
Transportable Representations for Out-of-distribution Generalization

Kasra Jalaldoust Elias Bareinboim

Abstract
Building on the theory of causal transportability
(Bareinboim & Pearl), we define in this paper
the notion of “transportable representations,” and
show that the out-of-distribution generalization
risk of classifiers defined based on these represen-
tations can be bounded, considering that graphical
assumptions about the underlying system are pro-
vided.

1. Introduction
Generalizing findings across settings is central throughout
human experience. The domains where the data is collected
(called sources) are related to, but not necessarily the same
as the one where the predictions are intended (target). In
fact, if the target domain is arbitrary, or drastically different
from the source domains, no learning could take place [12;
6]. However, the fact that we generalize and adapt relatively
well to a new domain suggest that certain domains share
common characteristics and that, owing to these commonal-
ities, statistical claims can be generalized even to domains
where no or partial data is available [21; 27; 4]. How could
one described the shared features across environments that
allow this inferential leap? The anchors of knowledge that
allow generalization to take place are eminently causal, fol-
lowing from the stability of the mechanisms shared across
settings [1]. The systematic analysis of these mechanisms
and the conditions under which generalizations could be
formally justified has been studied in the literature under the
rubric of transportability theory [3; 4; 5; 22; 10; 11; 16].

In modern machine learning literature, the challenge of pre-
dicting in an unseen target domain is acknowledged and
broadly referred to as the out-of-distribution (OOD) gen-
eralization. The theoretical proposals in this area rely on
assumptions to define the target domains compatible with
the source data, e.g., the covariate shift assumption [30; 29;
28], or use of distance measures to relate the source and tar-
get distributions [7; 14]. Even under restrictive assumptions
tying the source and target distributions, adapting to the tar-
get domain might still be impossible [12]. Another line of
work takes into account the fact that the source and target do-
mains are linked through the shared causal mechanisms, as
alluded to earlier, and which might entail probabilistic crite-

ria that relates aspects of the source and target distributions.
The invariance-based approaches then view the probabilistic
invariances across the source and target data as proxies to
the causal invariances across the source and target domains
[19; 23; 2; 25; 31; 9]. These methods are contingent on
assumptions such as linearity, additivity, Markovianity, yet
there exists subtleties that limit the effectiveness and practi-
cality of these methods [24]. Another important ingredient
present in modern machine learning methods is the use of
representations. Those methods extract useful information
to feed into the learning algorithm, which is particularly
useful in high-dimensional and unstructured domains [8].
It has been noted both theoretically and empirically that
enforcing certain restrictions to the representation learning
stage yields performance boost for the downstream predic-
tion tasks [7; 13; 18; 17; 34; 33]. Also, causal features have
been used in representations to help predictions across do-
main, while filtering out the spurious correlations that might
be unstable across domains [32; 26; 20; 15].

By and large, we note that solving an OOD generalization
problem can be seen as a two-step process – step 1 (eval-
uation). given a classifier, compute/bound its worst-case
risk; step 2 (search). find a classifier that minimizes the
quantity obtained by an evaluation method. In this paper,
we study the evaluation step through transportability lenses
in a setting where labeled data from source domains is avail-
able, however, no data from the target domain is available.
We also analyze in this setting the fundamental interplay
between causal knowledge and the complexity of a repre-
sentation. For instance, we refute through our analysis the
belief that causal features are always desirable while spuri-
ous should be discarded. The preliminaries are provided in
Appendix A.

2. Examples & Results
We study a system of variables X ∪ {Y }, where Y is a bi-
nary label. SCMsM1,M2, . . . ,MT defined over X∪{Y }
denote the source domains, and entail the distributions
P = {P 1, P 2, . . . , PT }, while they induce the causal di-
agrams G1,G2, . . . ,GT . There exists an unknown SCM
M∗ representing the target domain, which entails the dis-
tribution P ∗, while it induces the causal diagram G∗. We
adapt the following notion introduced in (Lee et al., 2020)
to describe mismatch of mechanisms between two SCMs.
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Definition 2.1 (Domain discrepancy). For every pair of
SCMs Ma,M b (a, b ∈ {∗, 1, 2, . . . , T}) defined over X ∪
{Y }, the domain discrepancy set ∆ab ⊆ V is defined such
that for every V ∈ ∆ab there might exist a discrepancy
fM

a

V ̸= fM
b

V or PMa

(uV ) ̸= PMb

(uV ). □

In other words, V ̸∈ ∆ab is equivalent assuming the same
mechanisms for V across Ma,M b, i.e., fM

a

V = fM
b

V and
PMa

(uV ) = PMb

(uV ). We introduce next a version of
selection diagrams (Lee et al., 2020) to graphically repre-
sent the system that includes multiple SCMs relative to the
collection of source and target domains.

Definition 2.2 (Selection diagram). The selection diagram
G∆ij is constructed from Gi (i ∈ {∗, 1, 2, . . . , T}) by
adding the selection node Sij to the vertex set, and adding
the edge Sij → V for every V ∈ ∆ij . The collection
G∆ = {G∗} ∪ {G∆ij}Ti,j=1 encodes the graphical assump-
tions. If the causal diagram is shared across the domains,
we can use a single graph to depict G∆. □

In words, a selection diagram is a parsimonious graphical
representation of the commonalities and disparities across
domains, which can be seen as grounding Kant’s observation
alluded to earlier.

Definition 2.3 (Transportability). For subsets of variables
C,W ⊂ X ∪ {Y } in the SCM, the query P ∗(c | w) is
transportable if for every pair of SCMsM∗

a,M∗
b compatible

with the selection diagrams G∆, and the distributions P over
X ∪ {Y }, PM∗

a(c | w) = PM∗
b (c | w). □

The joint distribution P ∗(x, y) is unknown, yet we might be
able to infer certain aspects of it (e.g., the conditional distri-
butions, the risk of a classifier) from the source distributions
P and qualitative assumptions encoded by the selection dia-
grams G∆. The notion of transportability describes such a
property.

The input for the OOD generalization task comprises the
labeled data drawn from each P i ∈ P. Next, we formally
define classifiers which use a representation of the input.

Definition 2.4 (Representations for classification). The vari-
able R = ϕ(X) is called a representation for every mapping
ϕ : supp(X) → supp(R). Furthermore, a representation
is said to satisfy the coverage property w.r.t. the distri-
bution P (x) if P (X ∈ {x : ϕ(x) = r}) > 0 for ev-
ery r ∈ supp(R). A mapping h : supp(X) → {0, 1} is
said to be a classifier defined based on the representation
R = ϕ(X) if it can be expressed as composition with ϕ,
i.e., h = h̃ ◦ ϕ. □

Throughout this work, we consider representations that sat-
isfy the coverage of property w.r.t. all P i ∈ P. Our per-
formance measure for the classifier ĥ is called risk, a.k.a.,
classification error, defined as, RP∗(ĥ) := P ∗(Y ̸= h(X)).

Figure 1: Selection diagram corresponding to Examples 2.5
& 2.7

Example 2.5 (High blood pressure (HBP)). Let Y be a
binary variable indicating whether a patient has HBP. For
each patient, a set of features X = {Z,W} is measured,
which denotes the level of exercise and anxiety, respectively.
The unobserved confounders U is the patient’s wealth. In
this population, wealth directly affects the patients’ exercise
and anxiety levels. Data is drawn from P 1, P 2 entailed by
domainsM1,M2, respectively. The patients fromM1 are
genetically prone to HBP, which leads the government to
run TV ads to promote exercising.

We are asked to classify whether patients in another domain
M∗ are at risk of HBP based on the same features X. The
relationships across domains are summarized through the
selection diagrams G∆ shown in Figure 1. In the domain
M∗, patients are genetically prone to HBP, similar toM1,
thus, the mechanisms deciding blood pressure (Y ) inM∗

is the same as M1, while differing from M2. However,
inM∗, the government is not running the exercising TV
ads, and the mechanism determining exercise is the same as
inM2, while differing fromM1. Further, the mechanism
determining anxiety (W ) is invariant across sources and
target domains. All these invariances can be written as
∆∗1 = {Z} and ∆∗2 = {Y }, and ∆12 = {Z, Y }.

As a representation of Z,W , consider a mind & body well-
ness R that is decreasing in anxiety (W ) and increasing in
exercise (Z), defined as R = ϕ(Z,W ) := Z −W. One can
construct a classifier based on the value of this representa-
tion, namely,

ĥ(z, w) := 1{ϕ(z,w)≤c} = 1{r≤c} = 1{z−w≤c}.

In words, ĥ suggests that the person is in high risk if their
wellness index R is below threshold c. □

We next introduce a criterion useful to judge certain in-
variances about the underlying mechanisms that will imply
probabilistic invariances in the distribution.

Definition 2.6 (S-Admissibility). Consider the domains
Mi,Mj (i, j ∈ {∗, 1, 2, . . . , T}), and sets of variables
Z,A ⊂ X ∪ {Y }. A is said to be S-admissible given Z
w.r.t. the domainsMi,Mj whenever A is separated from
S∗i given Z in G∆ij . Furthermore, if S-admissibility holds,
then the conditional distribution of A given Z is invariant
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acrossMi andMj . In summary,

A ⊥⊥d Sij | Z in G∆ij =⇒ P i(a | z) = P j(a | z). (1)

Note that S-admissibility connects the assumptions encoded
in the graphical model about the underlying mechanisms, as
formalized in Def. 2.2, and the mechanisms represented by
the underlying and unobserved generating SCMs, to elicit
invariances at the probabilistic level (r.h.s. of Eq. 1). Next,
we elaborate on whether (and how) the risk of a classifier can
be transported (i.e., uniquely computed) given the source
data through the S-admissibility criterion.

Example 2.7 (Risk evaluation through joint transportability).
Considering the classifier ĥ(z, w) of Ex. 2.5, we attempt to
transport the joint distribution of Z, Y,W as,

P ∗(z, y, w) = P ∗(z) · P ∗(y | z) · P ∗(w | y, z)
= P 2(z) · P 1(y | z) · P 2(w | y, z)

The last line follows since Z is (marginally) S-admissible
in M2,M∗, Y is S-admissible conditional on Z in
M1,M∗, and W is S-admissible conditioned on {Y,Z}
w.r.t. M2,M∗. Considering the representation, R =
Z−W implies P ∗(r | y, z, w) = 1{z−w=r}, we can derive,

P ∗(y, r)

=

∫
P ∗(z, y, w, r) · dz · dw

=

∫
P ∗(z, y, w) · P ∗(r | z, y, w) · dz · dw

=

∫
P 2(z) · P 1(y | z) · P 2(w | y, z) · 1{z−w=r} · dz · dw

Having this joint distribution allows us to compute the risk
RP∗(ĥ) = P ∗(Y ̸= ĥ(Z,W )) = P ∗(Y ̸= R). Thus, the
first step of the procedure discussed in Sec 1 (Evaluation)
can be executed, i.e., the risk can be evaluated via the source
data drawn from P 1(z, w, y), P 2(z, w, y). Tuning the pa-
rameters of the classifier and the representation to minimize
this quantity (Search) would asymptotically yield a min-max
optimal solution under the graphical assumptions encoded
in the selection diagrams. □

The derivation in Example 2.7 leads to a more general de-
cision problem that asks whether certain distributions can
be computed from the available data considering a given
representation. The next example shows that the strategy
used in Ex. 2.7 is not always applicable for deciding r-
transportability, but it’s neither necessary.

Example 2.8 (Complex representation). Consider the se-
lection diagram G∆ in Figure 2, over the variables Y and
X = {X1, X2, X3, X4} with supp(Xi) = (0, 1). There
exists only one source domainM1. Further, consider the

Figure 2: selection diagram corresponding to Example 2.8

representation

R1 = − log(X1) + 2 ·
√
X3 + 3 · ⌊10 ·X4⌋

R2 = −3 log(X1) + 1 ·
√
X3 + 2 · ⌊10 ·X4⌋

R3 = −2 log(X1) + 3 ·
√
X3 + ⌊10 ·X4⌋

In this case, the relation between R = ⟨R1, R2, R3⟩ and
the variables X1, X3, X4 is not immediately clear, however,
we can rewrite the above equations as

R =

1 2 3
3 1 2
2 3 1

 · ⟨− log(X1),
√
X3, ⌊10 · x4⌋⟩T . (2)

The matrix above is full-rank, which means it is invertible;
it will be called W. For every value of R such as r =
⟨r1, r2, r3⟩, let r̃ := W−1 · r. From Eq. 2, we can derive
the following conditions on X equivalent to the condition
R = r;

X1 = exp(−r̃1), X3 = (r̃2)
2, and

r̃3
10
≤ X4 <

r̃3 + 1

10

Let x1 := exp(−r̃1), x3 := (r̃2)
2, xa4 := r̃3

10 , and xb4 :=
r̃3+1
10 . We can compute,

P ∗(y | r)
= P ∗(y | x1, x3, X4 ∈ [xa4 , x

b
4))

=
P ∗(y,X4 ∈ [xa4 , x

b
4) | x1, x3)∑1

y=0 P
∗(y,X4 ∈ [xa4 , x

b
4) | x1, x3)

=
P 1(y,X4 ∈ [xa4 , x

b
4) | x1, x3)∑1

y=0 P
1(y,X4 ∈ [xa4 , x

b
4) | x1, x3)

(S-adm.)

= P 1(y | x1, x3, X4 ∈ [xa4 , x
b
4)) = P 1(y | r) (3)

The transformation W in Eq. 2 can be used to rewrite ĥ =
(h̃ ◦W) ◦ (W−1 ◦ ϕ), so that the classification component
h̃ ◦W takes transformed representation R̃ = (W−1 ◦ϕ)(x)
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as the input. We can then write:

P ∗(y, r̃3 | r̃1, r̃2)
= P ∗(y,X4 ∈ [xa4 , x

b
4) | x1, x3)

= P 1(y,X4 ∈ [xa4 , x
b
4) | x1, x3) (S-adm.)

= P 1(y, r̃3 | r̃1, r̃2).

This enables us to derive the following to bound the risk as,

RP∗(ĥ)

= P ∗(Y ̸= h̃ ◦ ϕ(x))
= P ∗(Y ̸= h̃(W · R̃))

=
∑
r̃1,r̃2

P ∗(Y ̸= h̃(W · ⟨r̃1, r̃2, R̃3⟩T ) | r̃1, r̃2) · P ∗(r̃1, r̃2)

=
∑
r̃1,r̃2

P ∗(r̃1, r̃2) · P 1(Y ̸= h̃(W · ⟨r̃1, r̃2, R̃3⟩T ) | r̃1, r̃2)

≤ max
r̃1,r̃2∈supp(R̃1,R̃2)

P 1(Y ̸= h̃(W · ⟨r̃1, r̃2, R̃3⟩T ) | r̃1, r̃2)

(4)

The bound provided above is tight in this case, as the max-
imum is attained by a compatible target domain (see Ap-
pendix D). □

Noticeably, the features X3, X4 are non-causal to the label
Y , as there exists no direct path from them to Y in G∆.
However, it is valid in this case to use them for classification.
This subtle point carries an important message; “causal”
prediction is not necessarily superior, or even desirable, as
the transportability theory might license us to use non-causal
features for better classification. Motivated by Example 2.8,
we define the following concepts.

Definition 2.9 (r-Transportability & transportable represen-
tations). Let R = ϕ(X) be a representation. The query
P ∗(y | r) is r-transportable given (1) the set of distributions
P, (2) the selection diagrams G∆, and (3) the arithmetic
expression ϕ, if for every two SCMsM∗

a,M∗
b compatible

with P and G∆, PM∗
a(y | r) = PM∗

b (y | r). If so, ϕ will
be called a transportable representation.

As seen in Example 2.8, the key to blocking the path S →
X1 → Y is through discovering the fact that the condition
R = r in this special case of the expression ϕ determines
the value of X1. The following definition is introduced
accordingly.

Definition 2.10. (Determined and constrained variables)
The variables Z ⊆ X are determined by the system of

equations R = ϕ(X) if for some mapping ψ the equation
Z = ψ(R) can be derived algebraically. A variable is un-
constrained by R = ϕ(X) if it can be algebraically removed
from the expression ϕ. Variables Z̄ ⊆ X are constrained by
R = ϕ(Z) if they are neither unconstrained nor determined.

Algorithm 1 rTR: r-transport P ∗(y | r) from P, G∆, ϕ.

1: ⟨Z = ψ(R), R̄ = ϕ̄(Z̄)⟩ ← solve(R = ϕ(X))

2: G∆aux: Add to every graph in G∆ the variable R̄ &
arrows from Z̄ to R̄

3: Paux := {P i
aux(x, y, r̄) := P i(x, y) · 1{r̄=ϕ̄(z̄)}}P i∈P

4: return gTR
(
query: P ∗(y | z, r̄);G∆aux,Paux) [Lee

et al. (2020)]

In Example 2.8, the variables X1, X3 are determined by R,
X2 is unconstrained by it, and X4 is constraint by it.

We propose algorithm 1 to decide r-transportability, and
show the following.
Theorem 2.11. Algorithm 1 is sound for r-transportability.

All proofs are provided in Appendix B.

Algorithm rTR uses the arithmetic expression for ϕ to solve
a system of equation and decides the variables that are de-
termined (e.g., X1, X3 in Example 2.8) or constrained (e.g.,
X4 in Example 2.8) by the condition R = r. Next, it
reduces the r-transportability task into an equivalent trans-
portability task, and solves it by using the gTR algorithm
(Lee et al. (2020)). Detailed explanation of the Algorithm 1
is provided in Appendix C. The next result provides a bound
for the risk.
Theorem 2.12 (Risk Evaluation). Consider a transportable
representation R = ϕ(X), and let Z, Z̄, R̄,G∆aux,Paux de-
note the objects obtained by solving the system of equations
R = ϕ(X) (Def. 2.10). Suppose the query P ∗(z̄ | z) is
transportable given P and G∆ (e.g., via gTR [16]). Then,
the query P ∗(y, r̄ | z) is transportable from G∆aux,Paux.
Moreover, we can construct a mapping ϕ∗(Z, R̄) = R,
which enables us to compute a bound to the risk of ĥ = h̃◦ϕ
via,

RP∗(ĥ) ≤ max
z∈supp(Z)

P tr(Y ̸= h̃ ◦ ϕ∗(z, R̄) | z). (5)

Theorem 2.12 offer a systematic method for bounding the
worst-case risk, under the assumption that P ∗(z̄ | z) is
transportable, which can be verified graphically. Further
discussions on the nuances of computing risks are provided
in Appendix D.

3. Conclusion
Our findings suggest study of transportable representation
as promising choices for the OOD generalization task. We
characterize these representations graphically via Algorithm
1 (Theorem 2.11), and propose a risk evaluation method by
computing a bound for the risk of classifiers defined based
on them through Theorem 2.12. This bound can be further
used for the search procedure to find an optimal classifier.



Transportable Representations for Out-of-distribution Generalization

References
Aldrich, J. Autonomy. Oxford Economic Papers, 41(1):

15–34, 1989. ISSN 00307653, 14643812.

Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-
Paz, D. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.

Bareinboim, E. and Pearl, J. Transportability from multiple
environments with limited experiments: Completeness re-
sults. Advances in neural information processing systems,
27, 2014.

Bareinboim, E. and Pearl, J. Causal inference and the data-
fusion problem. Proceedings of the National Academy of
Sciences, 113(27):7345–7352, 2016.

Bareinboim, E., Lee, S., Honavar, V., and Pearl, J. Trans-
portability from multiple environments with limited ex-
periments. Advances in Neural Information Processing
Systems, 26, 2013.

Bareinboim, E., Correa, J. D., Ibeling, D., and Icard, T. On
pearl’s hierarchy and the foundations of causal inference.
In Probabilistic and Causal Inference: The Works of
Judea Pearl, pp. 507–556. Association for Computing
Machinery, NY, USA, 1st edition, 2022.

Ben-David, S., Blitzer, J., Crammer, K., and Pereira, F.
Analysis of representations for domain adaptation. In
Schölkopf, B., Platt, J., and Hoffman, T. (eds.), Advances
in Neural Information Processing Systems, volume 19.
MIT Press, 2006.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE transac-
tions on pattern analysis and machine intelligence, 35:
1798–1828, 08 2013.
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A. Preliminaries
We use upper-case letters (e.g. X or Z) to denote random variables; The regular letter is used for univariate random variables,
bold letter is used for multivariate ones. Support of random variables Z is denoted as supp(Z), and values in the support are
denoted by the corresponding lowercase letter, e.g., z ∈ supp(Z). To denote P (A = a | B = b), we use the shorthand
P (a | b). The notion ⊥⊥d denotes d-separation in graphs.

We use semantics of Structural Causal Models (Pearl, 2000), which will allow the formal articulation of the invariances
needed to extrapolate findings across settings, as defined next:
Definition A.1 (Structural Causal Model (SCM)). A structural causal modelM is a 4-tuple ⟨U,V,F , P (u)⟩, where U
is a set of exogenous (unobserved) variables; V is a set of endogenous (observed) variables; F represents a collection
of functions F = {fV } such that each endogenous variable V ∈ V is determined by a function fV ∈ F , where
fV : supp(UV )× supp(PaV )→ supp(V ) with UV ⊆ U, and PaV ⊆ V \ {V }; The uncertainty is encoded through a
distribution over the exogenous variables, P (u).

Every SCMM induces a causal diagram, which is a directed acyclic graph where any variable V ∈ V is a vertex, and there
exists a directed edge from every variable in PaV to V . Also, for every pair V, V ′ ∈ V such that UV ∩UV ′ ̸= ∅, there
exists a bidirected edge between V and V ′. We denote this causal diagram with the letter G. A SCMM induces a probability
distribution PM (v) over the set of observed variables V such that PM(v) =

∫
supp(U)

∏
V ∈V PM (v | paV ,uV )·P (u)·du,

where each term P (v | paV ,uV ) corresponds to the function fV ∈ F in the underlying structural causal model M.
Throughout this paper, we assume the observational distributions entailed by the SCMs we study satisfy positivity, that
is, PM(v) > 0, for every v. We will also operate non-parametrically, i.e., making no assumption about the particular
functional form or the distribution of the unobserved variables. In this case, the only assumption is that the arguments of the
functions are known as encoded through the causal diagram G.

B. Proofs
B.1. Proof of Theorem 2.11

The condition R = ϕ(X) is equivalent to Z = z, R̄ = ϕ̄(Z̄), and the latter is obtained by solving the system of equations
R = ϕ(X) (more in Appendix C.1). Therefore, P ∗(y | r) = P ∗(y | z, r̄).

For convenience, let V := X ∪ {Y }. A c-factor is defined as follows for every C ⊆ V:

Q∗[C](c,paC) := P ∗(c | do(paC \C)), (6)

where paC :=
⋃

C∈C paC . By Theorem 2 from Lee et al. (2020),

P ∗(y | z, r̄) =
∑

a\({y}∪wY )Q
∗[A]∑

a\wY
Q∗[A]

, (7)

where,

(G∗aux)Z∪R̄ = Take G∗aux ∈ G∆aux and cut the outgoing arrows of Z ∪ R̄ (8)

WY = {V ∈ Z ∪ R̄ connected to Y by any path in (G∗aux)Z∪R̄} (9)

A = {V ∈ V : there exists a directed path from V to Y ∪WY in (G∗aux)Z∪R̄ } (10)

The gTR algorithm decomposes Q[A] according to

Q∗[A] = Q∗[A1] ·Q∗[A2] · · · · ·Q∗[AK ] ·Q∗[R̄] =: Q∗[A0] ·Q∗[R̄] (11)

Next, it attempts to identify each c-factor from some source domain using the sub-routine IDENTIFY (Lee et al., 2020).
For the last c-factor Q∗[R̄], the algorithm can transport it from any source distribution, i.e., Q∗[R̄] = Qi[R̄] for every
1 ≤ i ≤ T . In P notation,

Q∗[R̄] = Qi[R̄] (12)

= P i(r̄ | z̄) (c-factor rules) (13)

= 1{r̄=ϕ̄(z̄)} (computable from P i
aux) (14)



Transportable Representations for Out-of-distribution Generalization

Suppose the gTR algorithm returns an expression for the c-factor Q∗[A]. We can apply Lemma 4 by Lee et al. (2020)
in a topological order to deduce P ∗(y | z, r̄) is transportable if and only if

∑
a\({y}∪wY )Q

∗[A] is transportable. In case
Q∗[A] is transported by gTR, the algorithm returns the expression in Equation 7 which is a valid transportation formula for
P ∗(y | z, r̄) and is equal to the target query P ∗(y | r).

B.2. Proof of Theorem 2.12

Appendix C introduces concepts necessary for understanding the proof. First, we show that P ∗(y, r̄ | z) is transportable.

P ∗(y, r̄ | z) = P ∗(y | r̄, z) · P ∗(r̄ | z) (15)
= P ∗(y | R = ϕ∗(z, r̄)) · P ∗(r̄ | z) (ϕ∗ from App. C.1) (16)

= P tr(y | r) · P ∗(r̄ | z) (r-transportable query) (17)

= P tr(y | r) ·
∫
{z̄:r̄=ϕ̄(z̄)}

P ∗(z̄ | z) · dz̄ (change of var.) (18)

= P tr(y | r) ·
∫
{z̄:r̄=ϕ̄(z̄)}

P tr(z̄ | z) · dz̄ (transportable query) (19)

Let the transportation formula in Equation 19 be denoted as P tr(y, r̄ | z). Next, we derive the bound for the risk.

RP∗(h) = P ∗(Y ̸= h̃ ◦ ϕ(X)) (h = h̃ ◦ ϕ) (20)

= P ∗(Y ̸= h̃(R)) (ϕ(X) = R) (21)

= P ∗(Y ̸= (h̃ ◦ ϕ∗)(Z, R̃)) (ϕ∗ in App. C.1) (22)

=

∫
supp(Z)

P ∗(Y ̸= (h̃ ◦ ϕ∗)(z, R̃) | z) · P ∗(z) · dz (Law of total prob.) (23)

=

∫
supp(Z)

P tr(Y ̸= (h̃ ◦ ϕ∗)(z, R̃) | z) · P ∗(z) · dz (Eq. 19) (24)

≤ max
z∈supp(Z)

P tr(Y ̸= (h̃ ◦ ϕ∗)(z, R̃) | z) (avg ≤ max) (25)

The latter is computable using the transportation formula for P tr(y, r̄ | z) is Equation 19. Appendix D provides a discussion
on tightness of the bounds achieved above.

C. Discussion on Algorithm 1
C.1. Solving the system of equations

For the system of equations R = ϕ(X), Define

T = {⟨r,x⟩ ∈ supp(R)× supp(X) s.t. r = ϕ(x)} (26)

A variable X ∈ X is determined by R, if for every value r0 ∈ supp(R), the set

{x0 : x0 ∈ supp(X) s.t. ⟨r0,x0⟩ ∈ T } (27)

has only one element. Let Z ⊆ X denote the set of determined variables.

A variable X ∈ X is unconstrained by R, if for every value r0 ∈ supp(R), the set in Equation 27 is equal to supp(X). Let
Z̄ ⊆ X \ Z denoted the set of constrained variables, i.e., the variables that are neither determined nor unconstrained by R.

In Example 2.8, X1, X3 are determined, X4 is constrained, and X2 is unconstrained by R.

A solution to the system of equations R = ϕ(X) is a function ψ : supp(R)→ supp(Z) for which the equation Z = ψ(R)
can be algebraically proved from R = ϕ(X). Solving systems of equations is a well-studied subject, and here we view the
solving procedure as a black-box.
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We can plug in the value of Z = ψ(R) in the expression for ϕ to obtain R = ϕ(Z̄, ψ(R),X \ (Z̄ ∪ Z)). Next, we can
massage this expression to rewrite it without the unconstrained variables X \ (Z̄ ∪ Z). Without loss of generality, suppose
R = ϕ(Z̄, ψ(R)). Next, we massage the expression to move every term containing R to the l.h.s., and call the expression
R̄. Then, the expression in terms of Z̄ remained on the r.h.s. is denoted as ϕ̄, i.e.,

R = ϕ(Z̄, ψ(R)) ⇐⇒ R̄ = ϕ̄(Z̄) (28)

once we fix the value of r̄ = ϕ̄(Z̄) and Z = z, we can obtain r = ϕ(Z̄,Z) in the following way: As we have access to r̄, we
can revert the derivation in equation 28 to obtain R = ϕ(Z̄, ψ(R)) only dependent on the unknown ψ(R). Next, we can
substitute the term ψ(R) with its known value z that is given to us, and then the whole expression for R is determined, i.e.,
does not depend on any unknown variable. Let ϕ∗ : supp(Z)× supp(R̄) denote the described mapping that allows us to
compute r from r̄, z. We use this mapping in other parts of the appendix.

D. Discussion on Risk Bounds for Domain Generalization
Theorem 2.12 provides us with a bound for the risk, however, minimizing this bound would not necessarily yield an optimal
outcome, as the bound might be loose. Tightness of the bound can be an interesting discussion, however, here we only
elaborate this in the context of Example 2.8.

D.1. Tightness of bounds: Example 2.8

In this example, we concluded with the bound,

RP∗(h) ≤ max
r̃1,r̃2∈supp(R̃1,R̃2)

P 1(Y ̸= h̃(W · ⟨r̃1, r̃2, R̃3⟩T ) | r̃1, r̃2). (29)

An important question is whether there exists a target SCM compatible with G∆,P such that it entails the risk equal to the
upper-bound achieved above.

Suppose r∗1 , r
∗
2 denote the arguments achieving the maximum in Eq. 3. Construct the SCM M̄ fromM1 by modifying the

assignments for X1, X3 into,

X1 ← exp(W−1 · r∗1), X3 ← (W−1 · r∗2)2. (30)

Notice, M̄ is compatible with the selection diagram G∆ in Figure 2, as the domain discrepancy between M̄,Mi matches
∆∗1 = {X1, X3}. The risk under domain M̄ is,

RPM̄(ĥ) =

∫
PM̄(r) · P 1(Y ̸= h̃(W · ⟨r̃1, r̃2, R̃3⟩T | r̃1, r̃2) · dr̃1 · dr̃2 (31)

= P 1(Y ̸= h̃(W · ⟨r̃1, r̃2, R̃3⟩T ) | r∗1 , r∗2). (32)

Therefore, the bound for the risk is tight in this case, and minimizing it as an optimization objective yields min-max
optimality.

We achieved the above tightness result because both determined variables X1, X3 were connected to the S-node, which
makes it possible to construct a worst-case SCM so that they take their worst-case value. However, this approach fails once
the determined variables are not directly connected to the S-nodes. In that case, the worst-case approach would yield a loose
bound.


