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ABSTRACT

The effectiveness of Multimodal Chain-of-Thought (MCoT) prompting is often
limited by the use of randomly or manually selected examples. These examples
fail to account for both model-specific knowledge distributions and the intrinsic
complexity of the tasks, resulting in suboptimal and unstable model performance.
To address this, we propose a novel framework inspired by the pedagogical prin-
ciple of “tailored teaching with balanced difficulty”. We reframe prompt selection
as a prompt curriculum design problem: constructing a well ordered set of training
examples that align with the model’s current capabilities. Our approach integrates
two complementary signals: (1) model-perceived difficulty, quantified through
prediction disagreement in an active learning setup, capturing what the model it-
self finds challenging; and (2) intrinsic sample complexity, which measures the
inherent difficulty of each question–image pair independently of any model. By
jointly analyzing these signals, we develop a difficulty-balanced sampling strategy
that ensures the selected prompt examples are diverse across both dimensions. Ex-
tensive experiments conducted on five challenging benchmarks and multiple pop-
ular Multimodal Large Language Models (MLLMs) demonstrate that our method
yields substantial and consistent improvements and greatly reduces performance
discrepancies caused by random sampling, providing a principled and robust ap-
proach for enhancing multimodal reasoning.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) Yin et al. (2024); Liu et al. (2023a) have emerged
prominent research focus alongside the rapid advancement of artificial intelligence. Built upon
powerful foundation language models Touvron et al. (2023); Bai et al. (2023), MLLMs leverage
cross-modal alignment mechanisms to achieve understanding and processing of information across
multiple modalities, including text, images, videos, and audio. A typical approach to deploying
MLLMs is the in-context learning paradigm Brown et al. (2020); Xie & Min (2022), which drives
models to perform predictions by providing a large number of instructions and input-output pair
examples. Chain-of-Thought Wei et al. (2022); Zhou et al. (2022) enhances the logical reasoning
capability of models by constructing examples that decompose complex problems into step-by-step
subproblems and solve them sequentially. Multimodal Chain-of-Thought (MCoT) Zhang et al.
(2023), on the other hand, further extends this core idea to the application scenarios of multimodal
large language models, achieving an improvement in cross-modal reasoning capabilities.

MCoT encourages large language models to perform multi-step reasoning by providing explicit
problem-solving rationales, rather than mapping questions directly to answers. This approach has
been effectively applied to scientific question answering across domains such as natural sciences,
linguistic sciences, and social sciences. However, as illustrated in Figure 1(a), MCoT prompt exam-
ples are typically randomly selected or manually crafted without considering the model’s internal
knowledge distribution or the characteristics of the dataset. This leads to prompts that are unstable
and insufficiently tailored to the model or task. As a result, MCoT prompting often suffers from
poor generalization, hallucinated outputs, and inconsistent performance. To enhance the specificity
and effectiveness of prompt examples, Auto-CoT Zhang et al. (2022) constructs prompts by select-
ing representative examples via clustering, as shown in Figure 1(b). However, due to the inherent

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Illustration of the motivation and key highlights of our proposed framework. (a) CoT uses
random/manual prompts without analyzing model knowledge distribution or dataset features; (b)
Auto-CoT uses clustering for representative prompts but ignores inter-model knowledge differences;
(c) CAMS (Ours) screens optimal prompts via active learning uncertainty and complexity analysis,
balancing difficulty to enhance effectiveness. We adopt the same multimodal input consisting of
images and questions as in (a) and (b) for CAMS.

differences between modalities, the effectiveness of Auto-CoT in multimodal scenarios is limited.
It fails to adequately account for the distributional differences in internal knowledge across different
models.

These challenges raise a critical question: how to selectively identify the most effective multimodal
prompt examples? In human learning, individuals often compile personalized sets of challenging
problems ranging from basic misunderstandings due to knowledge gaps to complex tasks that require
multi-step reasoning. Inspired by the idiom “Tailor teaching to individual needs”, we treat each
multimodal large model as a unique learner and select prompt examples through two dimensions:
uncertainty analysis and complexity evaluation.

We propose CAMS (Complexity-Guided Active Multimodal CoT Sampling), a novel joint selection
framework that integrates active learning and data complexity assessment. Rather than relying on
randomly selected or manually crafted MCoT examples, CAMS constructs a tailored “error sets”
for each model based on the training sets of various reasoning tasks, aiming to enhance the models’
performance on test sets. As shown in Figure 1(c), CAMS identifies highly targeted, effective, and
difficulty-balanced prompt examples by jointly analyzing sample uncertainty and complexity. We
conduct experiments on five benchmark datasets and three multimodal large models. The results
show that CAMS both improves model performance and greatly reduces accuracy variability caused
by random prompt selection. Our key contributions are as follows:

• We introduce CAMS,the first framework to select prompt examples based on both model-
internal knowledge and dataset characteristics.

• We demonstrate that effective prompting requires a balance of easy and hard examples;
neither extreme is sufficient on its own.

• CAMS greatly reduces the instability of traditional prompt selection methods and enables
MLLMs to achieve stable, high performance on complex reasoning tasks.
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2 RELATED WORK

2.1 PROMPT SELECTION BASED ON ACTIVE LEARNING

Active learning is a machine learning paradigm focused on maximizing model performance using
the fewest possible labeled samples. It aims to identify the most informative unlabeled data points
for annotation, thereby reducing labeling costs while maintaining high accuracy. Active learning
methods are typically grouped into the following three categories based on how unlabeled data is
queried: membership query synthesis Angluin (1988); King et al. (2004), where the model generates
new instances for labeling; stream-based selective sampling Dagan & Engelson (1995); Krishna-
murthy (2002), where data points are evaluated one at a time for potential labeling; and pool-based
sampling Lewis (1995), where the model selects the most informative samples from a large pool of
unlabeled data.

Active Prompt Diao et al. (2023) applies active learning principles to prompt selection by quantify-
ing uncertainty through prediction disagreement metrics (e.g., variance, entropy, disagreement) and
choosing high-uncertainty samples as prompt examples. However, Active Prompt focuses solely
on model’s prediction disagreement with samples (i.e., distributional differences in model-internal
knowledge) without considering sample complexity. Our approach introduces a data complexity
evaluator that assesses the inherent difficulty of samples. This allows for more customized and ef-
fective prompt selection, combining insights from both model knowledge and dataset characteristics.

2.2 CHAIN-OF-THOUGHT IN VISUAL QUESTION ANSWERING

The Multimodal Chain of Thought (CoT) technique is widely adopted to enhance the multi-step
reasoning abilities of large language models (LLMs). Its core idea is to guide models to generate
intermediate reasoning steps that help them solve complex problems more effectively. Benchmarks
such as VQA Antol et al. (2015), VQAv2 Goyal et al. (2017), OK-VQA Marino et al. (2019), A-
OKVQA Schwenk et al. (2022), and ScienceQA Lu et al. (2022) provide structured visual question
answering (VQA) tasks across various domains, including natural science, social science, semantics,
and everyday reasoning. For complex reasoning tasks, recent approaches like MCoT Zhang et al.
(2023), Auto-CoT Zhang et al. (2022), Self-Consistency Wang et al. (2022), and Active Prompt Diao
et al. (2023) leverage carefully designed prompt examples to improve model performance.

Despite these advancements, many methods Wei et al. (2022); Wang et al. (2022); Zhou et al. (2022)
rely on either randomly selected or manually crafted prompt examples. These examples often fail to
align with the specific demands of individual VQA tasks, limiting model performance. In particular,
they tend to overlook key factors such as the distributional characteristics of the model’s internal
knowledge and the multimodal nature of VQA tasks, focusing primarily on unimodal scenarios. To
address these limitations, our framework jointly considers the model’s uncertainty about the dataset
and the intrinsic complexity of each example. By integrating both model-centric and data centric
perspectives, we dynamically construct prompt examples that are better tailored to the model’s cur-
rent capabilities and the reasoning requirements of the task, leading to more effective and adaptive
prompting in visual question answering.

3 METHODOLOGY

Figure 2 illustrates the three core modules of CAMS: (i) Characterization of Multimodal Model
Internal Knowledge, which quantifies the model’s predictive uncertainty through multiple indepen-
dent samplings of the model, revealing the distribution characteristics of the model’s internal knowl-
edge; (ii) Complexity-Based Dataset Feature Estimation, which is used to quantitatively evaluate
dataset characteristics; (iii) Examples Sampling Strategy, which incorporates model uncertainty
indicators, dataset complexity scores, and the “easy-hard” selection principle to dynamically iden-
tify the most representative and effective prompt examples for the target model.

3.1 PROBLEM DEFINITION

We define a visual question answering dataset as D = {(xi, vi, yi)}Ni=1, where xi represents the
linguistic text query, vi represents the corresponding visual image input, yi denotes the ground truth,
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Figure 2: The illustration of our CAMS framework. Dataset consists of multimodal inputs of im-
ages and text. Complexity-Based Dataset Feature Estimation calculates complexity by integrating
question text and image captions to evaluate dataset characteristics. Analysis of Multimodal Model
Internal Knowledge reveals the distribution of the model’s internal knowledge through the uncer-
tainty of the model’s multiple predictions.

and N is the total number of test samples. The goal of the prompt optimization task is to search for
the optimal prompt p∗ that maximizes the performance A(·) of large language models (LLMs) on a
given task. This task can be formally defined as:

p∗ = argmax
p∈Pspace

N∑
i=1

S(A(xi, vi; p), yi) (1)

where Pspace denotes the set of all possible prompts (automatically selected or manually crafted),
and S(·) represents the corresponding evaluation metric.

3.2 CHARACTERIZATION OF MULTIMODAL MODEL INTERNAL KNOWLEDGE

3.2.1 DISAGREEMENT.

We define the training sample set as Dtrain = {q1, q2, ..., qn}, where qi denotes an unlabeled sample
and n is the total number of training samples. We instruct the MLLM Fθ(·) to sample from the
training set Dtrain, generating the sample results:

F i
θ = {F i

θ(q1),F i
θ(q2), ...,F i

θ(qn)} (2)

where Fθ(qi) represents the model’s response to sample qi. After performing k sampling iterations,
the final results are denoted as :

A = {a1, a2, ..., ak} (3)

where ai = {F1
θ (qi),F2

θ (qi), ...,Fk
θ (qi)} represents the k sampling outcomes for sample qi, F j

θ (qi)
denotes the j-th sample generated by the model for input, and A represents the collection of k
sampling results for all samples. We then compute unique answer via set operations to remove du-
plicates, yielding k′ unique items ai = {F1

θ (qi),F2
θ (qi), ...,Fk′

θ (qi)}, where k′

k ∈ (0, 1.0] denotes
the disagreement metric u. A larger value of the disagreement metric u indicates a higher difficulty
level for the sample.

3.2.2 CLUSTERING.

After assigning each training sample a corresponding uncertainty metric u, we perform clustering
on all training samples based on the numerical values of u, yielding a new training sample set.
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Specifically, we classify samples with u ∈ (0.5, 1.0] as difficult questions; conversely, samples with
u ∈ (0, 0.5] are classified as easy questions.

Ddiff
train = {Ddifficulty,Deasy},

Ddifficulty = {Dui
}0.5<ui≤1.0,

Deasy = {Duj}0<uj≤0.5.

(4)

where ui represents the specific disagreement value, and Dui represents the set of samples whose
disagreement metric equals ui.

3.3 COMPLEXITY-BASED DATASET FEATURE ESTIMATION

Training of the Complexity Scorer. We introduce an evolution-based metric, Evol Complex-
ity. We define a small-scale seed dataset D = {(I(0)1 , R

(0)
1 ), (I

(0)
2 , R

(0)
2 ), ..., (I

(0)
N , R

(0)
N )}, where

(I
(0)
i , R

(0)
i ) denotes instruction-response pairs and N denotes the number of instruction-response

pairs. For each instruction sample I , we enhance its complexity through Technique Fα(·), which
involves adding constraints, specification, and increasing reasoning steps. After N iterations, a set
of instructions with varying complexities is obtained:

{(I(0)i , R
(0)
i ), (I

(1)
i , R

(1)
i ), ..., (I

(M)
i , R

(M)
i )} (5)

where I
(m)
i = Fα(I

(m−1)
i ) , M denotes the number of sample evolution iterations and is set to

5. Further, we utilize the scoring function S(·) (i.e. ChatGPT) to rate and rank these 6 samples,
generating a set of instructions with scoring labels:

{(I(j)i ,S(I(j)i ), R
(j)
i )}Mj=0 (6)

Composed of these labeled instruction groups, a dataset is constructed to train LLaMA as the com-
plexity scorer. We use the Llama2-7B model trained on the “6k SFT + 10k DPO” dataset as the
final complexity scorer. Experiments demonstrate that this model can effectively classify sample
complexity, with an AlpacaEval score of 90.06% Liu et al. (2023b).

Computation of Complexity. This scheme aims to convert images in multimodal data into text
form (image captions) and integrate them with question texts to form unimodal inputs, enabling
the reuse of existing unimodal complexity scorers. Specifically, we observe that each image in
every multimodal dataset is accompanied by a corresponding textual description (i.e., a caption),
and we thus decide to make full use of these image captions. The image captions are then integrated
with the corresponding questions and options to form complete unimodal inputs in pure text. We
adopt the concatenation format of “question text + option text + image caption”, using the delimiter
′\n′ to ensure that the scorer can recognize the text representation of visual information. Finally,
the integrated text data is fed into the complexity scorer, which outputs the corresponding sample
complexity score.

3.4 STRATEGIES FOR SELECTING EXAMPLES

We employ a difficulty-balanced sample selection strategy. Specifically, for subsets of questions
categorized as difficult and error-prone, we select an equal number of high-complexity and low-
complexity questions; this balanced selection criterion is equally applied to subsets of simple and
fundamental questions. This selection strategy fully incorporates two dimensions: uncertainty and
complexity. !!!! It is important to note that all test samples within a given dataset share the
prompt examples selected through this method, rather than each test sample using a distinct
set of prompt examples.

4 EXPERIMENTS

In this section, we conduct extensive experiments to validate the effectiveness of CAMS
(Complexity-Guided Active Multimodal CoT Sampling). Our experiments aim to address the fol-
lowing core questions:
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Q1. Compared with existing baseline methods, can CAMS improve the accuracy of final an-
swers?

Q2. Can CAMS eliminate the instability of randomly selecting prompt examples?

Q3. Are the designs of our two modules (active learning and complexity scoring) both mean-
ingful?

Q4. Can CAMS enhance the accuracy of multimodal large models in subdivided domains?

Q5. Why should we select examples with uniform uncertainty for multimodal large models?

4.1 EXPERIMENTAL SETTINGS

4.1.1 DATASETS AND METRICS.

Following the standard evaluation settings in MLLMs reasoning research,we conduct testing on
five popular benchmarks: ScienceQA Lu et al. (2022), A-OKVQA Schwenk et al. (2022), OK-
VQA Marino et al. (2019), VQAv2 Goyal et al. (2017) and TextVQA Singh et al. (2019). The
problem designs in these datasets include both multiple-choice and open-ended answer formats, and
we follow the practice Liu et al. (2024); Li et al. (2024); Bai et al. (2023) of using accuracy as the
metric.

4.1.2 BASELINES AND MODEL VARIANTS.

In our experiment, the following five methods are used as the main baselines: Chain-of-thought (ZS-
CoT) Wei et al. (2022), Few shot CoT (FS-CoT), Self-consistency (Self-Con) Wang et al. (2022),
Auto-CoT Zhang et al. (2022) and Active Prompt (Active-Pro) Diao et al. (2023). FS-CoT uses the
same annotation process as our method, the only difference being that it randomly selects questions
from the training data for annotation. We select multiple cutting-edge MLLMs as experimental
models, including llama3.2-vision:11b, llava:7b, and Qwen2.5-VL:7b.

4.2 IMPLEMENTATION DETAILS

4.2.1 HYPERPARAMETERS.

In the training set sampling phase, we follow the optimal value of 10 Diao et al. (2023) for the num-
ber of sampling iterations. During both the sampling and the inference phases of the experiments, the
temperature is uniformly set at 0.5. Unless otherwise specified, the multimodal large language mod-
els used in the experiments are llama3.2-vision:11b, llava:7b, and Qwen2.5-VL:7b.

4.2.2 UNCERTAINTY ASSESSMENT.

In the experimental process, we adopt a zero-shot sampling strategy, which does not rely on addi-
tional examples or guidance information. For ScienceQA, A-OKVQA, and VQA, we perform sam-
pling on the complete training sample sets, while for the VQAv2 and TextVQA datasets, we only
sample 10,000 samples1. For the sampling frequency parameter, We follow the optimal value Diao
et al. (2023) to set k = 10. We consistently use “Disagreement”2—a more intuitive and accurate
method—as the uncertainty metric.

4.2.3 CONSTRUCTING EXAMPLES.

We focus on the innovating and optimizating strategies for prompt example selection. To reduce
human labor as much as possible, we eliminate the need for manual annotation of prompt exam-
ples. Instead, we construct prompt instances by directly concatenating the question, reasoning, and
answer from the dataset. The solution processes in the dataset are carefully crafted and rigorously
screened by the authors, considering domain knowledge or task-specific styles. This ensures the
generalization ability of our method to a certain extent. Details are provided in Appendix A.1.

1Because the training sets of these two datasets are too large, full sampling would require substantial com-
putational and time costs.

2In preliminary experiments, variance and entropy exhibit suboptimal performance in multimodal scenarios.
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Table 1: Overall results (%) on five benchmarks. In each setting, the best results are displayed in
bold and italics, with gray shading indicating the degree of improvement compared to ZS-CoT.

METHOD Datasets Avg.
ScienceQA A-OKVQA OK-VQA VQAv2 TextVQA

Llama3.2-vision:11b

ZS-CoT 38.08 ↑ 0.000 47.42 ↑ 0.000 28.74 ↑ 0.000 57.45 ↑ 0.00 37.52 ↑ 0.000 41.842 ↑ 0.0000

FS-CoT 60.42 ↑ 22.34 55.88 ↑ 8.460 50.92 ↑ 22.18 59.95 ↑ 2.50 65.00 ↑ 27.48 58.434 ↑ 16.592

Auto-CoT 39.07 ↑ 0.990 59.82 ↑ 12.40 48.13 ↑ 19.39 63.57 ↑ 6.12 61.14 ↑ 23.62 54.346 ↑ 12.504

Active-Pro 40.44 ↑ 2.360 57.55 ↑ 10.13 46.86 ↑ 18.12 60.12 ↑ 2.67 58.86 ↑ 21.34 52.776 ↑ 10.924

Self-Con 50.00 ↑ 11.92 54.41 ↑ 6.990 43.56 ↑ 14.82 66.04 ↑ 8.59 54.85 ↑ 17.33 53.772 ↑ 11.930

Ours 68.22 ↑ 30.14 59.39 ↑ 11.97 51.89 ↑ 23.15 61.89 ↑ 4.44 62.76 ↑ 25.24 60.830 ↑ 18.988

Llava:7b

ZS-CoT 41.10 ↑ 0.000 59.39 ↑ 0.00 3.910 ↑ 0.000 7.820 ↑ 0.000 0.300 ↑ 0.000 22.504 ↑ 0.0000

FS-CoT 59.79 ↑ 18.69 62.31 ↑ 2.92 31.82 ↑ 27.91 29.36 ↑ 21.54 20.43 ↑ 20.13 40.742 ↑ 18.238

Auto-CoT 56.12 ↑ 15.02 62.18 ↑ 2.79 34.34 ↑ 30.43 30.80 ↑ 22.98 20.48 ↑ 20.18 40.784 ↑ 18.280

Active-Pro 57.20 ↑ 16.10 61.39 ↑ 2.00 34.10 ↑ 30.19 30.69 ↑ 22.87 20.58 ↑ 22.87 40.792 ↑ 18.288

Self-Con 57.91 ↑ 16.81 62.10 ↑ 2.71 14.06 ↑ 10.15 11.00 ↑ 3.180 9.140 ↑ 8.840 30.842 ↑ 8.3380

Ours 62.53 ↑ 21.43 63.41 ↑ 4.02 34.46 ↑ 30.55 33.07 ↑ 25.25 20.78 ↑ 20.48 42.850 ↑ 20.346

Qwen2.5-VL:7b

ZS-CoT 40.16 ↑ 0.000 39.39 ↑ 0.000 6.910 ↑ 0.000 5.180 ↑ 0.000 1.900 ↑ 0.00 18.708 ↑ 0.0000

FS-CoT 83.44 ↑ 43.28 71.35 ↑ 31.96 20.86 ↑ 13.95 29.98 ↑ 24.80 4.330 ↑ 2.43 41.992 ↑ 23.284

Auto-CoT 74.09 ↑ 33.93 69.78 ↑ 30.39 19.90 ↑ 12.99 30.49 ↑ 25.31 4.020 ↑ 2.12 39.656 ↑ 20.948

Active-Pro 77.79 ↑ 37.63 71.26 ↑ 31.87 21.70 ↑ 14.79 28.92 ↑ 23.74 4.040 ↑ 2.14 40.742 ↑ 22.034

Self-Con 74.70 ↑ 34.54 64.45 ↑ 25.06 9.540 ↑ 2.430 7.610 ↑ 2.430 2.420 ↑ 2.12 31.744 ↑ 13.036

Ours 84.08 ↑ 43.92 71.79 ↑ 32.40 24.52 ↑ 17.61 31.14 ↑ 25.96 4.580 ↑ 2.68 43.222 ↑ 24.514

4.3 MAIN RESULTS

4.3.1 FOR Q1: CAMS CONSISTENTLY OUTPERFORMS NEARLY ALL BASELINE METHODS.

Among the three models — Llama3.2-vision:11b, Llava:7b, and Qwen2.5-VL:7b —
the average accuracy (Avg.) of the proposed method consistently outperforms nearly all baseline
methods. As shown in Table 1, taking Llama3.2-vision:11b as an example: our method
achieves an average score approximately 45.38 points higher than that of ZS-CoT, and more than
5 points higher than those of Auto-CoT, Active Prompt, and self-consistency. The best-performing
FS-CoT is around 2 points lower than CAMS. This indicates that CAMS can stably enhance the
performance of multimodal large models on complex multimodal reasoning tasks, demonstrating
robust effectiveness compared to existing baseline methods across diverse model configurations.

4.3.2 FOR Q2: CAMS CAN GREATLY REDUCE ACCURACY INSTABILITY CAUSED BY
RANDOMLY SELECTING PROMPT EXAMPLES.

To ensure the fairness and reliability of the experiments, five tests are conducted on the FS-CoT
method using different random seeds on the test set, with the average accuracy across the five tests
selected as the final result. Figure 3 illustrates the specific performance of FS-CoT in these five
tests. The line chart reveals that the random selection strategy exhibits significant instability, with
substantial fluctuations in accuracy across tests — the difference between the highest and lowest
accuracy exceeds 5. CAMS not only significantly reduces the impact of randomness on performance
but also consistently achieves above-average accuracy, outperforming the random selection strategy
across the board.

4.3.3 FOR Q3: BOTH THE UNCERTAINTY ANALYSIS AND COMPLEXITY EVALUATION
MODULES CAN EFFECTIVELY IMPROVE ACCURACY.

Table 2 presents the findings of the ablation experiments. To clarify the design of each method
compared in the table, key definitions are as follows: ZS-CoT solely employs the simple prompt
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Figure 3: Accuracy fluctuations across five tests of FS-CoT and CAMS, where Test 1–5 denote the
serial numbers of each test.

Table 2: Results of ablation study (%) on five benchmarks. Unc-Eva selects examples ran-
domly only from different uncertainty categories. Com-Eva selects only an equal number of high-
complexity and low-complexity samples.

Module Datasets Avg.
Unc-Eva Com-Eva ScienceQA A-OKVQA OK-VQA VQAv2 TextVQA

Llama3.2-vision:11b

(a) ZS-CoT 38.08
↓ 48.58%

47.42
↓ 20.15%

28.74
↓ 44.61%

57.45
↓ 7.17%

37.52
↓ 40.22%

41.84
↓ 31.22%

(b) " 63.40
↓ 7.07%

56.68
↓ 4.56%

43.65
↓ 15.88%

59.75
↓ 3.46%

61.32
↓ 2.29%

56.96
↓ 6.36%

(c) " 61.92
↓ 9.23%

55.92
↓ 5.84%

48.10
↓ 7.30%

60.66
↓ 1.99%

60.40
↓ 3.76%

57.40
↓ 5.64%

(d) " " 68.22 59.39 51.89 61.89 62.76 60.83

“Let’s think step by step” to guide the model; and Ours refers to a complete multimodal thought-
chain reasoning method enhanced by active learning. Compared with the baseline method, both the
standalone Unc-Eva module and Com-Eva module enhance model accuracy in complex reasoning
tasks to varying degrees. The Unc-Eva module demonstrates better performance across different
disciplinary types and difficulty levels compared to the Com-Eva module. The Com-Eva module,
while eliminating randomness, still improves model performance and ensures data stability and
reliability. The experimental results indicate that the proposed method effectively combines the
advantages of both modules, further enhancing model accuracy while mitigating randomness.

4.3.4 FOR Q4: CAMS CAN IMPROVE THE MODEL’S ACCURACY IN SUBDIVIDED DOMAINS.

To further investigate the efficacy of CAMS in specific subfields, we conduct systematic exper-
iments on the ScienceQA dataset. Specifically, based on disciplinary attributes, the ScienceQA
dataset is categorized into three major groups: natural sciences (NAT), social sciences (SOC), and
linguistic sciences (LAN). According to difficulty gradients, it is also divided into two levels: grades
1–6 (G1-6) and grades 7–12 (G7-12), thus constructing multidimensional subscenarios that capture
both domain specificity and cognitive complexity. As shown in Figure 4, in the five subfields men-
tioned above, CAMS almost universally outperforms the three baseline methods - Self-con, ZS-CoT,
and FS-CoT - in terms of precision, especially in the NAT, SOC, and G1-6 domains. Whether in
knowledge-centric scenarios emphasizing disciplinary dimensions or in learning settings focused
on difficulty levels, CAMS demonstrates significant advantages, confirming its ability to substan-
tially improve model accuracy within specialized domains. Meanwhile, this also demonstrates the
generalization capability of the CAMS framework.
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Figure 4: Comparison of accuracy between CAMS and three baseline methods in subdivided do-
mains.

Figure 5: Comparison of different example selection strategies. “AP high” denotes the selection of
only difficult examples (i.e., those with high uncertainty); “AP low” denotes the selection of only
easy examples (i.e., those with low uncertainty).

4.3.5 FOR Q5: A SELECTION STRATEGY THAT COMBINES EASY AND DIFFICULT EXAMPLES
IS MORE BENEFICIAL TO THE MODEL.

To evaluate the effectiveness of combining easy and difficult examples, we conducte additional
experiments using two additional selection strategies: one that includes only difficult examples (i.e.,
those with high uncertainty) and another that includes only easy examples (i.e., those with low
uncertainty). As shown in Figure 5, while the all-difficult example strategy performs relatively well
across the five target datasets, it still falls short compared to the balanced strategy employed by
CAMS. This finding highlights that relying exclusively on either high- or low-difficulty samples is
insufficient to capture the full spectrum of knowledge complexity and scenario diversity required
for complex reasoning tasks. In contrast, CAMS’s approach of integrating both easy and difficult
examples enables the model to learn more diverse and representative knowledge patterns, ultimately
leading to improved reasoning accuracy.

5 CONCLUSION AND FUTURE WORK

In this work, we address key challenges in existing Chain-of-Thought (CoT) prompting methods
for multimodal models, which often suffer from unstable and suboptimal performance due to their
reliance on random or manually selected examples. To overcome these limitations, we propose
CAMS, a novel framework inspired by the pedagogical principle of “tailored teaching with bal-
anced difficulty”. CAMS integrates two key dimensions — model-perceived difficulty and sam-
ple complexity — to construct a customized prompt curriculum that balances between easy and
challenging examples. We demonstrate the effectiveness of CAMS through experiments on five
benchmarks using multiple state-of-theart multimodal large language models. We also highlight
promising directions for future work, including adapting CAMS to broader multimodal settings and
further exploring dataset feature dimensions for deeper curriculum design.
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REPRODUCIBILITY STATEMENT

We have submitted the relevant code in the supplementary materials. The names of the experimental
benchmarks, the prompt templates used, and the model’s hyperparameter settings can all be found in
The Appendix A.1, A.2, A.3 and Table 7. Section 4 (Experiments) provides a detailed description
of the experimental setup for the mechanism experiments.
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A APPENDIX

A.1 THE CONSTRUCTION OF PROMPT

We construct prompt examples by integrating questions, reasoning steps, and answers from the
dataset:

E = {(q1, c1, a1), (q2, c2, a2), ..., (qn, cn, an)} (7)
where q denotes questions, c denotes reasoning steps, a denotes answers, and n denotes the number
of examples.

A.2 COMPARISON BETWEEN CAMS AND AUTO-COT

Figure 6 demonstrates that the prompt examples selected by CAMS can, to a certain extent, enhance
the strengths and mitigate the weaknesses of multimodal large models, thereby better facilitating
their completion of reasoning tasks.

A.3 PROMPT DEMONSTRATION

Details are provided in Table 7. It is important to note that the captions in the examples are re-
placed with actual images in real-world applications; text is used here solely for the convenience of
demonstration.
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Figure 6: Comparative cases between CAMS and Auto-CoT

A.4 COMPLEXITY SCORER

Table 3 and Table 4 shows prompt templates for adding constraints and specification. Specification
refers to increasing the depth and breadth of the problem, such as moving from a surface description
to exploring its essence, or from a “single task/scenario” to a “multi-task/generalized scenario”.
Table 5 and Table 6 shows two examples of sample evolution.

A.5 THE USE OF LARGE LANGUAGE MODELS (LLM)

In order to enhance the language quality and clarity of this academic paper, the author utilized AI-
powered tools for text refinement during the writing process. The specific details are as follows:

Purpose of Use: The primary purposes for using AI tools were to:
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Table 3: Prompt template of add constraints.

SYSTEM:
Prompt Templates of add constraints

USER:
I need you to play the role of a prompt rewriter.
Your task is to rewrite a given prompt into a more complex version that makes it
more difficult for famous large language models like GPT4 to solve these prob-
lems.
The rewritten prompt must be reasonable, understandable and responded by hu-
mans.
Your rewrite cannot omit non-text parts, such as tables and code in #Given Prompt
#.
Meanwhile, do not omit the input in #Given Prompt#.
You should use the following methods to complicate the given prompts:
Please add at least one restriction/requirement into #Given Prompt#.
You should try your best to avoid making #Rewritten Prompt# verbose.
#Rewritten Prompt# can only add 10 to 20 words into #Given Prompt#.
“#Rewritten Prompt#”, “#Given Prompt#”, “rewritten prompt” and “given
prompt”’ are not allowed to appear in #Rewritten Prompt#.
#Given Prompt#:
¡Here is instruction
#Rewritten Prompt#:

Table 4: Prompt template of specification

SYSTEM:
Prompt Templates of add constraints

USER:
I need you to play the role of a prompt rewriter.
Your task is to rewrite a given prompt into a more complex version that makes it
more difficult for famous large language models like GPT4 to solve these prob-
lems.
The rewritten prompt must be reasonable, understandable and responded by hu-
mans.
Your rewrite cannot omit non-text parts, such as tables and code in #Given Prompt
#.
Meanwhile, do not omit the input in #Given Prompt#.
You should use the following methods to complicate the given prompts:
If #Given Prompt# contains inquiries about certain issues, the depth and breadth
of the inquiry can be increased.
You should try your best to avoid making #Rewritten Prompt# verbose.
#Rewritten Prompt# can only add 10 to 20 words into #Given Prompt#.
“#Rewritten Prompt#”, “#Given Prompt#”, “rewritten prompt” and “given
prompt”’ are not allowed to appear in #Rewritten Prompt#.
#Given Prompt#:
¡Here is instruction
#Rewritten Prompt#:

• Check grammar and spelling for certain sentences.

• Optimize vocabulary choices for more precise and academic expression.

• Adjust sentence structures to improve logical coherence and readability between paragraphs.

Method of Use: The author input original paragraphs written by themselves into the AI tools and
then manually judged, filtered, and revised the text based on the refinement suggestions provided.
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Table 5: Example of adding constraints.
Instruction

Find the title of a book about a political movement in the 1940s.
Response

Find the title of a book about a 1940s anti-colonial political movement with first-hand activist testi-
monies.
Find the title of a 1940s anti-colonial political movement book set in Southeast Asia with first-hand
activist testimonies and a major international literary award.
Find the title of a 1940s anti-colonial political movement book set in Southeast Asia, written by
a local female activist (1945-1949), with first-hand activist testimonies and a major international
literary award.
Find the title of a 1940s anti-colonial political movement book set in Southeast Asia, written by a
local female activist (1945-1949), centered on rural grassroots mobilization and translated into three
European languages, with first-hand activist testimonies and a major international literary award.

Table 6: Example of specification.
Instruction

Find the title of a book about a political movement in the 1940s.
Response

Find the title of a non-fiction book about a Southeast Asian political movement in the 1940s that
shaped post-WWII governance.
Find the title of a non-fiction book about a Southeast Asian anti-colonial political movement in the
1940s that shaped post-WWII governance drawing on first-hand activist accounts.
Find the title of a non-fiction book about a Southeast Asian anti-colonial political movement in
the 1940s that shaped post-WWII governance drawing on first-hand activist accounts, focused on
Indochina or Indonesia and analyzed through transnational lenses.
Find the title of a non-fiction book about a Southeast Asian anti-colonial political movement in the
1940s that shaped post-WWII governance drawing on first-hand activist accounts, focused on In-
dochina or Indonesia and analyzed through transnational lenses, emphasizing marginalized women
activists’ roles in diplomatic shifts.

All adopted changes were carefully considered by the author to ensure they fully align with the
original intent and academic rigor of the paper.

Disclaimer of Responsibility: All academic content in this paper, including core arguments, re-
search data, result analysis, argumentation process, and final conclusions, was independently created
and is the sole responsibility of the author. The AI tools were used purely as an auxiliary aid and did
not generate any critical academic viewpoints, research data, or conclusions. The author assumes
full responsibility for the final content of the paper.

Tools Used: The AI tool used in this process is: GPT-4.
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Algorithm 1 CAMS
Require: Training set D = {x1, x2, ..., xN}, Test set T , Multi-modal model M , Complexity scorer

C, Number of iterations k, Sample size n
Ensure: Final accuracy on test set T

1: Initialize response log R = {∅ | xi ∈ D} {Empty list for each sample}
2: for i = 1 to k do
3: for each x ∈ D do
4: y = M(x) {Get model’s response to sample x}
5: Append y to R[x] {Store response for sample x}
6: end for
7: end for
8: Initialize disagreement scores Disagreement = {0 | xi ∈ D}
9: for each x ∈ D do

10: UniqueResponses = Remove duplicates from R[x]
11: k′ = Length of UniqueResponses
12: Disagreement[x] = k′/k
13: end for
14: HardSamples = {x ∈ D | 0.5 < Disagreement[x] ≤ 1}
15: EasySamples = {x ∈ D | 0 < Disagreement[x] ≤ 0.5}
16: for each x ∈ HardSamples ∪ EasySamples do
17: Complexity[x] = C(x) {Get complexity score from scorer}
18: end for
19: Sort HardSamples by Complexity[x] in ascending order
20: HardLow = First n

4 samples from sorted HardSamples {Low complexity hard samples}
21: HardHigh = Last n

4 samples from sorted HardSamples {High complexity hard samples}
22: Sort EasySamples by Complexity[x] in ascending order
23: EasyLow = First n

4 samples from sorted EasySamples {Low complexity easy samples}
24: EasyHigh = Last n

4 samples from sorted EasySamples {High complexity easy samples}
25: Exemplars = HardLow ∪HardHigh ∪ EasyLow ∪ EasyHigh
26: Correct = 0
27: for each t ∈ T do
28: ypred = M(t | Exemplars) {Model prediction with exemplars}
29: if ypred == true label of t then
30: Correct = Correct+ 1
31: end if
32: end for
33: Accuracy = Correct/Length of T
34: return Accuracy
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Table 7: Prompt template of query formulation.

SYSTEM:
You are a professional VQA task solver

USER:
Given the problem and its related images, you need to generate answers for the
VQA task.
The generated answers must be derived from direct visual observation of the im-
age—do not include speculative content, assumptions, or information not visible
in the image.
When answering questions: if the image clearly shows the required information,
output a specific, concise answer; if the image does not contain enough informa-
tion to answer (e.g., object not visible, detail unclear), output “insufficient infor-
mation”; if the image contradicts the question (e.g., question asks about a “red
car” but image shows a blue car), output a negative answer with correct visual
details.
Do not answer subjective judgment questions (e.g., “Is the image interest-
ing?”)—visual facts only.
You MUST only respond in the format as described below.
DO NOT RESPOND WITH ANYTHING ELSE.
Response Format:The answer is ..., because ... .
Here are an example:
“question”:“Which of these organisms contains matter that was once part of the
phytoplankton?”
“choices”:[“black rockfish”, “sea otter”]
“hint”:“Below is a food web from an ocean ecosystem in Monterey Bay, off the
coast of California. A food web models how the matter eaten by organisms moves
through an ecosystem. The arrows in a food web represent how matter moves
between organisms in an ecosystem.”
“caption”:“A painting of a penguin on a wall.”
“lecture”:“A food web is a model. A food web shows where organisms in an
ecosystem get their food. Models can make things in nature easier to understand
because models can represent complex things in a simpler way. If a food web
showed every organism in an ecosystem, the food web would be hard to under-
stand. So, each food web shows how some organisms in an ecosystem can get
their food. Arrows show how matter moves. A food web has arrows that point
from one organism to another. Each arrow shows the direction that matter moves
when one organism eats another organism. An arrow starts from the organism that
is eaten. The arrow points to the organism that is doing the eating. An organism
in a food web can have more than one arrow pointing from it. This shows that the
organism is eaten by more than one other organism in the food web. An organism
in a food web can also have more than one arrow pointing to it. This shows that
the organism eats more than one other organism in the food web.”
“output”:“The answer is A, because Use the arrows to follow how matter moves
through this food web. For each answer choice, try to find a path of arrows
that starts from the phytoplankton. The only arrow pointing to the sea otter
starts from the sea urchin. The only arrow pointing to the sea urchin starts from
the kelp. No arrow points to the kelp. So, in this food web, matter does not
move from the phytoplankton to the sea otter.There are two paths matter can take
from the phytoplankton to the plainfin midshipman: phytoplankton− >plainfin
midshipman. phytoplankton− >zooplankton− >plainfin midshipman.
There is one path matter can take from the phytoplankton to the black
rockfish: phytoplankton− >zooplankton− >black rockfish. There is
one path matter can take from the phytoplankton to the zooplankton:
phytoplankton− >zooplankton.”

Now complete your output with following the above rules.
Input:
Output:
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