.4124 0.6569 23,135,780,864 18,398,356,439 12,023,331,867
ADALORA 2209 1986 0.3904 0.6863 22,793,945,088 18,203,426,160 12,361,399,900
LOKR 2352 2152 0.3753 0.6877 23,565,697,024 18,987,698,094 13,173,683,073
P TUNING 1918 1707 0.3707 0.6740 20,937,965,568 17,215,688,540 11,867,101,593
VBLORA 2210 1962 0.3700 0.7143 22,181,576,704 17,635,223,797 11,735,344,663
VERA 2025 1820 0.3685 0.6927 21,596,471,296 17,291,123,097 11,489,715,316
BOFT 11,114 8292 0.3647 0.7268 24,427,626,496 20,103,445,872 14,814,855,089
IA3 2005 1783 0.3450 0.7657 23,137,878,016 18,398,566,154 12,023,227,429
TRAINABLE TOKENS 1814 1572 0.2881 0.7862 20,956,839,936 16,957,675,929 12,730,137,942
PROMPT TUNING 2715 2394 0.2525 0.7790 24,408,752,128 20,650,676,715 15,297,364,466
ADAPTION PROMPT 2261 1989 0.2206 0.8317 22,410,166,272 17,907,664,814 11,893,757,234
PREFIX TUNING 1959 1662 0.1471 0.7887 20,912,799,744 16,945,051,074 11,766,684,083
FOURIERFT 2824 2422 0.1198 0.9979 23,681,040,384 19,054,869,872 13,111,221,498
PROMPT TUNING 2700 2380 0.0500 1.0655 24,379,392,000 20,669,781,770 15,297,773,830
FOURIERFT 2824 2424 0.0008 1.2480 23,653,777,408 19,017,267,937 13,104,129,350
LN TUNING 1870 1657 0.0000 1.2370 21,177,040,896 16,903,066,091 11,385,589,622

racy, memory footprint, and computational speed, offering a fundamentally more efficient pathway
for adapting large models.

7 LIMITATIONS AND FUTURE WORK

As a pioneering approach, MiSS still leaves several aspects open for deeper exploration. We hope
that future research will conduct broader and more in-depth studies to further refine PEFT techniques
and identify the most effective strategies for large language models.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTS

(a) Loss-Token (b) Loss-Time

Figure 5: Loss curves of LLaMA2-7B fine-tuned on MetaMathQA using LoRA and MiSS(̇a) Loss
vs. tokens. (b) Loss vs. training time.
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Table 9: We fine-tuned LLMs using MiSS and various LoRA variants, and evaluated performance
on GSM8k, Math, HumanEval, and MT-Bench.

Model Strategy Trainable GSM8K Math HumanEval MT-Bench

RWKV7-3B

Base 0M 44.35 - - -
LoRA 47.2M 55.64 - - -
PiSSA 47.2M 57.16 - -
MiSS 47.2M 58.22 - - -

Table 10: Hyperparameter settings for fine-tuning llama2-7B,Mistral-7B,RWKV6-7B,Qwen3-4B
on NLG tasks

Hyperparameters LoRA DoRA PiSSA MiSS

Rank r 36 36 36 64
α 72 72 36 -

Dropout 0.0
Optimizer AdamW

LR 2e-5
LR Scheduler Cosine decay

Batch size 64
Warmup ratio 0.0

Epochs 1
Where Q,K,V,O,Up,Down,Gate

A.2 RWKV7

B SETTINGS OF EXPERIMENTS

NLU We fine-tune the RoBERTa-base model on several datasets from the GLUE benchmark, in-
cluding MNLI, SST-2, CoLA, QNLI, and MRPC. Performance is evaluated on the development set
using accuracy as the primary metric. The experimental hyperparameter settings were aligned with
those in the LoRA repository, but training was conducted using a single 4090 GPU. Each experiment
is conducted with 3 different random seeds, and the average performance is reported. As shown in
Table 4, MiSS demonstrates outstanding performance, particularly on the CoLA dataset, where it
exhibits significantly faster convergence and superior data-fitting capabilities, far surpassing LoRA
and PiSSA.

NLG To verify the generalizability of MiSS, we conducted more comprehensive experiments on
LLM. we conducted 3 more task finetuning experiments on LLM: math and code. (1) Math: We
trained our model on a 395k subset of MetaMathQA (Yu et al., 2023), a dataset bootstrapped from
other math instruction tuning datasets like GSM8K (Cobbe et al., 2021) and MATH (Yu et al., 2023),
with higher complexity and diversity. (2) Code: We train our model on a 100k subset of CodeFeed-
back (Zheng et al., 2024), a high-quality code instruction dataset, removing explanations after code
blocks. The model is tested on HumanEval (Chen et al., 2021) and Mbpp (Austin et al., 2021).
The hyperparameter settings for this experiment were kept equal, while the train steps were adjusted
according to the specific fine-tuning datasets used. It is worth noting that the attention-based archi-
tectures employed by models such as LLaMA, Qwen, and Mistral do not use fully symmetric weight
structures, which makes it impossible to achieve exact alignment of trainable parameters when com-
paring MiSS with LoRA. To address this, we set the rank r of LoRA to 36 and the rank r of MiSS
to 64, ensuring that MiSS uses fewer parameters than LoRA to demonstrate its superiority. Each
experiment is conducted with 2 different random seeds, and the average performance is reported.

Vision Task on VTAB-1K image classification using ViT-Base-Patch16-224

C SETTINGS OF EXPERIMENTS IN NO FREE LUNCH
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Table 11: Hyperparameter settings for fine-tuning llama2-13B on NLG tasks

Hyperparameters LoRA DoRA PiSSA MiSS

Rank r 64 64 64 128
α 128 128 64 -

Dropout 0.0
Optimizer AdamW

LR 2e-5
LR Scheduler Cosine decay

Batch size 128
Warmup ratio 0.0

Epochs 1
Where Q,K,V,O,Up,Down,Gate

Table 12: Experimental Setup: Datasets and Hyperparameters

General Configuration

Parameter Value

Random Seed (SEED) 43
Device (DEVICE) CUDA (if available, else CPU)

Base Model Architecture (MLP)

Input Dimension 64
Hidden Dimension 64
Output Dimension 64

Synthetic Dataset Generation

Base Function sin(2πx)
Modified Function sin(2πx) + 0.3 cos(3πx)
Input x Range [−1, 1]
Training Samples (N TRAIN ) 50
Validation Samples (N V ALID) 100
Training Noise Std. Dev. (NOISE STD) 0.05
Validation Noise Std. Dev. 0.0

Training Parameters

Base Model LR (BASE LR) 0.001
Adaptation LR (ADAPT LR) 0.001
Base Model Epochs (BASE EPOCHS) 250
Adaptation Epochs (ADAPT EPOCHS) 100
Evaluation Interval (EVAL INTERVAL) 10

Adapter-Specific Ranks

LoRA Rank 2
VeRA Rank 64
MiSSRank 4
PiSSA Rank 2
DoRA Rank 1
ProLoRA Rank 2
AdaLoRA Rank 2
MoS Rank 2

Note: Other adapter-specific hyperparameters (e.g., LoRA scale, VeRA d init val, DoRA
lora alpha, ProLoRA unshared rank u, MoS shard dim ratio) primarily use their default values as
defined in the respective adapter class implementations or are derived based on the rank within
benchmark functions. Refer to the provided Python code for their specific configurations during
experiments.
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