
Denoising on Sphere via Large Spherical t-designs
and Spherical Framelets

Xiaosheng Zhuang
Department of Mathematics,
City University of Hong Kong

Hong Kong, SAR China
xzhuang7@cityu.edu.hk

Yuchen Xiao
Department of Mathematics

City University of Hong Kong
Hong Kong, SAR China

yc.xiao@my.cityu.edu.hk

Abstract—In this paper, we investigate the spherical t-designs
with large value of t for function approximation, construction
of spherical framelets, and the important task of spherical
signal processing. Based on the spherical framelet systems and
the fast framelet transform algorithms, we propose an effective
denoising scheme for spherical signal denoising that utilizes the
nice properties of spherical t-designs with large t value. We
provide numerical results of signal/image denoising on several
data sets.

Index Terms—Tight framelets, spherical framelets, fast spher-
ical harmonic transforms, fast spherical framelet transforms,
spherical t-designs, Wendland functions, ETOPO1, spherical
signals/images, image/signal denoising.

I. INTRODUCTION

There are many real-world applications for signal and image
processing on the unit sphere Sd := {x ∈ Rd+1| ∥x∥ = 1},
where ∥·∥ is the Euclidean norm, such as the satellite signals
and global navigation in engineering, the climate change
estimation in geography, the planets study in astronomy, the
360◦ panoramic images and videos in virtual reality, and so on.
The distributions of points on the sphere play a key role in such
applications. One of the most important point configurations
on the sphere is the so-called spherical t-design point sets,
which have profound significance in both theoretical aspects
(such as in approximation theory, geometry, and combina-
torics) and applications as mentioned above. Recently, it has
been applied in image reconstruction and signal recovery on
the sphere [1]. We refer to the comprehensive survey of Bannai
and Bannai [2] for the past five decades’ research on spherical
t-designs. The concept of spherical t-design was established
by Delsarte, Goethals and Seidel [3] in 1977, which said that
a finite point set XN := {x1, . . . ,xN} ⊂ Sd is a spherical t-
design if the following quadrature rule (numerical integration)

1

N

N∑
i=1

p(xi) =
1

ωd

∫
Sd
p(x) dω(x) (1)

holds for any polynomial p ∈ Πd
t , where ωd is the surface

area of Sd, Πd
t := Πt(Sd) is the space of polynomials on Sd
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with degree at most t and ω(x) denotes the surface measure
on Sd. In this paper, we restrict our attention to S2.

Numerical methods as computer-assisted proofs for com-
putational spherical t-designs have developed as non-linear
equations and optimization problems [4]–[7]. In numerical
analysis, Hardin and Sloane [8] constructed a sequence of
putative spherical t-designs with 1

2 t
2 + o(t2) points. Chen

et. al in [4], [9] verified the existence of spherical t-designs
with (t + 1)2 points for small t. Womersley [7] constructed
symmetric spherical t-designs with N = t2+t+4

2 for t up
to 325. Gräf and Potts [6] computed numerical spherical t-
designs by fast spherical Fourier transforms for t ≤ 1000 with
N ≈ t2

2 points.
Sloan and Womersley [5] introduced a nonnegative quantity

called variational characterization of spherical t-design, which
is

AN,t(XN ) :=
4π

N2

t∑
ℓ=1

ℓ∑
m=−ℓ

|
N∑
i=1

Y m
ℓ (xi)|2,

where Y m
ℓ is spherical harmonic with degree ℓ and order m.

Note that Y 0
0 = 1√

4π
and Πt := Π2

t = span{Y m
ℓ | (ℓ,m) ∈

It} with the index set It := {(ℓ,m) | ℓ = 0, . . . , t;m =
−ℓ, . . . , ℓ}. They showed that XN is a spherical t-design if
and only if AN,t(XN ) = 0 (cf. Theorem 3 in [5]).

Multiscale representation systems including wavelets,
framelets, curvelets, shearlets, etc., are well developed for
exploiting the sparsity of Euclidian data [10]–[15]. On the
sphere, spherical wavelets was studied in [16]–[19] . Exten-
sion of wavelets/framelets on the sphere with more desirable
properties, such as localized property, tight frame property,
symmetry, directionality, etc., were further studied in [18]–[21]
and many references therein. Based on hierarchical partitions,
area-regular spherical Haar tight framelets were constructed in
[22]. In [23], a general framework for the construction of tight
framelets on a compact smooth Riemannian manifolds was
proposed and fast framelet filter bank transforms are developed
based on quadrature rules on the sphere.

In this paper, we explore the applications of spherical t-
designs with large value of t and focus on the problem
of spherical signal processing using the spherical framelet
systems. Based on the truncated spherical framelet systems
constructed from the spherical t-designs and the fast transform



algorithms, we propose an effective scheme for spherical
signal denoising that utilizes the nice properties of spherical
t-designs with large t value. We provide numerical results
of signal/image denoising using local thresholding techniques
based on a fine-tuned spherical cap [24], [25] restrictions.

II. SPHERICAL t-DESIGNS FOR FUNCTION APPROXIMATION

Numerically, a spherical t-design XN can be found by
solving a nonlinear and nonconvex minimization problem:

min
XN⊂S2

AN,t(XN ), (2)

which can be done by using optimization methods such as the
line-search methods or the trust-region methods [26]. Using
the spiral point sets as the initial point sets, we provide in
table I for different t, the number of points N = (t+1)2, the
number KTR of the iterations using the trust-region method to
reach the final numerical spherical t-design (SPD) point sets
with their

√
AN,t(XN ), ∥∇AN,t(XN )∥∞, and the running

time, respectively. For more details on obtaining spherical t-
designs using the trust-region method, we refer to [27]. In
addition, there are other fast algorithms like manifold ver-
sion’s Newton and Conjugate Gradient method for computing
numerical spherical t-designs in [6].

TABLE I
Spherical t-designs XN (SPD) by the trust-region method.

t N KTR

√
AN,t(XN ) ∥∇AN,t(XN )∥∞ Time

16 289 264 2.15E-12 7.04E-16 10.51 s
32 1089 567 1.51E-12 7.93E-16 24.61 s
64 4225 1087 1.13E-12 1.27E-15 2.01 min
128 16641 1929 1.55E-12 1.07E-15 11.16 min
256 66049 3234 1.13E-12 1.39E-15 32.50 min
512 263169 6049 1.18E-12 8.64E-15 4.59 h
1024 1050625 9951 1.28E-12 3.80E-15 1.02 d
25 676 422 1.73E-12 6.84E-15 15.38 s
50 2601 764 1.58E-12 9.39E-15 46.52 s
100 10201 1699 1.00E-12 8.51E-16 3.08 min
200 40401 2922 1.16E-12 2.30E-15 26.85 min
400 160801 4980 1.09E-12 4.22E-15 2.29 h
800 641601 8489 1.53E-12 4.18E-14 21.74 h
1600 2563601 18274 1.70E-10 9.26E-14 6.95 d
3200 10246401 22371 1.07E-09 2.22E-12 2.07 mo

Once we obtained the spherical t-design point sets, which
are equal weight quadrature rules QN,t = (XN ,w) on S2
with w = (w1, . . . , wN ) and wi ≡ 1

N , we can use them for
function approximation. For a function f : S2 → C, we define
f := f

∣∣
XN

= (f(x1), . . . , f(xN )) be a vector for samples of
f on XN .

For a (squared-integrable) signal function f ∈ L2(S2) on
S2, it can be represented (in L2-sense) as f = ft+gt with ft ∈
Πt being the approximation (projection) polynomial and gt =
f − ft /∈ Πt being the residual function. The approximation
polynomial ft can be found through the spherical harmonic
basis {Y m

ℓ | ℓ ≥ 0, |m| ≤ ℓ}. In fact, by ft ∈ Πt, we have

f(xi) = ft(xi) + gt(xi) =

t∑
ℓ=0

ℓ∑
m=−ℓ

f̂mℓ Y
m
ℓ (xi) + gt(xi).

In the vector form, it is equivalent to f = ft + gt =
Ytf̂ + gt, where the vector f̂ := (f̂mℓ )(ℓ,m)∈It

is the Fourier
(spherical harmonic) coefficient vector and the matrix Yt :=
Yt(XN ) := (Y m

ℓ (xi))i∈[N ],(ℓ,m)∈It
is of size N × (t + 1)2

with [N ] := {1, . . . , N}. The Fourier (spherical harmonic)
coefficient vector f̂ can be found through the minimization
problem:

min
ft∈Πt

∥f − ft∥. (3)

To solve this problem, by ft = Ytf̂ , we aim at finding f̂
such that Ytf̂ = f . Considering the weight w together, we
can solve it by

Y ⋆
t (w ⊙ Ytf̂) = Y ⋆

t (w ⊙ f). (4)

Let W := diag(w). Then eq. (4) is actually to solve x for
Ax = b, where A = Y ⋆

t WYt, x = f̂ and b = Y ⋆
t Wf , which

can be done by standard conjugate gradient (CG) methods.
Here, Y ⋆

t := Yt(XN )
⊤

∈ C(t+1)2×N is the transpose of
complex conjugate of Yt. Note that the transform operation
Ytf̂ and adjoint operation Y ⋆

t f can be done through fast
spherical harmonic transforms such as the NFSFT [28].

III. SPHERICAL FRAMELETS

Spherical t-design point sets can also be used in the con-
struction of semi-discrete spherical tight framelets, which we
briefly introduced below.

Let Ψ := {α;β1, . . . , βn} ⊂ L1(R) be a set of
generating functions associating with a filter bank η :=
{a; b1, . . . , bn} ⊂ ℓ1(Z) and satisfying the relations α̂(2ξ) =
â(ξ)α̂(ξ) and β̂s(2ξ) = b̂s(ξ)α̂(ξ), s ∈ [n], where α̂(ξ) :=∫
R α(x)e

−2πixξdx is the Fourier transform and for a filter
(mask) h = {hk}k∈Z ⊂ C, the Fourier series ĥ(ξ) :=∑

k∈Z hke
−2πikξ. Here ℓp(Z) is the ℓp space on Z.

Let Q := {QNj = (XNj ,wj)}j with XNj := (xj,k)k∈[Nj ]

and wj = (wj,k)k∈[Nj ] be a sequence of quadrature rules
on S2. We can define the semi-discrete spherical framelets
φj,k(x) and ψ(s)

j,k(x) for s ∈ [n] and for k ∈ [Nj ] as

φj,k(x) :=
√
wj,k

∞∑
ℓ=0

ℓ∑
m=−ℓ

α̂(
ℓ

2j
)Y m

ℓ (xj,k)Y
m
ℓ (x), (5)

ψ
(s)
j,k(x) :=

√
wj+1,k

∞∑
ℓ=0

ℓ∑
m=−ℓ

β̂s(
ℓ

2j
)Y m

ℓ (xj+1,k)Y
m
ℓ (x).

(6)

The semi-discrete spherical framelet system FJ(Ψ,Q) starting
at a scale J ∈ Z is

FJ(Ψ,Q) :={φJ,k : k ∈ [NJ ]}
∪ {ψ(s)

j,k : k ∈ [Nj+1], s ∈ [n]}∞j=J .

If FJ(Ψ,Q) ⊂ L2(S2) and ∀f ∈ L2(S2), in
L2-sense, we have f =

∑NJ

k=1⟨f, φJ,k⟩L2(S2)φJ,k +∑∞
j=J

∑Nj+1

k=1

∑n
s=1⟨f, ψ

(s)
j,k⟩L2(S2)ψ

(s)
j,k , then FJ(Ψ,Q) is

called a (semi-discrete) tight frame for L2(S2). With the spher-
ical t-designs being equal weight quadrature rules, tightness of
FJ(Ψ,Q) can be easily satisfied. For more details regarding
the tightness of such systems, we refer to [23], [27].

In practice, the infinite system FJ(Ψ,Q) is truncated at cer-
tain level and one only needs to use the filter bank association



and the fast spherical harmonic transforms for implementing
the fast spherical framelet transforms. We use the system
FJ

J0
(η,Q) in [27] for the decomposition and reconstruction

of spherical signals, see Algorithms 1 and 2.

Algorithm 1 Multi-level Spherical Framelet Transforms: De-
composition

Require: {QNj ,tj = (XNj
,wj)}J+1

j=J0
: quadrature rules;

fJ+1 = f |XNJ+1
: samples of f ∈ ΠtJ on the spherical

point set XNJ+1
; η: filter bank.

Initialize f̂J+1 = wj+1Y
⋆
tJ+1

fJ+1.
1: for j from J to J0 do
2: for s from 1 to n do
3: w

(s)
j =

√
wj+1Ytj+1

[f̂j+1 ⊙ ¯̂b
(s)

j ].
4: end for
5: f̂j = [f̂j+1 ⊙ ¯̂aj ]↓j .
6: end for
7: vJ0

=
√
wJ0

YtJ0
f̂J0

.
Ensure: Framelet coefficients {vJ0

,w
(s)
j | j = J0, . . . J ; s ∈

[n]}.

Algorithm 2 Multi-level Spherical Framelet Transforms: Re-
construction
Require: {QNj ,tj = (XNj ,wj)}J+1

j=J0
: quadrature rules;

{vJ0 ,w
(s)
j | j = J0, . . . J ; s ∈ [n]}: coefficient sequences;

η: filter bank.
Initialize f̂J0 =

√
wJ0

YtJ0
vJ0

.
1: for j from J0 to J do
2: f̂j+1 = f̂j↑j+1 ⊙ ¯̂aj

3: for s from 1 to n do
4: f̂j+1 = f̂j+1 + [

√
wj+1Y

⋆
tj+1

w
(s)
j ]⊙ b̂

(s)

j .
5: end for
6: end for
7: fJ+1 = wj+1YtJ+1

f̂J+1.
Ensure: fJ+1: samples of f ∈ ΠtJ on the spherical point set

XNJ+1
;

IV. DENOISING SCHEME

Given a noisy function fσ = fo + Gσ on XNJ+1
, where

fo is an unknown underground truth and Gσ is the Gaussian
white noisy. Suppose that we have obtained a sequence of
spherical tj-design point sets {QNj ,tj := (XNj

,wj)}J+2
j=J0

.
We aim at obtaining the ground truth fo on XNJ+1

, i.e., the
denoised version of fσ , based on the spherical t-designs and
the spherical framelets. We use the following steps.

(S1) Projection. We project fσ onto ΠtJ by using eq. (3) with
t = tJ and XN = XNJ+1

, to obtain fσ = f+g on XNJ+1

such that f ∈ ΠtJ is the projection part and g = fσ − f
is the residual part.

(S2) Denoising via spherical framelets. We then use the trun-
cated spherical tight framelet system FJ

J0
(η,Q) (see [27])

to decompose f (more precisely, fJ+1 = f |XNJ+1
,

see Algorithm 1) into the framelet coefficient sequences

{vJ0} ∪ {w(s)
j | j = J0, . . . , J ; s ∈ [n]}. We apply

the thresholding techniques for denoising the framelet
coefficient sequences w

(s)
j of f and the residual g.

More precisely, given the framelet coefficient sequence
w

(s)
j = (w (s)

j,k )k∈[Nj+1], note that w (s)
j,k is associated with

the point xj+1,k. We first normalize it according to the
norm ∥ψ(s)

j,k∥L2(S2) by w̃ (s)
j,k = w (s)

j,k /∥ψ
(s)
j,k∥L2(S2). We use

local thresholding technique based on spherical caps that
updates w̃ (s)

j,k to be

w̌ (s)
j,k =

{
w̃ (s)
j,k − sgn(w̃ (s)

j,k )τ
(s)
j,k,r, |w̃ (s)

j,k | ≥ τ
(s)
j,k,r,

0, |w̃ (s)
j,k | < τ

(s)
j,k,r,

(7)

where τ (s)j,k,r is a thresholding value determined by

τ
(s)
j,k,r =

c · σ2√
(w̄ (s)

j,k,r − σ2)+

(8)

with c being a constant that is tuned by hand to op-
timize the performance. Here, w̄ (s)

j,k,r is the average of
the coefficients near w̃ (s)

j,k determined by a spherical cap
C(x, r) := {y ∈ S2 : ∥x × y∥ ≤ r} of radius r and
centered at x = xj+1,k. Then we can obtain fthr by
the reconstruction algorithm in Algorithm 2 using the
thresholded coefficient sequences {vJ0

} ∪ {w̃(s)
j | j =

J0, . . . , J ; s ∈ [n]}. Similarly, we can obtained gthr
following the local-soft thresholding technique for g.
Thus, we obtain the denoised signal fσ,thr = fthr+gthr.

(S3) Upsampling on a finer point set for further denoising. The
signal fσ,thr on X = XNJ+1

could still have noise. To
further improve the denoising performance, we upsample
fσ,thr to f1σ on Y := XNJ+2

. We use the simple nearest
neighborhood technique: for each point y ∈ Y , we define
f1σ(y) = fσ,thr(x) with x = argminx∈X ∥x × y∥.
Then, for the upsampled f1σ , we use the similar procedure
in Step (S2) (by replacing {QNj ,tj := (XNj

,wj)}J+1
j=J0

by {QNj ,tj := (XNj
,wj)}J+2

j=J0+1) to obtain a further
denoised signal f1σ,thr = f1thr + g1thr on Y , through our
spherical framelets and the local thresholding techniques.

(S4) Downsampling to the original point set. To see the denois-
ing performance of the above procedure. We downsample
f1σ,thr on Y to f0σ,thr on X so that we can evaluate
the performance by comparing the final output signal
f0σ,thr to the ground truth fo. We use the following
averaging technique. For each x ∈ X , we can find its
neigborhood points N (x, r) in Y in a spherical cap
C(x, r), that is N (x, r) := C(x, r) ∩ Y . We then
define f0σ,thr(x) = 1

#N (x,r)

∑
y∈N (x,r) f

1
σ,thr(y). Then

we obtain f0σ,thr on X = XNJ+1
. One can then use SNR

or PSNR to evaluate the performance.

V. NUMERICAL RESULTS

In this section, we present the performance of our denoising
scheme in Section IV for noisy data of radial basis functions
(Wendland), Earth data (ETOPO1) and images on sphere.



Given spherical t-design point sets XN0
, XN1

, XN2
, XN3

(SPD) corresponding to degree t0, t1, t2, t3, it corresponds
to J0 = 0 and J = 1, that is, 2-level decomposition and
reconstruction, in Algorithms 1 and 2, and X = XN2

and
Y = XN3

in Section IV. We refer to [27] for the details of
the filter bank η = η3 = {a; b1, b2, b3} (3 high-pass filters and
1 low-pass filter), the Wendland functions f4, the ETOPO1
data set, and the spherical images.

A. Wendland function
For Wendland function f4, we use SNR(fo, fr) :=

10 log10(
∥fo∥

∥fr−fo∥ ) to measure the quality of signal denoising
of fσ , where fr is a reconstruction (denoised) signal. For
Wendland function f4, we let t0 = 16, t1 = 32, t2 = 64, t3 =
128. The results including cost time in two methods are
presented in table II, where the results of fσ,thr have already
shown as best results in [27] under the setting of threshold
coefficients cf = 1 and cg = 3 in eq. (8). For f0σ,thr, we set
cf = 1/2 and cg = 3/2 for (S2), then we set c↑f = 0.01 and
c↑g = 0.01 as threshold coefficients upsampling denoising for
(S3). We can see that results of upsampling denoising scheme
f0σ,thr are better than convention denoising method results of
fσ,thr at about 1 dB. (When set cf = 0.9 and cg = 2.9 for
(S2), c↑f = cf/8 and c↑g = cg/8 for (S3), f0σ,thr will be 25.58
for σ = 0.05∥fo∥∞.) We also show some figures in fig. 1
related to the results in table II.

TABLE II
Wendland denoising results with respect to different noise level σ.

σ 0.05 0.075 0.1 0.125 0.15 0.175 0.2
fσ 13.63 10.11 7.61 5.67 4.09 2.75 1.59

fσ,thr [27] 24.48 21.25 19.03 17.30 15.82 14.49 13.19
Time 0.32s 0.31s 0.31s 0.33s 0.34s 0.31s 0.30s
f0
σ,thr 25.19 22.53 20.16 18.28 16.98 15.58 14.34
Time 1.24s 1.27s 1.36s 1.37s 1.35s 1.34s 1.33s

(a) fo (b) fσ

(c) fσ,thr (d) f0
σ,thr

Fig. 1. The behavior of 2-levels framelet decomposition, thresholding and
reconstruction for Wendland function f4 with σ = 0.05 by η3 on SPD with
t0 = 16, t1 = 32, t2 = 64, t3 = 128.

B. ETOPO1 data

For ETOPO1 data, we use SNR(fo, fr) to measure the
quality of signal denoising of fσ . We let t0 = 128, t1 =
256, t2 = 512, t3 = 1024. We show the result on table III.
For fσ,thr, we set cf = cg = 0.6 same as [27]. For f0σ,thr,
we set cf = cg = 0.3 for (S2), and we set c↑f = c↑g = 0.1
for (S3). We also display some figures for ETOPO1 data in
Fig. 2. The results show that the performance of f0σ,thr are
better than fσ,thr.

TABLE III
ETOPO1 denoising results with respect to different noise level σ.

σ 0.05 0.075 0.1 0.125 0.15 0.175 0.2
fσ 16.21 12.69 10.19 8.25 6.66 5.33 4.17

fσ,thr [27] 21.06 18.93 17.43 16.25 15.33 14.59 14.01
Time 12.03s 12.60s 13.17s 13.05s 13.26s 14.01s 14.31s
f0
σ,thr 21.20 19.14 17.71 16.53 15.62 14.91 14.38
Time 66.17s 66.51s 68.62s 70.15s 72.23s 78.94s 81.12s

(a) fo (b) fσ

(c) fσ,thr (d) f0
σ,thr

Fig. 2. The behavior of 2-levels framelet decomposition, thresholding and
reconstruction for ETOPO fσ with σ = 0.05 by η3 on SPD with t0 =
128, t1 = 256, t2 = 512, t3 = 1024.

C. Spherical Images

We use PSNR measure the quality of image denois-
ing, which is PSNR(fo, fr) := 10 log10(

2552

MSE ) and MSE
is the mean squared error which defined as MSE =
1
N

∑
x∈XN

|fo(x)− fr(x)|2. For spherical images, we let
t0 = 128, t1 = 256, t2 = 512, t3 = 1024. We show the results
in table IV. The rows for fσ,thr, we set cf = 0.6 and cg = 0.5
the same as those in [27]. For f0σ,thr, we set cf = 0.3 and
cg = 0.25 for (S2), and we set c↑f = c↑g = 0.1 for (S3). The
results show that the performance of f0σ,thr are better than
fσ,thr except Mandrill for σ = 0.2.

VI. CONCLUSIONS AND FINAL REMARKS

In conclusion, spherical t-designs can be used for function
approximation and for the construction of spherical framelets.



TABLE IV
Images denoising results. For each images, the first row fσ is

PSNR0 := PSNR(fG, fσ), the second row fσ,thr is PSNR(fG, fσ,thr)
values with the denoising scheme in [27], and the third row f0

σ,thr is
PSNR(fG, f0

σ,thr) values with the denoising scheme in this paper.

Image σ 0.05 0.075 0.1 0.125 0.15 0.175 0.2

Barbara
fσ 26.33 22.81 20.31 18.37 16.79 15.45 14.29

fσ,thr 29.70 27.19 25.48 24.22 23.28 22.57 21.99

f0
σ,thr 29.84 27.38 25.73 24.46 23.48 22.74 22.16

Boat
fσ 26.02 22.50 20.00 18.06 16.48 15.14 13.98

fσ,thr 29.94 27.83 26.34 25.16 24.15 23.31 22.60

f0
σ,thr 30.17 27.99 26.51 25.34 24.30 23.40 22.67

Hill
fσ 26.69 23.17 20.67 18.73 17.15 15.81 14.65

fσ,thr 30.20 28.09 26.66 25.56 24.73 24.07 23.53

f0
σ,thr 30.38 28.24 26.75 25.59 24.76 24.15 23.68

Lena
fσ 26.37 22.85 20.35 18.41 16.83 15.49 14.33

fσ,thr 31.87 29.73 28.14 26.82 25.76 24.90 24.16

f0
σ,thr 32.14 30.04 28.54 27.27 26.16 25.26 24.51

Man
fσ 26.51 22.99 20.49 18.55 16.97 15.63 14.47

fσ,thr 30.67 28.39 26.83 25.65 24.69 23.90 23.27

f0
σ,thr 30.90 28.56 27.03 25.83 24.85 24.04 23.39

Mandrill
fσ 28.17 24.65 22.15 20.22 18.63 17.29 16.13

fσ,thr 29.61 26.82 24.98 23.69 22.74 22.06 21.54
f0
σ,thr 29.71 26.94 25.06 23.76 22.81 22.08 21.52

Moreover, using the spherical t-designs with large value of t,
we apply them for spherical signal/image denoising through
the fast framelet transforms and the carefully design denoising
schemes. In future, we may consider further improvement of
the denoising scheme by using more sophisticated resampling
techniques as well the other important tasks such as spherical
image inpainting or super-resolution imaging.
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