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A Knowledge-Injected Curriculum Pretraining Framework for
�estion Answering

Anonymous Author(s)

ABSTRACT
Knowledge-based question answering (KBQA) is a key task in nat-
ural language processing research, and also an approach to access
the web data and knowledge, which requires exploiting knowledge
graphs (KGs) for reasoning. In the literature, one promising solution
for KBQA is to incorporate the pretrained language model (LM)
with KGs by generating KG-centered pretraining corpus, which has
shown its superiority. However, these methods often depend on
speci�c techniques and resources to work, which may not always
be available and restrict its application. Moreover, existing meth-
ods focus more on improving language understanding with KGs,
while neglect the more important human-like complex reasoning.
To this end, in this paper, we propose a general Knowledge-Injected
Curriculum Pretraining framework (KICP) to achieve comprehen-
sive KG learning and exploitation for KBQA tasks, which is com-
posed of knowledge injection (KI), knowledge adaptation (KA) and
curriculum reasoning (CR). Speci�cally, the KI module �rst injects
knowledge into the LM by generating KG-centered pretraining
corpus, and generalizes the process into three key steps that could
work with di�erent implementations for �exible application. Next,
the KA module learns knowledge from the generated corpus with
LM equipped with an adapter as well as keeps its original natural
language understanding ability to reduce the negative impacts of
the di�erence between the generated and natural corpus. Last, to
enable the LM with complex reasoning, the CR module follows hu-
man reasoning patterns to construct three corpora with increasing
di�culties of reasoning, and further trains the LM from easy to
hard in a curriculum manner to promote model learning. We pro-
vide an implementation of the general framework, and evaluate the
proposed KICP on four real-word datasets. The results demonstrate
that our framework can achieve higher performances, and have
good generalization ability to other QA tasks.

KEYWORDS
Question answering, Knowledge-injected pretraining, Curriculum
learning

1 INTRODUCTION
Knowledge-based question answering (KBQA) is a key task in natu-
ral language processing and data mining research [27], which could
act as an approach to access and process web data and knowledge,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Jules Verne
Around 

the Moon

Off on a 

Comet

author

author
occupation

period

Knowledge Graph

What is the period of the author of Off on a Comet ?
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Figure 1: A toy example of KBQA, which requires complex
reasoning marked in red.

and lead to useful applications such as smart voice assistant and
search engine especially with the large language models [24]. As
shown in Figure 1, KBQA aims to answer questions in natural lan-
guage based on background knowledge, which is often formatted
as knowledge graphs (KGs) [39, 43]. Therefore, KBQA requires abil-
ities of both natural language understanding (NLU) and knowledge
reasoning, making it a challenging task in related �elds.

In the literature, researchers have proposed many solutions for
KBQA [21, 27, 43], among which the pretrained language models
(LMs) have become the most promising for its strong NLU abil-
ity [6, 24]. Unfortunately, LMs work not so well in knowledge
application [15, 17], which hinders its application in KBQA. There-
fore, researchers have tried great e�orts to enhance the LMs with
KGs (inputting knowledge facts into LMs, or pretraining LMs with
knowledge-based tasks [15, 25, 28, 31, 32, 40, 41, 44, 46]), which has
greatly improved LMs in knowledge-related tasks. However, these
methods often learn KGs as supplementary to additional pretrain-
ing corpus [15, 44], which can not cover the whole KG and may
overlook some knowledge useful in certain tasks, and thus leads
to incomplete knowledge learning. Towards this point, a straight-
forward solution is to generate the pretraining corpus based on
the KGs. Although many methods have been developed along this
line [1, 3, 14, 42], they usually depend on speci�c techniques or
resources for e�ective corpus generation (e.g., requiring pretrained
generative model to generate sentences, or generating sentences
in a �xed format), which may be unavailable in practice and thus
restricts its application. Therefore, in this paper we hope to design
a general framework to generate KG-centered corpus for compre-
hensive knowledge pretraining of LMs, which could work with
di�erent detailed techniques for �exible application.

However, along this line there exist several nontrivial technical
challenges. First, there are many solutions to generate sentences
based on given KGs for di�erent demands (e.g., pretrained gener-
ative LMs [1], �xed sentence templates [14]). Moreover, although
most KGs store the knowledge triplets with entity IDs, some high-
quality KGs also contain additional attribute information, which
is stored in various forms (e.g., texts, numbers and dates) and re-
quires di�erent processing. How to unify and generalize these
various techniques and data forms remains much open. Second, the
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generated sentences di�er from natural ones and may even seem
distorted, which may mislead the LM and hurt natural language
understanding ability of the LM in pretraining. Existing methods
address this problem with speci�c techniques in accordance with
their generation methods (e.g., generating sentences more similar to
natural ones with complex generative LMs [1], or adopting specially
designed sentence templates to reduce the negative impacts [14]),
but how to overcome this shortcoming for an arbitrary generation
method in the general framework is a nontrivial problem. Last,
existing methods enhancing LMs with KGs [32, 44] focus more on
improving language understanding with related knowledge, while
seldom have considered the human-like complex reasoning ability.
Humans can perform reasoning over multiple knowledge facts fol-
lowing speci�c patterns, which is also widely required in KBQA
tasks. For example, in Figure 1, to reach the answer, the LM �rst
needs to �nd that the author of O� on a Comet is Jules Verne, and
then the period of Jules Verne is 1828-1905. How to enable the LMs
with such complex reasoning is a challenging problem.

To this end, in this paper, we propose a general Knowledge-
Injected Curriculum Pretraining framework (KICP) to achieve
comprehensive KG learning and exploitation for KBQA, which
is composed of knowledge injection (KI), knowledge adaptation
(KA) and curriculum reasoning (CR). Speci�cally, the KI module
converts KG triplets into sentences to construct pretraining corpus
for complete knowledge learning, and generalizes the process into
three key steps, i.e., text characterization, sentence construction
and masking, which can be implemented with di�erent detailed
techniques and various data forms for �exible application. Next,
to reduce the negative impacts brought by the di�erence between
generated and natural corpus on LM pretraining, the KA module
�xes the original LM to keep its NLU ability, and learns knowledge
from the generated corpus with a trainable adapter working with
the LM. Last, to pretrain the LM with complex reasoning ability,
the CR module follows common reasoning patterns of humans
and constructs corpora requiring complex knowledge reasoning.
Furthermore, the CR module arranges the complex corpora into
three lessons with increasing di�culties, and trains the LM from
easy to hard following the curriculum learning manner to reduce
pretraining di�culty. Finally, we provide an implementation of the
general framework, and conduct extensive experiments on four
real-word datasets to evaluate KICP. The results demonstrate that
our framework can achieve higher performances, and generalize to
other QA tasks well.

2 RELATEDWORK
Knowledge-BasedQuestionAnswering.Knowledge-based ques-
tion answering (KBQA) aims to answer questions based on given
knowledge bases, which are usually knowledge graphs (KGs) [13,
21, 27, 43]. In the literature, studies on KBQA can be roughly di-
vided into two branches, i.e., the knowledge-enhanced LM centered
on question understanding and reasoning with LMs (which is the
focus of this paper, and we will provide a more detailed introduction
later), and KG-based reasoning centered on performing knowledge
reasoning on the graph, which includes path-based [20], embedding-
based [9, 27] and graph-based methods [8, 12, 21, 38, 39, 43]. Path-
based methods map the question into entities and relations and

perform reasoning by directly walking on the KG to reach the an-
swers [20], which have higher interpretability but require much
e�ort on rule design in complex questions. Embedding-based meth-
ods such as EmbedKGQA [27] represent the question and KG in the
same latent space, and infer the answer with simple vector com-
putation. These methods unify simple and complex reasoning, but
may have limited performance and interpretability. Graph-based
methods are widely studied recently [8, 12, 21, 38, 39, 43], which
sample a sub-graph from the KG, and perform detailed reason-
ing on the sub-graph with neural networks. Graph-based methods
are widely applied in complex reasoning for the good trade-o�
between interpretability, performance and computation complex-
ity, but the knowledge modeling is insu�cient only within the
sub-graph which may leads to limited robustness.
Knowledge-Enhanced Language Model. As the pretrained lan-
guage models demonstrate great performances in natural language
processing [4, 23, 24, 30], their shortcomings on knowledge-based
tasks are also exposed [15, 17]. Therefore, researchers have tried
many e�orts to enhance LMs with knowledge from KGs, which
could be roughly divided into explicit methods [15, 25, 44] and im-
plicit methods [14, 28, 31, 32, 37]. Explicit methods feed knowledge
facts or embeddings into LM as additional inputs to exploit re-
lated knowledge. For example, K-BERT [15] injected the knowledge
triplets into the sentences as inputs to the LM. Zhang et al. [44] de-
veloped an aggregator network to incorporate the semantic vectors
learned by LM and entity embeddings from KGs. Implicit methods
design special pretraining tasks to learn knowledge from KGs and
corpus with LM. To better learn entity knowledge from corpus,
Sun et al. [28] introduced an entity masking strategy for masked
language model pretraining, and Wang et al. [32] trained LM as
knowledge embedding model by encoding descriptions of entities
with LM as embeddings. To better exploit the multilingual triplets
of the KG, Liu et al. [14] generated multilingual synthetic corpus
using the KG triplets and pretrained the LMs, and Agarwal et al. [1]
designed a more complicated pipeline with pretrained generative
LM to synthesize more natural corpus based on KGs. In summary,
explicit methods can exploit the knowledge in a more direct manner
but require more knowledge annotations as additional inputs, while
implicit methods can be easily applied in downstream tasks, but
require heavy pretraining for each knowledge base.
Curriculum Learning. Curriculum learning is an e�ective contin-
ual optimization strategy �rst proposed by Bengio [2], which imi-
tates human learning habits starting by easy lessons and then more
di�cult ones, and demonstrates that training model on datasets
from easy to hard could bene�t learning, accelerate convergence
and promote the training outcome. Curriculum learning has shown
great superiority in improving the generalization and convergence
of models, and has been widely applied in various �elds [11, 22, 45].
For example, Zhao et al. [45] designed pretraining tasks with dif-
ferent di�culties and applied curriculum learning to train a LM
for mathematics understanding, and Li et al. [11] trained the vi-
sual question solver on a sequence of instance sets with increasing
complexity following the curriculum manner.

Our work di�ers from previous methods as follows. First, exist-
ing methods rewriting the KG into corpus often depend on spe-
ci�c techniques and resources for e�ective generation, while our
method is a general framework which can work with di�erent
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detailed implementations for �exible application under di�erent
circumstances. Second, existing methods focus more on improving
language understanding with related knowledge but seldom con-
sider the human-like complex reasoning ability of LMs, while our
method explicitly enables the LM with such ability with specially
designed pretraining task and further adopt the curriculum learning
strategy to promote the outcome.

3 KICP: KNOWLEDGE-INJECTED
CURRICULUM PRETRAINING

In this section, we �rst formally introduce the KBQA task, and then
present the proposed KICP framework.

3.1 Problem De�nition
Knowledge-based question answering (KBQA) is composed of the
knowledge graphKG and the question-answer pair (Q,Y ). Without
loss of generality, we suppose that the KG contains knowledge
triplets about the relation between two entities and the attribute
of each entity where the attribute values are in diverse forms but
can be expressed with texts anyway (natural language texts are
de�ned as V +, where V is the vocabulary). Therefore, the KG can
be de�ned as KG = (E,R,

∑
), where E is the entity set, R is the

relation and attribute set, and
∑

means the knowledge triplets.
Each triplet (h, r , t) ∈

∑
(h, t ∈ E, r ∈ R) means that the entity

h and t have the relation r (e.g., “Jules Verne” is the “author” of
“O� on a Comet” in Figure 1), and (h, r , t) ∈

∑
(h ∈ E, r ∈ R,

t ∈ V +) means the attribute r of entity h is t , where t is the attribute
value in text (e.g., the “period” of “Jules Verne” is “1828-1905”)
Besides, each entity e ∈ E is assigned with several names in natural
language Ne = {ne 1,ne 2, . . . ,ne k } (each name ne i ∈ V +). R is
assigned with names similarly. In the question-answer pair (Q,Y ),
Q = {q1,q2, . . . ,qn } ∈ V + (qi ∈ V ) is the question in natural
language, and Y is the answer to Q inferred under KG, whose
form depends on the task (e.g., most KBQA selects an entity or
attribute value fromKG like Figure 1, and generative QA generates
formal language from certain vocabulary such as natural text or
mathematical expression).

Given the knowledge graphKG and question-answer pair (Q,Y ),
the goal of KBQA is to train a model M :(KG,Q)→Y to predict the
answer Y of question Q underKG. In this paper, we �rst pretrain a
language model LM with KG, and then use it in M to predict the
answer Y to Q . We expect that LM could learn knowledge from
KG comprehensively and well handle complex reasoning.

3.2 Method
We propose a general Knowledge-Injected Curriculum Pretraining
framework (KICP) to pretrain LM for comprehensive knowledge
learning and complex reasoning, which could easily work with dif-
ferent detailed implementations for �exible applications. As shown
in Figure 2 (a), KICP is composed of three key components, i.e.,
knowledge injection (KI), knowledge adaptation (KA) and curriculum
reasoning (CR). Speci�cally, KI injects knowledge from the KG into
the LM completely by converting the KG triplets to sentences to
construct the pretraining corpus, and generalize the various gen-
eration techniques into three key steps. To reduce the negative
impacts brought by the gap between generated and natural corpus,

KA �xes the original LM to keep its NLU ability, and equips the
framework with a trainable knowledge adapter to learn knowledge
from the generated corpus. To pretrain the LM with complex rea-
soning ability, CR follows common patterns of human reasoning
and constructs several reasoning-required corpora with di�erent
di�culties, and trains the LM from easy to hard in a curriculum
manner to promote model learning.

3.2.1 Knowledge Injection. To overcome the insu�cient knowl-
edge learning brought by using the KG as supplementary to external
corpus, we directly convert the KG triplets into sentences as pre-
training corpus to inject knowledge into the LM. Moreover, there
exist several e�ective sentence generation techniques for di�erent
requirements in the literature [1, 14], and the KGs contain multiple
forms of data that requires di�erent processing (e.g., IDs, texts,
numbers and dates). Therefore, to generalize these detailed tech-
niques to a general framework for �exible application in various
circumstances, as shown in Figure 2 (b), we abstract the sentence
generation process into three key steps, i.e., text characterization,
sentence construction and masking.
Text Characterization. Given one triplet k = (h, r , t) ∈

∑
sam-

pled from KG, KI �rst characterizes all �elds of the triplet as texts
(Txt), which serve as the backbone elements of the sentence to
generate. For the entities and relations stored in IDs, We map the
meaningless ID (e.g., e1) to a meaningful name (Jules Verne), which
is dynamically sampled from the associated name set in each itera-
tion to increase corpus diversity. More sampling strategies can also
be applied here for other demands [14]. For the various forms of
attribute values (e.g, numbers, dates and texts), we use their textual
descriptions as they can always be expressed with texts despite the
original forms. In this way, we can unify the diverse processing of
the entities, relations and attribute values.
Sentence Construction. After getting the textual elements, KI ap-
plies a sentence construction strategy τ to assemble these elements
into a complete sentence, including reordering and transforming
the elements and adding auxiliary words. The strategy τ can be
implemented with di�erent existing techniques, such as sentence
templates, grammar-based rules, and the generative LMs [1, 14].
Masking. The last step is to mask the generated sentence for
masked language model (MLM) pretraining. To force knowledge
learning and match the di�erences between entities and attribute
values, we prefer paying more weights to the knowledge elements
in the sentence (those converted from the triplet), and applying
di�erent masking strategies Msk to entities and attribute values.
For example, we apply the entity masking [28] on entities which
masks the whole entity name to force learning relation knowledge
instead of memorizing the entity name, and whole word masking
(WWM) [5] on attribute values since the values may contain too
much information (e.g., biography) and are too hard to recover if
all masked. WWM also works similarly to entity masking on short
values (e.g., numbers) by masking as a whole word. More masking
techniques can be used here as Msk.

Overall, the sentence generation process is formulated as follows:

KI (k) = Msk(τ (Txt(h), Txt(r ), Txt(t))), k = (h, r , t) ∈
∑
. (1)

The knowledge-injected corpus is composed of the sentences KI (k),
which are dynamically generated from triplets sampled from the
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[SEP] The period of Jules Verne is 1828 - 
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Figure 2: The architecture of the proposed KICP framework. (a) The overview of KICP. (b) The knowledge injection module
(KI) converts the KG triplets into sentences with three key steps. (c) The knowledge adaptation module (KA) works with the
LM to keep original NLU ability as well as learn knowledge. (d) The curriculum reasoning module (CR) constructs complex
reasoning-required corpora to pretrain the LM from easy to hard.

KG in pretraining. Compared with existing methods rewriting KG
as corpus, KI does not depend on speci�c techniques or resources,
and thus could work with di�erent implementations for various
application demands.

3.2.2 Knowledge Adaptation. Obviously the corpus generated by
KI di�ers from natural ones as the sentences may not strictly follow
the grammar (especially for some simple τ ), and the diversity of
the corpus is limited. Pretraining the LM on the corpus may hurt
NLU ability and work badly on natural texts. Furthermore, as the
sentence generation technique in the proposed general framework
is arbitrary, we can not use methods associated with speci�c gener-
ation techniques to address the problem as existing studies [1, 14].
Therefore, in knowledge adaptation (KA), we turn to keeping the
NLU ability of LM during knowledge pretraining.

As demonstrated by Figure 2 (c), following the adapter paradigm
in LM tuning [7, 31], we �x the LM parameters and add a trainable
knowledge adapter module Ad above the original LM LM . Ad uses
the semantic outputs of LM as inputs, and outputs the knowledge-
enhanced representations. Moreover, to deeply improve the fusion
of the semantics and knowledge, the semantic outputs of all layers
in the LM are used. The computation of KA is formulated as follows:

KA(x) = Ad(LM(x)), (2)

where x is the input sentence. Ad can be implemented with any
neural networks, which is expected to have a proper size to contain
enough space for knowledge learning and avoid greatly increasing
computation complexity as well.

In pretraining, the parameters of Ad is trained to learn knowl-
edge from the constructed corpus, while the original LM is �xed. As
the original LM is not a�ected by Ad, the NLU ability is retained as
much as possible to reduce the negative impacts of the gap between
generated and natural corpus.

3.2.3 Curriculum Reasoning. With KI and KA, KICP can e�ectively
inject the KG into LM, but still lacks complex reasoning ability

over multiple knowledge facts as required in real-world KBQA
tasks. To enable the LM with such ability, the curriculum reasoning
module (CR) pretrains LM on corpora requiring complex reasoning
as shown in Figure 2 (d).

It is hard to collect enough reasoning-required corpus for all KGs,
so we also build the corpus based on the KG. Humans often per-
form complex reasoning following speci�c patterns (e.g., multi-top
reasoning), which put restrictions on the participating triplets (e.g.,
the chain-like triplets). Therefore, we build the corpus following
these patterns (e.g., “The period of the author of O� on a Comet
is 1828-1905”). We �rst sample several triplets {k1, . . . ,kn } match-
ing the restrictions from KG, such as the chain-like triplets {(O�
on a Comet, author, Jules Verne), (Jules Verne, period, 1828-1905)}
for multi-hop reasoning, and then convert them into a complex
composition with a pipeline Comp similar to KI as follows:

Comp(k1, . . . ,kn ) =Msk′(τ ′(Txt(h1), Txt(r1), Txt(t1),

. . . , Txt(tn ))), ki = (hi , ri , ti ) ∈
∑
,

(3)

where τ ′ and Msk′ are sentence construction and masking in Comp.
Much more reasoning patterns can be supported by the CR module.

The complex composition often discards some information to
infer from knowledge, so it is hard to pretrain LM directly (e.g., in
previous example “Jules Verne” is discarded, which makes it hard
to understand without related knowledge). Therefore, as shown in
Figure 2 (d), we split the pretraining into three lessons with gener-
ated corpora from easy to hard following curriculum learning [45]
to promote model learning.
Lesson 1: Knowledge Learning. We start by pretraining LM on
single triplets from the KG. We build this corpus with KI based on
one triplet k for each sentence, and pretrain the LM (i.e., KA) on
the MLM task to memorize the knowledge facts as follows:

min
θAd, θMLM

L1(k) = MLM(KA(KI (k))), (4)

4
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where θAd and θMLM means trainable parameters for knowledge
adapter Ad in KA and MLM head.
Lesson 2: CoT Learning. Having learned basic knowledge facts
from KG, next we teach the LM how to conduct complex reason-
ing with related knowledge facts. Inspired by chain-of-thought
(CoT) [19, 34], we assemble each sentence with complex composi-
tion by Comp for certain reasoning pattern and all related knowl-
edge by KI as reasoning steps base on triplets {k1, . . . ,kn }. To avoid
information leakage, we mask the same element (e.g., entity) in
both the �nal composition and reasoning steps, and pretrain the
LM on the MLM task as follows:

min
θAd, θMLM

L2(k1, . . . ,kn ) =MLM(KA([KI (k1), . . . ,

KI (kn ),Comp(k1, . . . ,kn )])),
(5)

where [, ] means text concatenation, and {k1, . . . ,kn } matches the
reasoning pattern for Comp.
Lesson 3: Composition Learning. In the hardest lesson, we pre-
train the LM to reason with memorized knowledge as real-world
QA tasks, where we only provide the �nal compositions without
related reasoning steps. Therefore, We construct the corpus with
the complex compositions by Comp, and pretrain the LM on the
MLM task as follows:

min
θAd, θMLM

L3(k1, . . . ,kn ) = MLM(KA(Comp(k1, . . . ,kn ))). (6)

The corpora are dynamically generated with randomly sampled
triplets in pretraining. We demonstrate some samples of corpora in
three lessons in Appendix C. Through the three pretraining lessons,
we explicitly enable the LM with human-like complex reasoning
ability required in KBQA tasks, and reduce the pretraining di�culty
with the curriculum learning.

3.2.4 QA Fine-Tuning. After pretrained on the KG, the LM can be
easily applied in di�erent downstream QA tasks without additional
annotations or external knowledge inputs. Speci�cally, the LM (i.e.,
KA) reads the question Q as input, and outputs the knowledge-
enhanced vector, which is fed to a task-dependent prediction head
Pred to generate the answer Y . The whole system (LM and Ad in
KA and Pred) can be �ne-tuned on di�erent QA tasks subject to the
task-dependent objective function L as follows:

min
θLM, θAd, θPred

LQA(Q,Y ) = L(Pred(KA(Q)),Y ), (7)

where θLM , θAd and θPred are parameters of these modules.

3.3 Implementation
In this section, we provide an implementation of the general KICP
framework. In KI, we implement text characterization and masking
as mentioned in section 3.2.1, and realize τ by simply concatenating
all �elds, which works well on our datasets.

In KA, we implement the knowledge adapter Ad as BERT with
the same number of layers and halved vector dimension. In each
layer of Ad, the input (semantic vector from corresponding layer
of LM) is �rst projected with a linear model to the latent space
of hidden vector from last layer, and then added with the hidden
vector to feed to the BERT layer. The �nal vectors of Ad and LM
are merged with a linear layer as the output. The architecture of
KA is available in Appendix A.

In CR, we implement Comp with two widely-used reasoning pat-
terns, i.e., multi-hop reasoning and multi-object reasoning. Multi-
hop reasoning (e.g., the period of the author of O� on a Comet
is 1828-1905) �rst infers an intermediate entity from the topic en-
tity in the question (the author of O� on a Comet is Jules Verne),
and then use it to infer the next intermediate entity until reaching
the answer (the period of Jules Verne is 1828-1905). Therefore, the
knowledge triplets form a chain-like structure, where the tail entity
of one triplet is the head of the next one (e.g., Jules Verne). Given
these triplets, Comp discards all intermediate entities and concate-
nates other �elds sequentially. Multi-object reasoning (e.g., the
occupation of Jules Verne is novelist and playwright) infers several
results from one topic entity, thus the knowledge triplets share the
same head entity and relation (Jules Verne and occupation). Given
the triplets, Comp discards the heads and relations expect the �rst
one, and concatenates all tails with the �rst head and relation. For
each sentence we sample 2 to 3 triplets matching the patterns.

4 EXPERIMENTS
In this section, we conduct experiments on four QA datasets to
evaluate the proposed KICP framework. We will release our code
and public data after this paper is accepted.

4.1 Experimental Setup
4.1.1 Datasets. We use three KBQA datasets, i.e., CN-QA, Com-
plexWebQuestions and FreebaseQA, to evaluate KICP on knowledge-
based reasoning, and a generative dataset Math23K for generaliza-
tion to other knowledge-related QA tasks.

CN-QA is a Chinese KBQA dataset collected from smart voice
assistant accompanied by a KG named CN-KG with both entity
relations and attributes. ComplexWebQuestions [29] is a public
KBQA dataset with complex questions built on WebQuestions and
Freebase. FreebaseQA [10] is another public KBQA dataset based
on Freebase with both simple and complex questions derived from
TriviaQA and trivia websites. Since Freebase has been merged to
Wikidata, we use the Wikidata dump in [32], and map entities to
Wikidata to construct an answerable subset for ComplexWebQues-
tions and FreebaseQA. Math23K [33] is a public generative math
word problem dataset which answers the question with a generated
mathematical expression. We construct a KG based on the semantic
web HowNet [26] for Math23K following [35].

The questions in KBQA are answered with entities or attribute
values from the KG. To reduce the computation complexity without
losing much di�culty, we sample 10 hard candidate answers with
the same type of the truth for three KBQA datasets, among which
the prediction is made. We also sample a sub-graph from the whole
KG for each dataset to accelerate pretraining. The statistics of the
datasets are available in Appendix B.

4.1.2 Baseline Methods. We compare the proposed KICP with orig-
inal LMs BERT [6] and RoBERTa [16], and knowledge-enhanced
LMsERNIE [44],K-BERT [15],KEPLER [32] andK-Adapter [31].
A brief introduction to these baselines are listed as follows.

• BERT [6] was the most widely used pretrained language
model, based on which our framework is implemented, thus
we add BERT as baseline to evaluate the improvement.
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Table 1: Overall Results of All Methods on Four Datasets

Dataset CN-QA ComplexWebQuestions FreebaseQA Math23K
Metric F1 EM F1 EM ACC ACC

BERT 0.607 0.458 0.856 0.763 0.896 0.801
RoBERTa 0.610 0.456 0.863 0.779 0.892 0.803

ERNIE 0.614 0.459 0.861 0.772 0.901 0.796
K-BERT 0.620 0.462 0.866 0.774 0.896 0.799
KEPLER 0.628 0.467 0.868 0.785 0.906 /

K-Adapter 0.612 0.462 0.866 0.802 0.905 /

KICP-KA 0.633 0.469 0.871 0.809 0.903 0.797
KICP-ATT 0.629 0.466 / / / /

KICP 0.639* 0.480* 0.880* 0.819* 0.911* 0.809*

• RoBERTa [16] studied the impacts of hyperparameters and
task design in pretraining, and achieved a robustly optimized
BERT with signi�cant improvements.
• ERNIE [44] developed an aggregator network to explicitly

combine the entity embedding learned from KG with the
semantics learned by LM to inject knowledge into the LM.
• K-BERT [15] directly linked the related KG triplets with the

sentence to inject the knowledge, which was fed to the LM
together for the knowledge-enhanced representation.
• KEPLER [32] trained the LM as the knowledge embedding

model, where the entity embedding was generated by the
LM on the entity description.
• K-Adapter [31] designed a neural adapter for each kind of

infused knowledge, and trained the adapters on di�erent
knowledge pretraining tasks.

4.1.3 Training Details. We implement KICP with Pytorch based on
the pretrained BERT released by huggingface. 1 We use the “bert-
base-chinese” version as LM for the Chinese dataset CN-QA and
Math23K, and “bert-base-uncased” for the English dataset Com-
plexWebQuestions and FreebaseQA. For KA, the number of BERT
layers of Ad is 12 (equal to LM), the dimension is 384 for hidden
vector (half of LM) and 768 for output vector(equal to LM). The
parameters of Ad are initialized with kaiming initialization. The
implementations of KI and CR are available in section 3.3.

We pretrain the model on MLM task for 3 epochs with AdamW [18]
as the KG is large enough. The batch size is set to 32, and the learn-
ing rate is 0.0005, which warms up over the �rst 10% steps, and
then linearly decays. The masking probability for the MLM task is
set to 0.15 in lesson 1 and lesson 3, and 0.3 in lesson 2 as the corpus
in lesson 2 contains more repeated information. The masked tokens
are processed following BERT.

In downstream QA tasks, for CN-QA, ComplexWebQuestions
and FreebaseQA, we concatenate the question and each candidate
answer as input to LM and implement the classi�er Pred with MLP.
CN-QA and ComplexWebQuestions are viewed as multi-label clas-
si�cation with more than one answers for each question and �ne-
tuned with binary cross entropy loss, and FreebaseQA is �ne-tuned
with cross entropy loss as single-label classi�cation. For Math23K,
we input the question into LM as encoder, and adopt GTS [36], an
e�ective MWP solver, as decoder, which is �ne-tuned with cross

1https://huggingface.co/transformers

entropy loss. The QA dataset is much smaller than the KG, thus
we �ne-tune for 30 epochs on CN-QA, ComplexWebQuestions and
FreebaseQA, and 80 epochs on more di�cult Math23K.

We run all experiments on a Linux server with two 2.20 GHz
Intel Xeon E5-2650 CPUs and a Tesla K80 GPU.

4.2 Experimental Results
4.2.1 Overall Results. In this section, we compare KICP with all
baselines. We use the F1 score (F1) and exact match score (EM) as
metrics for multi-label datasets CN-QA and ComplexWebQuestions,
and accuracy (ACC) for single-label dataset FreebaseQA. Math23K is
evaluated with answer accuracy (ACC), i.e., the predicted expression
is viewed correct if the computed answer equals the truth.

The results on four datasets are reported in Table 1. 2 We sta-
tistically test the improvement of KICP over baselines with paired
t-test, and �nd the improvement to be signi�cant with p < 0.05
(marked *). We can get the following observations from the results.
First, KICP outperforms all baselines, which clearly demonstrates
its e�ectiveness on knowledge learning and exploitation for QA
tasks. Second, KICP performs better than K-Adapter, which has
similar model but di�erent pretraining task and dataset setting. The
result shows that task and dataset have a signi�cant in�uence on
the pretraining outcome. Third, the knowledge-enhanced methods
outperform the original BERT and RoBERTa in most cases, proving
that knowledge is a key element in QA reasoning especially for
KBQA. Last, knowledge injection does not bring much improve-
ment and even negative e�ect on Math23K dataset. The reason may
be that Math23K requires NLU more than knowledge, which may
be a�ected by knowledge injection and thus hurts reasoning.

4.2.2 Ablation Study. Besides the widely studied entity relation
knowledge stored in IDs, KICP further incorporates the attribute
knowledge in diverse forms. Moreover, KICP designs the knowledge
adapter module to reduce the negative impacts of the generated
corpus. Therefore, in this section, we conduct ablation experiments
to study the e�ectiveness of the two components (the curriculum
reasoning will be investigated in detail in section 4.3). We introduce
two variants of KICP: KICP-KA removes the knowledge adaptation
module and directly trains the parameters of original LM, and KICP-
ATT discards the attribute knowledge in KG and pretrains only on

2We do not evaluate KEPLER and K-Adapter on Math23K, as pretraining the two
methods requires entity descriptions, which are unavailable on HowNet.
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Table 2: Performances on Easy and Hard Questions

Dataset CN-QA FreebaseQA
Di�culty Easy Hard Easy Hard

BERT 0.633 0.603 0.920 0.891
KICP 0.676 0.634 0.933 0.907
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Figure 3: Pretraining loss trend on three KGs in lesson 1.

the entity relation knowledge. The results of the two variants are
also reported in Table 1. 3 We can summarize the following conclu-
sions from the results. First, the two variants both perform worse
than KICP, which shows that the KA module could help address
the shortcomings mentioned before, and the attribute knowledge
is also quite useful in the KBQA tasks. Next, in CN-QA, KICP-ATT
performs worse than KICP-KA, which means that exploitation of
the attribute knowledge contributes more than the knowledge adap-
tation on this task. The result is reasonable since a large part of
CN-QA requires attribute knowledge (about 45%). Last, KICP-KA
performs worse than BERT in Math23K, which may be due to the
reason that KICP-KA hurts the NLU ability of original LM in knowl-
edge pretraining.

4.2.3 Performance over Di�iculty. We also investigate the perfor-
mance of KICP on questions with di�erent di�culties to study the
complex reasoning ability of the framework. We split CN-QA and
FreebaseQA into easy questions (answerable with one knowledge
triplet) and hard ones (requiring reasoning over multiple triplets). 4

We report the performances of KICP and BERT in Table 2 (F1 on
CN-QA and ACC on FreebaseQA for simplicity). We have the fol-
lowing observations. First, it is a reasonable result that all methods
perform much better on the easy questions than the hard ones.
Second, KICP outperforms BERT on both easy and hard questions,
showing that both easy and complex QA reasoning bene�ts from
knowledge injection and exploitation. Next, the improvement on
hard questions are larger in FreebaseQA. The reason may be that
KICP are pretrained on corpus requiring more reasoning ability,
which contributes to the higher performance in hard questions.
However, in CN-QA the easy questions bene�t more, which may
result from the much larger proportion of easy questions bene�ting
from knowledge, and leads to a higher improvement.

4.3 Curriculum Reasoning Analysis
In this section, we investigate the feasibility and e�ectiveness of
curriculum reasoning in KICP.

3The results of KICP-ATT on ComplexWebQuestions, FreebaseQA and Math23K are
unavailable, as Wikidata and HowNet do not contain attribute knowledge.
4ComplexWebQuestions only contains hard questions and Math23K is a generative
dataset which exploits knowledge implicitly and hard to distinguish the knowledge
requirement and di�culty, so we do not conduct the experiment on the two datasets.
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Figure 4: Pretraining loss trend on three KGs in lesson 3.
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Figure 5: Performances of LM pretrained for each lesson.
4.3.1 Loss of Curriculum Pretraining. It is obvious that the corpus
generated by the CR module is greatly di�erent from the natural
ones. To verify the feasibility of pretraining the LM with such
corpus, we plot the trend of loss in pretraining. Due to the limited
space, we report the lesson 1 results on three KGs in Figure 3. 5 From
the �gure, the loss keeps dropping and then gradually converges,
which demonstrates that the generated corpus contains enough
information to train the LM for knowledge learning, although it
may seem odd compared with natural ones.

The CR module aims to reduce the di�culty of pretraining LM
for complex reasoning in lesson 3. To investigate the e�ectiveness,
we plot the loss trend in lesson 3 in Figure 4 with two variants: CR-
03 trains on lesson 3 without previous two lessons, and CR-13 skips
lesson 2. There are several observations from the �gure. First, the
loss of CR drops faster and �nally reaches lower, proving that the
curriculum setting could reduce the training di�culty by reaching
a better initial state. Second, the trend of CR-03 is similar to lesson 1
in Figure 3, which may mean that the model �rst need to learn basic
knowledge as in lesson 1 and then reasoning in CR-03. Third, the
loss of CR and CR-13 has a short increase in the beginning which
may be due to the higher di�culty of lesson 3 and the di�erent
data distribution between previous easier lesson. Last, CR-13 works
better than CR-03 in CN-KG and Wikidata, showing that the LM
can perform reasoning better with knowledge memorized. The
exception in HowNet may be due to that HowNet mainly contains
semantic information, which has been partially covered in LM.

4.3.2 Performance of Curriculum Reasoning. We also evaluate the
e�ectiveness of CR on downstream QA tasks. Ideally, the LM would
5ComplexWebQuestions and FreebaseQA both use Wikidata as KG, so three KGs are
included in total in experiments.
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Figure 6: Performances ofKICP andBERTover training size.

perform knowledge reasoning better after pretrained on each les-
son. Therefore, we evaluate the LM �nishing lesson 1, 2, 3 (“L1”,
“L2”, “L3”) on QA datasets in Figure 5 with CR-03 and CR-13 (“L03”
and “L13”) for comparison. We can get the following observations.
First, performances of models keep increasing after �nishing each
lesson, which proves the above assumption. Next, the performance
of L3 is much better than L03 and L13 (all pretrained on lesson
3), showing that the curriculum setting not only helps in conver-
gence, but also promote the �nal outcome. Last, the performances
of models on Math23K do not di�er greatly. The reason may be that
Math23K requires NLU more than knowledge, thus the knowledge
pretraining has less e�ect on the QA performances.

4.4 Training Size Analysis
The pretrained LM aims to reduce the requirement of labeled data
and improve the generalization, so the LM pretrained on the KG
is expected to have a better performance than the original ones
with limited labeled data. Therefore, we split the QA datasets with
di�erent training proportion (i.e., 20%, 40%, 60%, 80%) to evaluate
performances of KICP and BERT. The results are demonstrated in
Figure 6. From the �gure, there are several observations. First, the
performances of both KICP and BERT reasonably increase with
more training samples. Next, although KICP outperforms BERT in
all training settings, generally the di�erences are larger with less
training data. The reason may be that the pretrained KICP could
utilize the knowledge learned from KG and exploit less labeled
data to learn the mapping from question to answer and achieve a
good performance, while BERT needs to learn knowledge from the
labeled data, which may be harder without enough data and result
in worse performance.

4.5 Case Study
We demonstrate three typical cases by KICP and BERT on KBQA
datasets in Table 3, and provide more in Appendix D. In case 1,
BERT does not understand the knowledge about the lyricist of the
song, and fails in the question, while KICP learns related knowledge
in pretraining and correctly answer the question. In case 2, KICP

Table 3: Cases of KICP and BERT

Case 1: Who composed the song Alexander’s Ragtime Band
in 1911 ?
KICP: Irving Berlin (correct)
BERT: Woody Guthrie (wrong)

Case 2: Thomas Harris’s 1988 novel The Silence of the Lambs
was actually a sequel - what was the name of the �rst book in
the series ?
KICP: Red Dragon (correct)
BERT: Dubliners (wrong)

Case 3: Which producer is responsible for Pearl Harbour,
Pirates of the Caribbean, and Armageddon ?
KICP: Robert Mulligan (wrong)
BERT: John Ridley (wrong)
Answer: Jerry Bruckheimer

is capable of conducting multi-hop reasoning to �nd the complex
relation between “Thomas Harris”, “The Silence of the Lambs” and
“Red Dragon” for the answer when the direct relation is unavailable,
while BERT does not support such complex reasoning. In case 3,
although both methods fail in the question, KICP predicts a closer
answer which is also a producer with related knowledge, but BERT
fails and makes an unrelated prediction.

5 CONCLUSION
In this paper, we proposed a generalKnowledge-InjectedCurriculum
Pretraining framework (KICP) to fully learn and exploit the KG for
question answering, which could work with di�erent detailed tech-
niques for �exible application. We developed a general knowledge
injection module to convert the KG into the pretraining corpus
for LM with three key steps, and proposed a knowledge adapta-
tion module to reduce the negative impacts of the gap between
the generated and natural corpus by keeping the NLU ability of
LM in knowledge learning. Furthermore, we designed a curriculum
reasoning module to e�ectively pretrain the LM for human-like
complex knowledge reasoning. Experimental results on four QA
datasets demonstrated that the proposed KICP could achieve a more
comprehensive learning and exploitation of KG for questions an-
swering, and the curriculum setting could e�ectively reduce the
pretraining di�culty and promote the outcome.

However, the proposed framework still had some limitations.
First, the diversity of corpus generated by KICP was limited, and it
would bene�t pretraining if the generated corpus could be more
similar to natural ones. Second, in the paper we mainly focused
on the LM for language understanding, and we will generalize our
framework to generative LM in the future. Last, KICP only exploited
the KG as knowledge source, while there were much more types of
knowledge to be studied.
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A ARCHITECTURE OF KNOWLEDGE
ADAPTER

The architecture of the KA module implemented in section 3.3 is
demonstrated in Figure 7, where si represents the semantic vector
from the ith layer of the original language model LM , and hi rep-
resents the hidden knowledge-enhanced vector output of the ith
layer of the knowledge adapter Ad. AL means the adapter layer,
TrmL and TrmK mean transformer blocks with di�erent hidden
dimension, and LnI and LnO mean linear models.

B DATASET STATISTICS
The statistics of the datasets in our experiments are available in
Table 4. Note that ComplexWebQuestions and FreebaseQA use the
same KG in pretraining (Wikidata). From the statistics, there are
some interesting observations. First, only CN-KG contains both
relation and attribute knowledge, and attribute knowledge counts
for a large proportion in the KG (i.e., about 36%). Both Wikidata
and HowNet only contain entity relation knowledge. Second, we
split the questions in the QA datasets into simple ones (answerable
with only one knowledge triplet) and hard ones (requiring complex
reasoning over multiple triplets). Note that Math23K is a generative
dataset, which exploits the knowledge implicitly, thus it is hard to
distinguish the knowledge requirement and split the dataset. The
CN-QA and FreebaseQA dataset both contain simple and hard ques-
tions, while ComplexWebQuestions only contains hard questions.
The proportion of hard questions in CN-QA is much smaller than
FreebaseQA, but CN-QA contains questions with more than one
answers and requires both multi-hop and multi-object reasoning
which have higher di�culty, while FreebaseQA has exactly one
answer for each question and requires multi-hop reasoning only.
Last, although the pretraining corpora are generated dynamically
by KICP framework, we make a rough estimation of the corpus
size based on the sampling and generation strategies. We can see
that the sizes of generated corpora in lesson 2 and lesson 3 are the
same as they are both based on the complex compositions following
certain reasoning patterns, and the size of hard corpus (lesson 2 and
3) is larger than easy corpus (lesson 1) for Wikidata and HowNet
as we consider two reasoning patterns (multi-hop reasoning and
multi-object reasoning) and generate corpus for both of them. How-
ever, the size of hard corpus is not doubled in three KGs and even
smaller than the easy one in CN-KG. The reason is that the one
sentence in the hard corpus is composed of several knowledge
triplets matching speci�c restrictions (e.g., multi-hop reasoning
requires the intermediate entity to act as both the head and tail in
two triplets) which reduces the number of acceptable triplets, while
the simple corpus can be constructed using all triplets and thus has
a larger size.

The period of Jules Verne is 1828 - 1905.
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Figure 7: An implementation of the knowledge adaptation
module (KA) using BERT with additional inputs.

C SAMPLES OF CORPUS
We demonstrate some samples of the constructed corpora for the
three lessons of the CR module in Table 5. We place the unmasked
version of each sentence on �rst line and masked one on second, and
recover the split words for readability. The sentences are all in lower
cases due to tokenization. We also provide related knowledge in the
last two lines for lesson 3 for readability as some key information
may be discarded. From these samples, we can get the following
observations. First, the constructed sentences are similar to natural
corpus to some extent with some unimportant di�erences. For
example, “wilhelm friedrich kuhne member of royal society” in
case 2 is similar to its natural form “wilhelm friedrich kuhne is a
member of royal society” with di�erences on “is” and “a”, which
are unimportant for the meaning of the sentence. Second, all the
head entities, tail entities and the relations may be masked as a
whole to force knowledge learning (e.g., sample 1 to 3) according
to the masking strategy. Third, following BERT, the masked token
may be replaced with “[MASK]” or a random token (“orthogonal”
in sample 4), or keep unchanged (“�ag” in sample 5). Fourth, the
complex corpus in lesson 2 and 3 may be constructed with two
(sample 6) or three (sample 7) triplets, and considers both the multi-
hop reasoning (sample 6, 7 and 9) and multi-object (sample 8 and
10) as mentioned in section 3.3, which increases the diversity of
dataset and reasoning di�culties. Fifth, in lesson 2, sampled name
of the same entity may be di�erent for di�erent triplets in the same
sentence (“p:nsw” and “au-ns” in sample 6), but they are masked
together, although the processing may be di�erent (“divides into” in
sample 6). Last, lesson 2 and lesson 3 share similar complex corpus
construction methods (i.e., lesson 3 takes the �nal composition part
of lesson 2), but lesson 2 gives all related knowledge triplets, which
reduces the di�culty and serves as a preliminary of lesson 3.

D MORE CASES
We also provide more cases predicted by KICP and BERT on the
KBQA datasets in Table 6 in addition to section 4.5. We classify
these cases into three categories, i.e., the easy questions, hard ques-
tions, and wrong questions that both KICP and BERT fail. We can
summarize the following observations. First, the easy questions
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Table 4: Statistics of Datasets

Dataset CN-QA ComplexWebQuestions FreebaseQA Math23K
KG CN-KG Wikidata Wikidata HowNet

#Questions 13,041 13,544 15,811 23,162
#Simple questions 12,265 0 13,070 /
#Hard questions 776 13,544 2,741 /

Avg. answer per question 1.67 1.43 1 1

#Entity 1,477,923 397,133 397,133 237,861
#Relations & attributes 1,112 733 733 6

#All triplets 6,352,980 2,900,156 2,900,156 1,206,695
#Relation triplets 4,081,756 2,900,156 2,900,156 1,206,695
#Attribute triplets 2,271,224 0 0 0

# Corpus for lesson 1 6,352,980 2,900,156 2,900,156 1,206,695
# Corpus for lesson 2 1,806,861 3,128,153 3,128,153 1,356,960
# Corpus for lesson 3 1,806,861 3,128,153 3,128,153 1,356,960

can be answered with only one knowledge triplets, which inves-
tigates whether the LM can memorize and exploit the knowledge.
From the cases, KICP performs better than BERT. Next, the hard
questions require reasoning over multiple knowledge facts. There
are two typical mistakes in these cases, i.e., wrong answers (case 6
and 7) and failed prediction (case 5), which shows that the method

may be not so capable of e�ective reasoning. Last, there are also
questions mistakenly answered by KICP (case 8 and 9). In these
cases, both the two methods make similar wrong prediction, which
shows that there are still much room to improve for KICP, such
as more reasoning patterns and more e�cient knowledge learning
and exploitation.
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Table 5: Samples of the Constructed Corpus in the CR Module

Lesson Samples

Lesson 1

(1) [CLS] sir frederick ashton nationality united kindom [SEP]
[CLS] [MASK] [MASK] [MASK] nationality united kindom [SEP]

(2) [CLS] wilhelm friedrich kuhne member of royal society [SEP]
[CLS] wilhelm friedrich kuhne member of [MASK] [MASK] [SEP]

(3) [CLS] republic of maldives used money maldivian ru�yah [SEP]
[CLS] republic of maldives [MASK] [MASK] maldivian ru�yah [SEP]

(4) [CLS] sarbogard district time euro time [SEP]
[CLS] sarbogard district time [MASK] orthogonal [SEP]

(5) [CLS] �rst hellenic republic �ag �ag of greece [SEP]
[CLS] [MASK] [MASK] [MASK] �ag �ag of greece [SEP]

Lesson 2

(6) [CLS] collaroy plateau based in p : nsw [SEP] au - ns divides into gundagai shire council [SEP] collaroy plateau
based in divides into gundagai shire council [SEP]

[CLS] collaroy plateau based in p : nsw [SEP] au - ns [MASK] into gundagai shire council [SEP] collaroy plateau
based in [MASK] [MASK] gundagai shire council [SEP]

(7) [CLS] star fox 64 3d part of the series star fox ( virtual boy ) [SEP] starfox ( virtual boy ) characters fox makuraudo
[SEP] fox mccloud recording by ohara takashi [SEP] star fox 64 3d part of the series characters recording by ohara
takashi [SEP]

[CLS] star fox 64 3d part of the series [MASK] fox [MASK] [MASK] [MASK] ) [SEP] starfox ( virtual boy ) [MASK]
fox makuraudo [SEP] [MASK] [MASK] [MASK] [MASK] recording by ohara takashi [SEP] star fox 64 3d part of the
series [MASK] recording by ohara takashi [SEP]

(8) [CLS] spannarhyttan timezone utc + 2 : 00 [SEP] spannarhyttan timezone utc + 1 : 00 [SEP] spannarhyttan timezone
utc + 2 : 00 utc + 1 : 00 [SEP]

[CLS] spannarhyttan timezone utc [MASK] [MASK] : [MASK] [SEP] spannarhyttan [MASK] [MASK] utc + 1 : 00
[SEP] spannarhyttan ##unes ##zone [MASK] [MASK] 133 : [MASK] utc + 1 : 00 [SEP]

Lesson 3

(9) [CLS] theobald ziegler working at on lake the rhine [SEP]
[CLS] theobald ziegler working at on lake [MASK] [MASK] [SEP]
( [CLS] theobald ziegler working at strassbourg [SEP]
[CLS] strassbourg on lake the rhine [SEP] )

(10) [CLS] ferrieres , somme shares border with ailly - sur - somme pont - de - metz [SEP]
[CLS] ferrieres , somme [MASK] [MASK] [MASK] ailly - sur - somme pont - de - metz [SEP]
( [CLS] ferrieres , somme shares border with ailly - sur - somme [SEP]
[CLS] ferrieres , somme shares border with pont - de - metz [SEP] )
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Table 6: More Cases Predicted by KICP and BERT

Category Cases

Easy

Case 1: Aberystwyth lies on which bay ?
KICP: Cardigan (correct)
BERT: Blaenau Gwent (wrong)

Case 2: In Alice in Wonderland, who wanted to decapitate anyone who o�ended her ?
KICP: Queen of Hearts (correct)
BERT: Daisy Fay (wrong)

Case 3: Who wrote the thriller novel Birds of Prey ?
KICP: Wilbur Smith (correct)
BERT: Ludwig von Mises (wrong)

Case 4: Io, Europa, Ganymede and Callisto are all moons of which planet in our solar system ?
KICP: Jupiter (correct)
BERT: Pluto (wrong)

Hard

Case 5: What kind of money does the country with the nation anthem Du gamla, Du fria use ?
KICP: Swedish Krona (correct)
BERT: / (wrong)

Case 6: What form of government is used in the country that uses Chilean Peso ?
KICP: Presidential system | Unitary state (correct)
BERT: Presidential system | Unitary state | Patrimonial monarchy (wrong)

Case 7: What is the nationality of the author of The Little Prince ?
KICP: France (correct)
BERT: America (wrong)

Wrong

Case 8: Which comedy actor played Charlie Bind in the 1964 �lm Carry on Spying ?
KICP: Peter Hinwood (wrong)
BERT: Peter Hinwood (wrong)
Answer: Charles Hawtrey

Case 9: What team did Drogba play for that won the 2014 Coupe de France Final championship ?
KICP: Piast Gliwice (wrong)
BERT: Germinal Beerschot (wrong)
Answer: En Avant de Guingamp
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