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Abstract

LLMs excel at few-shot in-context learning (ICL)
– learning from a few input-output examples
(“shots”) provided in context at inference, with-
out any weight updates. Newly expanded con-
text windows allow us to investigate ICL with
hundreds or thousands of examples – the many-
shot regime. Going from few-shot to many-shot,
we observe significant performance gains across
a wide variety of generative and discriminative
tasks. While promising, many-shot ICL can be
bottlenecked by the available amount of human-
generated outputs. To mitigate this limitation,
we explore two settings: (1) “Reinforced ICL”
that uses model-generated chain-of-thought ratio-
nales in place of human rationales, and (2) “Unsu-
pervised ICL” where we remove rationales alto-
gether, and prompt the model only with domain-
specific inputs. We find that both Reinforced and
Unsupervised ICL can be effective in the many-
shot regime, particularly on complex reasoning
tasks. Furthermore, we demonstrate that, unlike
few-shot learning, many-shot learning is effective
at overriding pretraining biases, can learn high-
dimensional functions with numerical inputs, and
performs comparably to fine-tuning. Finally, we
reveal the limitations of next-token prediction loss
as an indicator of ICL performance.

1. Introduction
A limiting factor for in-context learning (ICL) in LLMs is
the context window, restricting prior research to the few-shot
ICL regime. Many-shot learning – ICL with a large number
of shots, for example, hundreds or thousands – allows for
better task specification, can reduce the need for fine-tuning,
and potentially make LLMs more versatile and adaptable.
Exploring many-shot ICL is now feasible, given the recent
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increase in context windows of publicly available LLMs by
at least 100×: from only a few thousand tokens in GPT-
3 (Brown et al., 2020) and Llama 2 (Touvron et al., 2023)
to 1M tokens in Gemini 1.5 Pro (Gemini Team, 2024).

In this paper, we investigate how scaling the number of shots
affects ICL performance on a wide variety of tasks (§2):
problem solving using MATH (Hendrycks et al., 2021) and
GSM8K (Cobbe et al., 2021), question-answering (GPQA,
Rein et al., 2023), summarization using XSum (Narayan
et al., 2018) and XLSum (Hasan et al., 2021), algorith-
mic reasoning (BBH, Suzgun et al., 2022), reward model-
ing [Code verification, §A.5], low-resource machine trans-
lation (FLORES, Goyal et al., 2022), planning (Logistics,
Seipp et al., 2022), and sentiment analysis (FP, Malo et al.,
2014). Compared to few-shot ICL, many-shot learning per-
forms significant better across these tasks, using several hun-
dreds or thousands of shots (Figure 1). Furthermore, maxi-
mum performance is often achieved only once the number
of shots reaches up to hundreds of thousands of tokens (Fig-
ure A.1). Concurrent to our work, recent works explore
many-shot ICL to jailbreak LLMs (Anil et al., 2024) (up
to 256 shots) and tackle NLP classification tasks (Bertsch
et al., 2024) (up to 80K tokens). In our work, we focus on
a much wider range of tasks, and use a lot more examples
(up to 8192 shots), much longer context lengths (up to 1M
tokens). See §A.1 for a detailed discussion of related work.

While many-shot ICL holds significant promise, it can be
constrained by the need for high-quality, human-generated
outputs. To overcome this, we introduce reinforced ICL and
unsupervised ICL (§3). Inspired by the efficacy of model-
generated solutions for fine-tuning (Singh et al., 2024), Re-
inforced ICL involves replacing human-written rationales
with model-generated ones, filtered via answer correctness,
for in-context learning. Inspired by task-recognition view
of ICL (Xie et al., 2021), we also introduce Unsupervised
ICL where we prompt the model with only problems instead
of problem-solution pairs. On problem-solving tasks such
as MATH, GPQA and Big-Bench Hard, we find that both
reinforced and unsupervised ICL with many-shots can be
more effective than few-shot ICL with human-generated ra-
tionales, with reinforced ICL being more broadly effective.

Finally, we empirically study how the learning dynamics
of in-context learning changes from few-shot to the many-
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Figure 1: Many-shot vs Few-Shot In-Context Learning (ICL) across several tasks. Many-shot ICL consistently outperforms few-shot
ICL, particularly on difficult non-natural language tasks. Optimal number of shots for many-shot ICL are shown inside the bar for each
task. For few-shot ICL, we either use typical number of shots used on a benchmark, for example, 4-shot for MATH, or the longest prompt
among the ones we tested with less than the GPT-3 context length of 2048 tokens. Reasoning-oriented tasks, namely MATH, GSM8K,
BBH, and GPQA use chain-of-thought rationales. For translation, we report performance on English to Bemba, summarization uses
XLSum, MATH corresponds to the MATH500 test set, and sentiment analysis results are reported with semantically-unrelated labels. See
§2, §3, and §4 for more details.

shot regime (§4). We find that with sufficient examples,
ICL can overcome pre-training biases, perform comparably
to full fine-tuning, and solve high-dimensional prediction
tasks with numerical inputs, namely sequential parity pre-
diction and linear classification. This suggests the potential
of many-shot ICL to adapt to unseen tasks and domains that
might be misaligned with an LLM’s training data. Surpris-
ingly, the order of examples can influence many-shot per-
formance (§A.6) Finally, we demonstrate that long-context
scaling laws (Anil et al., 2024; Xiong et al., 2023; Kaplan
et al., 2020) based on next-token prediction loss may not
reliably predict ICL performance on problem-solving and
reasoning tasks.

Our key contributions are as follows:

• Scaling ICL (§2): We systematically evaluate ICL per-
formance at different scales of in-context examples for
a wide range of tasks with Gemini 1.5 Pro. Our results
indicate large performance jumps when transitioning
from few-shot to many-shot regime.

• Reinforced and Unsupervised ICL (§3): We find that
using model-generated rationales or only problems can
reduce the dependence of many-shot ICL on human-
generated data.

• Analysing ICL (§4): We show that many-shot ICL can
overcome pre-training biases, perform comparably to
fine-tuning, and learn non-NLP prediction tasks, where
few-shot ICL struggles. We also reveal that next-token
prediction loss may not be a good predictor of ICL per-
formance.

2. Scaling In-Context Learning
During in-context learning (ICL), the LLM receives a
prompt containing a set of input-output examples, also
called shots, that illustrate the desired task. At the end
of the prompt, we append a test input and allow the LM to
make a prediction just by conditioning on the prompt and
predicting the next tokens auto-regressively. Recent increase
in context windows of LLMs allow using many more shots
for ICL than typically used. To this end, we evaluate the
many-shot performance of Gemini 1.5 Pro1 (Gemini Team,
2024) model with 1 million token context length, the largest
publicly available so far. Unless specified otherwise, we use
greedy decoding. For reliable results, we randomly sam-
ple in-context examples for each K-shot prompt multiple
times using different random seeds and report average per-
formance, along with some visualization for performance on
individual seeds. To ensure that using more shots provides
additional information, any K-shot prompt in our setup
includes all in-context examples from prompts with less
than K examples. To reduce the inference cost, we use KV
caching (Pope et al., 2023). Now, we study many-shot ICL
on typical LLM use-cases (also see §A.5).

2.1. Machine Translation

We consider translation from English to a low-resource
target language, where many-shot ICL can complement
the existing knowledge within the LLM. We use the
target languages with the largest gap reported between

1This corresponds to original version in the Gemini 1.5 Tech
Report, released in February 2024. We note that the Gemini 1.5
Pro API now serves a newer version starting from April 2024.
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Figure 2: Machine Translation (MT). Test Performance improves
almost monotonically as we increase the number of MT pairs pro-
vided as in-context examples during inference. Notably, many-shot
ICL outperforms state-of-the-art chRF2++ scores of 35% (NLLB)
on Bemba and 40% (Google Translate) on Kurdish (Robinson et al.,
2023). We note that 997-shot prompt corresponds to around 85K
tokens. See an example prompt in Figure A.6.

LLMs and state-of-the-art systems (Robinson et al., 2023),
namely Bemba and Kurdish, from FLORES-200 bench-
mark (NLLB Team, 2022). We modify the default 1-shot
MT prompt from Gemini Team (2023) to include multiple
translation pairs as shots from the FLORES dev split (con-
taining 997 examples). We evaluate performance on the
first 150 sentences from the test set using chrF2++ (Popović,
2017), a standard metric based on character and word n-
gram overlap between generated and reference translation.

See Figure 2 for results. Similar to Robinson et al. (2023),
we observed small gains in the few-shot regime from 1-
shot to 10-shot, particularly on Kurdish. However, when
using the entire dev set for many-shot ICL, we observe
improvements of 15.3% on Bemba and 4.5% on Kurdish,
relative to the 1-shot Gemini prompt. Overall, these results
establish the new-state-of-art for these language pairs.

2.2. Abstractive Summarization

To investigate how scaling ICL examples can impact the
comprehension ability of LLMs, we now consider abstrac-
tive news summarization using XSum dataset from the GEM
benchmark (Akter et al., 2023). Using XSum dev set ex-
amples containing news articles and summaries, we also
evaluate how many-shot ICL generalizes to XLSum (Hasan
et al., 2021). We report performance on 150 test articles
using ROUGE-L (Lin, 2004), which measures the longest
common subsequence between reference and generated sum-
maries.

As depicted in Figure 3, peak performance with many-shot
ICL is remarkably close to specialized models fine-tuned on
XSum and XLSum. However, XSum performance declines
with more than 50 in-context examples. Surprisingly, we
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Figure 3: Summarization. As we increase the number of shots
from XSum dev set, XSum test performance improves up to 50
shots and then deteriorates. In contrast, XLSum performance typi-
cally improves with more shots from XSum. The 500-shot prompt
corresponds to 205K tokens. PEGASUS (Zhang et al., 2020) and
mT5 (Hasan et al., 2021) are specialized models fine-tuned for sum-
marization. See an example prompt in Figure A.7.
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Figure 4: In-context Planning. Success rate quickly improves
with up to 10 shots (37K tokens), followed by saturation up to 400
shots and a sudden performance jump at 800 shots. As a reference,
we report 1-shot GPT-4 results from Valmeekam et al. (2024). See
Figure A.8 for an example 1-shot prompt.

observed the many-shot prompted model occasionally gen-
erating summaries with fabricated dates and times (§A.4),
despite the absence of such data in the in-context summaries.
Nonetheless, performance on XLSum monotonically im-
proves with more shots, demonstrating positive transfer
from many-shot learning to a related task.

2.3. Planning: Logistics Domain

Recent work has highlighted shortcomings in planning abil-
ities of LLMs (Valmeekam et al., 2024). To this end, we
evaluate whether many-shot ICL can improve their ability
to generate simple plans on the Logistics domain, a widely
used benchmark. The objective in this domain is to trans-
port packages within cities via trucks, and between cities
via airplanes. We generate a set of planning problems with
2-3 cities, 1-2 packages, 1 truck and airplane per city using
a formal planning language (PDDL) generator (Seipp et al.,
2022), resulting in 1.3K problems for learning and 600 for
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evaluation. To compute optimal solutions for each problem,
we use the Fast-Downward planner (Helmert, 2006).

As shown in Figure 4, we observe significant improvement
in success rate with increasing numbers of ICL shots. While
far from state-of-the-art planning approaches (e.g., Fast-
Downward), our results demonstrate the potential of many-
shot ICL to improve the commonsense planning abilities of
LLMs.

3. Many-shot Learning without
Human-Written Rationales

Many-shot ICL could potentially be limited by the availabil-
ity of high-quality human-generated rationales or demon-
strations. This is particularly challenging for complex rea-
soning tasks, such as GPQA (Rein et al., 2023), where
human-generated rationales require significant resources
and expert knowledge. In this work, we explore two simple
approaches for addressing this issue.

Reinforced ICL Recent work (Singh et al., 2024) pro-
posed a simplified version of Reinforced Self-Training (Gul-
cehre et al., 2023), demonstrating that fine-tuning using
model-generated rationales can be more effective than
human-generated rationales to problem-solving tasks. In-
spired by their work, we introduce Reinforced ICL, where
we use model-generated rationales for in-context learning.
To do so, we use a few-shot or zero-shot chain-of-thought
prompt as a starting point to sample multiple rationales for
each training problem. Then, we select rationales that obtain
the correct final answer (we assume access to ground truth
final answers), and arrange them into in-context examples
containing (problem, rationale) pairs.

One potential issue with model-generated rationales is that
of false positives: it is possible for an incorrect reasoning
chain to lead to the correct final answer, and fine-tuning
or prompting using such a reasoning chain would typically
harm performance. Nevertheless, as we discuss in later
sections, we often find model-generated rationales to be at
least as effective human-written rationales.

Unsupervised ICL We now go one step further than Re-
inforced ICL: what if we removed rationales from the many-
shot prompt altogether, and prompt the model only with
inputs? Specifically, the Unsupervised ICL prompt consists
of: 1) a preamble, such as, “You will be provided questions
similar to the ones below:”, 2) a list of unsolved inputs
or problems, and 3) a zero-shot instruction or a few-shot
prompt with outputs for the desired output format. See §A.9
for the exact prompts we use.

One hypothesis for how many-shot unsupervised ICL might
surpass few-shot learning with human demonstrations is that,

when the LLM already possesses the required knowledge
to solve a task, any information inserted in the prompt that
can narrow down what knowledge is needed for the task be-
comes helpful. This would be consistent with the view that
ICL simply “locates” latent concepts (e.g., math problem-
solving) the LLM acquired during pre-training (Xie et al.,
2021; Hendel et al., 2023; Wang et al., 2024). As such,
any of the prompt components – inputs, outputs, and their
mapping – can help locate such concepts. While Unsuper-
vised ICL is broadly applicable, it may not perform well,
for example, when outputs are critical for specifying the
task (Figure 7 and A.16).

3.1. Problem-solving: Hendrycks MATH & GSM8K

We evaluate Reinforced and Unsupervised ICL on
Hendrycks MATH (Hendrycks et al., 2021), which consists
of challenging high school competition-level mathematics
problems. We use the MATH500 test set from Lightman
et al. (2023) to report performance, and our 4-shot MATH
prompt for data generation can be found in Figure A.11. For
Unsupervised ICL, we append this 4-shot prompt after the
unsolved problems (see Figure A.13). For comparison, we
also evaluate ICL with human-written solutions (ground-
truth) from the MATH training set, with the same problems
used for many-shot prompts.

Our results are shown in the Figure 5 (left). On MATH500,
both Reinforced and Unsupervised ICL outperforms ICL
with ground-truth solutions in both the few-shot and many-
shot regime. For ICL, we observe that the performance
improves with more examples in the prompt up to a point,
and then declines (with the peak being at about 125 exam-
ples). Performance for Reinforced ICL also improves with
the number of examples, and reaches a plateau at around
25 examples (while being about 5% higher than ICL), and
unlike ICL, we don’t see a significant drop in performance
even for a very large number of examples in the context.
Notably, many-shot ICL achieves comparable or superior
performance when using only problems compared to using
problems with solutions. This suggests solutions may be
redundant for eliciting problem-solving via in-context learn-
ing on this domain, potentially due to extensive math-related
data seen during pretraining.

Can many-shot ICL enable out-of-distribution general-
ization? Singh et al. (2024) found that fine-tuning a model
on model-generated solutions from MATH resulted in im-
proved test performance on GSM8K (Cobbe et al., 2021),
which has a different distribution of problems than MATH.
Here, we investigate whether many-shot ICL also improves
transfer performance on GSM8K, indicating an improve-
ment in general problem-solving abilities from in-context
learning. Our results in Figure 5 (right) show that this is in-
deed the case – Reinforced ICL with MATH prompts excels

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Many-shot In-Context Learning

4 10 25 50 125 250 500
Number of Shots (K)

47.5%

50.0%

52.5%

55.0%

57.5%

60.0%

Te
st

 A
cc

ur
ac

y 
(%

)

MATH500

4 10 25 50 125 250 500
Number of Shots (K)

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%
GSM8K (Transfer using MATH prompts)

4-shot InnerMono. MATH Prompt ICL (Ground-Truth) Unsupervised ICL Reinforced ICL

Figure 5: Many-shot Reinforced and Unsupervised ICL for problem-solving generally outperform ICL with ground-truth MATH
solutions. MATH. (Left) The bar plots depict the average performance across five random seeds on the MATH500 test set. Each random
seed (denoted by the dots) corresponds to a different subset of problems along with ground truth or model-generated solutions (if any) in
the prompt. Transfer to GSM8K. (Right) We see that the prompt obtained from MATH transfers well to the GSM8K test split containing
500 problems. Our results with many-shot ICL outperform the 4-shot Minerva prompt, which obtains a test accuracy of 55.7% on
MATH500 and 90.6% on GSM8K.

on GSM8K, outperforming ICL with ground truth MATH
solutions as well as Unsupervised ICL in the many-shot
setting with at least 25 shots. This indicates that model-
generated solutions can enable better generalization than
just using problems or combining them with ground-truth
solutions for ICL.

3.2. Question Answering: Google-Proof QA (GPQA)
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Figure 6: Many-shot Reinforced and Unsupervised ICL for
GPQA. The baseline zero-shot prompt, which is used for gener-
ating rationales for Reinforced ICL and appended to the prompt
for Unsupervised ICL, obtains a performance of 38.8%. The aver-
age test accuracy with 125-shot prompt with both ground-truth or
model-generated rationales surpass the 40.4% obtained by Claude-
3 Sonnet. As we vary the number of shots, while Unsupervised
ICL matches or outperforms the zero-shot prompt, Reinforced ICL
consistently outperforms it.

GPQA (Rein et al., 2023) is a multiple-choice QA bench-
mark, with difficult questions focused on graduate-level
reasoning in biology, physics, and chemistry. Following
Claude-3 (Anthropic, 2024), we use the diamond split (198
problems) for evaluation. This split focuses on questions
where domain experts agree but experts in other domains
struggle despite internet access. Remaining 250 questions
in non-diamond split are used for many-shot ICL with and
without human-written rationales. For Reinforced ICL, we
use a zero-shot prompt (Figure A.9) to generate multiple
rationales on the non-diamond split, solving 129 problems.
We also append this zero-shot prompt after the GPQA prob-

lems for specifying output format for Unsupervised ICL.

As shown in Figure 6, average test accuracy with ground-
truth rationales improves substantially from 5 shots to 125
shots, with the best-performing 125-shot prompt nearly
matching the accuracy of the state-of-the-art Claude-3 Opus.
However, we do observe a performance degradation with
250 shots. Moreover, Reinforced ICL results indicate that
model-generated rationales on GPQA seem to be better than
ground-truth rationales up to 25 shots, while resulting in
similar performance with more shots. Additionally, Un-
supervised ICL does not follow any systematic trend: it
sometimes performs better ICL with ground-truth rationales
depending on the number of shots, but generally under-
performs Reinforced ICL. As noted in Anthropic (2024),
GPQA is a small evaluation dataset and has an inherent
higher variance across different runs, which might explain
the non-systematic trends.

3.3. Algorithmic and Symbolic Reasoning: BBH
We now evaluate Reinforced and Unsupervised ICL on BIG-
Bench Hard (Suzgun et al., 2022), a suite of challenging
algorithmic reasoning tasks. To reduce the impact of false
positives, we select 8 tasks out of 23 in BIG-Bench Hard for
which the likelihood of getting a false positive is low: either
the answer string is long, or the number of options for each
question is large (at least 6). For Reinforced ICL, we use
the standard 3-shot CoT prompt from Suzgun et al. (2022)
to sample 10 rationales per problem from a training set of
150 problem at a temperature of 1.0. We filter the rationales
based on final answer correctness and arrange them into
prompts containing 3 to 100 (problem, rationale) pairs.

As shown in Figure 7, Reinforced ICL strongly outperforms
Unsupervised ICL for almost all tasks, which in turn out-
performs the standard 3-shot CoT prompt. Performance

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Many-shot In-Context Learning

3 10 25 50 100

0.85
0.90
0.95

Pe
rfo

rm
an

ce
Multistep Arithmetic Two

3 10 25 50 100
0.2

0.4

0.6

Logical Deduction [Seven]

3 10 25 50 100

0.6

0.8

Geometric Shapes

3 10 25 50 100
0.6

0.7

Salient Translation Error Detection

3 10 25 50 100
Number of Shots

0.50

0.75

1.00

Pe
rfo

rm
an

ce

Object Count

3 10 25 50 100
Number of Shots

0.90

0.95

1.00Reasoning About Colored Objects

3 10 25 50 100
Number of Shots

0.6

0.7
Dyck Languages

3-shot CoT (Human-written) Reinforced ICL Unsupervised ICL

3 10 25 50 100
Number of Shots

0.8

0.9

Word Sort

Figure 7: BIG-Bench Hard. Reinforced and Unsupervised ICL with varying shots, averaged across 5 random seeds. We evaluate test
performance on a held-out set of 100 problems. Error bars denote standard deviation. Reinforced ICL outperforms Unsupervised ICL for
all tasks, which in turns outperforms the human-written chain-of-thought (CoT) prompt. Averaged across tasks, CoT prompting using
human-written rationales gets a success rate of 72.1%, Unsupervised ICL obtains 77.1%, while Reinforced ICL gets 83%.

for Reinforced ICL generally improves monotonically with
the number of prompts for 7 out of 8 tasks. These results
indicate the Reinforced ICL is a more robust technique
than Unsupervised ICL, especially for tasks in which the
demonstrations contain crucial information about the task.
For a few tasks, Reinforced ICL outperforms the human-
written 3-shot prompt even in the 3-shot setting. This result
suggests that model-generated rationales can sometimes out-
perform human-written rationales even when controlling for
the amount of data, mirroring the results reported by Singh
et al. (2024) for fine-tuning.

4. Analyzing Many-Shot ICL
4.1. Overcoming Pre-training Biases with Many-Shot

ICL

While LLMs demonstrate in-context learning of novel tasks,
Kossen et al. (2023) suggest that ICL may have difficulty
unlearning biases derived from pre-training data. Their
experiments, however, focused mainly on few-shot ICL due
to LLM context length limitations. Here, we revisit their
study using many-shot ICL on the Financial PhraseBank
(FP) sentiment analysis dataset (Malo et al., 2014). Like
Kossen et al. (2023), we study label relationships that affect
pre-training biases:

• Flipped Labels: Default labels are rotated, that is, [‘neg-
ative’, ‘neutral’, ‘positive’] becomes [‘neutral’, ‘posi-
tive’, ‘negative’]. This conflicts with sentiment biases
an LLM might have learned.

• Abstract Labels: We use [‘A’, ‘B’, ‘C’], removing any
pre-existing sentiment association (Wei et al., 2023).

For ICL shots, we sample examples from the validation set
(with replaced labels) to exhibit the input-label relationship

and report the results in Figure 8. With few shots, test ac-
curacy with replacement labels is much lower than with
default labels. This suggests that with few-shot ICL, the
model struggles to overcome its pre-existing biases from
pre-training. However, as the number of shots increases,
performance on flipped and abstract labels dramatically im-
proves, approaching that of default labels. For default labels,
confidence in predicted labels steadily increases with more
shots, as shown in Figure 8 (right). In contrast, for flipped
labels, confidence initially drops then sharply increases be-
fore reaching a plateau, suggesting a period of overcoming
pre-training bias.

We posit that the initial drop in performance and confidence
in the few-shot regime may be attributed to the “early ascent”
phenomenon (Pan, 2023; Lin and Lee, 2024): a small num-
ber of shots may lead to the retrieval of an incorrect skill,
which eventually diminishes as task learning takes effect in
the many-shot regime. Overall, these results indicate that
many-shot ICL can overcome pre-training biases.

4.2. Learning Non-Natural Language Tasks:
High-Dimensional Functions

We now test many-shot ICL’s ability to learn abstract mathe-
matical functions with numerical inputs, which let us stress
test its generality and applicability to possibly unseen tasks.

Binary Linear Classification in High Dimensions Fol-
lowing the setup from Wei et al. (2023), we create datasets
with N -dimensional inputs vectors and their binary class la-
bels, where each dimension is a random integer in [1, 1000].
See more details in §A.12. While Wei et al. (2023) used
only 16 shots per class, we scale ICL up to 2048 shots per
class. As shown in Figure 9, while 2048 shots per class
perform best when N = 16, we observe slight accuracy
decrease beyond 512 shots for higher values of N (Figure 9
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Figure 8: Overcoming Pre-Training Bias with Many-Shot ICL. (Left) Many-shot ICL overcomes label flips: Test accuracy for
sentiment analysis typically improves with more training shots. Flipped and abstract labels eventually approaching the performance of
default labels. (Right) Confidence shift in overcoming bias. For flipped and abstract labels, model confidence in its predicted sentiment
labels initially drops, then sharply increases with more training shots to similar value, suggesting a period of overcoming pre-training bias.
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Figure 9: In-Context Classification. Test accuracy for 16, 32
and 64 dimensional linear classification problems, averaged across
5 randomly-generated datasets with 25 points per class for each
dataset (250 evaluation points total). As we increase the number
of shots, the accuracy improves and approximately tracks the
performance of the nearest-neighbor baseline trained from scratch
on the same data. We use the default implementation of k-nearest
neighbours (with k = 5) from scikit-learn (Pedregosa et al., 2011).
See Figure A.12 for an example prompt.

C, R). Moreover, many-shot ICL substantially outperforms
random-chance accuracy and nearly matches the accuracy
of a strong baseline, namely k-nearest neighbors, indicat-
ing that many-shot ICL can implement nearest-neighbour
search over inputs. This is reminiscent of induction heads
that implement prefix matching over sequences (Olsson
et al., 2022), a plausible mechanism for ICL abilities.

Sequential Parity Parity is a fundamental Boolean func-
tion that determines if a binary input sequence contains an
even or odd number of 1s. Despite their power, transformers
trained specifically for in-context learning, struggle to learn
the Parity function over 20-digit sequences (Bhattamishra
et al., 2023). In this work, we evaluate how well many-shot
ICL performs with a pretrained LLM to learn the sequential
parity function f(x) = [f1(x), f2(x), · · · , fn(x)], where
x ∈ {0, 1}n and fi(x) = x1 ⊕ x2 · · · ⊕ xi ∀ i ∈ [1, n]. We
report the results in Figure 10. We see consistent improve-
ment in test accuracy as we increase the number of shots to
8192. Performance surpasses a GPT-2 Medium sized trans-
former (Radford et al., 2019) trained from scratch on 20×
more input-output examples (with no repeated examples;
§A.13). This result indicates many-shot ICL can implement
computations analogous to gradient descent (von Oswald

et al., 2022).

4.3. Many-Shot ICL vs. Supervised Fine-Tuning
Many-shot ICL could make task-specific fine-tuning less
essential or, in some cases, even unnecessary, allowing
LLMs to tackle a wider range of tasks without specializa-
tion. While supervised fine-tuning (SFT) is the dominant
LLM paradigm when making use of hundreds or thousands
of examples, it is computationally expensive in terms of
training. In contrast, many-shot ICL does not require any
training, however it has a larger inference cost, which can be
substantially reduced with KV caching (Pope et al., 2023).
We compare many-shot ICL to SFT for machine translation.
We run two sets of experiments: one using 250 examples,
and another using the entire dev set (997 examples). Our
results in Figure 11 show that SFT and ICL performance
is quite close for Bemba, while SFT has a slight edge for
Kurdish. Overall, these results demonstrate that many-shot
ICL can be a viable alternative for SFT.

4.4. Long-context scaling laws may not predict ICL
performance

Prior works (Xiong et al., 2023; Anil et al., 2024; Kaplan
et al., 2020) have found that the negative log-likelihood
(NLL) for ground-truth test outputs decreases predictably
as the context length increases. We confirm this finding
for GPQA, Hendrycks MATH and GSM8K with many-shot
ICL, and report our results in Figure 12. However, we note
that NLL trends are not a strong predictor for downstream
task performance. For example, the success rate for both
MATH and GPQA with ICL decreases after 125 shots (Fig-
ure 5,6), but we do not observe a corresponding increase in
the NLL in Figure 12.

We also plot NLL curves for Reinforced and Unsupervised
ICL, and find them to generally have a smaller slope when
compared to supervised ICL. Interestingly, NLL curves for
ICL with ground-truth outputs is lower than with model-
generated outputs, even though the latter often performs
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Figure 10: Learning Sequential Parity Function In-context. We report test accuracy over 200 unseen inputs, averaged across 3 seeds.
Error bars denote standard error of the mean. Task Prompt. (Left) Example prompt with input and output labels of the 20-digit Sequential
Parity Function. Test accuracy (Right) Many-shot ICL performance improves almost monotonically with the number of shots, surpassing
performance of GPT-2 Medium sized transformer trained from scratch for 1 forward-backward pass per example on 20× more data.
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Figure 11: SFT vs Many-Shot ICL. We plot mean performance
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Figure 12: Negative Log-Likelihood (NLL) as a function of
number of shots. We plot NLL on ground truth test set solutions
for GPQA, MATH and GSM8K. For GPQA and MATH, questions
for Reinforced ICL and Unsupervised ICL comes from the training
splits of those datasets. We study GSM8K in the transfer setting, i.e.
questions for Reinforced and Unsupervised ICL come from MATH.
The NLL for ICL is not directly comparable to Unsupervised ICL,
since they use different prompt formats.

better. In the GSM8K transfer setting (using MATH prob-
lems and solutions to score GSM8K solutions), the change
in NLL is close to nil. However, this doesn’t reflect transfer
performance on GSM8K, which continues to improve with
more examples (Figure 5).

Overall, NLL is not a reliable proxy when attempting to
predict ICL performance for problem-solving domains. This
makes intuitive sense: for any given problem, there are a
large number of potentially correct CoT solutions that the
model can generate, and calculating the log-likelihood on
only one such solution may not provide a clear picture for

overall model capability. We also explore computing NLL
on a diverse set of model-generated outputs on MATH, and
our findings are presented in §A.7.

5. Discussion, Limitations and Future Work
We found significant gains in performance when going from
few-shot to many-shot ICL on a wide range of tasks, includ-
ing translation, summarization, planning, reward modeling,
mathematical problem solving, question-answering, algo-
rithmic reasoning, and sentiment analysis. To overcome
the challenges of obtaining a large number of high-quality
human-written rationales for many-shot ICL, we introduced
two regimes: Reinforced ICL and Unsupervised ICL. More-
over, we demonstrate that, unlike few-shot ICL, many-shot
ICL is effective at overriding pretraining biases, can learn
high-dimensional functions with numerical inputs, and per-
forms comparably to SFT.

One limitation of our work is that it mainly evaluates many-
shot ICL with Gemini 1.5 Pro. That said, concurrent
works (Anil et al., 2024; Bertsch et al., 2024) as well as
our preliminary results with GPT-4-Turbo and Claude-3-
Opus (Figure A.2) indicate that other LLMs can also benefit
from many-shot ICL. Future work should focus on evaluat-
ing the many-shot abilities of a wide range of long context
models, as they become available. Furthermore, many-shot
performance can likely serve as a valuable metric for evalu-
ating the quality of long-context models, going beyond the
prevalent needle-in-a-haystack test (Kamradt, 2023).

Another limitation of our work is that we don’t completely
understand why performance can sometimes degrades with
more examples in the prompt (for example, for MATH).
Our analysis found that negative log-likelihood trends are
insufficient to explain this degradation, and future work
should investigate new directions to shed light on the matter
and improving many-shot ICL capabilities. Overall, we
hope that this work lays a foundation for understanding and
optimizing the use of long-context models for ICL, opening
up a new frontier of LLM capabilities.
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A. Appendix
A.1. Related Work

Scaling in-context learning Brown et al. (2020) reported
improved performance as you increase the number of ex-
amples (up to 64) for in-context learning in LLMs , and
later works corroborated this finding (Lu et al., 2022). How-
ever, very few works have explored using a large number
of examples (1000 or above) in the prompt. This is likely
due to the fact the context lengths in large language models
have been quite limited until recently (Gemini Team, 2024;
Anthropic, 2024). One closely related work to ours is from
Li et al. (2023), who scale the number of examples for in-
context learning to 2000. However, Li et al. (2023) use a
custom model architecture (Zheng et al., 2023) to achieve
long context lengths, and only evaluate models of up to 1.3B
parameters, which is several orders of magnitude smaller
than state-of-the-art language models, and are ineffective
for complex tasks, such as GPQA (Rein et al., 2023).

Concurrently to our work, Anil et al. (2024) used many-shot
prompting (upto 256 shots) to jailbreak language models.
In our work, we focus on a much wider range of tasks, use
a lot more examples (up to 8192 shots) and use models
with much longer context lengths (up to 1M tokens). Also,
we explore mitigations for needing many human-generated
examples with many-shot ICL. Furthermore, while Anil
et al. (2024) use many-shot learning to override preferences
learned during RLHF phase to elicit the biases stemming
from pretraining, our results in §4.1 demonstrate that we
can also override pre-training biases themselves. Bertsch
et al. (2024) also concurrently shows benefits of scaling
up in-context learning to many demonstrations on several
classification datasets with up to 151 labels, albeit also using
smaller context windows of up to 80k tokens (using Llama2-
80k (Fu et al., 2024)).

Long-context scaling laws Prior works (Xiong et al.,
2023; Anil et al., 2024; Kaplan et al., 2020; Gemini Team,
2024) have reported smaller next-token prediction loss with
longer contexts, which Jeon et al. (2024) also show using
theoretical analysis. Our findings confirm this trend for even
longer context lengths, but our analysis reveals some of the
limitations of using next-token prediction loss as a metric for
evaluating long-context performance, as next-token predic-
tion loss continues to go down even as overall performance
plateaus.

Learning from self-generated data Numerous recent
works (Gulcehre et al., 2023; Yuan et al., 2023; Singh
et al., 2024) propose fine-tuning language models on self-
generated data to improve performance. Their approach
consists of (1) generate samples from the model and fil-
ter them using binary feedback, (2) fine-tune the model

on these samples, and (3) repeat this process a few times.
In this work, we extend this idea to in-context learning,
and study the efficacy of Reinforced ICL in reasoning and
problem-solving domains.

Self-generated data and in-context learning Kim et al.
(2022) propose using self-generated data for few-shot ICL
on classification problems, where they generate demonstra-
tions using the LLM conditioned on the test input for each
possible class label, and including these demonstrations in
the context when performing the final prediction. Li et al.
(2024) extend this approach to reasoning and language un-
derstanding tasks, where they also generate demonstrations
conditioned on the test input. Consistent with our findings,
these works show that model-generated demonstrations can
outperform human-generated demonstrations in the few-
shot regime. Another related approach is AutoCoT (Zhang
et al., 2023b) that uses a zero-shot CoT prompt to produce
model-generated demonstrations for few-shot ICL. To do so,
AutoCoT samples diverse questions one-by-one based on
embedding-based clustering followed by heuristics-based
post-processing for selecting demonstrations.

Different from above approaches, Reinforced ICL generates
demonstrations using the same procedure as Singh et al.
(2024), does not require clustering, post-processing heuris-
tics, or access to the test inputs for generating demonstra-
tions, and can be applied to any problem for which we can
obtain reliable reward signals. Moreover, our work mainly
focuses on the utility of randomly-sampled model-generated
demonstrations for many-shot ICL.

Learning Input-Output Relationships with ICL Numer-
ous works (Min et al., 2022; Kossen et al., 2023; Yoo et al.,
2022; Lin and Lee, 2024) have investigated whether LLMs
truly learn input-output relationships during in-context learn-
ing. Min et al. (2022) found that replacing the ground truth
labels in in-context examples with random labels barely
effected final performance. Further investigations by Yoo
et al. (2022) and Kossen et al. (2023) found that this finding
does not necessarily hold across tasks and model sizes. In
particular, Kossen et al. (2023); Lin and Lee (2024) showed
that LLMs can indeed learn input-output relationships via
in-context learning, but require more examples in order to
do so well. In our work, we extrapolate the trend found in
those works to much longer context lengths, showing that
pre-training biases can be mostly overcome given enough
training examples.

Learning Mathematical Functions with LLMs Several
prior works investigate whether mathematical functions can
be learned with transformers (Garg et al., 2022; Zhang et al.,
2023a; Xing et al., 2024; Bhattamishra et al., 2023). All
these works train transformers specifically to perform in-
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context learning for such functions. In contrast, we demon-
strate that many-shot ICL can learn high-dimensional func-
tions even with pre-trained LLMs. Concurrent to our work,
Vacareanu et al. (2024) demonstrate that pretrained LLMs
are able to perform regression tasks, with performance ri-
valing that of traditional supervised methods with 500 in-
context examples. Our work complement their findings
to other synthetic tasks with a much larger number of in-
context examples. Dinh et al. (2022) fine-tuned GPT-3 on
synthetic classification tasks and observed similarities in the
decision boundaries learned by the fine-tuned model and
kNNs. Our results in Figure 9 show that many-shot ICL
also performs comparably to kNNs on high-dimensional
classification tasks.

Comparing ICL with fine-tuning Contrary to task-
specific fine-tuning, ICL does not require optimizing any
model weights, allowing LLMs to perform a variety of tasks
at inference. As such, several prior works compare fine-
tuning with ICL but in few-shot regime. Liu et al. (2022)
proposed a parameter-efficient few-shot fine-tuning (FT)
approach for T0 that outperforms few-shot ICL with GPT-3.
However, Awadalla et al. (2022) argue that few-shot ICL is
more robust to distribution shifts than fine-tuning for ques-
tion answering tasks. Similarly, Asai et al. (2023) show
better transfer with ICL compared to fine-tuning on some
tasks. Mosbach et al. (2023) fairly compare ICL with FT by
using the same model for both approaches and show that full
fine-tuning (FT) generally outperforms ICL in the few-shot
regime with 16 examples. More recently, Lin et al. (2023)
show that few-shot ICL can outperform fine-tuning based
approaches for aligning LLMs.

Complementary to prior works, we compare full fine-tuning
with many-shot ICL with the same number of examples
for low-resource translation. Notably, we find that many-
shot ICL performs comparably to FT. Aligned with our
findings, Bertsch et al. (2024) concurrently show that many-
shot ICL generally outperforms parameter-efficient fine-
tuning (LoRA) on classification tasks. Overall, many-shot
ICL and FT can exhibit comparable behaviors, which we
leave for further investigation.

Exemplar vs. Rule-based ICL generalization Chan
et al. (2022) indicate that ICL tends to generalize in a more
exemplar-based way, compared to rule-based generalization
during in-weights learning. Using a clever experiment with
blocked attention, Bertsch et al. (2024) also argue that the
benefits of many in-context demonstrations arise from hav-
ing access to more similar examples. While our results on
in-context linear classification agree with this conclusion,
our sequential parity results seem to contradict it. Strikingly,
sequential parity was the task on which we saw the most
improvement, whereas it should be a task that benefits least

from seeing similar examples – after all, the nearest neigh-
bor is always going to give the wrong answer (off by 1 bit).
Chan et al. (2022) do show that a transformer’s inductive
biases towards exemplar-based generalization can be shifted
both by the training data and the model size, with larger
models being less exemplar-based – perhaps this explains
the contradictory findings, given that our work used a larger
and much more capable model, though this remains an open
question.

A.2. Context Length for Many-shot ICL

A.3. Many-shot ICL: Comparing GPT-4-Turbo,
Claude-3-Opus and Gemini 1.5 Pro

A.4. Many-Shot ICL: Hallucinations on Summarization

Here is an example on XSum showing summaries with
halluncinated date and time when increasing the number of
shots for many-shot ICL, discussed in §2.2.

Reference Summary: Russia’s leading independent
polling agency has been labelled a "foreign agent" by
the justice ministry and says it cannot now work.

1-shot: The Levada Centre, a Russian organization that
conducts political opinion surveys, has been designated
as a "foreign agent" by the government. This label re-
stricts the organization’s activities and effectively pre-
vents it from conducting independent polls, particularly
in relation to the upcoming parliamentary elections.
Critics view this move as political censorship and an
attempt to suppress dissent.

5-shot: Russia’s leading independent pollster has been
labelled a "foreign agent" by the justice ministry, two
weeks before parliamentary elections.

10-shot: A leading Russian opinion pollster has been la-
belled a "foreign agent" by the authorities, effectively
barring it from conducting any work linked to the up-
coming parliamentary elections.

25-shot: Russia’s leading independent pollster has been
labelled a "foreign agent" by the justice ministry, ef-
fectively barring it from conducting election-related
work.

50-shot: 12 September 2016 Last updated at 14:32 GMT
One of Russia’s last independent pollsters has been
designated a "foreign agent" by the justice ministry.

125-shot: 12 September 2016 Last updated at 14:43 GMT
One of Russia’s last independent pollsters has been
branded a "foreign agent" by the justice ministry.

250-shot: 2016-09-06 Last updated at 14:33 GMT
Russia’s only independent pollster has been branded a
"foreign agent" by the justice ministry.
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Many-Shot ICL: Context Length versus Number of Shots
Best-Performing Shots
Maximum Shots

Figure A.1: Context Length for best-performing and the maximum number of shots tested for each task. The horizontal dashed line
shows the context length of GPT-3 (2048 tokens), which is representative of typical few-shot prompts tested in the LLM literature. For
several tasks, we observed the best-performing shots correspond to the maximum number of shots we tested, which was often limited by
the number of available examples for in-context learning. On some tasks (e.g., code verifier, planning), we did observe slight performance
deterioration beyond a certain number of shots.

500-shot: 12 September 2016 Last updated at 14:22 GMT
One of Russia’s last independent pollsters has been
branded a "foreign agent" by the government.

A.5. Reward Modelling with Many-Shot ICL: Learning
Code Verifiers

A standard approach to improve LLM reasoning is to use
test-time verification (Cobbe et al., 2021; Ni et al., 2023;
Hosseini et al., 2024). Specifically, an LLM generates mul-
tiple candidate solutions for a given problem and a verifier,
also known as an outcome reward model, ranks these solu-
tions and selects the best one. Here, we focus on learning
such verifiers in-context for code verification.

To create in-context verification examples, we utilize correct
and incorrect code solutions in Python generated using Gem-
ini 1.0 Pro (Gemini Team, 2023) on the GSM8K train set.
In the prompt, each (problem, solution) pair is appended
with the question “Is the solution correct?” followed by
the Yes or No token according to ground truth correctness.
At inference, we modify each test (problem, solution) pair
in the same way and record the logit of the Yes and No
tokens (denoted by LY es, LNo). To compute the verifier
score, we use the normalized probability of the Yes to-
ken: IP(Y es) = exp(LY es)/

(
exp(LY es) + exp(LNo)

)
.

We evaluate verifier performance using best-of-4 selection
based on the verifier score on 200 problems from GSM8K
test set with Gemini 1.0 solutions.

As shown in Figure A.3 (left), best-of-4 accuracy with the
few-shot prompted verifier significantly improves above
pass@1 accuracy with 16 or more in-context examples.
Along with an accuracy improvement, the probabilities of

the Yes token conditioned on ground-truth correct and in-
correct solutions separate with increasing the number of
shots up to 256, as shown in Figure A.3 (right). Overall,
these results show a proof-of-concept that the Gemini model
becomes better at verifying correctness of solutions with
many-shot ICL.
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Figure A.2: Many-shot ICL with GPT-4-Turbo and Claude-3-Opus (Anthropic, 2024) on low-resource machine translation (§2.1). For
both GPT-4 and Claude-3, many-shot ICL scales favorably on Bemba but do not exhibit much improvement on Kurdish. In contrast, we
observe that 1.5 Pro few-shot performance starts much higher than GPT-4 and improves monotonically with many-shot ICL. Moreover,
1.5 Pro starts lower than Claude-3 on Bemba but improves more rapidly as we increase the number of shots, leading to a much higher
performance at 997 shots.
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Figure A.3: Learning Verifiers In-Context for checking correctness of GSM8K code solutions. Error bars denotes standard error of
mean over 3 seeds. See Figure A.10 for a 2-shot prompt. Best-of-N accuracy. (Left) Average accuracy of top-ranked code solutions
(among 4 solutions) based on the verifier score on 200 GSM8K test problems. Best-of-4 selection with 128-shot bridges the gap between
Pass@1 accuracy of 77.25% and Pass@4 accuracy of 90% with Gemini 1.0 Pro model. Verifier Confidence. (Right) Conditional
Probabilities of the Yes token IP(Y es) from the verifier, averaged over all correct and incorrect solutions on test problems.

A.6. Is Many-Shot ICL Sensitive to Example Ordering?

In few-shot in-context learning (ICL), the order of examples
within the prompt can significantly impact model perfor-
mance (Lu et al., 2021; Xiang et al., 2024). Here, we inves-
tigate whether such sensitivity to prompt ordering observed
in few-shot ICL persists in many-shot scenarios, which re-
mains largely unexplored. Specifically, we evaluate ten
different random orderings of fixed 50 in-context examples
from MATH training split and evaluate performance on the
held-out MATH500 test set (Lightman et al., 2023).

As Figure A.4 reveals, performance varies significantly
across different subareas in MATH500. Strikingly, an or-
dering that that excels in one subarea may perform poorly
in another, for example, the best Geometry ordering yields
weak results on Number Theory. This fluctuation results
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Figure A.4: Many-Shot Sensitivity To Example Ordering. Each
colored data point represents a different random ordering of 50
in-context examples provided to Gemini 1.5 Pro.
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in a smaller variation in average performance compared
to individual subareas. One interesting extension would
be to optimize many-shot prompts using frameworks like
DSPy (Khattab et al., 2024) that has been successfully ap-
plied for optimizing few-shot prompts based a given metric.
Overall, these findings highlight a key challenge in ensur-
ing reliable results with many-shot ICL for long-context
models.

A.7. Negative Log-Likelihood on Model-Generated Data
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Figure A.5: NLL For Model-Generated Data. We compute negative log-likelihood on model-generated solutions for Hendrycks MATH.
We generate solutions using prompts of varying lengths, starting from (model-generated) 4-shot prompts, and going up to 500-shot
prompts. We then score the solutions with (model-generated) prompts of different lengths, from 4-shot to 500-shot prompts. We see that,
for the solutions generated using the 4-shot prompt, the NLL is lowest for 4-shot and 10-shot scoring prompts, and increases as the length
of the scoring prompt increases. Note that the generation and scoring prompts contain different subsets of examples from the training sets
(and are randomized for each sample). Generally speaking, we see that the NLL is lowest when the generation and the scoring prompts are
of similar lengths, and higher when they are further apart. This reveals to us that prompts of similar lengths induce similar distributions
over the outputs, even when the actual contents of the prompt are different. Further, we see that correct and incorrect solutions follow
similar curves, and the gap between NLL for correct and incorrect solutions does not follow any specific pattern.
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A.8. Example Prompts
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You are an expert translator. I am going to give you one or more example pairs of text snippets where the
first is in English and the second is a translation of the first snippet into Kurdish. The sentences will be
written
English: <first sentence>
Kurdish: <translated first sentence>
After the example pairs, I am going to provide another sentence in English and I want you to translate it
into Kurdish. Give only the translation, and no extra commentary, formatting, or chattiness. Translate the
text from English to Kurdish.

English: Its remnants produced showers across most of the islands, though as of yet, no damage or flooding
has been reported.
Kurdish: Li herêma Serengetîyê, Parka Neteweyî ya Serengetî ya Tanzanyayê, Cihê Parastina Ngorongoro û
Cihê Parastina Gîyanewerên Nêçîrê Maswa û Cihê Parastina Neteweyî ya Masaî Mara ya Kendyayê hene.
· · ·
English: · · ·
Kurdish:

Figure A.6: Example prompt with a test input for translation from English to Kurdish on FLORES-MT benchmark in §2.1.

I will first show a news article and then provide a very short one sentence long summary of it in fluent English.

Summarize the following article: Burberry reported pre-tax profits of £166m for the year to March.
A year ago it made a loss of £16.1m, hit by charges at its Spanish operations.
In the past year it has opened 21 new stores and closed nine. It plans to open 20-30 stores this year worldwide.
The group has also focused on promoting the Burberry brand online.
Sales rose 7% to £1.28bn, with the company recording double-digit sales growth in Europe and Asia Pacific.
Adjusted profit rose 23% to £215m, taking into account one-off items and a favourable exchange rate.
Stores in London in particular benefited from favourable currency movements and increased tourism.
“Looking forward, while mindful of the economic environment, Burberry plans to build on its strong financial position
by accelerating investment in growth initiatives in retail, digital and new markets, while continuing to enhance the
brand,” said chief executive Angela Ahrendts.
Burberry shares were up 7.6% at 659 pence in afternoon trading.
Summary: Luxury fashion designer Burberry has returned to profit after opening new stores and spending more
on online marketing

Figure A.7: Example 1-shot prompt used for summarization on XSum and XLSum in §2.2.
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Please solve the problem:
(define (problem logistics-c2-s1-p1-a2)
(:domain logistics-strips)
(:objects
a0 a1
c0 c1
t0 t1
l0-0 l1-0
p0
)
(:init
(AIRPLANE a0)
(AIRPLANE a1)
(CITY c0)
(CITY c1)
(TRUCK t0)
(TRUCK t1)
(LOCATION l0-0)
(in-city l0-0 c0)
(LOCATION l1-0)
(in-city l1-0 c1)
(AIRPORT l0-0)
(AIRPORT l1-0)
(OBJ p0)
(at t0 l0-0)
(at t1 l1-0)
(at p0 l1-0)
(at a0 l0-0)
(at a1 l1-0)
)
(:goal
(and
(at p0 l0-0)
)
)
)

Your plan as plain text without formatting:
(load-airplane p0 a1 l1-0)
(fly-airplane a1 l1-0 l0-0)
(unload-airplane p0 a1 l0-0)
done.

Please solve the problem:
(define (problem · · · )

Your plan as plain text without formatting:

Figure A.8: An example 1-shot PDDL (Ghallab et al., 1998) prompt, with a test example for the Logistics domain in §2.3. Within a city,
the locations are directly linked, allowing trucks to travel between any two of these locations. Similarly, cities are directly connected to
each other allowing airplanes to travel between any two cities. Each city is equipped with one truck and has a designated location that
functions as an airport

You will be given a multiple choice question with different choices such as (A), (B), (C), (D). Think step by step
before giving a final answer to this question. Always finish your answer with ’Final Answer: (X)’, where X is the
correct answer choice. If none of the options match, choose the closest option as the final answer.

Figure A.9: Zero-shot prompt for GPQA.
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# problem:
It starts raining at 7:00 and pours heavily until its stops at 17:00 on a particular day.
On the second day, the rain takes 2 more hours than it took on the first day to stop.
On the third day, the rain pours for twice the amount of time it took on the second day.
Calculate the total time it was raining in the three days.

# solution:
def solution():
"""It starts raining at 7:00 and pours heavily until its stops at 17:00 on a particular day.
On the second day, the rain takes 2 more hours than it took on the first day to stop.
On the third day, the rain pours for twice the amount of time it took on the second day.
Calculate the total time it was raining in the three days."""

first_day_rain_duration = 17 - 7 # 10 hours
second_day_rain_duration = first_day_rain_duration + 2 # 12 hours
third_day_rain_duration = second_day_rain_duration * 2 # 24 hours
total_rain_duration = first_day_rain_duration + second_day_rain_duration + third_day_rain_duration
result = total_rain_duration
return result

# is the solution correct?
Yes

# problem:
Haley is getting ready to watch a comet fly over her house.
She spends two hours shopping for a telescope, half an hour getting everything set up in the backyard,
three times the setup time making snacks, and 20 minutes watching the comet.
What percentage of the total time she spent on all those activities was spent watching the comet,
rounded to the nearest percent?

# solution:
def solution():
"""Haley is getting ready to watch a comet fly over her house.
She spends two hours shopping for a telescope, half an hour getting everything set up in the backyard,
three times the setup time making snacks, and 20 minutes watching the comet.
What percentage of the total time she spent on all those activities was spent watching the comet,
rounded to the nearest percent?"""

shopping_time = 2 # hours
setup_time = 0.5 # hours
snack_time = setup_time * 3 # hours
comet_time = 20 # minutes
total_time = shopping_time + setup_time + snack_time + comet_time
percentage_comet_time = (comet_time / total_time) * 100
rounded_percentage_comet_time = round(percentage_comet_time)
result = rounded_percentage_comet_time
return result

# is the solution correct?
No

Figure A.10: An example 2-shot code correctness verifier prompt on GSM8K. Here, the solutions are generated using the Gemini 1.0
Pro (Gemini Team, 2023) model. See results in §A.5.
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Problem: Find the domain of the expression
√
x−2√
5−x

.
Solution:
I need to find the domain of this expression.
This expression has two square root expressions.
I know the values under each square root must be non-negative.
So let me start by ensuring that.
I set x− 2 ≥ 0, which simplifies to x ≥ 2.
Then, I set 5− x ≥ 0, which simplifies to x ≤ 5.
But I need to make sure the denominator is not zero.
So, 5− x must also be greater than zero, which gives me x < 5.
Therefore, the domain of the expression is [2, 5) .
Answer: [2, 5).
Final Answer: The final answer is [2, 5). I hope it is correct.
—
Problem: If detA = 2 and detB = 12, then find det(AB).
Solution:
I need to find the determinant of the product of matrices A and B.
I remember that the determinant of the product of two matrices equals the product of their determinants.
So, det(AB) = (detA)(detB) = (2)(12) = 24 .
Answer: 24.
Final Answer: The final answer is 24. I hope it is correct.
—
Problem: Terrell usually lifts two 20-pound weights 12 times. If he uses two 15-pound weights instead, how many times
must Terrell lift them in order to lift the same total weight?
Solution:
Okay, so Terrell lifts a total of 2 · 12 · 20 = 480 pounds of weight with the 20-pound weights.
Well, if he switches to 15-pound weights, the total weight lifted will be 2 · 15 · n = 30n pounds, where n is the number of
lifts.
I want to find the number of lifts, n, for the total weight lifted to be the same.
I equate 30n to 480 pounds and solve for n.

30n = 480

⇒ n = 480/30 = 16

Answer: 16.
Final Answer: The final answer is 16. I hope it is correct.
—
Problem: If the system of equations

6x− 4y = a,

6y − 9x = b.

has a solution (x, y) where x and y are both nonzero, find a
b
, assuming b is nonzero.

Solution:
I’m given a system of two equations.
I see that if I multiply the first equation by − 3

2
, I’ll get another equation that has the same left-hand side as the second

equation, 6y − 9x.
Let me try that

6y − 9x = −3

2
a.

Ah, I also know that 6y − 9x = b, so I can equate these two equations.
So,

−3

2
a = b ⇒ a

b
= −2

3
.

Answer: − 2
3

.
Final Answer: The final answer is − 2

3
. I hope it is correct.

—

Figure A.11: 4-Shot Inner Monologue prompt used for MATH and GSM8K.
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Input: 255 378 650 363 42 447 898 211 104 145 975 6 827 769 977 901
Output: Foo
Input: 111 677 874 692 540 800 771 325 295 106 980 148 275 882 246 136
Output: Foo
Input: 136 215 529 65 265 475 45 639 678 95 460 902 746 919 181 838
Output: Foo
Input: 62 583 498 50 198 277 519 22 935 351 142 369 349 272 880 125
Output: Bar
Input: 101 99 830 735 732 76 243 703 564 3 225 20 136 333 195 441
Output: Bar
Input: 242 430 80 153 39 269 898 6 530 524 89 377 238 697 212 539
Output: Bar
Input: 261 83 244 37 170 277 161 779 544 272 893 535 71 394 64 607
Output: Bar
Input: 402 863 114 193 413 905 894 143 193 288 174 646 411 938 212 285
Output: Bar
Input: 869 365 622 671 191 780 492 836 381 450 184 388 604 79 924 926
Output: Foo
Input: 548 823 66 658 380 81 779 449 641 673 94 130 258 229 299 278
Output: Bar
Input: 700 409 398 375 236 745 32 33 333 173 902 399 176 95 851 897
Output: Foo
Input: 673 211 14 221 508 752 147 309 338 23 827 980 373 861 980 946
Output: Foo
Input: 528 608 334 210 228 186 559 20 302 93 84 436 726 114 785 865
Output: Bar
Input: 117 190 66 628 31 838 183 687 598 11 187 226 381 979 171 39
Output: Bar
Input: 802 730 854 392 529 95 15 987 800 266 551 816 145 390 419 686
Output: Foo
Input: 723 701 860 30 217 633 226 477 720 839 548 880 277 178 512 585
Output: Foo
Input: · · ·
Output:

Figure A.12: Example prompt with 8 shots per class for the linear classification in 16 dimensions, discussed in §4.2. Here, we use
semantically-unrelated labels (‘Foo’ and ‘Bar’) following Wei et al. (2023).
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A.9. Prompts for Unsupervised ICL
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You will be provided Problems similar to the ones below:
Problem: What is the remainder when 369,963 is divided by 6?
Problem: The solution to the inequality

y = −x2 + ax+ b ≤ 0

is (−∞,−3] ∪ [5,∞). Find the vertex of the parabola y = −x2 + ax+ b.
Problem: Let x be an angle such that tanx = a

b
and tan 2x = b

a+b
. Then the least positive value of x equals tan−1 k.

Compute k.
Problem: Compute sin 0◦.
Problem: Let

f(x) =

{
9x+ 4 if x is an integer,
⌊x⌋+ 5 if x is not an integer.

Find f(
√
29).

—
Now, I am going to give you a series of demonstrations of math Problems and Solutions. When you respond, respond only
with the Solution of the final Problem, thinking step by step.”
—
Problem: Find the domain of the expression

√
x−2√
5−x

.
Solution:
I need to find the domain of this expression.
This expression has two square root expressions.
I know the values under each square root must be non-negative.
So let me start by ensuring that.
I set x− 2 ≥ 0, which simplifies to x ≥ 2.
Then, I set 5− x ≥ 0, which simplifies to x ≤ 5.
But I need to make sure the denominator is not zero.
So, 5− x must also be greater than zero, which gives me x < 5.
Therefore, the domain of the expression is [2, 5) .
Answer: [2, 5).
Final Answer: The final answer is [2, 5). I hope it is correct.
—
Problem: If detA = 2 and detB = 12, then find det(AB).
Solution:
I need to find the determinant of the product of matrices A and B.
I remember that the determinant of the product of two matrices equals the product of their determinants.
So, det(AB) = (detA)(detB) = (2)(12) = 24 .
Answer: 24.
Final Answer: The final answer is 24. I hope it is correct.
—
Problem: Evaluate (x+ y)(x− y) when x = 13 and y = 5.

Figure A.13: Prompt used for Unsupervised ICL with MATH and GSM8K. We first start with a preamble saying that we are going to list a
number of problems, and then we list the problems. We then give another pre-amble to specify the output format, and include up to 4
examples to fully describe this output format. As we go to the many-shot setting with hundreds of examples, we only increase the number
of problems in the prompt, not the problem-solution pairs at the end.
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You will be provided questions similar to the ones below:

Question:
A large gene has dozens of exons, of which the central ones code for folded triple helical repeats that connect the cytoskeleton
with sarcolemma and extracellular space. Each exon usually codes for one folded triple alpha helix. The most common mutations
of the gene are central exon deletions that create out-of-frame peptides and progressive degenerative organ waste. A solution is
to deliver a Morpholino that recognizes the 5’ end of the out-of-frame exon in pre-mRNA. The molecule prevents binding of the
spliceosome and creates exon skipping and in-frame joining. Several missing exons are well tolerated by an organism. Which
structure below is not involved in the proposed therapy?
(A) antisense
(B) polyA tail
(C) R-loops
(D) lariat

Question:
· · ·
· · ·

You will be given a multiple choice question with different choices such as (A), (B), (C), (D). Think step by step
before giving a final answer to this question. Always finish your answer with ’Final Answer: (X)’, where X is the
correct answer choice. If none of the options match, choose the closest option as the final answer.

Figure A.14: Unsupervised ICL Prompt for GPQA. We first start with a preamble saying that we are going to list a number of questions,
and then we list the questions. We then give another preamble to specify the output format. As we go to the many-shot setting with
hundreds of examples, we only increase the number of questions in the prompt.

You will be provided source sentences in English to translate in into Kurdish similar to the ones below:

English: Its remnants produced showers across most of the islands, though as of yet, no damage or flooding
has been reported.
· · ·
· · ·

You are an expert translator. I am going to give you one or more example pairs of text snippets where the
first is in English and the second is a translation of the first snippet into Kurdish. The sentences will be
written
English: <first sentence>
Kurdish: <translated first sentence>
After the example pairs, I am going to provide another sentence in English and I want you to translate it
into Kurdish. Give only the translation, and no extra commentary, formatting, or chattiness. Translate the
text from English to Kurdish.

English: Its remnants produced showers across most of the islands, though as of yet, no damage or flooding
has been reported.
Kurdish: Li herêma Serengetîyê, Parka Neteweyî ya Serengetî ya Tanzanyayê, Cihê Parastina Ngorongoro û
Cihê Parastina Gîyanewerên Nêçîrê Maswa û Cihê Parastina Neteweyî ya Masaî Mara ya Kendyayê hene. English: · · ·
Kurdish:

Figure A.15: Unsupervised ICL Prompt for the low-resource MT task. We first start with a preamble saying that we are going to list a
number of source sentences, and then we list the sentences. We then give another preamble with 1 input-output example to specify the
output format. As we go to the many-shot setting with hundreds of examples, we only increase the number of source sentences in the
prompt.
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A.10. Unsupervised ICL on Machine Translation
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Figure A.16: Unsupervised ICL does not work for low-resource
machine translation. This is expected as providing only source
sentences for translation task doesn’t improve the task specification.
See Figure A.15 for the prompt used for unsupervised ICL for this
experiment.

A.11. Reinforced ICL: Data-collection Prompt
Sensitivity and Iteration 2
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Figure A.17: Reinforced ICL Hendrycks MATH. We find the
performance of model-generated rationales with 4-shot Minerva
prompt is generally better or comparable to the ones generated by
4-shot InnerMono. MATH prompt. Furthermore, another iteration
of Reinforced ICL – generating rationales from the best performing
25-shot prompt (with model-generated rationales) on the MATH
training set and using the problems which were not solved in first
iteration – seem to further improve many-shot performance.

A.12. Linear Classification: Data Generation

For each classification dataset, we randomly sample another
N -dimensional vector as the decision boundary and a deci-
sion threshold. We then provide K N-dimensional points
above this threshold and K points below that same thresh-
old as in-context exemplars, and the model must determine
whether unseen N-dimensional points are above or below
the threshold (we do not tell the model the equation or the
threshold). We provide the python code for date generation
below.

import numpy as np

def _ g e n e r a t e _ d a t a s e t ( minv , maxv , N, k , a , t ) :
x t r a i n , y t r a i n = [ ] , [ ]
coun t_pos , coun t_neg = 0 , 0

whi le ( c o u n t _ p o s < k ) or ( coun t_neg < k ) :
x_ex = np . random . r a n d i n t ( minv , maxv , s i z e =N)
l a b e l = 1
i f np . d o t ( x_ex , a ) > t :

i f c o u n t _ p o s >= k :
c o n t in u e

c o u n t _ p o s += 1
e l s e :

i f coun t_neg >= k :
c o n t in u e

coun t_neg += 1
l a b e l = −1

x t r a i n . append ( x_ex )
y t r a i n . append ( l a b e l )

re turn np . a r r a y ( x t r a i n ) . a s t y p e ( s t r ) , np . a r r a y ( y t r a i n )

def GENERATEEVAL(N, k , s eed ) :
" " " G e n e r a t e s one e v a l u a t i o n example f o r N−d i m e n s i o n a l l i n e a r c l a s s i f i c a t i o n .

Args :
N: D i m e n s i o n a l i t y o f t h e da ta .
k : Number o f in − c o n t e x t e x e m p l a r s per c l a s s .

R e t u r n s :
x t r a i n : A l i s t o f 2 k t r a i n i n g examples ( k p o s i t i v e , k n e g a t i v e ) .
y t r a i n : A l i s t o f c o r r e s p o n d i n g l a b e l s f o r t r a i n i n g examples .
x e v a l : A l i s t o f e v a l u a t i o n examples (25 p o s i t i v e , 25 n e g a t i v e )
y e v a l : Ground− t r u t h l a b e l s f o r e v a l u a t i o n examples .

" " "

# S t e p 2 : Genera te ground − t r u t h c o e f f i c i e n t s
np . random . seed ( seed )
minv , maxv = 1 , 1000
a = np . random . r a n d i n t ( minv , maxv , s i z e =N)

# Random i n t e g e r c o e f f i c i e n t s

# S t e p 3 : Genera te a p i v o t p o i n t
p = np . random . r a n d i n t ( minv , maxv , s i z e =N)

# S t e p 4 : C a l c u l a t e t h e c l a s s i f i c a t i o n t h r e s h o l d
t = np . d o t ( a , p )

# S t e p s 5 : Genera te t r a i n i n g examples
x t r a i n , y t r a i n = _ g e n e r a t e _ d a t a s e t ( minv , maxv , N, k , a , t )

# S t e p s 6 : Genera te t h e e v a l u a t i o n example
xeva l , y e v a l = _ g e n e r a t e _ d a t a s e t ( minv , maxv , N, 25 , a , t )

re turn x t r a i n , y t r a i n , ( xeva l , y e v a l )

Listing 1: Code for Generating Sythetic datasets for Linear Classi-
fication in High Dimensions.

A.13. Training GPT-2 from scratch on the sequential
parity task

Figure A.18: For the sequential parity task, training a trans-
former from scratch does not meet 8192-shot ICL performance
(dashed lines) until 20× the number of examples. We trained
two transformers on the sequential parity task (from §4.2). The
smaller model was the size of GPT-2 Small, with 12 layers and
768 embedding dimension. The larger model was the size of
GPT-2 Medium, with 24 layers and 1024 embedding dimension.
We trained using a linear warmup and square root decay sched-
ule, sweeping max learning rate values [1e-5, 5e-5, 1e-4, 5e-4,
1-e3] and num warmup steps [50, 100, 500, 1000, 5000]. The
best values for both models (fastest learning) were max_lr=1e-4,
warmup_steps=1000.
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