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ABSTRACT

Glass surface detection (GSD) has recently been attracting research interests.
However, existing GSD methods focus on modeling glass surface properties for
daytime scenes only, and can easily fail in nighttime scenes due to significant
lighting discrepancies. We observe that, due to the spectral differences between
Near-Infrared (NIR) light sources and common LED lights, NIR and RGB cameras
capture complementary visual patterns (e.g., light reflections, shadows, and edges)
of glass surfaces, and cross-comparing their lighting and reflectance properties
can provide reliable cues for nighttime GSD. Inspired by this observation, we
propose a novel approach for nighttime GSD based on the multi-modal NIR and
RGB image pairs. We first construct a nighttime GSD dataset, which contains
6, 192 RGB-NIR image pairs captured in diverse real-world nighttime scenes,
with corresponding carefully-annotated glass surface masks. We then propose a
novel network for the nighttime GSD task with two novel modules: (1) a RGB-
NIR Guidance Enhancement (RNGE) module for extracting and enriching the
NIR reflectance features with the guidance of RGB reflectance features, and (2)
a RGB-NIR Fusion and Localization (RNFL) module for fusing RGB and NIR
reflectance features into glass features conditioned on the multi-modal illumination
discrepancy-aware features. Extensive experiments demonstrate that our method
outperforms state-of-the-art methods in nighttime scenes while generalizing well
to daytime scenes. We will release our dataset and codes.

1 INTRODUCTION

Glass surfaces, such as glass doors, walls, and windows, are ubiquitous in our daily lives. Their lack
of intrinsic visual texture patterns can easily conceal glass surfaces within the background scene,
causing significant detection difficulties. Failing to detect glass surfaces may cause the downstream
vision applications, including 3D scene reconstruction and robotic navigation, to fail as well. Hence,
glass surface detection (GSD) is a challenging, but fundamental task.

A few deep learning-based methods are proposed to detect glass surfaces based on RGB features (Mei
et al., 2020; He et al., 2021; Lin et al., 2021; Fan et al., 2023; Liu et al., 2024; Lin et al., 2022; Yan
et al., 2025; Qi et al., 2024), or RGB-X multi-modal features (Lin et al., 2025; Huo et al., 2023;
Yan et al., 2024). These methods typically focus on modeling different priors for detecting glass
surfaces, including contrasted RGB (Mei et al., 2020) or RGB-Thermal (Huo et al., 2023) features,
boundaries (He et al., 2021; Fan et al., 2023), reflections (Lin et al., 2021; Liu et al., 2024; Yan et al.,
2024), perceived noisy depth (Lin et al., 2025), semantic correlations (Lin et al., 2022), and ghosting
effects (Yan et al., 2025). However, these GSD priors are specifically developed for daytime scenes
and can be drowned in the low-light or complex artificial lighting of nighttime scenes. For example,
as shown in the top two rows of Fig. 1, compared to NIR imaging, depth or thermal imaging provides
limited contextual information in nighttime scenes for existing RGB-depth/thermal-based GSD
methods (Lin et al., 2025; Huo et al., 2023) to detect glass regions. Meanwhile, modeling intrinsic
cues such as boundary (Fan et al., 2023), reflections (Lin et al., 2021), and ghosting effects (Yan et al.,
2025) for glass surface localization in the RGB domain (Lin et al., 2021; Fan et al., 2023; Yan et al.,
2025), or comparing reflections between the RGB and NIR modalities (Yan et al., 2024) is unreliable
in nighttime scenes, as demonstrated in the bottom two rows of Fig. 1.
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RGB Depth Thermal NIR RGB-D RGB-T Ours GT

RGB NIR GSDNet RFENet Ghosting NRGlass Ours GT

Figure 1: Upper two rows: Depth (Lin et al., 2025) and thermal (Huo et al., 2023) cues provide very
limited contextual information for localizing glass surfaces in nighttime scenes, compared to NIR
imaging. Bottom two rows: Intrinsic cues such as reflections (in either RGB (Lin et al., 2021) or
RGB-NIR (Yan et al., 2024) domain), and boundary (Fan et al., 2023) and ghosting effects (Yan et al.,
2025) (in the RGB domain), can be easily buried in nighttime scenes. We propose to cross-compare
the lighting and reflectance information between RGB and NIR modalities for accurate glass surface
detection in nighttime scenes.

We observe that NIR and RGB cameras can capture complementary visual cues (e.g., reflection/trans-
mission discrepancies and illumination discrepancies) for nighttime GSD. By projecting their own
lights, active NIR cameras ensure consistent visibility in low-light/uneven lighting conditions, pro-
ducing geometry/reflectance patterns on glass surfaces that complement those (e.g., colors, textures,
and semantics) in the RGB modality. Based on this observation, we propose in this paper a novel
RGB-NIR-based approach, which considers the complementary patterns of glass surfaces between
NIR and RGB images, for nighttime GSD.

As there are no available datasets for this task, we first construct a large-scale RGB-NIR glass surface
detection dataset, with a hybrid imaging system consisting of a DSLR camera and a NIR camera
accompanied by an active NIR light source.1 Our dataset contains 6, 192 RGB-NIR image pairs
captured from diverse real-world nighttime scenes, with the corresponding manually annotated glass
surface masks. We then propose a novel neural network to model the complementary patterns on
glass surfaces between NIR and RGB images for glass surface detection.

To extract the complementary patterns between RGB and NIR images as cues, our method first
performs a learning-based image decomposition to decompose the input RGB and NIR images into
two pairs of reflectance and illumination components, and then uses two separate encoders to extract
the semantics-aware and material-aware contextual features from the reflectance components of
the two modalities. We further introduce two novel modules. First, we propose a novel RGB-NIR
Guidance Enhancement (RNGE) module, which leverages the semantic features extracted from
the reflectance component of the input RGB image for feature extraction-and-enhancement of the
reflectance component of the NIR image. In other words, the RNGE module aims to explore the
semantics from the RGB image to assist glass feature extraction, especially boundary prediction,
from the NIR image. Meanwhile, we model the illumination discrepancies between RGB and NIR
images as gating matrices based on their derived Illumination components, and propose a novel
RGB-NIR Fusion and Localization (RNFL) module for decoding the multi-modal reflectance features
into glass features conditioned on the derived gating matrices. As shown in Fig. 1, our method can
produce more accurate detection results under challenging lighting conditions of night-time scenes.
Our method can be deployed on popular surveillance cameras that switch between RGB and active
NIR modes. The main contributions of this work can be summarized as follows:

1Nighttime surveillance systems always use active NIR cameras accompanied by active NIR light sources.
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• We propose the first approach for nighttime glass surfaces detection, by modeling the
complementary patterns of glass surface regions between RGB and NIR image pairs.

• Our network includes two novel modules: a RNGE module for enriching NIR reflectance
features with RGB reflectance features, and a RNFL module for GSD based on multi-modal
reflectance feature aggregation guided by the multi-modal illumination differences.

• We construct the first large-scale nighttime GSD dataset, which contains 6K RGB-NIR
glass image pairs (with corresponding masks) captured from diverse nighttime scenes.

• Extensive evaluations show that our proposed method outperforms SOTA methods in
nighttime scenes and generalizes well to daytime scenes.

2 RELATED WORK

Glass Surface Detection (GSD) has recently gained significant research attention with several deep
learning-based methods proposed. A line of GSD methods are based on input RGB frames, which
model the contrasted contextual features (Mei et al., 2020) and incorporate reflection priors (Lin
et al., 2021; Liu et al., 2024), boundary detection (He et al., 2021; Lin et al., 2021; Fan et al., 2023),
semantic correlations (Lin et al., 2022), blurry effects (Qi et al., 2024), and ghosting cues (Yan
et al., 2025). Another line of methods explore RGB-X multi-modal imaging for GSD. Kalra et al.
(2020) leverages the polarization information to segment transparent objects (e.g., wine glass and
glass balls), which may not generalize well to glass surfaces with irregular shapes. Huo et al. (2023)
models the contrasted glass features between RGB and Thermal modalities. Yan et al. (2024) model
the reflection differences between RGB and NIR images for daytime GSD. They use an NIR filter
attached to the DSLR camera lens and rely on the ambient light to capture NIR images. Lin et al.
(2025) propose to model the noise differences between RGB and depth images. Most recently, Zhang
et al. (2025) propose the MonoGlass3D method, performing 3D glass segmentation and 3D plane
regression simultaneously.

All these existing methods, however, are designed for daytime scenes, and their proposed cues may
not be effective under low-light or complex artificial lighting conditions of nighttime scenes. In this
work, we propose to detect glass surfaces at nighttime scenes by utilizing dual RGB-active NIR
cameras. In contrast to passive NIR filters Yan et al. (2024), where both RGB and NIR spectra may
not be illuminated in nighttime scenes, our imaging setup creates an induced photometric discrepancy
(from active NIR illumination and ambient lighting), and our network learns to cross-compare this
discrepancy for the detection.

Mirror Detection (MD) aims to detect mirror regions. Existing methods focus on learning the
correlations between the reflected and real surrounding contents, by modeling the contextual con-
trasted RGB (Yang et al., 2019; Xu et al., 2024) or RGB-Depth (Mei et al., 2021b) features, pearance
correspondences (Lin et al., 2020; 2023; Huang et al., 2023), visual chirality (Tan et al., 2023),
spatial/frequency-based specular textures (Xie et al., 2024), and inconsistent motions (Warren et al.,
2024). Although these methods have achieved impressive progress for mirror detection, glass surfaces
have a very different property from mirrors. While mirrors only contain reflection, glass surfaces
contain both reflection as well as transmission, making glass surfaces more challenging to detect. In
this paper, we explore the use of RGB-NIR images for glass surface detection.

3 PROPOSED DATASET

We construct the first large-scale night-time glass surface detection dataset for training and evaluation.

Hybrid Imaging System. We design a hybrid imaging system consisting of a DSLR camera
(Canon 70D), and an NIR camera (HIKVISION MVCH250-90GN) with an active NIR light source
(40W). Both cameras are synchronized to capture RGB and NIR image pairs from the target scene
simultaneously. Although the reflectivity of most glass surfaces decreases with increasing wavelength
of the incident ray within the range of 780 ∼ 1100nm (Huo et al., 2023; Planinsic, 2011), excessively
long wavelengths will diminish night vision effectiveness (Ariff et al., 2015). Hence, we set the
wavelength of the active near-infrared light to 850 ∼ 940nm (Ariff et al., 2015) to balance the
suppression of near-infrared reflection and night vision capability, allowing for clearer NIR images

3
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(a) (b)
Figure 2: Examples and some statistics of our dataset: (a) Example RGB/NIR/Glass mask triplets
from our dataset; (b) Glass location distributions (top) and glass/image ratios (bottom).

with less glass surface reflection. We use the binocular image alignment method (Shen et al., 2020)
to align each RGB-NIR image pair.

Dataset Statistics. Our dataset consists of 6, 192 triplets of RGB and NIR images and the corre-
sponding manually labeled glass surface masks. Our dataset covers 12 types of daily life scenes,
such as campus, hotel, and shopping mall, as shown in Fig. 2a. We randomly split our dataset into
5, 000 and 1, 192 triplets for training and evaluation, respectively. Fig. 2b shows the statistics of glass
location distribution and the ratio of glass area over the image. The glass regions cluster around the
upper part of the image, as they are more likely placed around the eye level. Our dataset contains
varying glass/image ratios, posing a significant challenge to detect.

4 PROPOSED METHOD

Our core idea is to cross-compare and fuse the lighting and material information captured in the RGB
and NIR modalities for night-time glass surface detection. Fig. 3 shows an overview of our method,
which includes the Retinex Decomposition, the Encoder, and the Decoder stages.

Figure 3: Method Overview. The NIR (In) and RGB (Ir) images captured at nighttime are first
decomposed into corresponding reflectance (Rn and Rr) and illumination (Ln and Lr) layers. We use
two encoders to process the two reflectance layers with a novel RNGE module to guide material-aware
features extraction from the NIR reflectance Rn. We cross-compare the illumination layers (Ln and
Lr) via the IDE module to control the feature flow in the decoder, where we propose the RNFL
module to selectively fuse the dual-modality features for glass surface detection.
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The Retinex Decomposition stage aims to extract lighting and reflectance information from the input
multi-modal images, since the imaging of both RGB and NIR images is dependent on an external
light source. We fine-tune the SOTA Content-Transfer Decomposition Network (Jiang et al., 2024) to
decompose the input RGB image Ir into Reflectance component Rr and Illumination component Lr,
and the input NIR image In into Reflectance component Rn and Illumination component Ln.

The Encoder stage aims to extract the semantics-aware features from the RGB reflectance component,
which guides and enhances the material-aware feature extraction from the NIR reflectance component.
We use the Swin Transformer V2 (Liu et al., 2022) to extract multi-scale features (denoted as Xi

r and
Xi

n, where i ∈ {0, 1, 2, 3}) from the two Reflectance components (Rr and Rn), respectively. At each
scale, we propose the RNGE module (Sec. 4.1) to leverage the high-level semantic features X3

r and
the low-level features Xi

r to guide and enhance the extraction of features Xi
n from Rn. Meanwhile,

since the NIR reflectance component Rn exhibits clearer and more complete boundaries of glass
surfaces than those in Rr, we perform the boundary detection on the deepest features X̄3

n. Notably,
for handling extreme low-light conditions, our method is designed to rely on the active NIR modality.

The Decoder stage aims to transform the multi-modal features into glass surface features for detection.
We first model the illumination differences between the NIR and RGB images via the Illumination
Difference Estimation (IDE) module (Sec. 4.2), which takes the illumination components of two
modalities (Ln and Lr) as input and predicts two weight matrices Wr and Wn for controlling the
feature flows in the decoder. We then propose the RGB-NIR Fusion and Localization (RNFL) module
(Sec. 4.3), which works at multi-scales, integrating the extracted multi-modal features Rr and Rn

from the Encoder stage with guidance from the IDE module for predicting the glass surface masks.

4.1 RGB-NIR GUIDANCE ENHANCEMENT (RNGE) MODULE

Figure 4: The proposed RNGE module.

The proposed RNGE module aims to extract
and enhance multi-scale NIR features from Rn

conditioned on the RGB features. As shown
in Fig. 4, we first concatenate Xi

n and Xi
r, and

then use a convolution layer to produce the fused
features Xi

f . Meanwhile, we compute the dif-
ference between Xi

n and Xi
r as Xi

d through
element-wise subtraction. Since Xi

d is expected
to capture cross-modal differences, which serve
as cues for potential glass surface locations, we
apply a convolution layer and a sigmoid(·) ac-
tivation to normalize Xi

d, yielding the activation
map Md. We then multiply Xi

f by Md to obtain the enriched glass features X̄i
f . In addition, we

apply supervision to X3
r to capture abundant semantic features of glass surfaces and use them as

guidance to the multi-modal feature fusion. Specifically, X3
r is first upsampled to the size of Xi

n and
normalized by a sigmoid(·) function to produce the activation map Mc, which is then applied to X̄i

f

for further enrichment. Finally, we use a self-attention (SA) block (Vaswani, 2017) to enhance the
glass features and transform them back to the initial Xi

n through a residual connection to produce the
output features X̄i

n. The whole process can be formulated as:

Xi
f = Conv(Concat(Xi

n, X
i
r)),

X̄i
f = Xi

f ⊗ sigmoid(Conv(Xi
n −Xi

r)),

X̄i
n = SA(X̄i

f ⊗ sigmoid(Conv(Up(X3
r )))) +Xi

n.

(1)

Fig. 5 shows the input features (X0
n), the activation map Mc for enrichment, the contrasted activation

map Md between the two modalities, the attention map Q ·KT produced by the SA block of the
RNGE module, and the enhanced features (X̄0

n) by the RNGE module.

4.2 ILLUMINATION DIFFERENCE ESTIMATION (IDE) MODULE

The IDE module, as shown in Fig. 6, aims to guide the fusion of the features of the RGB and
NIR modalities, by modeling the difference in illumination components between the two modalities
through estimating two gating matrices Wr and Wn.
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Ir In GT X0
n Mc Md Q · KT X̄0

n

Figure 5: Intermediate feature visualization of the RNGE module.

Figure 6: The proposed IDE module.

Specifically, to accurately measure the differ-
ence between Ln and Lr, both of them are first
fed into the 1× 1 Average Pooling (AP) block
followed by two 5 × 5 convolution layers to
produce refined features L′

n and L′
r. The differ-

ence Ld between them is then computed using
element-wise subtraction to capture illumina-
tion variations across different areas of the two
modalities. We further leverage Ld to enhance
the different areas in the original RGB-NIR im-
age pair by concatenating Ld with L′

n and L′
r

separately, and subsequently adjusted to 4 channels via two 3× 3 convolution layers, matching the
four scales of the Decoder. For each branch, we use a spatial-attention block (Woo et al., 2018)
to further enhance the corresponding features and a sigmoid(·) function to normalize these feature
values to the range of [0, 1], producing two weight matrices Wn and Wr ∈ RW×H×4, where [W,H]
is the spatial resolution of the input images. The whole process can be described as:

Ld = Conv(AP(Ln))− Conv(AP(Lr)),

Wn = sigmoid(SPA(Conv(Concat(L′
n, Ld)))),

Wr = sigmoid(SPA(Conv(Concat(L′
r, Ld)))),

(2)

where SPA(·) denotes the spatial attention block (Woo et al., 2018).

As the weight matrices Wr and Wn visualized in Fig. 7, the IDE module learns to prioritize deeper
RGB features and shallower NIR features. This is because RGB contains richer semantic information,
while NIR provides more distinct edge and structural details.

Ir GT Lr Wr[0] Wr[1] Wr[2] Wr[3]

In Predict Ln Wn[0] Wn[1] Wn[2] Wn[3]

Figure 7: Visualization of weight matrices Wr and Wn. Larger intensities indicate higher weights.

4.3 RGB-NIR FUSION AND LOCALIZATION (RNFL) MODULE

The proposed RNFL module, as shown in Fig. 8, aims to effectively aggregate multi-modal features
to localize glass surfaces, which contains two groups of cross-attention (CA) mechanisms, i.e., the
left and right parts. The left two cross-attention mechanisms aim to extract the shared glass features
from Xi

r and X̄i
n. Specifically, X̄i

n and Xi
r are used as Q in turn. When X̄i

n serves as Q, Xi
r acts as

K and V to query features in Xi
r that are similar to X̄i

n. A similar process applies when Xi
r is used

as Q. Subsequently, at the top branch of the right cross-attention group, since the decoded features
Xi+1

de produced by the deeper decoder layer contains semantic information about glass surfaces,

6
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Figure 8: The proposed RNFL module.

we use Xi+1
de as Q, while the detailed features

X̃i
r and X̃i

n obtained from the first group serve
as K and V , respectively, to perform cross-
attention for locating glass features. The sit-
uation at the bottom branch is similar. Finally,
we apply the weights Wr[i] and Wn[i] obtained
from the IDE module to the results of the right
cross-attention group, termed as X̂i

r and X̂i
n, re-

spectively. The weighted features from the top
and bottom branches are then summed to pro-
duce the decoded feature Xi

de. This process can
be formulated as:

X̃i
r = CA(X̄i

n, X
i
r), X̃i

n = CA(Xi
r, X̄

i
n),

X̂i
r = CA(Xi+1

de , X̃i
r), X̂

i
n = CA(Xi+1

de , X̃i
n),

Xi
de = Wr[i] ∗ X̂i

r +Wn[i] ∗ X̂i
n.

(3)

4.4 TRAINING STRATEGY

We first train the Retinex Decomposition Stage of our network. We directly use the pre-trained
CTDN module (Jiang et al., 2024) for RGB decomposition, and finetune the CTDN module for NIR
decomposition using the NIR images of our dataset. We then train the Encoder and Decoder parts,
using the BCE and IoU loss for supervising the glass surface detection and the Dice loss for glass
boundary detection. Refer to the Supplemental for more training and implementation details.

RGB NIR GDNet GSDNet PDNet SPNet CSFwin RGB-T WaveNet NRGlass Ours GT

Figure 9: Visual comparison of our method with 8 competing methods.

5 RESULTS AND DISCUSSION

5.1 NIGHTTIME GSD RESULTS

Quantitative Results. We compare our method to 17 SOTA methods, including Glass Surface
Detection (GSD) methods (Mei et al., 2020; Lin et al., 2021; Fan et al., 2023; Lin et al., 2022; Yan
et al., 2025; Lin et al., 2025; Huo et al., 2023; Yan et al., 2024), Mirror Detection (MD) methods (Lin
et al., 2020; Xie et al., 2024; He et al., 2023; Mei et al., 2021a), and Salient Object Detection (SOD)
methods (Zhou et al., 2023a; 2021; Tu et al., 2021; Cong et al., 2022; Zhou et al., 2023b). All
methods are re-trained on the proposed dataset. Tab. 1 reports the results. While multi-modal methods
generally perform better than RGB-based methods, our method achieves the best performance on all
five evaluation metrics with reasonable computational overheads.

Tab. 2 reports the results of four best-performing methods (according to Tab. 1, refer to the Supplemen-
tal for full results) taking as input the enhanced RGB images from the SOTA low-light enhancement
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Table 1: Quantitative comparison between our method and 17 state-of-the-art methods on our
proposed dataset. GSD, MD, and SOD indicate glass surface detection, mirror detection, and salient
object detection, respectively. Best detection results are marked in bold.

Modal(s) Method Backbone IoU↑ Fβ↑ ACC↑ MAE↓ BER↓ #Params FLOPs(G) Time(ms)

RGB GDNet (Mei et al., 2020) ResNeXt 78.78 0.881 0.874 0.084 0.101 201.72M 207.95 229.7
RGB PMD (Lin et al., 2020) ResNeXt 79.50 0.871 0.893 0.079 0.094 147.66M 119.26 203.7
RGB GSDNet (Lin et al., 2021) ResNeXt 78.87 0.876 0.891 0.085 0.100 83.72M 41.27 195.2
RGB GlassSemNet (Lin et al., 2022) ResNet 80.12 0.886 0.907 0.088 0.093 361.33M 1412.03 215.2
RGB RFENet (Fan et al., 2023) ResNeXt 78.85 0.881 0.882 0.083 0.099 152.65M 756.91 26.3
RGB HetNet (He et al., 2023) ResNeXt 79.33 0.870 0.899 0.082 0.093 49.59M 38.73 161.1
RGB CSFwinformer (Xie et al., 2024) Swin 82.08 0.898 0.905 0.080 0.085 230.86M 188.62 187.2
RGB GhostingNet (Yan et al., 2025) SwinV2 81.37 0.889 0.910 0.077 0.091 271.53M 321.70 90.76

RGB-D PDNet (Mei et al., 2021a) ResNet 81.47 0.891 0.910 0.074 0.084 80.54M 69.85 197.9
RGB-D SPNet (Zhou et al., 2021) Res2Net 83.24 0.909 0.918 0.066 0.069 175.29M 81.05 216.4
RGB-D CIRNet (Cong et al., 2022) ResNet 82.38 0.903 0.904 0.069 0.082 103.15M 50.70 40.2
RGB-D RGB-Depth (Lin et al., 2025) ResNext 81.41 0.895 0.909 0.075 0.084 53.28M 32.13 33.8
RGB-T MIDD (Tu et al., 2021) ResNet 77.27 0.865 0.867 0.102 0.117 79.75M 169.70 92.1
RGB-T RGBT GSD (Huo et al., 2023) ResNet 81.50 0.891 0.908 0.069 0.083 85.02M 85.55 48.5
RGB-T PRLNet (Zhou et al., 2023a) Swin 83.01 0.893 0.906 0.065 0.079 570.66M 277.01 144.3
RGB-T WaveNet (Zhou et al., 2023b) WaveMLP 85.66 0.922 0.925 0.057 0.066 84.88M 64.02 154.3
RGB-NIR NRGlassNet (Yan et al., 2024) SwinV2 84.54 0.917 0.914 0.066 0.073 245.30M 265.35 163.2

RGB-NIR Ours SwinV2 87.98 0.934 0.936 0.047 0.055 234.88M 469.98 109.2
RGB-NIR Ours (ablation) ResNet 82.63 0.901 0.905 0.070 0.081 158.42M 428.81 65.1
RGB Ours∗ SwinV2 83.51 0.906 0.835 0.065 0.075 159.60M 284.27 23.6

method (Jiang et al., 2024). Since the enhanced images differ from normal daytime images in terms
of noise distribution and reflection and transmission information in the glass region, most methods
cannot achieve significant improvements. Please refer to the Supplemental for more quantitative
comparisons conducted on GDD Mei et al. (2020) and GSD Lin et al. (2021) datasets.

Table 2: Comparison with competing methods taking the RGB images enhanced by LightenDiffu-
sion (Jiang et al., 2024) as input. Results better than the corresponding ones in Tab. 1 are underlined.

Modal(s) Methods IoU↑ Fβ↑ ACC↑ MAE↓ BER↓

RGB GhostingNet (Yan et al., 2025) 81.29 0.887 0.911 0.079 0.092
RGB CSFwinformer (Xie et al., 2024) 82.75 0.899 0.908 0.066 0.079
RGB-T WaveNet (Zhou et al., 2023b) 85.73 0.921 0.927 0.055 0.067
RGB-NIR NRGlassNet (Yan et al., 2024) 84.47 0.913 0.916 0.067 0.075
RGB-NIR Ours 87.98 0.934 0.936 0.047 0.055

Visual Results. We compare our method with 8 state-of-the-art methods (Mei et al., 2020; Lin et al.,
2021; Huo et al., 2023; Yan et al., 2024; Xie et al., 2024; Mei et al., 2021a; Zhou et al., 2021; 2023b)
in Fig. 9. These examples demonstrate that our method can accurately detect glass surfaces under
various challenging night-time conditions (e.g., with opening doors) by exploiting complementary
patterns on the glass surfaces between NIR and RGB images, while the competing methods often fail.

Table 3: We test the generalization ability of our method on existing multi-modal (i.e., RGB-NIR (Yan
et al., 2024), RGB-Thermal (Huo et al., 2023), and RGB-Depth (Lin et al., 2025)) daytime GSD
datasets. All methods are re-trained on the corresponding datasets. Refer to the Supplemental for full
comparisons. Best results are in bold.

Modal(s) Methods Venue IoU↑ Fβ↑ MAE↓ BER↓

RGB-NIR NRGlassNet (Yan et al., 2024) KBS’24 90.03 0.955 0.033 0.036
RGB-NIR Ours - 88.97 0.947 0.050 0.044

RGB-T RGB-Thermal (Huo et al., 2023) TIP’23 93.80 0.965 0.027 0.040
RGB-T Ours - 94.19 0.969 0.029 0.041

RGB-D RGB-D GSD (Lin et al., 2025) AAAI’25 74.20 0.853 0.043 0.093
RGB-D Ours - 77.96 0.857 0.034 0.080

8
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RGB NIR GDNet EBLNet RFENet PDNet PASNet RGB-T NRGlass Ours GT

Figure 10: Comparison of our method with competing methods on daytime scenes.

5.2 DAYTIME GSD RESULTS

We now evaluate the generalization ability of our method on existing daytime GSD datasets (i.e.,
RGB-NIR (Yan et al., 2024), RGB-Thermal (Huo et al., 2023), and RGB-Depth (Lin et al., 2025)
GSD datasets). The results are shown in Tab. 3, where all methods are re-trained on the corresponding
datasets. The comparison shows that our method generalizes reasonably well to daytime scenes,
despite the existing domain discrepancies.2 Fig. 10 shows some visual comparisons, where we can see
that our method can accurately detect the glass surfaces in daytime scenes. Refer to the Supplemental
for full comparisons.

5.3 ABLATION RESULTS

We report ablation results on the proposed dataset in Tab. 4. The first two rows show that using either
single modality (i.e., “w/o NIR” and “w/o RGB”) significantly decreases the performance. The 3rd to
6th rows show the results when we individually ablate the Retinex decomposition, RNGE, IDE, and
RNFL modules. The 7th to 9th rows show the ablation results obtained by removing specific input
features and the subtraction operation from our RNGE model. Moreover, we replace the backbone
with ResNet-50, termed as “Ours(ablation)”, and ablate our network to a single-branch network (no
NIR input, no NIR feature encoder), termed as “Ours∗”, as shown in Tab. 1. The results demonstrate
that the “SwinV2” is more effective and our complete model obtains the best performance.

Refer to the Appendix for more implementation details, results, and analysis of ablations.

Table 4: Ablation study on multi-modal input and our proposed modules.

Methods IoU↑ Fβ↑ ACC↑ MAE↓ BER↓

w/o NIR 84.19 0.910 0.924 0.062 0.072
w/o RGB 82.68 0.903 0.908 0.072 0.083

w/o Retinex Dec. 87.03 0.927 0.929 0.054 0.061
w/o RNGE 87.21 0.931 0.935 0.051 0.059
w/o IDE 87.35 0.935 0.933 0.048 0.057
w/o RNFL 87.09 0.915 0.931 0.049 0.060

w/o X3
r 87.34 0.932 0.936 0.049 0.058

w/o Xi
r 87.42 0.933 0.931 0.049 0.059

w/o subtraction 87.67 0.933 0.936 0.048 0.056

Ours 87.98 0.934 0.936 0.047 0.055

6 CONCLUSION

We have proposed a novel method for night-time glass surfaces detection, by modeling the comple-
mentary patterns of glass surface regions between RGB and NIR image pairs. Our network has a
novel RNGE module for RGB-to-NIR guiding feature enhancement and a novel RNFL module for
glass surface detection based on the guided multimodal feature aggregation. We have also constructed
the first large-scale night-time glass surface detection dataset. Extensive evaluations show that our
proposed method outperforms the SOTA methods, and can generalize to daytime scenarios well.

2Note that the NIR images of the RGB-NIR dataset (Yan et al., 2024) are captured by covering an NIR filter
on the DSLR camera len, which are different from ours.
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Prinet, and Lubin Weng. Enhanced boundary learning for glass-like object segmentation. In ICCV,
2021.

Ruozhen He, Jiaying Lin, and Rynson W.H. Lau. Efficient mirror detection via multi-level heteroge-
neous learning. In AAAI, 2023.

Tianyu Huang, Bowen Dong, Jiaying Lin, Xiaohui Liu, Rynson WH Lau, and Wangmeng Zuo.
Symmetry-aware transformer-based mirror detection. In AAAI, 2023.

Dong Huo, Jian Wang, Yiming Qian, and Yee-Hong Yang. Glass segmentation with rgb-thermal
image pairs. IEEE Trans. on Image Processing, 2023.

Hai Jiang, Ao Luo, Xiaohong Liu, Songchen Han, and Shuaicheng Liu. Lightendiffusion: Unsuper-
vised low-light image enhancement with latent-retinex diffusion models. In ECCV, 2024.

Agastya Kalra, Vage Taamazyan, Supreeth Krishna Rao, Kartik Venkataraman, Ramesh Raskar, and
Achuta Kadambi. Deep polarization cues for transparent object segmentation. In CVPR, 2020.

Jiaying Lin, Guodong Wang, and Rynson W.H. Lau. Progressive mirror detection. In CVPR, 2020.

Jiaying Lin, Zebang He, and Rynson W.H. Lau. Rich context aggregation with reflection prior for
glass surface detection. In CVPR, 2021.

Jiaying Lin, Yuen-Hei Yeung, and Rynson W.H. Lau. Exploiting semantic relations for glass surface
detection. In NeurIPS, 2022.

Jiaying Lin, Xin Tan, and Rynson W.H. Lau. Learning to detect mirrors from videos via dual
correspondences. In CVPR, 2023.

Jiaying Lin, Yuen-Hei Yeung, Shuquan Ye, and Rynson W.H. Lau. Leveraging rgb-d data with
cross-modal context mining for glass surface detection. AAAI, 2025.

Fang Liu, Yuhao Liu, Jiaying Lin, Ke Xu, and Rynson WH Lau. Multi-view dynamic reflection prior
for video glass surface detection. In AAAI, 2024.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, Furu Wei, and Baining Guo. Swin transformer V2: scaling up capacity and
resolution. In CVPR, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

Haiyang Mei, Xin Yang, Yang Wang, Yuanyuan Liu, Shengfeng He, Qiang Zhang, Xiaopeng Wei,
and Rynson W.H. Lau. Don’t hit me! glass detection in real-world scenes. In CVPR, 2020.

Haiyang Mei, Bo Dong, Wen Dong, Pieter Peers, Xin Yang, Qiang Zhang, and Xiaopeng Wei.
Depth-aware mirror segmentation. In CVPR, 2021a.

Haiyang Mei, Bo Dong, Wen Dong, Pieter Peers, Xin Yang, Qiang Zhang, and Xiaopeng Wei.
Depth-aware mirror segmentation. In CVPR, 2021b.

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural
networks for volumetric medical image segmentation. In 3DV, 2016.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gorazd Planinsic. Infrared thermal imaging: Fundamentals, research and applications. European
Journal of Physics, 2011.

Fulin Qi, Xin Tan, Zhizhong Zhang, Mingang Chen, Yuan Xie, and Lizhuang Ma. Glass makes blurs:
Learning the visual blurriness for glass surface detection. IEEE Trans. on Industrial Informatics,
2024.

Xi Shen, François Darmon, Alexei A. Efros, and Mathieu Aubry. Ransac-flow: Generic two-stage
image alignment. In ECCV, 2020.

Xin Tan, Jiaying Lin, Ke Xu, Pan Chen, Lizhuang Ma, and Rynson W.H. Lau. Mirror detection with
the visual chirality cue. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2023.

Zhengzheng Tu, Zhun Li, Chenglong Li, Yang Lang, and Jin Tang. Multi-interactive dual-decoder
for rgb-thermal salient object detection. IEEE Trans. on Image Processing, 2021.

A Vaswani. Attention is all you need. In NeurIPS, 2017.

Alex Warren, Ke Xu, Jiaying Lin, Gary K.L. Tam, and Rynson W.H. Lau. Effective video mirror
detection with inconsistent motion cues. In CVPR, 2024.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block
attention module. In ECCV, 2018.

Enze Xie, Wenjia Wang, Wenhai Wang, Mingyu Ding, Chunhua Shen, and Ping Luo. Segmenting
transparent objects in the wild. In ECCV, 2020.

Zhifeng Xie, Sen Wang, Qiucheng Yu, Xin Tan, and Yuan Xie. Csfwinformer: Cross-space-frequency
window transformer for mirror detection. IEEE Trans. Image Processing, 2024.

Ke Xu, Tsun Wai Siu, and Rynson WH Lau. Zoom: learning video mirror detection with extremely-
weak supervision. In AAAI, 2024.

Tao Yan, Shufan Xu, Hao Huang, Helong Li, Lu Tan, Xiaojun Chang, and Rynson W.H. Lau.
NRGlassNet: Glass surface detection from visible and near-infrared image pairs. Knowledge-
Based Systems, 2024.

Tao Yan, Jiahui Gao, Ke Xu, Xiangjie Zhu, Hao Huang, Helong Li, Benjamin Wah, and Rynson W.H.
Lau. Ghostingnet: A novel approach for glass surface detection with ghosting cues. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 2025.

Xin Yang, Haiyang Mei, Ke Xu, Xiaopeng Wei, Baocai Yin, and Rynson W.H. Lau. Where is my
mirror? In ICCV, 2019.

Kai Zhang, Guoyang Zhao, Jianxing Shi, Bonan Liu, Weiqing Qi, and Jun Ma. Monoglass3d:
Monocular 3d glass detection with plane regression and adaptive feature fusion. arXiv preprint
arXiv:2509.05599, 2025.

Heng Zhou, Chunna Tian, Zhenxi Zhang, Chengyang Li, Yuxuan Ding, Yongqiang Xie, and Zhongbo
Li. Position-aware relation learning for rgb-thermal salient object detection. IEEE Trans. on Image
Processing, 2023a.

Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. Specificity-preserving
RGB-D saliency detection. In ICCV, 2021.

Wujie Zhou, Fan Sun, Qiuping Jiang, Runmin Cong, and Jenq-Neng Hwang. Wavenet: Wavelet
network with knowledge distillation for rgb-t salient object detection. IEEE Trans. on Image
Processing, 2023b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX AND SUPPLEMENTARY MATERIALS

In this appendix, we provide implementation details of our method, more analysis of the impact
of pre-processing operations on input data. We also provide more qualitative visual comparisons
between existing state-of-the-art methods from relevant fields and our model. Finally, we analyzed
the impact of different modal inputs on nighttime glass detection problems and also examined the
practical role of Retinex decomposition.

A.1 IMPLEMENTATION DETAILS AND LOSS FUNCTIONS

Our network is implemented using PyTorch on a Nvidia RTX 4090 GPU. Swin Transformer V2 (Liu
et al., 2022) pre-trained on ImageNet-1K is adopted as the backbone of our network. The resolution
of the image input is set to 384 × 384. For data augmentation, we follow the previous work (Lin
et al., 2021) to use random cropping, random rotation, and random horizontal flip. We use the
AdamW (Loshchilov & Hutter, 2019) optimizer, while the initial learning rate is set to 1× 10−5, and
the batch size is set to 2. We train our model with 100 epochs, which takes about 10 hours.

As for loss function, we first train the Retinex Decomposition Stage of our network. We directly use
the pre-trained CTDN module (Jiang et al., 2024) for RGB decomposition, and finetune the CTDN
module for NIR decomposition using the NIR images of our dataset via the reconstruction loss Lrec

as follow:
Lrec = ||In −Rn × Ln||2. (4)

We then train the Encoder and Decoder parts, using the BCE and IoU loss for supervising the glass
surface detection and the Dice loss for glass boundary detection. The BCE loss and IoU loss are
adopted to supervise the predicted glass surface mask Pi at i-th scale, and the Dice loss (Milletari
et al., 2016) for boundary predictions Bi. A 3×3 convolution is used as the boundary detection head.
The prediction loss function Lpred and boundary loss function Lbound can be defined as follow:

Lpred =

4∑
i=0

(Lbce(Pi, Pgt) + Liou(Pi, Pgt)), (5)

Lbound =

4∑
i=1

Ldice(Bi, Bgt), (6)

where Pgt and Bgt are the ground truth glass masks and boundary maps, Lbce(·), Liou(·), and Ldice(·)
are the BCE, IoU, and Dice Losses, respectively. i = 4 is used to index the glass surface and boundary
supervisions at the top of the Encoder. The total loss for the second stage can be defined as follow:

Lstage2 = Lpred + λLbound, (7)

where λ is a hyper-parameter, empirically set to 0.1.

A.2 SUPPLEMENTAL QUANTITATIVE COMPARISON

Moreover, Tab. 5 shows the evaluation results of the competing methods taking Reflectance compo-
nents of RGB images (and that of NIR images) decomposed by CTDN (Jiang et al., 2024) as input.
In another word, the reflectance components of RGB and NIR images takes place of the original
RGB and NIR images. The results demonstrate that most competing methods can not directly benefit
from the learning-based Retinex Decomposition.

Tab. 6 reports the results of the competing methods taking as input the enhanced RGB images from
the SOTA low-light enhancement method (Jiang et al., 2024). Existing methods may not be easily
benefited, as the enhancement may introduce noisy patterns that affect the glass surface detection.

We conducted additional experiments on the glass surface detection benchmarks GDD (Mei et al.,
2020) and GSD (Lin et al., 2021) to validate the robustness of our model. As shown in the Tab. 7, we
achieve state-of-the-art performance across most metrics, demonstrating that our model is well-suited
for addressing the problem of glass surface detection.
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Table 5: Study on competing methods directly taking Reflectance component Rr (and Rn) as input.
Each value better than its corresponding value shown in Table 1 of our paper is marked in underlined.

Methods IoU↑ Fβ↑ Acc↑ MAE↓ BER↓

GDNet Mei et al. (2020) 78.22 0.872 0.878 0.085 0.103
GSDNet Lin et al. (2021) 77.98 0.876 0.873 0.085 0.105
GlassSemNet Lin et al. (2022) 79.05 0.879 0.887 0.088 0.097
RFENet Fan et al. (2023) 78.53 0.872 0.887 0.086 0.102
GhostingNet Yan et al. (2025) 81.23 0.884 0.908 0.080 0.093

PMD Lin et al. (2020) 78.89 0.866 0.889 0.083 0.097
HetNet He et al. (2023) 78.59 0.863 0.895 0.086 0.096
CSFwinformer Xie et al. (2024) 82.14 0.896 0.907 0.070 0.083

PDNet Mei et al. (2021a) 80.77 0.889 0.903 0.077 0.086
SPNet Zhou et al. (2021) 82.53 0.904 0.907 0.072 0.078
CIRNet Cong et al. (2022) 81.34 0.897 0.898 0.076 0.086
RGB-Depth Lin et al. (2025) 80.94 0.887 0.903 0.078 0.086

MIDD Tu et al. (2021) 76.96 0.863 0.866 0.105 0.118
RGB-Thermal Huo et al. (2023) 79.09 0.877 0.891 0.084 0.091
PRLNet Zhou et al. (2023a) 82.37 0.887 0.901 0.067 0.083
WaveNet Zhou et al. (2023b) 84.59 0.912 0.902 0.066 0.077

NRGlassNet Yan et al. (2024) 83.84 0.911 0.910 0.070 0.078

Ours 87.98 0.934 0.936 0.047 0.055

Table 6: Comparisons with competing methods taking the enhanced RGB images produced by
LightenDiffusion (Jiang et al., 2024) as input. Results better than the corresponding ones in Tab. 1 of
our paper are underlined.

Methods IoU↑ Fβ↑ ACC↑ MAE↓ BER↓

GDNet Mei et al. (2020) 78.82 0.878 0.880 0.082 0.100
GSDNet Lin et al. (2021) 78.92 0.878 0.880 0.081 0.100
GlassSemNet Lin et al. (2022) 80.20 0.885 0.900 0.080 0.094
RFENet Fan et al. (2023) 79.22 0.882 0.878 0.080 0.099
GhostingNet Yan et al. (2025) 81.29 0.887 0.911 0.079 0.092

PMD Lin et al. (2020) 79.54 0.870 0.893 0.080 0.094
HetNet He et al. (2023) 78.82 0.869 0.887 0.083 0.097
CSFwinformer Xie et al. (2024) 82.75 0.899 0.908 0.066 0.079

PDNet Zhou et al. (2021) 81.16 0.892 0.910 0.076 0.085
SPNet Zhou et al. (2021) 82.88 0.896 0.914 0.075 0.071
CIRNet Cong et al. (2022) 82.43 0.903 0.900 0.067 0.082
RGB-Depth Lin et al. (2025) 81.46 0.891 0.911 0.073 0.086

MIDD Tu et al. (2021) 77.53 0.867 0.865 0.098 0.102
RGB-Thermal Huo et al. (2023) 81.70 0.896 0.904 0.080 0.087
PRLNet Zhou et al. (2023a) 83.07 0.891 0.909 0.068 0.080
WaveNet Zhou et al. (2023b) 85.73 0.921 0.927 0.055 0.067

NRGlassNet Yan et al. (2024) 84.47 0.913 0.916 0.067 0.075

Ours 87.98 0.934 0.936 0.047 0.055

A.3 SUPPLEMENTAL QUALITATIVE COMPARISON

Fig. 11, 12 and 13 show more qualitative comparison results produced by our method and 8 SOTA
competing methods Mei et al. (2020); Lin et al. (2021); Huo et al. (2023); Yan et al. (2024); Xie et al.
(2024); Mei et al. (2021a); Zhou et al. (2021; 2023b).

The Fig. 11 shows that smooth and flat non-glass surfaces can easily lead to misjudgment in glass
detection methods due to the reflection of visible light, mistakenly identifying it as a glass area.
Our method utilizes the characteristic of similar reflection phenomena on non-glass surfaces and
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Table 7: Quantitative comparison between our method and 9 state-of-the-art methods on the bench-
mark datasets GDD and GSD. Best detection results are marked in bold.

GDD GSD
Methods Venue IoU↑ Fβ↑ MAE↓ BER↓ IoU↑ Fβ↑ MAE↓ BER↓

MINet CVPR’20 84.35 0.919 0.077 0.074 77.29 0.879 0.077 0.095
SINet CVPR’20 83.27 0.912 0.101 0.084 77.04 0.875 0.077 0.092

TransLab ECCV’20 82.93 0.891 0.091 0.089 74.05 0.837 0.088 0.114
GDNet CVPR’20 87.63 0.937 0.063 0.056 79.01 0.869 0.069 0.077

GSDNet CVPR’21 88.07 0.932 0.059 0.057 83.64 0.903 0.055 0.061
EBLNet ICCV’21 88.16 0.939 0.059 0.056 85.04 0.916 0.053 0.064
RFENet IJVAI’23 88.72 0.940 0.055 0.054 86.50 0.931 0.048 0.062
VBNet TII’24 90.58 0.944 0.048 0.047 85.90 0.915 0.043 0.054

GhostingNet TPAMI’25 89.30 0.943 0.054 0.051 83.77 0.904 0.055 0.061

Ours - 91.27 0.946 0.044 0.045 87.91 0.921 0.039 0.047

significant differences in reflection phenomena on glass surfaces in two modals to distinguish glass
regions.

The Fig. 12 shows that open doors and windows have the same edge features as closed glass doors
and windows, leading to the failure of edge dependent detection methods. Our method focuses on
the differences between the two modes in the door and window area, so it can accurately distinguish
between open doors and windows and closed glass doors and windows.

The Fig. 13 shows that the curved glass boundary features pose challenges to glass surface detection
algorithms. Ordinary glass typically exhibits regular geometric shapes, and curved glass boundaries
can mislead this prior knowledge.

The Fig. 14 shows more results on the day-time NIR dataset (Yan et al., 2024).

These qualitative results demonstrate that our method has better performance than the competing
methods.

RGB NIR GDNet GSDNet PDNet SPNet CSFwin RGB-T WaveNet NRGlass Ours GT

Figure 11: More experiment results on challenging scenes with smooth non-glass surfaces.

A.4 STUDY ON DIFFERENT MULTI-MODAL INPUTS

We have also conducted an experiment to study the different combinations of multimodal image data
(such as RGB, Depth, NIR and thermal images) for glass surface detection. The hybrid imaging

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

RGB NIR GDNet GSDNet PDNet SPNet CSFwin RGB-T WaveNet NRGlass Ours GT

Figure 12: More experiment results on challenging scenes with opened windows and doors.

RGB NIR GDNet GSDNet PDNet SPNet CSFwin RGB-T WaveNet NRGlass Ours GT

Figure 13: More experiment results on challenging scenes with complex boundaries.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

RGB NIR GDNet EBLNet RFENet PDNet PASNet RGB-T NRGlass Ours GT

Figure 14: Comparison of our method with competing methods on daytime scenes.

RGB NIR Depth Thermal RGB-D RGB-T NRGlass Ours GT

Figure 15: Study on different multi-modal inputs.

systems we used to capture multimodal image data are shown in Fig. 19. As shown in Fig. 15, 16
and 18 We captured RGB images, NIR images, thermal images, and depth maps of the target scenes.
Then, we compare our method with the competing multi-modal methods including RGB-D based
method (Lin et al., 2025), RGB-T based method(Huo et al., 2023) on the capture multimodal image
data.

The 1st scene of Fig. 18 shows that, in low-light scenes, due to the lack of the sun as a thermal
radiation source, the intensity difference between different regions in the thermal images is very
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RGB NIR Depth Thermal RGB-D RGB-T NRGlass Ours GT

Figure 16: Use the Reflectance component as input.

RGB NIR Thermal RGB-T ours GT

Figure 17: Some indoor low heat radiation difference scenes.
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RGB NIR Depth Thermal Ours RGB-D RGB-T GT

Figure 18: Study on different multi-modal inputs in low-light environment.

(a) Our designed hybrid imaging system. (b) RGB-T and RGB-D imaging system.

Figure 19: (a) shows our designed hybrid imaging system for capturing RGB-NIR image pairs. It
consists of a DSLR camera and a NIR camera. (b) shows the hybrid imaging system consisting of a
thermal infrared camera and a stereo camera we used for capturing thermal images and depth maps.

Ir Rr Lr In Rn Ln w/o Retinex w/o L w/o R Ours GT

Figure 20: Ablation Study on Retinex Decomposition.
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small. The 2nd scene of Fig. 18 shows that thermal image is susceptible to interference from external
strong thermal radiation sources, such as the air conditioner outdoor unit reflected on glass surface in
the thermal image. The 3rd scene of Fig. 18 shows that depth values of the glass door is incorrect,
which are close to the depth values of the outdoor scene. Thus, RGB-D based method (Lin et al.,
2025) cannot distinguish glass door and open glass door.

These examples demonstrate that our cpatured RGB-NIR image pair can provide more valuable
information than RGB-D and RGB-T image pairs for glass surface detection, and our method
outperforms those RGB-D and RGB-T based methods in various challenging night-time scenes.

A.5 STUDY ON MISALIGNMENT INPUTS

To evaluate the robustness of our model under practical conditions, we conducted experiments with
synthetically misaligned RGB-NIR inputs. Specifically, we introduced random spatial shifts to the
NIR images to simulate imperfect camera calibration and synchronization. As the offset increased,
performance gradually degraded: a small misalignment (about 5 pixels) led to an IoU drop of only
1.1, while a larger shift (about10 pixels) caused a 2.4 decrease in IoU, as shown in Tab. 8. These
results indicate that our model is reasonably tolerant to moderate spatial misalignment, which is a
common issue in real-world dual-camera systems, and can still maintain acceptable performance
under imperfect alignment.

Table 8: The impact of misaligned images.

pixel range IoU↑ Fβ↑ MAE↓ BER↓ ACC↑

0-0 pixel 87.98 0.934 0.047 0.055 0.936
0-5 pixel 86.88 0.928 0.051 0.060 0.929

0-10 pixel 85.58 0.923 0.054 0.067 0.918

A.6 STUDY ON GLASS OBJECT DETECTION

The glass object detection (GOD) task substantially differs from the glass surface detection (GSD)
task, due to the distinct properties of their respective targets. Specifically, GOD focuses on detecting
glass objects characterized by their shapes and boundaries, whereas GSD emphasizes glass surfaces,
which are defined by reflection and transmission phenomena.

We evaluate our method on the Trans-10K dataset (Xie et al., 2020), as shown in Tab. 9. This dataset
contains two subsets of transparent objects: (1) Transparent things, referring to small-scale curved
objects such as cups, bottles, and glasses; and (2) Transparent stuff, referring to large-scale surfaces
such as windows, glass walls, and doors.

Table 9: Quantitative comparison between our method and TransLab (Xie et al., 2020) on the dataset
Trans-10k. Best detection results are marked in bold.

Dataset Methods IoU↑ Fβ↑ MAE↓ BER↓ ACC↑

Trans10k-full TransLab 88.18 - 0.063 0.050 0.927
Ours 92.34 0.959 0.022 0.030 0.960

Trans10k-things TransLab 90.87 - - 0.036 -
Ours 94.37 0.967 0.011 0.018 0.972

Trans10k-stuff TransLab 84.39 - - 0.072 -
Ours 89.47 0.948 0.037 0.047 0.943

A.7 ABLATION STUDY OF RETINEX DECOMPOSITION

As shown in Fig. 20, apart from the case when Retinex Decomposition is not used (i.e., decomposed
components are replaced by the original input), we also test the cases when either one of the
decomposed components is replaced by the original input image. We show more cases that are not
shown in our paper. The reflection on glass surfaces is enhanced in the decomposed Reflectance
component (Rr) of the RGB image, while there is no easily noticeable reflection on Rn. These cases
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demonstrate that Retinex Decomposition is helpful in distinguishing glass surfaces from non-glass
regions.

A.8 ABLATION STUDY OF THE PROPOSED MODULES

The GSD task requires better global perception to capture glass surface properties. Previous methods
always design modules by integrating features from multiple encoder layers or by applying convolu-
tions with different kernel sizes. Our RNFL module adopts a multi-stage cross-attention design to
capture long-range dependencies and modality-specific cues between RGB/NIR features. In contrast,
simple fusion methods, e.g., convolutions, can only provide a limited receptive field, i.e., not very
effective in exploiting such relationships.

We ablated RNFL by using a multi-stage convolutional fusion. Specifically, we first concatenate
the RGB/NIR features (Xi

r/X̄i
n) and fuse them using a 3 × 3 convolution. The fused features are

then concatenated with the decoder features Xi+1
de , followed by another 3×3 convolution for channel

reduction, and finally combined through a residual connection.

This variant leads to an increased model size (50M parameters) and noticeable performance degra-
dation: IoU decreased by 1.28 (87.98→86.70), Fβ by 0.021 (0.934→0.913), ACC by 0.008
(0.936→0.928), while MAE and BER increased by 0.005 (0.047→0.052) and 0.006 (0.055→0.061),
respectively. These results highlight that our attention-based RNFL design is both more accurate and
more parameter-efficient.

A.9 ABLATION STUDY OF THE RESNET BACKBONE

When the RNGE module is ablated from the variant of our network taking ResNet-50 as the back-
bone, the performance drop is more pronounced compared to our complete network taking Swin
Transformer V2 as the backbone. As shown in Tab. 10, IoU decreased from 82.63 to 78.65, Fβ

dropped from 0.901 to 0.879, ACC declined from 0.905 to 0.883, while MAE increased from 0.070
to 0.086 and BER increased from 0.081 to 0.099.

Table 10: Results with ResNet-50 backbone and RNGE module ablation

Methods IoU↑ Fβ↑ MAE↓ BER↓ ACC↑

w/o RNGE 78.65 0.879 0.086 0.099 0.883
full (taking ResNet-50 as the backbone) 82.63 0.901 0.070 0.081 0.905

A.10 TWO FAILURE CASES

Our method does have limitations. The first row of Fig. 21 shows that our method over-detects the
bottom-right non-glass region (an open window) as the glass region, as this region contains similar
patterns to the upper-right glass region in both the RGB and NIR modalities. The second row of
Fig. 21 shows that if a glass region is too dark for the retinal decomposition method to obtain the
desired reflection component, our method may not detect it.

Ir In RGB-T WaveNet Ours GT

Figure 21: Two failure cases of our proposed method.
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