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Abstract

Large Language Models (LLMs) have shown
impressive adaptability in various fields, yet the
optimal pathway of autonomous model evolu-
tion remains under-explored. Drawing inspi-
ration from the self-driven learning process of
humans, we introduce SELF (Self-Evolution
with Language Feedback), a novel learning
framework that empowers LLMs to continu-
ally self-improve their abilities. SELF initiates
with a meta-skill learning process that equips
the LLMs with capabilities for self-feedback
and self-refinement. SELF employs language-
based feedback for detailed and nuanced eval-
uations, pinpointing response flaws and sug-
gesting refinements. Subsequently, the model
engages in an iterative process of self-evolution:
they autonomously generate responses to unla-
beled instructions, refine these responses inter-
actively, and use the refined and filtered data
for iterative self-training, thereby progressively
boosting their capabilities. Moreover, the SELF
framework equips the model with the ability to
self-refine during inference, leading to further
improved response quality. Our experiments
on mathematical and general tasks demonstrate
that SELF enables the model to continually
self-improve without human intervention. The
SELF framework indicates a promising direc-
tion for the autonomous evolution of LLMs,
transitioning them from passive information
receivers to active participants in their develop-
ment.

1 Introduction

Large Language Models (LLMs), like Chat-
GPT (OpenAl, 2022) and GPT-4 (OpenAl, 2023) ,
stand at the forefront of the Al revolution, demon-
strating versatility across tasks. Despite their evi-
dent capabilities, the way towards achieving au-
tonomous development of LLMs is still under-
explored.

The development of automatically improved
LLM:s can draw inspiration from human self-driven
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Figure 1: Evolutionary Journey of SELF: An initial
LLM undergoes successive self-evolution iterations (1st,
2nd, 3rd), enhancing its capabilities and acquiring a self-
refinement meta-skill.

learning mechanisms. When facing new challenges,
humans naturally engage in a learning cycle of ini-
tial attempts, introspective feedback, and behav-
ior refinement. This leads to a critical question:
“Can LLMs mimic the human learning process,
utilizing self-refinement to enhance their inherent
capabilities?” Fascinatingly, a recent study (Ye
et al., 2023) in top-tier LLMs such as GPT-4 has
revealed emergent meta-skills for self-refinement,
signaling a promising future direction for the self-
evolution of LLMs. Despite this, current methods
for LLM development typically rely on a single
round of instruction fine-tuning (Wei et al., 2021;
Zhou et al., 2023) with meticulously human-crafted
datasets and reinforcement learning-based methods
(Ouyang et al., 2022) that depend on an external
reward model. These strategies not only require ex-
tensive resources and ongoing human intervention
but also treat LLMs as mere passive repositories of
information rather than active learners. These limi-
tations hinder LL.Ms from tapping into their inher-
ent capabilities, obstructing their progress toward a
self-driven, autonomous learning paradigm. Thus,
we introduce SELF (Self-Evolution with Language
Feedback) framework, designed to unlock the po-
tential for autonomous self-evolution in LLMs. Fig-



ure 1 depicts how SELF mimics human-like self-
driven learning, emphasizing progressive improve-
ment of model capability with self-evolution train-
ing. At the core of SELF are the two meta-skills
(self-feedback and self-refinement), empowering
the model to progressively self-evolve by training
on its own synthesized data. Additionally, SELF
leverages self-generated natural language feedback
to offer in-depth analysis and guidance for refining
responses, without the need for external rewards or
direct human guidance.

Specifically, the SELF framework initiates by
teaching LLMs essential meta-skills, namely self-
feedback and self-refinement, using a limited set of
examples. Once these skills are acquired, the model
engages in a cycle of continuous self-evolution,
iteratively training with extensive, self-generated
data. Given a large-scale unlabeled corpus, this
data is compiled from initial responses and re-
fined through self-refinement and filtering, with
model itself. During this iterative process, the qual-
ity of self-evolution training data and model ca-
pability are interactively improved, fostering on-
going self-evolution of LLMs. Crucially, in the
inference phase, these learned meta-skills enable
LLMs to further enhance response quality via self-
refinement. In summary, the SELF framework
transforms LL.Ms from passive recipients of data
into active learners in self-evolution and alleviates
data scarcity issues by generating large-scale self-
curated training datasets. This not only reduces the
need for labor-intensive manual intervention but
also promotes the continuous self-improvement of
LLMs, establishing a more autonomous and effi-
cient training approach.

We evaluate SELF in mathematical and gen-
eral domains. SELF notably improves the
test accuracy on mathematical domains (6.82%
on GSMS8k (Cobbe et al., 2021) and 4.9% on
SVAMP (Patel et al., 2021)), and increases the
win rate on general domain (10% on Vicuna test-
set (Lianmin et al., 2023) and 6.9% on Evol-
Instruct testset (Xu et al., 2023)), compared with
typical supervised fine-tuning. The main contri-
butions are summarized as follows: (1) SELF em-
powers LLMs with self-evolving capabilities, al-
lowing for autonomous model evolution, and re-
ducing human intervention. (2) SELF facilitates
self-refinement into smaller LLMs, even with chal-
lenging math problems. The capability of self-
refinement was previously considered an emergent
characteristic of top-tier larger LLMs. (3) Exper-

iments demonstrate the effectiveness of SELF in
both mathematical and general domains, confirm-
ing its advanced capabilities in self-evolution and
self-refinement.

2 Related Works

Self-improvement Methods A straightforward
and effective method to improve large language
models (LLMs) for reasoning tasks is self-
consistency (Wang et al., 2022a). This involves
sampling various reasoning paths and selecting the
most consistent answer. Various research efforts
have been undertaken to enhance the output quality
of LLMs through online self-improvement (Shinn
et al., 2023; Madaan et al., 2023; Ye et al., 2023;
Chen et al., 2023; Ling et al., 2023). The main
idea is to generate an initial output with an LLM,
have the same LLM provide feedback on its out-
put, and then use this feedback to refine the initial
output. Some works focus on self-improvement
over prompts (Fernando et al., 2023; Zhang et al.,
2023). While simple and effective, online self-
improvement requires multi-turn inference for re-
finement, leading to increased computational over-
head. Therefore, other methods explore self-
improvement during fine-tuning. These methods
aim to iteratively enhance the LLM’s performance
by leveraging both ground truth and synthetic data
it generates (Yuan et al., 2024; Chen et al., 2024;
Gou et al., 2023; Wang et al., 2023; Li et al., 2023).
Our SELF, autonomously enhances its capabili-
ties without reliance on ground-truth data via self-
refinement, providing detailed language feedback.
Autonomous Improvements of LLMs “Align-
ment” (Leike et al., 2018) aims to train agents
to act in line with human intentions. Several re-
search efforts (Ouyang et al., 2022; Bai et al,,
2022a; Scheurer et al., 2023) leverage Reinforce-
ment Learning from Human Feedback (RLHF)
(Christiano et al., 2017). RLHF begins with fit-
ting a reward model to approximate human prefer-
ences. Subsequently, an LLM is finetuned through
reinforcement learning to maximize the estimated
human preference of the reward model. Reward
Ranked Fine-tuning (RAFT) utilizes a reward
model to rank responses sampled from an LLM.
Subsequently, it fine-tunes the LLM using highly-
ranked responses (Dong et al., 2023). Recent
advancements in LLMs have explored Reinforce-
ment Learning (RL) approaches that do not rely
on human feedback. RLAIF (Pang et al., 2023)



proposes to employ a LLMs to label the preference
data in replace of human supervision. LLMs are
updated progressively through online RL in inter-
acting with the environment in Carta et al. (2023).
The connection between conventional RL research
and RLHF in LLMs is discussed by Sun (2023).
However, scalar rewards in Reinforcement Learn-
ing (RL) offer limited insights for evaluating com-
plex reasoning tasks (Lightman et al., 2023), as
they fail to specify detailed errors and optimiza-
tion paths. Recognizing this limitation, the SELF
framework suggests utilizing natural language feed-
back, which effectively guides the self-evolution
of LLMs. Unlike scalar rewards, which require a
retrained model for each evaluation protocol and
dimension, natural language feedback is more flex-
ible, addressing multiple aspects simultaneously.

3 Method

As depicted in Fig. 2, the SELF framework en-
hances model capabilities through a two-stage
learning phase: (1) Meta-skill Learning Phase:
This phase uses an annotated meta-skill training
corpus to fine-tune the model, and equips the model
with essential meta-skills for self-feedback and self-
refinement with limited supervised examples. (2)
Self-Evolution Phase: With the acquired meta-
skills, the model progressively improves through
multiple iterations of the self-evolution training
process. The whole process is illustrated in Alg. 1
in Appendix L.

3.1 Meta-Skill Learning

Meta-skill learning targets on instill two essential
meta-skills into LLMs for self-evolution. (1) Self-
Feedback Ability: This skill enables LLMs to
evaluate their responses using natural language
feedback. This provides the suggestion for further
refinement, thus laying a solid foundation for subse-
quent self-refinement. Self-feedback also enables
the model to filter out low-quality self-evolution
training data if a response is judged as unqualified
by the model (section 3.2.1). (2) Self-Refinement
Ability: Self-refinement enables the model to opti-
mize its responses based on self-feedback. This
ability has two applications: (1) enhancing the
quality of the self-evolution training corpus (sec-
tion 3.2.1) and (2) improving model performance
by refining the models’ outputs during inference
(section 3.3).

These meta-skills are acquired by fine-tuning

the model using the Meta-Skill Training Cor-
pus (section 3.1.1) with designed training objective
(section 3.1.2). The resulting model is denoted as
Mmeta-

3.1.1 Meta-Skill Training Corpus

The meta-skill training corpus Dty represents the
generation, feedback, and refinement process. It
is constructed as follows: (1) For each unlabeled
prompt p, the initial model M;,;; generates an initial
response 7. (2) An annotator L provides evaluation
feedback f for the initial response r, then produces
a refined answer 7 according to the feedback f.
Each instance in Dy, takes the form (p, 7, f,7),
representing the process of response evaluation and
refinement. An example instance of Dy, 1S pro-
vided in appendix H.

3.1.2 Training Objective

In the meta-skill learning phase, the objective is to
empower the initial model Mjy;; to develop meta-
skills, resulting in an enhanced model Met,. This
process is guided by the cross-entropy loss fol-
lowing the maximum likelihood estimation (MLE)
paradigm:

Lmeta (¢) = _E(p,r,f,f)NDmem

[log 74 (f|p,7) + log 74(P|p, 7, f) + Blog 74(7|p)],
(D

where p is prompt, r is the initial model re-
sponse, f is the feedback to the model response r,
and 7 is the revised response based on feedback f.
74(y|z) denotes the probability distribution given
by the auto-regressive language model with param-
eters ¢ predicting the response y given the input
prompt x. The coefficient 3 in eq. (1) controls a
balanced emphasis on direct response generation
and the model’s capability for self-feedback and
self-refinement.

Insight. Training with Dy, aims to achieve two
goals: (i) To guide the model in generating feed-
back (f) concerning its initial responses (1) (self-
feedback) and subsequently employing this feed-
back to enhance the quality of the final answer
(7) (self-refinement). (ii) Training with Dy, in-
structs the model to process problems in a Chain-
of-Thought (CoT) manner. This involves evaluat-
ing the initial response, integrating the feedback,
and then revising the response in a chain process

U(rlp) = 22, p 7o(rlp) - T (fIps ) - 76 (Flp, 7, £)-
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Figure 2: Illustration of SELF. The “Meta-Skill Learning" (left) phase empowers the LLM to acquire meta-skills
in self-feedback and self-refinement. The (b)“Self-Evolution” phase (right) utilizes meta-skills for self-evolution
training with self-curated data, enabling continuous model enhancement.

3.2 Self-Evolution Training Process

The model Mpeta, equipped with meta-skills, un-
dergoes progressive improvement through multi-
ple iterations of the self-evolution training process.
Each iteration of the self-evolution process begins
with the model autonomously creating high-quality
training data (section 3.2.1) from an unlabeled cor-
pus. With an unlabeled dataset of prompts, the
model generates initial responses and then refines
them through self-feedback and self-refinement.
These refined responses, superior in quality, are
further filtered with self-feedback and utilized as
the training data for the model’s subsequent self-
evolution training (section 3.2.2). This autonomous
self-evolving process interactively improves LLMs
as the improved model capability leads to better
data quality, which in turn boosts model perfor-
mance. It also alleviates the data scarcity problem
by self-generating data.

3.2.1 Self-Evolution Training Data

Let M, denotes the model at t" iteration and ini-
tialize MQ, | from Mpea. During 1 self-evolution
iteration , M ;v_oll processes each unlabeled prompt
p by first generating an initial response 7. r is then
refined using the model’s self-feedback f, result-
ing in a self-refined response 7. The prompts and
their corresponding self-refined responses(p, ) are
then incorporated into the #*" round self-evolution
datasets, denoted as D!, for subsequent self-
evolution processes.

Data Filtering with Self-feedback: To enhance
the quality of DY |, we employ the self-feedback

capability of M?_! to filter out data of lower qual-

evol

ity. M;V_Oll evaluates the self-refined data, Teyol,

keeping only the responses that meet high-quality

standards. The effect is analyzed in appendix Q.
To mitigate the catastrophic forgetting issue of
meta-skill, the meta-skill learning data Dy, are
also included in self-evolution training. At t*" iter-
ation, the model undergoes self-evolution training
with the updated self-curated data D!, improving

evol’
its performance and aligning it more closely with

human values.

3.2.2 Mathematical Modeling

Main Objective. We denote 7';5 as the probability
distribution generated by M, | with parameters ¢.

The self-evolution training loss £ ,(¢) is defined
as:

‘Cévo] (¢)

= _Ep€V0] IE:T'Aevol ~t—1 (fevol |pevol ) [log 7-:;7 (feVOI |peV01 ):|

= _Epcvol Z \Ilt_l (fevol|pevol) IOg T;j(fevol |pevol) 3

Tevol

(@)

where Deyol 1s sampled from unlabeled prompts cor-
pus (detiled in appendix C.2) for self-evolution t**
round. The joint probability distribution is:

\Ijt_l (fevol ’pevol) -

Z (7’ :;:1 (Tevol |pevol) : T;;l (feVol|TeV017 pevol)

Tevol 7f evol

'7;_ ! (fevol ’f evol-Tevol s Pevol )) .
(3)

The rationale behind learning from
U1 (Fovor|Pevol) is discussed in appendix A.1.



Optimizing eq. (2) is equivalent to minimizing
the Kullback-Leibler (KL) divergence:

KL(\IIt_l (fevol ’pevol) ’ ‘7—;) (fevol |pevol))

\I’t_ 1/
= Z \Ijti ! (fevol ‘pevol) ]Og P A( Tevol ‘peVOl)
T¢ (Tevol |pevol )

';'evol
= — H(‘I/t_l(fevoﬂpevol)) —
constant for fixed ¥¢—1

Z \Ilt_l ('ﬁevol |pevol) 10g Té)(fevol |pevol)-

Tevol

Eq. (2)

)

The optimization of KL divergence is to fine-tune
the model parameters ¢ to ensure that the model’s
predictive probability distribution 7';5 aligns with
the joint probability of the preceding iteration’s
chain process (¥'~1). The goal is to enhance
the model’s ability to directly produce refined re-
sponses (Teyo1) in the ' iteration, effectively con-
densing the intricate process of generation, feed-
back, and refinement from the (¢ — 1)** iteration.
This advancement demonstrates the model’s evolv-
ing capability to streamline the complex steps into
a more straightforward inference. The potential
plateau is discussed in appendix A.3.

Further Analysis. Assuming that each self-
evolution round is effective, implying that as ¢
increases, the quality of responses sampled from
Ut improves, optimizing the KL divergence as de-
scribed in eq. (4) is fundamentally a process aimed
at enhancing the direct generation of high-quality
responses. Before delving deeper, it is crucial to
introduce several key concepts. We define a binary
variable X to evaluate the quality of responses. A
higher probability, p(X = 1 | pevol, Tevol), indi-
cates a higher quality of the response ey in re-
lation to the prompt peyo;. For the self-evolving
model with parameters ¢ at the ! iteration, the
model’s log-likelihood of producing high-quality
responses to a specified prompt is defined as fol-
lows:

Ingt(X =1 | pevol)

=1 X=1 r Lip :

= log Z p ( = ‘ Pevol, revol)T(;&(Tevol ‘peV()l)
7

By minimizing the KL divergence in eq. (4), we
can increase log p! (X = 1 | pevol) by progressively

improving its Evidence Lower Bound (ELBO):

log p' (X = 1| Pevol)
= IOg ZP(X =1 | Pevol fevo])'r(;("qevol |pevol)~

Tevol

p(X =1 | Pevol, TA‘evol)T;(fevol|pevol):|
pt-1 (fevol |pevol)

P(X = 1| Pevol, Fevol) T, é(fevodpevol)
W1 (Feyol | Pevol ) }
= Egt—1(7,Ipee) 10EP(X = 1] Pevol, Pevol)]
— KL(U"™ ! (Fevot |[Pevol) | |75 (Fevol | Pevol)) -

Eq. 4)

=108 Egt—1 (50 pee) {

2 Egt=1(7y | pever) |:10g

The entire self-evolution training process can be

viewed as a continuous exploration of inherent
model capabilities in generation, self-feedback, and
self-refinement, ultimately enhancing the model’s
ability to generate high-quality responses directly.
Overall Objective. In the iterative self-evolution
process, meta-skills, i.e., the ability to self-
feedback and self-refinement, is crucial for guid-
ing the evolution process. We incorporate Dipeta
into self-evolution training to mitigate the potential
catastrophic forgetting of meta-skills:

Efneta(¢) = _E(;n,r,f,ﬂmeelal
[log 74(fIp, ) + log 74 (7|p, 7, f)].

tth

The total objective for the round of self-

evolution is:

‘Czelf(gi)) = ‘Cévol(gb) + Lfneta(¢)'

3.3 Response Refinement during Inference

Equipped with the meta-skills for self-feedback
and self-refinement, the model can conduct self-
refinement during inference. Specifically, the
model generates an initial response and then re-
fines it using self-refinement, akin to the method
described in section 3.1. Response refinement dur-
ing inference consistently improves the model’s
performance as shown in section 4.2.

4 Experiments

This section begins with an introduction to the ex-
perimental settings (section 4.1), encompassing the
evaluation data, baseline model, and model varia-
tions. The following experiments are exhibited: (1)
We demonstrate the efficacy of SELF compared to
baselines in the main experiment (Section 4.2). (2)
We show progressive performance enhancements
observed during the self-evolution processes in the



ablation study (Section 4.3). (3) Comparison with
other self-improvement methods (Section 4.4)

The additional experiments in the Appendix pro-
vide comprehensive insights into our SELF frame-
work. (3) appendix Q shows the impact of data fil-
tering with self-feedback in self-evolution training
data construction. (4) appendix K evaluates differ-
ent meta-skill training data organization methods,
highlighting the effectiveness of single-response
refinement over multiple-response. (5) appendix L
analyzes various self-evolution training strategies,
emphasizing the superiority of “Restart Training”.
(6) appendix M demonstrates that SELF outper-
forms supervised fine-tuning (SFT) with human-
annotated data. (7) appendix N assesses the scala-
bility of SELF across varying base models, indicat-
ing its increased effectiveness with more advanced
models. (8) appendix O exhibits that the quality
of the meta-skill data influences the self-evolution
process, with improvements observed when using
higher-quality data. (9) appendix P conducts the
comparison between single-round and iterative self-
evolution training and reveals the advantages of the
iterative approach in improving LLMs’ capabilities
over successive rounds.

4.1 Experiment Settings
4.1.1 Evaluation

Inference Setting. We adopt two inference set-
tings: (1) Direct Response (default): the model
directly answers the question with a Zero-shot
Chain of Thought (CoT) methodology (Kojima
et al., 2022), which is the default setting to evaluate
the model capability directly; (2) Self-Refinement:
during inference, the model self-refines its original
answer for once, as described in section 3.3.
Benchmarks. We evaluate two mathematical
benchmarks to show the efficacy of SELF on com-
plex reasoning tasks and further verify the gener-
alizability of SELF on seven general benchmarks.
Please refer to Appendix F for more details about
these benchmarks.

4.1.2 Setup and Baselines

The complete SELF framework includes meta-
skill training with Dye,, three iterations of self-
evolution training, and optional self-refinement dur-
ing inference. Our evaluation primarily focuses on
assessing how self-evolution training can progres-
sively enhance the capabilities of LL.Ms. For build-
ing the meta-skill training corpus Dypeta, We employ
GPT-4 as the language model labeler L due to its

proven proficiency in refining responses (An et al.,
2023) via the prompt described in appendix B'.
The data statistic of Dypet, 1S shown in appendix C.1
and further details of unlabeled corpus construc-
tion is described in appendix C.2. We note that all
model training utilized the same training hyperpa-
rameters, as shown in appendix D. In this study, we
experiment with Vicuna-7b (Vicuna) (Chiang et al.,
2023). All other compared baselines are outlined.
For more details about these baselines, please refer
to Appendix G:

(1) Vicuna + Dga: we construct Dqa, which
includes all the (p, 7*) pairs from Dy, and fine-
tune the model as:

Laoa(9) = —E(pi)~Do, [10g 6 (7|p)] -

(2) RLHF: we utilize the RLHF implementation
from trlx.

(3) Self-Consistency: we compare the self-
refinement inference strategy in SELF with the
Self-Consistency (Wang et al., 2022a).

4.2 Main Result

4.2.1 Math Test

Model SE SC SR GSM8K(%) SVAMP(%)

16.43 36.40

Vicuna v 19.56 40.20

v 15.63 36.80

24.49 44.90

Vicuna + Dqa v 25.70 46.00

v 24.44 45.30

v 29.64 49.40

Vicuna + SELF (Ours) v v 29.87 50.20

v v 31.31 49.80

v v v 32.22 51.20

Table 1: Experiment results on GSM8K and SVAMP
compare SELF with other baseline methods. We evalu-
ate the impact of Self-Evolution (SE), Self-Consistency
(SC), and Self-Refinement (SR) strategies on model
performance.

In section 4.2.1, we compare SELF against base-
line models, as detailed in section 4.1.2. This com-
parison elucidates SELF’s effectiveness in enhanc-
ing LLM performance through self-evolution and
offers several key insights:

(1) Self-Evolution Enhances LLM: Vicuna +

SELF significantly outperforms its baseline Vicuna

+ Doa (24.49% T25%, 99.64% on GSMSK and

!Separate prompts have been designed for the math do-
main appendix B.1 and general domain appendix B.2.
Zhttps://github.com/Carper Al/trlx



44.90% 2%, 49.40% on SVAMP) in direct re-
sponse setting, showcasing self-evolution is effec-
tive in optimizing LL.Ms.

(2) SELF Instills Self-Refine Capability in
LLMs: The integration of self-refinement infer-
ence strategy with Vicuna + SELF further boosts

performance (29.64% FLOTR, 31.31%), while
baseline models show marginal or negative effect
via self-refinement. We also provide a case analysis
for the limited self-refinement ability of baseline
models, as shown in fig. 4.

(3) SELF can work with Self-Consistency:
SELF works effectively with self-consistency, im-
proving accuracy across models. The base Vicuna
model, which may have uncertainties in its outputs,
shows notable improvement with self-consistency,
achieving a +3.13% increase. Combining self-
refinement with self-consistency further elevates

performance (e.g., 29.64% FL58%, 3992% on
GSMBE8K), indicating that these two strategies can

complement each other effectively.

4.2.2 Comparison with RLHF

Method Feedback Acc.(%) GSMSK Acc.(%)
Vicuna + Dqa - 24.49
RLHF 24 25.55
SELF 72 27.67

Table 2: Comparison of SELF and RLHF on GSM8K.
“Feedback Acc.” measures how accurately feedback
identifies correct and incorrect answers, while “GSM8K
Acc.” shows the model performance on GSMS8K testset.

In section 4.2.2, we compare the performance
of SELF with RLHF. To alleviate the effect led by
different amounts of training data and make a fair
comparison, for SELF, we adopt data solely from
the initial round of self-evolution training. This
ensures the same training data quantity with RLHF
and leads to sub-optimal results compared with the
one in section 4.2.1.

As section 4.2.2 shows, RLHF achieves a
25.55% accuracy on GSM8K, which is lower than
the 27.67% performed by SELF. We observe that
the simple scalar reward of RLHF often fails to
identify the correctness of the reasoning process,
which limits performance improvements. On the
GSMEK test set, for incorrect answers produced by
the SFT model (Vicuna + Dqa), the reward model
only identifies 24% of them as incorrect, i.e., the
reward model assigns lower scalar rewards to incor-

rect answers compared to correct answers. In con-
trast, SELF utilizes informative natural language
feedback to provide a more accurate assessment. It
correctly identifies 72% of incorrect answers.

4.2.3 General Test

To demonstrate the generalizability of the SELF
framework across a wider range of datasets and
tasks, we conducted following experiments for
comparing three configurations of the Vicuna
model, i.e., Vicuna, Vicuna + Dga, and Vicuna
+ SELF with details in Appendix R.

Five Open LLM Leaderboard datasets This
experiment evaluates the SELF model, trained for
general domains on five datasets. The results of
these experiments are summarized in Table 3:

Datasets Vicuna Vicuna Vicuna
+ DQA + DQA + SELF
Arc 71.34 72.54 73.71
TruthfulQA  50.36 51.17 52.36
Winogrande 69.38 68.12 67.17
HellaSwag 73.80 75.01 76.24
MMLU 48.60 48.71 49.17
Average 62.70 63.11 63.73

Table 3: Results on five open LLM leaderboard datasets.

The overall average performance of the SELF
framework showed improvement over its baseline.

Vicuna and Evol-instruct Test Evaluations We
also test the efficacy and generalizability of SELF
on two general domain benchmarks, explicitly us-
ing the Vicuna and Evol-Instruct test sets.

The results are depicted in Figure 3. In the fig-
ure, blue represents the number of test cases where
the model being evaluated is preferred over the
baseline model (Vicuna), as assessed by GPT-4.

denotes test cases where both models per-
form equally, and indicates the number of test
cases where the baseline model is favored over the
model being evaluated.

In the Vicuna testset, SELF increases direct re-
sponse win rate from 65.0% to 72.5% compared
with Vicuna + Dqa. After self-refinement, the win
rate is further improved to 75.0%. In the Evol-
Instruct testset, the win rate of Vicuna + Dqj is
48.6%. SELF increases the win rate to approxi-
mately 52.8%. Applying self-refinement during
inference further improves the win rate to 55.5%.

These findings in the general domain highlight
the SELF framework’s adaptability and robustness,
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(a) Results on Vicuna testset.
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Vicuna + Doy 7
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(Direct Generation)
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SELF
(Self-Refinement)

o
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(b) Results on Evol-Instruct testset.

Figure 3: Results on Vicuna testset and Evol-Instruct
testset

particularly when self-refinement is employed,
showcasing its efficacy across varied test domains.

4.3 Ablation Study

SVAMP (%)  GSMSK (%) Self Evol.
DQA Dmem _—

DR SR DR SR Ist  2nd 3rd

364 368 1643 15.63

449 453 2449 2444 v

468 47.0 2539 2828 v

478 48.0 27.67 2934 v v

489 49.0 28.66 29.87 v v v

494 502 29.64 3131 v v v v

Table 4: Performance under various training settings of
SELF. A checkmark v* in a column denotes the additive
adoption of the corresponding setting in that training
scenario. We present two kinds of inference results:
Direct Response (DR) and Self-Refinement (SR), the
latter conducts self-refinement to DR.

We conduct ablation experiments on SVAMP
and GSMBK datasets to assess the incremental ef-
fect of each stage. While baseline models exhibit
slight or even adverse effects via self-refinement,
the SELF framework endows LLMs with an in-
herent capability through meta-skill learning and
multi-iterations of self-evolution training. As de-
picted in table 4, our framework facilitates grad-
ual performance improvements through successive
SELF stages. More detailed observations are high-
lighted in Appendix T:

4.4 Comparison with self-improvement
methods

We provide additional experiments comparing our
SELF method with two self-improvement works,
i.e., SPIN (Chen et al., 2024) and Self-rewarding
(Self-RW) (Yuan et al., 2024). We compared
fairly by reimplementing each method based on
the Mistral-7B (Jiang et al., 2023) post-meta-skill
learning (Base). We report the results in the

GSMBSK dataset.
Model SELF Self-RW SPIN
Base 51.10 51.10 51.10
Iter 1 5223 +£0.15 52.15+£0.10 52.244+0.18
Iter 2 5241 £0.10 5245+0.12 5244 4+0.20
Iter 3 53.51 £0.18 52.37+0.17 52.44 +0.14

Table 5: Comparison of accuracy on the GSM8K dataset
over 3 self-improvement iterations.

Unlike SPIN and Self-RW, which use Direct
Preference Optimization loss, our SELF frame-
work, utilizing standard supervised fine-tuning loss,
achieves higher accuracy on the GSM8K dataset
after three self-improvement iterations. As demon-
strated in Table 5, our SELF framework is efficient
and effective during iterative self-improvement
training. The small standard deviation further high-
lights the reliability of our results.

5 Conclusion

We present SELF (Self-Evolution with Language
Feedback), an innovative framework that enables
LLMs to undergo self-evolution via self-feedback
and self-refinement. SELF transforms LLMs from
passive information recipients to active partici-
pants in their evolution. It utilizes natural lan-
guage feedback for detailed and informative evalu-
ations Through meta-skill learning, SELF equips
LLMs with the capability for self-feedback and self-
refinement. This allows models to autonomously
enhance their abilities through self-evolution train-
ing and online refinement. Experiments conducted
on benchmarks underscore SELF’s capacity to pro-
gressively enhance model capabilities while reduc-
ing the need for human intervention. SELF repre-
sents a leading step in the autonomous development
of LLMs, showcasing their potential for continuous
learning and self-evolution.



6 Limitations

As the self-evolution process progresses through
multiple iterations, there is a possibility that per-
formance improvements may plateau. This phe-
nomenon could occur due to several factors, such
as the model reaching its inherent capacity limits
or the diminishing returns from additional rounds
of self-evolution. We add a discussion in Ap-
pendix A.3. Moreover, although the use of nat-
ural language feedback in the SELF framework
enhances the evaluation and refinement process, it
introduces a dependency on the accuracy and rele-
vance of the feedback provided. Ensuring that the
language feedback precisely pinpoints true infor-
mation is critical.
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A Discussion

A.1 Why Refinement is Better

We discuss why it’s necessary to optimize
Té(f’evol |Pevol) in the ¥ round self-evolution by
learning from W'~ (#yol|pevol), and why we be-
lieve samples from W1 (Feyo1|[Pevol) are typically
of higher quality than those from thfl (Tevol |Pevol)
directly.

Firstly, similar to the insights analyzed in sec-
tion 3.1.2, we believe that a process akin to CoT,
involving feedback followed by refinement before
providing an answer, helps in generating high-
quality responses. Secondly, 7.y 1s already a rea-
sonably good output after meta-skill learning and
previously (¢t — 1) rounds of self-evolution. We
can assume that the self-feedback feyo is informa-
tive, hence Feyor ~ 7_;5_1<72ev01 ‘pevoly Tevol, f evol) is
of higher quality than reyo ~ T;_l (Tevol |Pevol ) be-
cause it incorporates useful feedback information.
If fevol suggests that the initial response reyo does
not require refinement, we still proceed through the
process of revising from 7eyo] tO Teyol USING fevol,
but set eyol = Tevol- BY doing so, we ensure that
the quality of 7eyo s at least as good as that of reyoy.

Moreover, as described in section 3.2.2, we uti-
lize Data Filtering with Self-feedback. In other
words, we only keep 7yo1 €valuated as gualified,
allowing us to emphasize high-quality outputs and
further improve 7.

A.2 Why Integration of Meta-skill Training
Data Dy,eta Elevates Direct QA

The Dpyeta dataset trains the model to not only mod-
ify answers but also to fully grasp a prompt, create
feedback, and then develop a revised answer. This
approach resembles training the model to think
through a problem in a chain-of-thought methodi-
cally (CoT) manner, before responding. The train-
ing encompasses a thorough examination of the en-
tire process, which not only betters the model’s di-
rect response capability but also enriches its under-
standing of the logic behind those answers, thereby
enhancing its generalization ability.

A.3 Potentially Limited Plateau of
Self-evolution Training

Based on eq. (2) and eq. (3), the model in the tth
round is updated to improve direct response quality
by incorporating the generate-feedback-refinement
process from the (¢ — 1)* round. This is based on
the assumption that the refined response is superior
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to the initial one generated by Mévjjll As illus-
trated in Fig. 1, the direct generation performance
of M, (green curve) consistently falls below the
self-refinement of M(fv_oll (blue curve). The self-
refinement gains in the (¢ — 1) round indicate the
potential benefit that the ¢ round self-evolution
could bring to direct generation. This also helps de-
termine when to halt the self-evolution process, i.e.,
the process can be stopped when self-refinement

brings no benefit to the direct response.

B Prompt of Generating Feedback and
Refinement for D eia

We introduce the prompt for generating feedback
and refinement in two domains: Math and Gen-
eral. We outline specific prompts designed to guide
the evaluation and improvement of responses to
questions for building Dy, in each domain.

B.1 Math Domain

For the Math Domain, the prompt instructs evalu-
ators to assess the quality of a response to a math
question, provide a step-by-step analysis, and de-
termine its correctness. If the response is incorrect,
the evaluator is asked to refine and provide a correct
answer.

Prompt for feedback and refinement:

(Feedback) Please assess the quality of the response
to the given question.

Here is the question: p.

Here is the response: 7.

Firstly, provide a step-by-step analysis and verifica-
tion for response starting with “Response Analysis:”.
Next, judge whether the response correctly an-
swers the question in the format of “judgment: cor-
rect/incorrect”.

(Refinement) If the answer is correct, output it. Oth-
erwise, output a refined answer based on the given
response and your assessment.

B.2 General Domain

For the general test, aligned with the methodol-
ogy described in section 3, we deploy the fol-
lowing prompt to guide an LLM-based annotator
in generating response feedback and refinement.
This prompt serves as the foundation for the meta-
skill learning corpus and assists in producing self-
evolution training data in the general test setting.
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Prompt for feedback and refinement:

(Feedback) Please assess the quality of response to
the given question.

Here is the question: p.

Here is the response: 7.

Firstly provide an analysis and verification for re-
sponse starting with “Response Analysis:”.

Next, then rate the response on a scale of 1 to 10 (1
is worst, 10 is best) in the format of “Rating:"
(Refinement) Finally output an improved answer
based on your analysis if no response is rated 10.

C Data Generation

C.1 Dpeta Data Quantity

The Dpeta dataset was generated using 3.5k un-
labeled prompts from GSMS8K and 2K from
SVAMP3.

For general tests, 6K conversations were selected
from 90K ShareGPT dialogues to form the general
D et data.

C.2 Unlabeled Prompts for Self-Evolution
Training

Math Domain: For math tests, unlabeled prompts
in self-evolution training were sourced as follows:

(1) First round self-evolving phase: 4K leftover
prompts from GSMS8k and 1K from SVAMP, ex-
cluding those used in Dypeta-

(2) Second/Third rounds: 10K/15K prompts
were generated using Self-Instruct method (Wang
et al., 2022b), based on a template shown in ap-
pendix C.2 with initial 4 to 6 seed examples.

General Domain: 15K unlabeled prompts from
ShareGPT dialogues were used for self-evolution
training data construction.

3Adhering to the official recommendation https:
//github.com/arkilpatel/SVAMP/tree/main, training
prompts consist of MAWPS (Koncel-Kedziorski et al., 2016)
and ASDiv-A (Miao et al., 2020)


https://github.com/arkilpatel/SVAMP/tree/main
https://github.com/arkilpatel/SVAMP/tree/main

You are an experienced instruction creator.
You are asked to develop 3 diverse instruc-
tions according to the given examples.
Here are the requirements:

1. The generated instructions should follow
the task type in the given examples.

2. The language used for the generated in-
structions should be diverse.

Given examples: {examples}

The generated instructions should be:

A. ...

B. ..

C...

D Training Hyperparameters

Our experiments were conducted in a computing
environment with 8 NVIDIA V100 GPUs, each
having 32GB of memory. All models were fine-
tuned in a full-parameter setting. We utilized
the AdamW optimizer for model training over 3
epochs, with a batch size of 128. The learning
rate was set at 2e-5, including a 3% learning rate
warmup period. Below we provide a comprehen-
sive overview of the training hyperparameters em-
ployed in table 6. These parameters were uniformly
applied across all training methods in our experi-
ments.

Parameter Value
Global Batch Size 128
LR 2x107°
Epochs 3
Max Length 2048
Weight Decay 0
Warmup Ratio 0.03

Table 6: Training hyperparameters.

We note that the SELF framework is compat-
ible with versatile LLMs. In this study, we per-
form the experiment with Vicuna-7b (Chiang et al.,
2023), a capable open-source instruction-following
model fine-tuned from LLaMA-7b (Touvron et al.,
2023), will be referred to simply as “Vicuna” in
subsequent sections. To verify the generalizabil-
ity of SELF, we also experiment with OpenL-
LaMA (Geng and Liu, 2023) and Vicuna-1.5 (Chi-
ang et al., 2023) in Appendix N.
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E Case Study Analysis

This subsection provides an in-depth case study
that contrasts the performance of the original Vi-
cuna and Vicuna + SELF models. Illustrated
in fig. 4, both models perform initial predictions,
followed by self-feedback and refinement steps.
Notably, Vicuna’s refinement fails to correct its ini-
tial errors, while Vicuna + SELF effectively utilizes
self-feedback and refinement to derive an accurate
and logically coherent answer.

F Benchmark Details

GSMBSK (Cobbe et al., 2021) contains high-quality,
linguistically diverse grade school math word prob-
lems crafted by expert human writers, which incor-
porates approximately 7.5K training problems and
1K test problems. The performance is measured
by accuracy (%). SVAMP (Patel et al., 2021) is
a challenge set for elementary Math Word Prob-
lems (MWP). It is composed of 1K test samples.
The evaluation metric is accuracy (%). Vicuna
testset (Lianmin et al., 2023) is a benchmark for
assessing instruction-following models, contain-
ing 80 examples across nine skills in mathematics,
reasoning, and coding. Evol-Instruct testset (Xu
et al., 2023) includes 218 real-world human instruc-
tions from various sources, offering greater size
and complexity than the Vicuna testset. Arc (Ac-
curacy Normalized) (Clark et al., 2018) assesses
the model’s performance on answering multiple-
choice questions. TruthfulQA (Multiple Choice
2) (Lin et al., 2022) evaluates the model’s ability
to discern truthful answers from deceptive ones.
Winogrande (Accuracy) (Sakaguchi et al., 2020)
tests the model’s competency in completing fill-in-
the-blank tasks with binary options for common-
sense reasoning. HellaSwag (Accuracy Normal-
ized) (Zellers et al., 2019) evaluates the model’s
understanding of daily situations and commonsense
reasoning. MMLU (Accuracy) (Hendrycks et al.,
2021) assesses the model’s proficiency in generat-
ing language responses comprehensively.

G Baseline Details

(1) Vicuna + Dga: To demonstrate the improve-
ment brought by SELF and exclude the impact
of standard domain-specific supervised fine-tuning
(SFT), we set a direct baseline that trained solely on
pseudo-labeled question-answer pairs in the meta-
skill training corpus. Specifically, we construct
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Question J

On Monday, Tiffany had 3 bags of cans. On the next day, she found 7 more bags of cans. So, she had a total of 3 + 7 = 10 bags of

cans on Tuesday. ### 10.0

Direct
generation

On Monday, Tiffany
had 3 bags of cans.

On the next day, she
found 7 more bags of
cans.

So, on Tuesday,
Tiffany had a total of 3
+ 7 =<<3+7=10>>10
bags of cans.

In addition to the 10
bags of cans, she also
found 44 bags of bottles.

So, Tiffany had a total
of 10 bags of cans + 44

Self-evaluation
& revision

Response Analysis: The
response correctly identifies
that Tiffany had 10 bags of
cans on Monday and 44
bags of bottles on the next
day. It then adds these two
quantities together to find
the total number of bags
Tiffany had.

Judgement: Correct

Correct Answer: Therefore,
Tiffany had a total of 10
bags of cans and 44 bags of
bottles, for a total of 54 bags.
Therefore, the correct

Direct
generation

On Monday, Tiffany
had 3 bags of cans. On
the next day, she found
7 more bags of cans. So,
she had a total of 3 +7
=10 bags of cans on
Tuesday.

On Monday, she also
had 44 bags of bottles.
So, overall, Tiffany had
10 bags of cans and 44
bags of bottles on
Monday and Tuesday.
Therefore, Tiffany had
atotal of 10 + 44 =54
bags of cans and bottles.

Self-evaluation
& revision

Response Analysis: The
response correctly identifies
that Tiffany had 3 bags of
cans on Monday and 7 more
on Tuesday, totaling 10 bags.
However, the response
incorrectly adds the number
of bags of cans and bottles
together, stating that Tiffany
had 10 bags of cans and 44
bags of bottles on Monday
and Tuesday. The question
only asks for the number of
bags of cans, not bags of
bottles.

Judgement: incorrect

Correct Answer: On

bags of bottles = answer is 54 bags.
<<10+44=54>>54 bags K /
in total.

Therefore, Tiffany had
54 bags of cans

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

NN

Monday, Tiffany had 3 bags
of cans. On Tuesday, she
found 7 more bags of cans,
for a total of 3 + 7 = 10 bags

had 10 bags of cans

altogether. |

Meta-skill Learning

of cans. Therefore, Tiffany
altogether. /

NN

Figure 4: Case study comparing the original Vicuna (left) and Vicuna+SELF (right) on a SVAMP problem. Both
models generate direct predictions and undergo self-feedback and self-refinement. Both models initially produce
answers, followed by self-feedback and self-refinement. Vicuna maintains the incorrect response after refinement,
whereas Vicuna+SELF demonstrates enhanced self-refinement, leading to a correct and logically consistent solution.

Dqa, which includes all the (p, 7*) pairs from Dieta,
and fine-tune the model as:

Loa(¢) = —E(pf)NDQA [log T¢(7A‘|P)] .

We refer to this approach as Vicuna + Dga, the
most straightforward baseline. The performance
gap between Vicuna + Dga and SELF verify the
efficacy of the proposed SELF framework, exclud-
ing the effect of training on domain-specific QA
data.

(2) RLHF: we utilize the RLHF implementa-
tion from trlx*. We apply the same SFT model as
the policy model for RLHF, Vicuna + Dy as de-
scribed above, which is consistent with SELF. The
reward model is initialized from Vicuna-7b and is
fine-tuned using pair-wise comparison data derived
from the meta-skill training corpus Dpeta (sec-
tion 3.1.1), where the refined response 7 is pre-
sumed to be better than the original one r.

(3) Self-Consistency: we compare the self-
refinement inference strategy in SELF with the

*https://github.com/Carper Al/trlx

14

Self-Consistency (Wang et al., 2022a) (i.e., multi-
ple sampling and selecting an answer with majority
voting) and examine their combined efficacy.

H Meta-Skill Training Corpus

The example shown below exemplifies a standard
training example from our meta-skill corpus. It
illustrates the model’s initial response, followed by
its self-feedback, and the ensuing refinement. This
process demonstrates how the model is trained for
self-feedback and self-refinement capabilities.



Question: Greg has an alarm set to ring three times
a day as a reminder. When the alarm goes off, it
continues to ring until Greg turns it off. The first time
it went off today, it rang four times. The second time
it went off, it rang for three times as long as the first
time. The third time, it rang for half as long as the
second time. How many times did the alarm ring in
all?

Original Response: The alarm rang four times the
first time, three times as long as the first time the
second time, and half as long as the second time the
third time. So, the total number of times the alarm
rang is 4 + 3*3 + 2%2 = 24.

Feedback: The response correctly interprets the
problem. The first time the alarm rang, it rang for 4
times. The second time it rang, it rang for 3 times
as long as the first time, which is 3*4 = 12 times.
The third time it rang, it rang for half as long as the
second time, which is 12/2 = 6 times. However, the
final calculation is incorrect. The total number of
times the alarm rang is not 4 + 3*3 + 2#2 = 24, but 4
+ 12 + 6 =22. Judgement: incorrect

Refined Response: The alarm rang four times the
first time, three times as long as the first time the
second time, and half as long as the second time the
third time. So, the total number of times the alarm
rang is 4 + 12 + 6 = 22.

\

I

Algorithm

The “Two-Phase SELF Process” algorithm outlines
a method for developing a base language model
through a two-staged approach: Meta-Skill Learn-
ing and Self-Evolving. The process starts with
training on a “Meta-Skill Learning corpus”, which
consists of data representing the generation, feed-
back and refinement process. Following this, the
model enters the “Self-Evolving Phase”, where it
undergoes iterative refinements, employing data
augmentation in each iteration to produce self-
refined outputs from its previously refined versions.
This iterative self-evolution aims to leverage accu-
mulated knowledge and further enhance the model
with newly generated data. The final outcome is
an advanced Language Model that has significantly
evolved from its original state through multiple
self-evolution stages. More details are delineated
in Alg. 1.

J Data Filtering Standards

We design a boolean function, qualified( f), to eval-
uate feedback f across different domains, deter-
mining if a response to a specific prompt satisfies
essential quality criteria.

In the Math Domain,the function assesses feed-
back based on the explicit statement of “correct-
ness” in the evaluator’s judgment, aligned with
the prompt structure in appendix B.1. It checks if
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Algorithm 1 Two-Phase SELF Process

Data: (1) Meta-Skill training data (Dmer) and (2) unlabeled
prompts

Input: An initial Language Model Mix;

Result: A stronger Language Model M7,

evol
// Meta-Skill Learning Phase
Data: Meta-Skill learning corpus (Dmeta)
Mmeta = Supervised_fine_tuning(Minit, Dinera )

// Self-Evolving Phase

Initialize M3, with Meta

foreach iteration t in 1 to Number of self-evolving iterations
T do

// Data-Augmentation

Initialize DY, as an empty set

foreach prompt p',,; in t'" unlabeled prompts do

Generate direct output 7%, using MI"

Generate self-refined output 7¢,, from rg, using
t—1
evol

Use M7 to filter the self-refined output

Add (ply, i) to Dl where r; is the refined
response

after self-evolving

end
// Self-Evolution Training

M Supervised_fine_tuning(M, ctvgll, DL

evol =

end

// Training Complete
return Improved Language Model M2,

the word “correct” immediately follows the phrase
“judgment:” in the feedback. A presence of “cor-
rect” results in qualified(f) returning 1, meeting
the qualification criteria. Absence leads to a return
of 0.

For the General Domain, following the struc-
ture in appendix B.2, qualified( f) extracts and eval-
uates a numerical rating from the feedback. If the
rating, found after "Rating:", is 7 or higher, the
function returns 1, indicating qualification. Rat-
ings below 7 return 0, failing to meet the threshold.
A rating of 7 balances quality and training data
quantity.

qualified(f) is key in both domains for filter-
ing and assessing feedback quality, ensuring only
high-quality responses are used for refined answer
generation in self-evolution training. Post data
filtering, U/~! in eq. (3) requires an update to
U=l = W=l x qualified(f), adding a quality
filter through self-feedback. For clarity, we con-
tinue using original formulation as stated in eq. (3)
in the main text.

K Multiple v.s. Single Self-Refinement

This study explores the effects of two meta-
skill training data organization strategies on
model performance: (1) Multiple Self-Refinement
(Dmeta-multi), involving the sampling of three re-



sponses for the model to choose the best for re-
finement, and (2) Single Self-Refinement (Dyyeta),
where the model generates and refines a single re-
sponse.

table 7 compares these methods’ performances.
Both strategies show performance gains with in-
creased training data volume. However, as data
volume expands, the multiple-response refinement
shows a smaller improvement in direct generation
performance (4+4.02%) than the single-response
method (+5.84%). Considering the simplicity and
computational efficiency of the single-response
method, which only samples one response dur-
ing inference, and its better performance than the
multiple-response approach, we have opted for the
single-response refinement strategy in our experi-
ments.

Data Size  Vicuna + Dpey  Vicuna + Dieta-multi
3.5k 25.39 — 28.28 25.92 — 27.29
7.5k 31.23 — 32.98 29.94 — 32.14

Table 7: Performance comparison of single and multiple
response refinement with varying volumes of meta-skill
training data. The arrow indicates improvement from
direct generation to self-refinement: “direct generation
— self-refinement”.

L Self-Evolution Training: Continual
Training v.s. Restart Training

Training Approach DR (%) SR (%)
Base Model 24.49 24.49
Restart Training 27.67 29.34
Continual Training (Mixed Data) ~ 27.22 28.43
Continual Training (DY, Only) 24.87 25.85

Table 8: Analysis about varied self-evolution training
methodologies on GSM8K.

“Restart Training”, which combines meta-skill
learning corpus with all rounds of self-evolution
training data, significantly improves direct genera-
tion (+3.18%) and self-refinement (+3.85%).

“Continual Training (Mixed Data)”’, where the
model is trained simultaneously with all rounds of
self-evolution data, also shows notable enhance-
ments in direct generation (+2.73%) and self-
refinement (+3.94%). In contrast, “Continual Train-
ing (D, Only)”, which trains the model sequen-

evol
tially with self-evolution data from each round,
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demonstrates more modest gains (+0.38% in di-
rect generation, +0.98% in self-refinement). The
relatively lower performance of the latter approach
highlights the importance of a mixed data strategy
for effective self-evolution training.

Throughout our main text, we have consistently
employed the “Restart Training” method. This ap-
proach was selected for its superior performance,
as evidenced in table 8. In addition, the integra-
tion of Dypeta into the self-evolution training is cru-
cial to prevent the potential catastrophic forgetting
of meta-skills. This strategy is essential for pre-
serving the effectiveness and reliability of the self-
evolution training process, as highlighted in sec-
tion 3.2.2.

M SELF vs. Supervised Fine-Tuning on
7.5K GSMB8Kk training data.

DR (%) SR (%) Dqa Dhuneta Self Evol.
Ist  2nd
28.05 - v
31.23 32.98 v
35.43 36.22 v
37.87 38.12 v v v
35.70 SFT  (GSMSK training data)

Table 9: Comparison between SELF and Supervised
Fine-Tuning on GSMS8K. A “-” symbol in the table in-
dicates self-refinement was not conducted during in-
ference because the model lacks the necessary self-
refinement skill.

When fine-tuned on the GSM8K 7.5k training
set, the Vicuna model achieves an accuracy of
35.70%, which is lower than the SELF method
(37.87%).

The experiments in table 9 use 7.5k meta-skill
data, ensuring a fair comparison with the super-
vised fine-tuned model. This approach differs from
the one in section 4.2.1, where only 3.5k meta-skill
data are used.

table 9 indicates that, with 7.5k unlabeled train-
ing prompts for the meta-skill learning corpus,
Vicuna + Dga achieves 28.05%. Post meta-
skill learning, direct generation results improve
to 31.23%, further increasing to 32.98% after self-
refinement. Subsequent self-evolution rounds lead
to performance gains, reaching 37.87%(direct gen-
eration) and 38.12%(self-refinement) in the sec-
ond round, outperforming supervised fine-tuning
(35.70%).



Continuous Improvement of SELF vs. Super-
vised Fine-tuning: SELF’s primary advantage
lies in its ability for continuous improvement and
adaptation. In contrast to supervised fine-tuning,
SELF doesn’t rely on human or external LLM an-
notations (like GPT3.5/GPT4) for training data in
self-evolution training.

N Scalability of SELF Framework

To explore how SELF performs with different start-
ing model qualities, we conduct experiments using
the OpenLlama-3b model (Geng and Liu, 2023),
a smaller LLM along with a stronger LLLM, Vicu-
naV1.5(finetuned from Llama2-7b)l (Chiang et al.,
2023), on the GSMB8K dataset. This allows us to
assess SELF’s adaptability to model quality. Exper-
iments with SELF are based on the first round of
self-evolution. The results are as follows:

Model DR(%) SR (%)
OpenLlama-3b 2.04 1.01
OpenLlama-3b + Dqa 12.13 10.97
OpenLlama-3b + Dga + SELF ~ 15.32 15.78
Vicuna (Llama-7b) 16.43 15.63
Vicuna + Dga 24.49 24.44
Vicuna + Dqa + SELF 27.67 29.34
VicunaV1.5 (Llama2-7b) 18.5 17.43
VicunaV1.5 + Dqa 26.04 25.48
VicunaV1.5 + Dqa + SELF 30.22 32.43

Table 10: Scalability of the SELF framework across
different models.

Applicability and Robustness of SELF Frame-
work: The average improvement of 17.32% via
direct generation and 16.87% after self-refinement
underscores the framework’s scalability and effi-
cacy. It reveals a consistent positive impact of the
SELF Framework across diverse models.

SELF Framework exhibits enhanced perfor-
mance on more powerful models: As shown
in table 10, applying SELF to VicunaV1.5 results
in the most significant gains - 30.22% in direct gen-
eration and 32.43% after self-refinement, surpass-
ing the performance on Vicuna and OpenLlama-3b.
This indicates that the effectiveness of the SELF
framework improves with the underlying model’s
capabilities.

O Impact of Meta-SKkill Corpus Quality

We examine the influence of meta-skill learning
quality on the self-evolution process with the fol-

17

lowing results:

DR (%) SR (%)
(GPT-3.5-turbo/GPT4)  (GPT-3.5-turbo/GPT4)

24.84/25.39 (0.551) 25.22/28.28 (3.061)
25.11/27.67 (2.561) 25.47/29.34 (3.871)

Training Stage

Vicuna + Dieta
Vicuna + Dmew + SELF Evol.

Table 11: Effect of meta-skill corpus quality on model
performance using GPT-3.5-turbo and GPT4.

The presented table 11 demonstrates the remark-
able performance improvements achieved by us-
ing GPT-4 for generating the meta-skill corpus in
our SELF framework, compared to using GPT-3.5-
turbo. The table shows significant enhancements in
both direct generation and self-refinement across
training stages when GPT-4 is utilized. For in-
stance, in the “Vicuna + D, stage, direct gen-
eration performance increases from 24.84% with
GPT-3.5-turbo to 25.39% with GPT-4, marking a
gain of 0.55%. Similarly, in the “Vicuna + Dpeta
+ SELF Evolution” stage, the self-refinement re-
sult improves from 25.47% with GPT-3.5-turbo to
29.34% with GPT-4, showing an enhancement of
3.87%.

This analysis highlights the significant impact
of utilizing high-quality meta-skill training data on
the performance of the Vicuna model within the
SELF framework. The shift from GPT-3.5-turbo to
GPT-4 for the generation of the meta-skill corpus
leads to consistent improvements in both Direct
Generation and Self-Refinement metrics.

P Single-Round vs. Iterative
Self-Evolution Training

Given an equal number of unlabeled prompts,
we evaluate the effectiveness of training within
a single-round versus iterative training. The former
method uses a single model to self-curate train-
ing data from all available unlabeled prompts at
once. In contrast, the latter method involves divid-
ing the unlabeled prompts into multiple parts. For
the iterative approach, the model is initially trained
on a portion of the unlabeled prompts and self-
curated labels. Following this, the trained model
is employed to create new training data based on
previously unused prompts. As described in our
main text, we divide the unlabeled prompts into
three parts, enabling the model to undergo three
iterative rounds of self-evolution.

table 12 shows that in the “Single-Round” train-
ing, the performance is 28.40% for direct gen-
eration and 30.55% for self-refinement. In con-



Training Method DR (%) SR (%)
SELF (Single-Round) 28.40 30.55
SELF (Iterative) 29.64 31.31

Table 12: Comparison of single-round training and iter-
ative training.

trast, the iterative approach yields higher scores
of 29.64% for direct generation and 31.31% for
self-refinement.

Advantages of Iterative Training: Iterative
training benefits from the enhanced capabilities
of LLMs in subsequent rounds, which generate
higher-quality training data and lead to improved
test performance.

Q Analysis on Data Filtering with
Self-Feedback

Filter Strategy

Unfiltered
Filtered

Training Acc. (%)

29.89
44.10

Test Acc. (%)

26.90
27.67

Table 13: Impact of Data Filtering with Self-Feedback
on GSMSK. “Training Acc.” shows the accuracy of the
self-evolution training data post-filtering, and “Test Acc.”
represents the model’s test performance post-training
on these filtered data.

table 13 presents an analysis of filtering self-
evolution training data using self-feedback (sec-
tion 3.2.1) on GSMS8K, focusing on training data
quality and its influence on self-evolution training.
The filtering criteria are detailed in appendix J.

The combination of self-refinement and self-
feedback filtering results in higher self-evolution
training data accuracy (+14.21%) and improved
fine-tuned model performance (+0.77%). Despite
the significant training data accuracy improvement,
the performance gain is modest due to the reduced
data size (from 4K to 1.8K) after filtering.

R General Test Details

Five Open LLM Leaderboard datasets Tt is
noteworthy that limitations were observed in the
Winogrande task. Specifically, incorporating exter-
nal data, the Vicuna + Dga model failed to enhance
performance on the Winogrande task and even con-
tributed to model degradation after self-evolution.
This observation suggests that the SELF-evolution
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process aims to unlock and amplify the inherent
potential of the base model rather than distilling
unknown skills.

Vicuna and Evol-instruct Test Evaluations We
utilize GPT-4 to evaluate the models’ responses on
both test sets. We follow the assessment methodol-
ogy proposed by (Xu et al., 2023), which mitigated
the order bias presented in the evaluation proce-
dures.

S Other Related Works

Recent advancements in autonomous improve-
ments of large language models (LLMs) have
spurred significant research into methodologies
aimed at aligning LLLM behavior with human in-
tentions. Alignment strategies such as Reinforce-
ment Learning from Human Feedback (RLHF)
have gained traction, wherein a reward model is
trained to approximate human preferences, and sub-
sequently, an LLLM is fine-tuned through reinforce-
ment learning to maximize this estimated human
preference. Several comparative studies shed light
on distinct approaches. For instance, SELF, com-
pared to Promptbreeder (Fernando et al., 2023) and
AutoCoT (Zhang et al., 2023), focuses on internal
self-enhancement rather than prompt evolution or
diversity generation. In contrast to CRITIC (Gou
et al., 2023), which employs external tools for vali-
dation, SELF relies on internal language feedback
for self-refinement. While Multiagent Debate (Du
et al., 2023) enhances factuality through debate
formats, SELF operates as a single-agent frame-
work. Constitutional Al (Bai et al., 2022b) em-
phasizes harmlessness principles, whereas SELF
offers a more general approach without specific
constraints. Unlike open-ended learning (Team
et al., 2021), which aims at creating generally capa-
ble agents in diverse environments, SELF concen-
trates on language-based self-improvement within
a single-agent framework. SPIN (Chen et al., 2024)
aims to iteratively improve the LLM’s performance
by leveraging both ground truth and synthetic
data it generates, thereby narrowing the quality
gap between human-labeled and LLLM-generated
responses. Conversely, SELF autonomously re-
fines its capabilities without relying on ground
truth data. Self-Rewarding (Yuan et al., 2024)
resembles the Reinforcement Learning with Hu-
man Feedback (RLHF). It assigns single numerical
values as feedback via LLM-as-a-Judge prompt-
ing, using Direct Preference Optimization (DPO)



for self-improvement training. In contrast, SELF
provides comprehensive language feedback, eval-
vating and guiding self-refinement, and employs
Supervised Fine-Tuning (SFT) on self-refined re-
sponses, which is a more clear and coherent train-
ing framework.

T Ablation Findings

(1) Meta-skill Training Elevates Performance:
Training with the meta-skills dataset D, as de-
fined in eq. (1), and setting 8 = 1 for a fair com-
parison with the question-answer dataset Dga, im-
proves direct response performance. Specifically,
we observe an increase of +0.90% on the GSM8K
dataset and +1.9% on the SVAMP dataset, com-
pared to using the D, dataset alone. This under-
scores the interesting finding that arming the model
with self-feedback and self-refinement meta-skills
implicitly elevates its capacity to generate supe-
rior responses directly, even without explicit self-
refinement. We offer an insight in appendix A.2.
(2) Continuous Improvement through Self-
Evolution: The results reveal that three self-

evolution rounds consecutively yield perfor-

2.28
mance enhancements (e.g., 25.39% F228%,

27.67% FU9%, 98 66% F2%% 99.64% on

GSMB8K). This shows that the model actively self-
evolves, refining its performance autonomously
without additional manual intervention.

(3) Persistent Efficacy of Self-Refinement: Af-
ter meta-skill learning, regardless of model varia-
tion, executing self-refinement consistently results
in notable performance improvements. This shows
that the self-refinement meta-capability learned by
SELF is robust and consistent across evolution
steps.
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