
Published as a conference paper at ICLR 2025

BASIS SHARING: CROSS-LAYER PARAMETER SHARING
FOR LARGE LANGUAGE MODEL COMPRESSION

Jingcun Wang
Technical University of Darmstadt
jingcun.wang@tu-darmstadt.de

Yu-Guang Chen
National Central University
andyygchen@ee.ncu.edu.tw

Ing-Chao Lin
National Cheng Kung University
iclin@csie.ncku.edu.tw

Bing Li
University of Siegen
Bing.Li@uni-siegen.de

Grace Li Zhang
Technical University of Darmstadt
grace.zhang@tu-darmstadt.de

ABSTRACT

Large Language Models (LLMs) have achieved remarkable breakthroughs. How-
ever, the huge number of parameters in LLMs require significant amount of memory
storage in inference, which prevents their practical deployment in many applica-
tions. To reduce memory storage of LLMs, singular value decomposition (SVD)
provides a promising solution to approximate weight matrices for compressing
LLMs. In this paper, we take a step further to explore parameter sharing across
different layers with SVD to achieve more effective compression for LLMs. Specif-
ically, weight matrices in different layers are decomposed and represented as a
linear combination of a set of shared basis vectors and unique coefficients. The
types of weight matrices and the layer selection for basis sharing are examined
when compressing LLMs to maintain the performance. Comprehensive exper-
iments demonstrate that Basis Sharing outperforms state-of-the-art SVD-based
compression approaches and parameter sharing techniques, especially under large
compression ratios.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized natural language processing by enabling
machines to understand human language more accurately. Although these models have remarkable
capabilities, they are computation- and memory-intensive, making their deployment on resource-
constrained devices challenging. To address this challenge, model compression has become a widely
adopted technique to reduce model size and complexity.

Common compression techniques, such as model distillation (Gu et al., 2024; Magister et al., 2023;
Jiang et al., 2023b; Huang et al., 2022; Qiu et al., 2024), pruning (Frantar & Alistarh, 2023; 2022; Ma
et al., 2023; Sun et al., 2024; Jiang et al., 2024; Petri et al., 2023), and quantization (Lin et al., 2024;
Zhao et al., 2024; Ashkboos et al., 2024; Xiao et al., 2023; Sun et al., 2023), early-exit (Chen et al.,
2024; Wang et al., 2024a), etc. have been extensively studied. While such techniques are effective
in many scenarios, these methods often require hardware modification and expensive retraining.
Compression techniques based on low-rank approximation with, e.g., Singular Value Decomposition
(SVD) (Yuan et al., 2023; Hsu et al., 2022; Wang et al., 2024b), provide a promising alternative since
they are not restricted by such constraints. In SVD-based weight compression, a weight matrix in a
layer is processed individually by decomposing it into three matrices. By removing small singular
values in the decomposed diagonal matrix, the original weight matrix can be approximated with
fewer number of weight values.

1

Published as a conference paper at ICLR 2025

Despite the benefits of SVD-based weight compression, the potential of grouping layers for weight
approximation and compression has not been explored thoroughly. Since weight matrices in different
layers of an LLM might share similarity, parameter sharing across layers can be exploited to further
compress weight matrices for LLMs. In sharing parameters across layers, Hay & Wolf (2024) trained
a small language model by restricting weight matrices in some layers to be the same. On the one
hand, this brute-force method leads to significant performance degradation since weight matrices in
different layers should vary to maintain their functionalities. On the other hand, it is impractical to
train LLMs from scratch due to limited training data or high training costs.

Contrary to previous work, in this paper, we use pretrained LLMs to enable weight matrices across
layers to share a common set of basis vectors but still retain their different functionalities with unique
coefficients. Our method, called Basis Sharing, can compress LLMs effectively. In summary, our
contributions are as follows:

1. We propose to represent weight matrices across different layers in a pretrained LLM with a
linear combination of a set of shared basis vectors and coefficients unique to specific layers.
This basis sharing can effectively reduce the number of parameters in LLMs while only
affecting the performance of LLMs slightly.

2. We examine cross-layer basis sharing for different types of weight matrices in LLMs
according to the incurred compression errors. The types of weight matrices whose sharing
across layers does not incur significant compression error are selected for compressing
LLMs.

3. For the selected types of weight matrices, we also develop a criterion to group layers to
share a set of basis vectors but have individual coefficients to preserve the performance of
LLMs.

4. We conduct extensive experiments on a variety of LLMs, including the LLaMA family
(Touvron et al., 2023a;b), OPT-6.7B (Zhang et al., 2022), Mistral-7B (Jiang et al., 2023a),
and GPT-2 (Radford et al., 2019). Our Basis Sharing can surpasses the state-of-the-art
SVD-based methods in both generation tasks and downstream reasoning tasks without any
fine-tuning under compression ratios from 20% to 50%. Specifically, compared with state-of-
the-art SVD-based compression approaches, Basis Sharing can further reduce the perplexity
by up to 25% on generation tasks and improve accuracy by up to 4% on downstream
reasoning tasks under the same compression ratio.

2 RELATED WORK

Large Language Model Compression LLM compression techniques include model distillation,
pruning and quantization, etc. Gu et al. (2024); Huang et al. (2022); Magister et al. (2023); Jiang
et al. (2023b) successfully applied model distillation to LLM by retraining, which incurs high
computational cost. Frantar & Alistarh (2023; 2022); Sun et al. (2024); Ma et al. (2023) pruned
weights that are less sensitive to outliers. However, the resulting unstructured weight matrices do not
provide meaningful compression benefits on real hardware. Structured pruning techniques, such as
2:4 or 4:8 pruning, can achieve effective compression but restrict a fixed 50% pruning ratio, which
limits flexibility in balancing performance and compression ratio. Zhao et al. (2024); Ashkboos et al.
(2024); Lin et al. (2024); Xiao et al. (2023) allocated higher quantization bits to weights with larger
influence on outliers, but it does not reduce the number of parameters, limiting its impact on overall
compression.

SVD-based Weight Compression SVD-based weight compression has a flexible compression
ratio to maintain performance without retraining. Golub et al. (1987) were the first to apply SVD for
neural network compression, and Lv et al. (2023); Wu et al. (2023) extended this approach to shallow
transformer models (Vaswani, 2017). However, in LLM compression, these methods incur significant
errors since they do not consider outliers in activations. FWSVD (Hsu et al., 2022) addresses this
issue by incorporating the impact of outliers through the Fisher information analysis of weight
matrices. However, this method requires gradient information during training process, which is
computationally prohibitive for LLMs. ASVD (Yuan et al., 2023) alleviates this problem by selecting
key channels in the weight matrix based on their sensitivity to outliers and minimizing compression
error in these channels. While it avoids the need for gradients, ASVD still lacks a direct connection

2

Published as a conference paper at ICLR 2025

between SVD truncation error and the overall model compression error. SVD-LLM (Wang et al.,
2024b) improves this by introducing a whitening matrix that captures outlier information, effectively
reducing compression error. However, all of these methods focus only on compressing individual
weight matrices within a single layer, missing the opportunity to exploit weight compression across
multiple layers.

Parameter Sharing Parameter sharing reduces model size by reusing weight matrices across
different layers. Inspired by recurrent neural networks, Dehghani et al. (2019) explored this concept
within transformers by restricting all layers in the encoder and decoder to share the same weights.
Similarly, Reid et al. (2021) divided transformer parameters into two groups (attention-related and
feedforward-related) and compressed the model by sharing weights within each group. Takase &
Kiyono (2021) applied selective weight sharing, where specific layers shared the same weights rather
than all layers. Beyond direct weight sharing, Xiao et al. (2019); Bhojanapalli et al. (2021) introduced
the idea of sharing attention scores between layers. By reusing attention scores, some weight matrices
for attention computation could be discarded. Dynamic Tying (Hay & Wolf, 2024) determines
layer-wise weight sharing during training using reinforcement learning, which is still time-consuming
for large LLMs. All of these approaches have been tested only on smaller transformer models and
typically require training from scratch or full parameter fine-tuning, which makes them impractical
for LLMs.

3 METHODOLOGY

Figure 1: (a) Two layers share the same weight
matrix in previous work. (b) Two layers share
the same basis matrix but have their individual
coefficients in our work.

Contrary to the previous techniques that require
training from scratch and weights in some layers
are restricted to be the same during training, we
adopt a pretrained LLM to explore representing
weights across different layers with combinations
of a set of shared basis vectors and individual co-
efficients. Since the set of basis vectors can be
shared across several layers, the number of param-
eters in the LLM can thus be reduced effectively.
The difference between the previous weight shar-
ing method and our Basis Sharing is illustrated in
Figure 1.

To exploit the cross-layer parameter sharing to compress LLMs, the subsequent subsections address
the following challenges: 1) What methodologies can be used to process the weight matrices across
layers in an LLM to determine a set of shared basis vectors and individual coefficients? 2) Which
types of weight matrices across layers in an LLM can take advantage of parameter sharing without
affecting its performance significantly? 3) Which layers can share a set of basis vectors in an LLM
without affecting its performance significantly?

3.1 REPRESENTING WEIGHT MATRICES ACROSS LAYERS WITH COMBINATIONS OF BASIS
VECTORS AND COEFFICIENTS

Suppose that we have weight matrices across n layers, denoted as W (1) . . .W (n),W (i) ∈ Rd1×d2 .
To derive a set of shared basis vectors and coefficients to represent such weight matrices, intuitively,
such matrices can be horizontally concatenated into one matrix, denoted as W ∈ Rd1×nd2 , and
singular value decomposition (SVD) can be applied to decompose this matrix into three matrices:
U ,Σ,V T . Σ is a d1 × nd2 diagonal matrix consisting of singular values of W .

By selecting the top k singular values in Σ, W can be approximated as W ≈ Wk = UkΣkV
T
k ,

where the dimensions of Uk, Σk and V T
k are d1×k, k×k, and k×nd2, respectively. The value of k

should be determined to balance the compression ratio and the performance of the compressed LLM
(Appendix A.2 shows the evaluation of k under a given compression ratio). Wk can be rewritten as
Wk = BV T

k , where B is the multiplication result of Uk and Σk. We call B a basis matrix and a
column of B is a basis vector, denoted as B:,i. V T

k can be considered as a coefficient matrix, i.e.,
V T
k = C. Accordingly, the jth column of the original weight matrix W (i) in the ith layer can be

3

Published as a conference paper at ICLR 2025

...

...

...

......

...

...

Figure 2: Weight matrices across n layers are concatenated
horizontally into a weight matrix, which is processed by
SVD. The jth column of the original weight matrix in
a layer can be represented as a linear combination of k
shared basis vectors and coefficients.

1.0

0.2

1.1

0.4

0.8

0.6

0.5

0.6

0.7

0.01

10

0.0

1.0

0.4

5.0

1.0

2.0

8.0

0.01

0.02

0.03

0.01

10

0.0

Figure 3: ∆W1 and ∆W2 are dif-
ferences with respect to the orig-
inal weight matrix after compres-
sion. ||∆W1||F is smaller than
||∆W2||F , but ||X∆W1||F is larger
than ||X∆W2||F .

approximated as a liner combination of k basis vectors and individual coefficients as follows.

W
(i)
:,j ≈

k∑
m=1

B:,mC
(i)
m,j . (1)

where C(i) is the coefficient matrix in ith layer. The process of weight matrix approximation and
representation is illustrated in Figure 2.

In the weight matrix approximation with SVD above, input data, denoted as X , are not considered.
In fact, the result of XW instead of W is used in inference. Accordingly, applying SVD directly
onto weight matrices without incorporating input data might lead to significant computation loss
and potentially affect the performance of the LLM. Figure 3 illustrates an example, where a weight
matrix approximated with SVD leads to a large compression loss in the form of Frobenius loss,
denoted as ||X∆W ||F . Since the second element in the input data affects the computation accuracy
significantly, the second column of the weight matrix should be approximated more accurately
compared with other columns to reduce the overall computation loss. Yuan et al. (2023); Wang et al.
(2024b) also pointed out similar results.

To incorporate the effect of input data into the weight approximation with SVD to maintain the
performance of the LLM, we will scale the concatenated weight matrix W with a matrix S ∈ Rd1×d1

as follows
W = S−1SW = S−1(SW). (2)

The matrix S should be evaluated to represent the impact of input data on the weights, so that it
can adjust W accordingly to reflect the significance of different input data. To obtain appropriate
S, we will adapt the techniques developed in Wang et al. (2024b), where S can be evaluated
with S(S)T = cholesky((X)TX). However, X in their technique refers to input data of a layer
instead of several layers in our method. To evaluate S considering several layers, we will vertically
concatenate the input matrices in such layers, denoted as, X(1), . . . ,X(n), and compute the S with
the concatenated X . In our experiments, we use 256 samples from WikiText-2 (Merity et al., 2016)
with each 2048 tokens to evaluate X , similar to that in Wang et al. (2024b).

Instead of applying SVD directly on the concatenated weight matrix W , we will decompose SW
with SVD and approximate this scaled weight matrix SW ≈ U ′

kΣ
′
kV

′
k = B′C ′, where B′ and C ′

are the revised basis matrix and coefficient matrix, respectively. To recover the approximated weight
matrix for computation in inference, S−1 will be multiplied with B′, the result of which will be the
final adjusted basis matrix, i.e.,

W ≈ S−1U ′
kΣ

′
kV

′
k = S−1B′C ′ = B′′C ′, (3)

where B′′ is the final adjusted basis matrix in our paper.

4

Published as a conference paper at ICLR 2025

3.2 SELECTION OF WEIGHT MATRICES IN LLMS FOR CROSS-LAYER PARAMETER SHARING

Modern LLMs are constructed based on the decoder-only transformer architecture. A layer in such
an architecture includes several types of weight matrices, which have different functions. WK , WQ

and WV are three types of projection matrices, which are used to generate the key, the query and the
value matrices. WO, another type of weight matrices, further transforms the attention result to build a
new representation for an input embedding. WUp and WGate(used in LLaMA and LLaMA2), further
types of weight matrices, represent this transformation result into a high-dimension embedding.
Afterwards, WDown, the last type of weight matrices, projects the high dimension embedding back
to the low dimension embedding. The types of weight matrices above have different functions, so that
we need to determine which type of weight matrices can take advantage of cross-layer basis sharing
with SVD described in Section 3.1 without affecting the performance of the LLM significantly.

First of all, the type of matrices whose function are to project a high-dimension embedding into
a low-dimension embedding such as WDown cannot take advantage of the cross-layer parameter
sharing. The reason is that after the horizontal concatenation of such matrices, the rank of the
concatenated matrix will be larger than that of an individual matrix. Under the same compression
ratio, compressing the concatenated matrix with SVD incurs a larger Frobenius loss than the original
weight matrix.

For the remaining types of weight matrices including WK , WQ, WV , WO, WUp and WGate, we
will determine whether each of them can use cross-layer basis sharing by examining the Frobenius
loss resulted from this sharing. To explain this concept, we use basis sharing across two layers for
WK in LLaMA2-7B as an example. Assume that we remove small singular values by applying
SVD on S

(i)
K W

(i)
K to achieve a compression ratio of 20%, where W (i)

K is WK matrix in the ith layer
(i ∈ [1, 32]) and S

(i)
K is the corresponding S matrix for W (i)

K . The resulting Frobenius loss of each
layer under this compression ratio will be evaluated. To evaluate the Frobenius loss incurred by basis
sharing, we horizontally concatenate W (i)

K of the ith layer and W
(j)
K of the jthlayer as W (i,j)

K where
j ̸= i, i, j ∈ [1, 32]. SVD is applied on S

(i,j)
K W

(i,j)
K to remove small singular values to achieve

the same compression ratio, where S
(i,j)
K is the corresponding S matrix for W (i,j)

K . Afterwards, we
evaluate the incurred Frobenius loss of basis sharing across two layers. Similarly, we repeat the
process above for WO. The results are illustrated in Figure 4, where the number/color in a block
represents the resulting Frobenius loss if a basis matrix is shared between two layers and the numbers
in the diagonal direction are obtained by applying SVD to the scaled weight matrix of a layer directly.

Figure 4 compares the results of basis sharing for WK and WO. Basis sharing across two layers for
WK can reduce the Frobenius loss. For example, when SVD is applied on SKWK for the 9th and
10th layers separately, the resulting Frobenius loss is evaluated as 33508.2 + 33174.7 = 66682.9.
When the 9th and 10th layers share a common basis matrix, the Frobenius loss resulting from
compression becomes smaller, i.e, 61817.3 < 66682.9. This indicates that allowing parameter
sharing across two layers for WK can enhance computation accuracy. This trend can be seen in WK ,
WQ, WV , WUp and WGate (Appendix A.8 show the results). Accordingly, basis sharing across
layers can be applied on such matrices.

On the contrary, basis sharing for WO in 9th and 10th layers incurs the increase of the Frobenius
loss, i.e., 10618.3 > 4355.1 + 4895.7. Accordingly, this parameter sharing should not be applied
on WO to avoid significant computation loss. For such matrices, we will apply SVD to process the
individual matrix in each layer separately.

3.3 SELECTION OF LAYERS FOR BASIS SHARING

Section 3.1 determines which types of weight matrices can be shared across layers. This subsection
then determines which layers can share basis vectors to represent such types of weight matrices.
To select layers for basis sharing, the basis sharing of such layers should not incur Frobenius loss
larger than without sharing. According to Figure 4, the group of two adjacent layers leads to smaller
Frobenius loss than the sum of the Frobenius loss of two separate layers. Based on this analysis, we
will group adjacent layers with the order from the first layer to the last layer. Take a group of two
layers as an example. The first layer and the second layer are grouped for basis sharing, followed by
the group of the third layer and the fourth layer, etc.

5

Published as a conference paper at ICLR 2025

layer

(a) (b)

1 1

32

32layer

layer
1 1

32

32layer

Frobenius loss

by grouping the 9th

and 10th layers

Frobenius loss

by grouping the 9th

and 10th layers

Figure 4: Frobenius loss incurred by basis sharing across any two layers. The number/color in a block
represents the resulting Frobenius loss if a basis matrix is shared by two layers and the numbers in
the diagonal direction are obtained by applying SVD to the scaled weight matrix of a layer directly.
(a) Frobenius loss incurred by basis sharing across two layers for WK in LLaMA2-7B. (b) Frobenius
loss incurred by basis sharing across two layers for WO in LLaMA2-7B.

4 EXPERIMENTS

4.1 SETTINGS

Baseline We compare with the work where SVD-based weight approximation in each individual
layer is applied without cross-layer parameter sharing. Such work includes ASVD (Yuan et al., 2023),
FWSVD (Hsu et al., 2022) and SVD-LLM (Wang et al., 2024b). We also compared our method with
Dynamic Tying (Hay & Wolf, 2024), where weights in some layers are restricted to be the same by
training from scratch. Since this method can only be applied on small language models, only GPT2
(Radford et al., 2019) was used to compared our method and Dynamic Tying.

Models and Datasets. We evaluate our method using several models. For LLMs, many models are
evaluated, namely LLaMA family (LLaMA-7B, LLaMA-13B, LLaMA-30B, LLaMA2-7B) (Touvron
et al., 2023a;b), OPT-6.7B (Zhang et al., 2022), Mistral-7B (Jiang et al., 2023a), GPT2. Three
language modeling datasets used in our experiment include WikiText-2 (Merity et al., 2016), PTB
(Marcus et al., 1993) and C4 (Raffel et al., 2019). Seven reasoning datasets used in the experiments
include OpenbookQA (Banerjee et al., 2020), WinoGrande (Sakaguchi et al., 2021) HellaSwag
(Zellers et al., 2019), PIQA (Bisk et al., 2020), MathQA (Amini et al., 2019), ARC-e, ARC-c (Clark
et al., 2018). All the reasoning tasks are tested in zero-shot setting with the implementation of
LM-Evaluation-Harness framework (Gao et al., 2024).

Implementation details All of our models are based on the model implemented by the Hugging
Face. LLaMA-30B are implemented with FP16, the rest models are implemented with FP32. To
evaluate S, FP64 is used to maintain the computation precision. All experiments are tested on two
NVIDIA A100 80GB GPUs. S is derived through 256 samples from WikiText-2 with 2048 sequence
length. When the compression ratio is 40% or larger than 40% , the incurred compression errors
increase, so that the output of a layer as the input of the next layer deviates significantly from its

6

Published as a conference paper at ICLR 2025

Table 1: PPL(↓) and Zero-shot(↑) performance of LLaMA-7B with Basis Sharing and baselines
under 20% to 50% compression ratio on three language modeling datasets and seven common sense
reasoning datasets. The S of all tasks is obtained with the dataset WikiText-2.

RATIO METHOD WikiText-2↓ PTB↓ C4↓ Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Average↑
0% Original 5.68 8.35 7.34 0.28 0.67 0.67 0.56 0.38 0.78 0.27 0.52

20%

SVD 20061 20306 18800 0.14 0.27 0.51 0.26 0.21 0.53 0.21 0.31
FWSVD 1727 2152 1511 0.15 0.31 0.50 0.26 0.23 0.56 0.21 0.32
ASVD 11.14 16.55 15.93 0.25 0.53 0.64 0.41 0.27 0.68 0.24 0.43

SVD-LLM 7.94 18.05 15.93 0.22 0.58 0.63 0.43 0.29 0.69 0.24 0.44

Basis Sharing 7.74 17.35 15.03 0.28 0.66 0.66 0.46 0.36 0.71 0.25 0.48

30%

SVD 13103 17210 20871 0.13 0.26 0.51 0.26 0.21 0.54 0.22 0.30
FWSVD 20127 11058 7240 0.17 0.26 0.49 0.26 0.22 0.51 0.19 0.30
ASVD 51 70 41 0.18 0.43 0.53 0.37 0.25 0.65 0.21 0.38

SVD-LLM 9.56 29.44 25.11 0.20 0.48 0.59 0.40 0.26 0.65 0.22 0.40

Basis Sharing 9.25 29.12 22.46 0.27 0.63 0.63 0.40 0.30 0.68 0.24 0.45

40%

SVD 52489 59977 47774 0.15 0.26 0.52 0.26 0.22 0.53 0.20 0.30
FWSVD 18156 20990 12847 0.16 0.26 0.51 0.26 0.22 0.53 0.21 0.30
ASVD 1407 3292 1109 0.13 0.28 0.48 0.26 0.22 0.55 0.19 0.30

SVD-LLM 13.11 63.75 49.83 0.19 0.42 0.58 0.33 0.25 0.60 0.21 0.37

Basis Sharing 12.39 55.78 41.28 0.22 0.52 0.61 0.35 0.27 0.62 0.23 0.40

50%

SVD 131715 87227 79815 0.16 0.26 0.50 0.26 0.23 0.52 0.19 0.30
FWSVD 24391 28321 23104 0.12 0.26 0.50 0.26 0.23 0.53 0.20 0.30
ASVD 15358 47690 27925 0.12 0.26 0.51 0.26 0.22 0.52 0.19 0.30

SVD-LLM 23.97 150.58 118.57 0.16 0.33 0.54 0.29 0.23 0.56 0.21 0.33

Basis Sharing 19.99 126.35 88.44 0.18 0.42 0.57 0.31 0.23 0.58 0.22 0.36

Table 2: PPL(↓) and Zero-shot(↑) performance of LLaMA2-7B with Basis Sharing under 20% to 50%
compression ratios on three language modeling datasets and seven common sense reasoning datasets.
The S of all language modeling tasks is evaluated with WikiText-2. For reasoning tasks, the S of the
results outside the bracket is evaluated with WikiText-2, while inside is evaluated with Alpaca.

RATIO WikiText-2↓ PTB↓ C4↓ Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Average↑
0% 5.47 7.29 7.29 0.31 0.76 0.69 0.57 0.43 0.78 0.28 0.55

20% 7.77 60.00 15.30 0.27 (0.28) 0.66 (0.70) 0.63 (0.63) 0.43 (0.46) 0.33 (0.35) 0.70 (0.74) 0.25 (0.25) 0.47 (0.49)
30% 9.69 97.40 23.86 0.26 (0.27) 0.58 (0.65) 0.62 (0.62) 0.38 (0.41) 0.27 (0.32) 0.66 (0.70) 0.23 (0.24) 0.43 (0.46)
40% 13.62 195.95 43.89 0.19 (0.21) 0.48 (0.57) 0.58 (0.57) 0.33 (0.36) 0.22 (0.27) 0.61 (0.66) 0.23 (0.23) 0.38 (0.41)
50% 21.3 509.30 98.92 0.15 (0.17) 0.36 (0.47) 0.55 (0.53) 0.29 (0.31) 0.20 (0.25) 0.56 (0.60) 0.23 (0.22) 0.33 (0.36)

original values. This input deviation affects the evaluations of S with S(S)T = cholesky((X)TX).
To incorporate this input deviation, we update the weights in the next layers for basis sharing with
such deviated inputs, similar to that in SVD-LLM.

4.2 RESULTS

We evaluate the performance of the proposed cross-layer parameter sharing from four aspects: (a)
Performance on generation and reasoning tasks and comparison with state of the art in zero-shot
setting. (b) LLM Performance on different LLMs in zero-shot setting. (c) Performance on LLMs with
various scales in zero-shot setting. (d) LLM performance with LoRA (Hu et al., 2021) fine-tuninng.
(e) Comparison with training from scratch for weight sharing across layers.

Performance on Generation & Reasoning Tasks We demonstrate the performance of LLaMA-7B
and LLaMA2-7B on ten datasets under different compression ratios from 20% to 50%. In evaluating
the LLM performance, we group two consecutive layers in the order from the first layer to the last
layer to share a basis matrix, while Basis Sharing with more than two layers will be discussed later.
Table 10 shows the results of LLaMA-7B. The first three datasets are for text generation tasks and
the rest seven datasets are for reasoning tasks. For text generation tasks evaluated by perplexity
(PPL), Basis Sharing consistently achieves the lowest PPL among compared with the state-of-the-art
methods across all compression ratios and tasks. In reasoning tasks, Basis Sharing achieves an
average accuracy at least 3% higher than the state-of-the-art methods. As the compression ratio
increases, model performance consistently declines across all the methods due to the incurred larger
compression errors. In short, Basis Sharing outperforms SVD-LLM due to smaller compression
errors as discussed in Section 3.

7

Published as a conference paper at ICLR 2025

Table 3: PPL (↓) of three different LLMs – OPT-
6.7B, LLaMA 2-7B, and Mistral-7B – under 20%
compression ratio on WikiText-2.

METHOD OPT-6.7B LLaMA 2-7B Mistral-7B

SVD 66275 18192 159627
FWSVD 14559 2360 6357
ASVD 82 10.10 13.72

SVD-LLM 16.04 8.5 10.21

Basis Sharing 11.79 7.70 7.57

Table 4: PPL (↓) of LLaMA-7B, 13B, 30B under
20% compression ratio on WikiText-2. OOM
means out of memory error during the model
compression.

METHOD LLaMA-7B LLaMA-13B LLaMA-30B

SVD 20061 946.31 54.11
FWSVD 1630 OOM OOM
ASVD 11.14 6.74 22.71

SVD-LLM 7.94 6.61 5.63

Basis Sharing 7.74 6.47 5.47

Table 2 presents the basis sharing results of LLaMA2-7B. For the common reasoning tasks, S are
evaluated with both WikiText-2 and Alpaca (Taori et al., 2023) to demonstrate the performance
difference. The result outside the bracket is based on the evaluation of S with WikiText-2, while the
result within the bracket is based on the evaluation of S from Alpaca. It can be seen that LLaMA2-7B
is more sensitive to parameter compression, especially on the PTB task. When the compression
ratio reaches to 50%, the PPL of LLaMA2-7B is four times of the PPL of LLaMA-7B, while the
performance on the remaining tasks are still comparable.

According to Table 2, the input dataset from which S is derived plays a crucial role in determining
performance on common reasoning tasks in zero-shot settings. Generally, the model where S is
evaluated with Alpaca achieves better accuracy than the model where S is evaluated with WikiText-
2, especially on ARC_e under 50% compression ratio. The accuracy difference can reach 11%.
However, on WinoG. the difference is not obvious, the model where S is evaluated with WikiText-2
achieves even higher accuracy under 40% and 50% compression ratios.

Performance on Different LLMs To evaluate the generalization of Basis Sharing across multiple
LLMs, we evaluate its PPL on three distinct models from three LLM families: OPT-6.7B (from the
OPT family), LLaMA 2-7B (from the LLaMA family), and Mistral-7B (from the Mistral family).
This comparison is conducted under a 20% compression ratio using the WikiText-2 dataset without
any fine-tuning. It can be seen from Table 3, Basis Sharing consistently achieves the lowest PPL.
Especially for OPT-6.7B and Mistral-7B, Basis Sharing achieves a PPL reduction up to 25% compared
with SVD-LLM.

Performance on LLMs with Various Scales Basis Sharing can be applied to LLMs with large
scales. To demonstrate this, we apply Basis Sharing on LLaMA with three different scales under 20%
compression ratio, namely LLaMA-7B, LLaMA-13B and LLaMA-30B against the state-of-the-art
methods. The result is shown in Table 4. According to this table, Basis Sharing achieves the best
performance across all the scales. Since gradient needs to be computed with FWSVD, out of memory
error occurs on an A100 GPU. In contrast, Basis Sharing can still be realized with an A100 GPU.

Figure 5: LoRA fine-tuning results of LLaMA-
7B under 20% compression ratio with different
compression methods.

Performance with LoRA Fine-Tuning LoRA
(Hu et al., 2021) is one of the most promis-
ing fine-tuning techniques to recover perfor-
mance/accuracy. LoRA can also be applied to
Basis Sharing to recover performance/accuracy.
We used lora_r = 8, lora_alpha = 32, and learn-
ing_rate = 1e-4, and used defaults for all other
hyperparameters in the Hugging Face PEFT. Each
model is fine tuned with WikiText-2 training
dataset for two epochs.

Figure 5 shows the result after applying LoRA on
LLaMA-7B with WikiText-2. It can be seen from
the figure that all compression methods achieve
similar PPL under 20% compression ratio, and
PPL difference increases as the compression ratio
goes up. Basis Sharing achieves the lowest PPL
when the compression ratio reaches 50%.

8

Published as a conference paper at ICLR 2025

Table 6: Impact of grouping different numbers of
layers on LLaMA-7B under compression ratios
from 20% to 50%.

LAYERS 20% 30% 40% 50%

1 7.94 9.56 13.11 23.97
2 7.74 9.25 12.39 19.99
3 7.72 9.27 12.60 20.06
4 7.65 9.18 12.58 20.86
5 7.62 9.19 12.81 24.45
6 7.64 9.20 14.13 25.40
7 7.67 9.24 14.64 27.30
8 7.75 9.49 14.60 27.92

16 7.95 10.58 19.72 49.11
32 7.94 9.56 30.82 85.24

Table 7: Impact of grouping different numbers of
layers on LLaMA-7B under compression ratios
from 20% to 50% after LoRA Fine-Tuning.

LAYERS 20% 30% 40% 50%

1 7.78 9.56 10.65 13.26
2 7.14 7.84 8.91 10.56
3 7.00 7.81 9.04 10.35
4 7.07 7.86 9.02 10.36
5 6.98 8.05 9.23 10.14
6 6.88 8.03 9.06 10.32
7 6.75 7.57 9.08 10.76
8 6.89 7.68 9.14 10.32

16 7.02 7.82 9.27 11.20
32 6.97 8.25 9.37 11.64

Table 5: GPT2 20% compression ratio compared with
Dynamic Tying.

METHOD # Parm. Time PPL

Dynamic Tying 264M (GPT2-XL) 13.75h 49.37
Basis Sharing 94M (GPT2) 26.47s 43.15

Comparison with Training from Scratch Ta-
ble 5 compares Basis Sharing with Dynamic Ty-
ing(Hay & Wolf, 2024), where parameter sharing
is realized by training from scratch. Instead of
training from scratch, Basis Sharing leverages pre-
trained models that have been trained on large
datasets and trained with more computational resources. As a result, Basis Sharing achieves fewer
parameters, faster compression, and better PPL on WikiText-2 compared to Dynamic Tying.

4.3 IMPACT OF LAYER SELECTION OF BASIS SHARING ON LLM PERFORMANCE

In section 3, we analyzed the change of Frobenius loss when two layers are grouped to share a set of
basis vectors. In this section, we will demonstrate how grouping more than two consecutive layers
affects the LLM performance.

Impact on LLM Performance in Zero-Shot Setting We grouped different numbers of consecutive
layers to examine the impact of the number grouped layers on the LLM performance without any
fine-tuning. Table 6 shows the result. The number in the first column indicates the number of
consecutive layers sharing a common basis matrix. For example, 4 means that every four consecutive
layers share a basis matrix in the order from the first layer to the last layer. Compared with no basis
sharing in SVD-LLM (# LAYERS = 1) under 20% compression ratio, Basis Sharing achieves a
similar performance. Grouping four or five layers to share a basis matrix is more reasonable when
compression ratio is lower than 30%, since they have the lowest PPL. Two layers sharing a basis
matrix is a good choice when the compression ratio is larger than 30%.

Impact on LLM Performance with LoRA Fine-Tuning We also examined the impact of grouping
different number of layers on LLM performance after LoRA Fine-Tuning. Table 7 shows the result.
According to this table, the performance of LLM can be enhanced compared with that without fine-
tuning. In addition, this table also shows that after LoRA fine-tuning, grouping layers in LLaMA-7B
for Basis Sharing can achieve better performance than that without basis sharing in SVD-LLM (#
LAYERS = 1). Even when the number of grouped layer is 32, the performance of Basis Sharing is
still better than that without basis sharing in SVD-LLM (# LAYERS = 1).

Impact on LLM Peformance with Full Parameter Fine-Tuning To examine the full potential
of the Basis Sharing, we also conducted the full parameter fine-tuning to examine the impact of
grouping different numbers of layers on LLM performance. Due to the high computational cost, we
only fine tuned the LLaMA-7B on grouping 2, 4, 8, 16, 32 layers, respectively. The differences from
LoRA fine-tuning are that we use here learning_rate = 2e-6 and two A100 GPUs. The results of full
parameter fine-tuning can be found in Table 8. It can be seen that the performance with full parameter
fine-tuning is only a little bit better than the performance with LoRA fine-tuning. The reason could be

9

Published as a conference paper at ICLR 2025

that WikiText-2 is relatively a small dataset to fine-tune the large model. Directly using this dataset to
fine-tune could easily lead to overfitting. Therefore, we reduce the learning_rate from 1e-4 to 2e-6.

Table 8: Result of full parameter fine-
tuning by grouping different numbers of
layers.

LAYERS 20% 30% 40% 50%

2 6.57 7.41 8.29 9.71
4 6.64 7.39 8.41 9.91
8 6.63 7.46 8.54 10.23

16 6.66 7.66 9.04 10.48
32 6.67 7.90 9.24 10.94

4.4 PERFORMANCE ON REAL HARDWARE

Basis Sharing not only reduces the memory required for
storing parameters, but also enhances inference efficiency
on real hardware. To demonstrate this advantage, we com-
pared the performance of LLaMA-7B with and without
Basis Sharing on a single A100 GPU, using a batch size of
512 and a sequence length of 32 to generate one token for
each batch. With this setting, throughput was evaluated
as the total number of tokens that can be processed by the
model per second.

5 CONCLUSION

Figure 6: Throughput of dense LLaMA-7B
model and the compressed model with Basis
Sharing under compression ratios from 20% to
50%.

Figure 6 shows the throughput result. It can
be seen that as the compression ratio increases,
the throughput of model with Basis Sharing also
increases. Under 50% compression ratio, the
throughput of Basis Sharing is 1.57 times of the
dense model. In this paper, we explore parame-
ter sharing across different layers with SVD to
achieve effective compression for LLMs. Specif-
ically, weight matrices in different layers are de-
composed and represented as a linear combination
of a set of shared basis vectors and unique coef-
ficients. The types of weight matrices and the
layer selection for Basis Sharing are examined
when compressing LLMs to maintain the perfor-
mance. Comprehensive experiments demonstrate
that Basis Sharing outperforms state-of-the-art
SVD-based compression approaches, especially
under large compression ratios.

REFERENCES

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. MathQA: Towards interpretable math word problem solving with operation-based
formalisms. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 2357–2367. Association for Computational Linguistics, 2019.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. arXiv
preprint arXiv:2404.00456, 2024.

Pratyay Banerjee, Kuntal Kumar Pal, Arindam Mitra, and Chitta Baral. Careful selection of knowl-
edge to solve open book question answering. In 57th Annual Meeting of the Association for
Computational Linguistics, ACL 2019, pp. 6120–6129, 2020.

Srinadh Bhojanapalli, Ayan Chakrabarti, Andreas Veit, Michal Lukasik, Himanshu Jain, Frederick Liu,
Yin-Wen Chang, and Sanjiv Kumar. Leveraging redundancy in attention with reuse transformers.
arXiv preprint arXiv:2110.06821, 2021.

Yonatan Bisk, Rowan Zellers, et al. Piqa: Reasoning about physical commonsense in natural language.
Proceedings of the AAAI Conference on Artificial Intelligence, 34:7432–7439, 2020.

10

Published as a conference paper at ICLR 2025

Yanxi Chen, Xuchen Pan, Yaliang Li, Bolin Ding, and Jingren Zhou. Ee-llm: Large-scale training
and inference of early-exit large language models with 3d parallelism, 2024. URL https:
//arxiv.org/abs/2312.04916.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? Try ARC, the AI2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 2024. URL https://zenodo.org/records/12608602.

Gene H Golub, Alan Hoffman, and Gilbert W Stewart. A generalization of the eckart-young-mirsky
matrix approximation theorem. Linear Algebra and its applications, 88:317–327, 1987.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. MiniLLM: Knowledge distillation of large
language models. In The Twelfth International Conference on Learning Representations, 2024.

Tamir David Hay and Lior Wolf. Dynamic layer tying for parameter-efficient transformers. In The
Twelfth International Conference on Learning Representations, 2024.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. In International Conference on Learning
Representations, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Yukun Huang, Yanda Chen, Zhou Yu, and Kathleen McKeown. In-context learning distillation: Trans-
ferring few-shot learning ability of pre-trained language models. arXiv preprint arXiv:2212.10670,
2022.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7B. arXiv preprint arXiv:2310.06825, 2023a.

Mengnan Jiang, Jingcun Wang, Amro Eldebiky, Xunzhao Yin, Cheng Zhuo, Ing-Chao Lin, and
Grace Li Zhang. Class-aware pruning for efficient neural networks. In Design, Automation and
Test in Europe Conference and Exhibition (DATE), 2024.

Yuxin Jiang, Chunkit Chan, Mingyang Chen, and Wei Wang. Lion: Adversarial distillation of
proprietary large language models. In The 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 3134–3154, 2023b.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

11

https://arxiv.org/abs/2312.04916
https://arxiv.org/abs/2312.04916
https://zenodo.org/records/12608602

Published as a conference paper at ICLR 2025

Xiuqing Lv, Peng Zhang, Sunzhu Li, Guobing Gan, and Yueheng Sun. Lightformer: Light-weight
transformer using svd-based weight transfer and parameter sharing. In Findings of the Association
for Computational Linguistics: ACL 2023, pp. 10323–10335, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub Dominik Adamek, Eric Malmi, and Aliaksei
Severyn. Teaching small language models to reason. In The 61st Annual Meeting Of The
Association For Computational Linguistics, 2023.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Richard Petri, Grace Li Zhang, Yiran Chen, Ulf Schlichtmann, and Bing Li. Powerpruning: Selecting
weights and activations for power-efficient neural network acceleration. In Design Automation
Conference (DAC), 2023.

Ruidi Qiu, Amro Eldebiky, Grace Li Zhang, Xunzhao Yin, Cheng Zhuo, Ulf Schlichtmann, and Bing
Li. Oplixnet: Towards area-efficient optical split-complex networks with real-to-complex data
assignment and knowledge distillation. In Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo. Subformer: Exploring weight sharing for
parameter efficiency in generative transformers. arXiv preprint arXiv:2101.00234, 2021.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: an adversar-
ial winograd schema challenge at scale. Commun. ACM, 64(9):99–106, 2021.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations,
2024.

Wenhao Sun, Grace Li Zhang, Huaxi Gu, Bing Lil, and Ulf Schlichtmann. Class-based quantization
for neural networks. In Design, Automation and Test in Europe Conference and Exhibition (DATE),
2023.

Sho Takase and Shun Kiyono. Lessons on parameter sharing across layers in transformers. arXiv
preprint arXiv:2104.06022, 2021.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Jingcun Wang, Bing Li, and Grace Li Zhang. Early-exit with class exclusion for efficient inference of
neural networks. In International Conference on AI Circuits and Systems (AICAS), 2024a.

12

Published as a conference paper at ICLR 2025

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. SVD-LLM: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024b.

Yifan Wu, Shichao Kan, Min Zeng, and Min Li. Singularformer: Learning to decompose self-
attention to linearize the complexity of transformer. In International Joint Conference on Artificial
Intelligence, pp. 4433–4441, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099, 2023.

Tong Xiao, Yinqiao Li, Jingbo Zhu, Zhengtao Yu, and Tongran Liu. Sharing attention weights for
fast transformer. International Joint Conference on Artificial Intelligence, 2019.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. ASVD: Activation-
aware singular value decomposition for compressing large language models. arXiv preprint
arXiv:2312.05821, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4791–4800, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models, 2022.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. Proceedings of Machine Learning and Systems, 6:196–209, 2024.

13

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 FINAL STRUCTURE OF TWO LAYERS IN LLAMA-7B WITH BASIS SHARING

Figure 7: The final structure of two layers in LLaMA-7B with Basis Sharing. MHA represents
multi-head attention. RMSNorm represents root mean square of layer normalization.

A.2 RELATION BETWEEN COMPRESSION RATIO AND NUMBER OF BASIS VECTORS

For a given compression ratio, the derivation of the number of basis vectors k is explained as follows.
Consider compressing WK weight matrices in consecutive n layers to x% of their original sizes.
Assume each WK matrix have d1 rows and d2 columns. The number of basis vectors k can be
calculated as follows:

d1k + kd2n = d1d2n× x% ⇒ k =
d1d2n× x%

(d1 + d2n)

where d1d2n is the number of parameters of WK weight matrices in n layers before compression and
d1k+kd2n is the number of parameters after sharing basis vectors for weight matrices in consecutive
n layers.

To compare with traditional SVD methods, the same compression ratios were used to evaluate the
rank of the weight matrix in each layer individually. Consider compressing WK weight matrix to x%
of its original size. Assume this matrix have d1 rows and d2 columns. The rank of this matrix k can
be calculated as follows:

d1k + kd2 = d1d2 × x% ⇒ k =
d1d2 × x%

d1 + d2

Under the same compression ratio (1-x%), basis sharing can lead to a larger k compared with that
with traditional SVD-LLM, so that the performance of LLMs can be enhanced.

14

Published as a conference paper at ICLR 2025

A.3 ANALYSIS OF MATHEMATICAL PROPERTIES OF MATRICES SHARED ACROSS LAYERS

Suppose A = SW is a matrix of the ith layer, which has d1 rows and d2 columns. S is the scaling
matrix imposed on original weight matrix to incorporate the impact of input data. Assume that we
want to apply Basis Sharing on n such matrices in n layers, where n >= 2. B is the horizontal
concatenation of such n matrices, which has d1 rows and nd2 columns. We analyzed the Frobenius
loss F_loss incurred by compression without and with basis sharing as follows. In the following
equations, x% represents to compress the matrix to x% of its original size. The maximum value
of x is 100. ksvd and kshare represent the number of top singular values after SVD is applied in
each layer and the number of basis vectors after SVD is applied in the concatenated matrices of n
layers, respectively. F_losssvd and F_lossshare represent the Frobenius loss without and with basis
sharing, respectively. σi is the ith removed singular value after SVD decomposition. σsvd is the
average singular value after applying SVD decomposition on A. σshare is the average singular value
after applying SVD decomposition on B.

Case 1: d1 ≤ d2, rank(A)=rank(B)=d1

ksvd =
d1d2

d1 + d2
x% =

x%
1
d1

+ 1
d2

≥ 1

2
d1x%

F_losssvd ≤
d1∑

i=ksvd

σi ≈ (d1 −
1

2
d1x%)σsvd

kshare =
nd1d2

d1 + nd2
x% =

x%
1
d1

+ 1
nd2

≥ n

n+ 1
d1x%

F_lossshare ≤
d1∑

i=kshare

σi ≈ (d1 −
n

n+ 1
d1x%)σshare

In case that σsvd = σshare = σ, we can derive the following relationship:

max(nF_losssvd)−max(F_lossshare) = (n− 1)(d1 −
n

2(n+ 1)
d1x%)σ > 0

In this case, we have max(nF_losssvd) > max(F_lossshare), which indicates basis sharing across
n layers can reduce the upper bound of the Frobenius loss and potentially reduce the the Frobenius
loss. In our work WK , WQ, WV , Wup and Wgate in LLaMA-7B have such mathematical properties
and thus can benefit from this basis sharing. However, for WO, the assumption of σsvd = σshare = σ
does not hold and σshare is much larger than σsvd, so that the Frobenius loss with sharing is larger
than that without sharing. Accordingly, such a matrix can not take advantage of basis sharing across
layers.

Case 2: d1 ≥ nd2, rank(A)=d2, rank(B)=nd2

ksvd =
x%

1
d1

+ 1
d2

≥ n

n+ 1
d2x%

F_losssvd ≤
d2∑

i=ksvd

σi ≈ (d2 −
n

n+ 1
d2x%)σsvd

kshare =
x%

1
d1

+ 1
nd2

≥ n

2
d2x%

F_lossshare ≤
nd2∑

i=kshare

σi ≈ (nd2 −
n

2
d2x%)σshare

In case that σsvd = σshare = σ, we can derive the following relationship:

max(nF_losssvd)−max(F_lossshare) = (
n

2
d2x%− n2

n+ 1
d2x%)σ < 0

15

Published as a conference paper at ICLR 2025

In this case, we have max(nF_losssvd) < max(F_lossshare), which indicates basis sharing can
increase the upper bound of the Frobenius loss and potentially increase the Frobenius loss.

In our work, Wdown in LLaMA-7B has such mathematical properties when n = 2 and thus can not
benefit from this basis sharing.

Case 3: d2 < d1 < nd2, rank(A)=d2, rank(B)=d1

ksvd =
x%

1
d1

+ 1
d2

>
1

n+ 1
d1x%

F_losssvd =

d2∑
i=ksvd

σi ≈ (d2 −
1

n+ 1
d1x%)σsvd

kshare =
x%

1
d1

+ 1
nd2

>
1

2
d1x%

F_lossshare <
d1∑

i=kshare

σi ≈ (d1 −
1

2
d1x%)σshare

In case that σsvd = σshare = σ, we can derive the following relationship:

max(nF_losssvd)−max(F_lossshare) = (nd2 − d1 +
1− n

2(n+ 1)
d1x%)σ

− n− 1

2(n+ 1)
d1x%σ < (nd2 − d1 +

1− n

2(n+ 1)
d1x%)σ < (nd2 − d1)σ

In this case, whether basis sharing across layers has potential to reduce the Frobenius loss cannot be
determined. In our work, Wdown in LLaMA-7B has such mathematical properties when n >= 3 and
we decide not to share basis for Wdown across layers in LLaMA-7B.

Future work To reduce the Frobenius loss after basis sharing, we will explore the potential of
vertically concatenating n matrices across layers. The vertically concatenated B has nd1 rows and d2
columns. In this case, there is still potential to reduce the Frobenius loss as follows.

For such a matrix d2 < d1 and rank(A)=rank(B)=d2

ksvd =
x%

1
d1

+ 1
d2

>
1

2
d2x%

F_losssvd <

d2∑
i=ksvd

σi ≈ (d2 −
1

2
d2x%)σsvd

kshare =
x%

1
d1

+ 1
nd2

>
n

n+ 1
d2x%

F_lossshare <
d2∑

i=kshare

σi ≈ (d2 −
n

n+ 1
d2x%)σshare

In case that σsvd = σshare = σ, we can derive the following relationship:

max(nF_losssvd)−max(F_lossshare) = (n− 1)(d2 −
n

2(n+ 1)
d2x%) > 0

In this case, the upper bound of Frobenius loss with basis sharing can be reduced. For weight matrix
such as Wdown, we will concatenate such matrices across n layers vertically and decompose the
concatenated matrix to obtain their basis vectors.

However, the computation of scaling matrix S to consider the impact of activations becomes more
time-consuming due to the increasing number of rows. We will address this challenge in our follow-up
work.

16

Published as a conference paper at ICLR 2025

A.4 EVALUATING ZERO-SHOT COMMON-SENSE REASONING TASKS AFTER LORA
FINE-TUNING

In this section, we will show that LoRA fine-tuning can also enhance the accuracy of zero-shot
common-sense reasoning tasks.

Ratio Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Avg
20% 0.28(0.28) 0.67(0.67) 0.66(0.66) 0.49(0.46) 0.35(0.36) 0.72(0.71) 0.25(0.25) 0.49(0.48)
30% 0.28(0.27) 0.63(0.63) 0.64(0.63) 0.45(0.40) 0.32(0.30) 0.7(0.68) 0.25(0.24) 0.47(0.45)
40% 0.24(0.22) 0.54(0.52) 0.60(0.61) 0.40(0.35) 0.29(0.27) 0.66(0.62) 0.24(0.23) 0.42(0.40)
50% 0.22(0.18) 0.49(0.42) 0.59(0.57) 0.36(0.31) 0.24(0.23) 0.62(0.58) 0.22(0.22) 0.39(0.36)

Table 9: The performance on zero-shot common-sense reasoning tasks using LLaMA-7B compressed
with Basis Sharing, with and without LoRA fine-tuning. The number in the bracket is without LoRA
fine-tuning.

A.5 PERFORMANCE OF LLAMA3.2-3B WITH BASIS SHARING

Table 10: Zero-shot performance of LLaMA-3.2B compressed using Basis Sharing and baselines
under 20% to 50% compression ratios on WikiText-2 (measured by perplexity (↓)) and seven common-
sense reasoning datasets (measured by both individual and average accuracy (↑)).

RATIO METHOD WikiText-2 ↓ Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Average ↑
0% Original 7.84 0.31 0.75 0.70 0.55 0.42 0.77 0.35 0.55

20% SVD-LLM 38.39 0.19 0.53 0.57 0.33 0.24 0.63 0.24 0.39
Basis Sharing 22.48 0.20 0.54 0.58 0.35 0.25 0.65 0.25 0.40

30% SVD-LLM 44.22 0.14 0.41 0.54 0.30 0.19 0.59 0.23 0.34
Basis Sharing 27.41 0.15 0.44 0.56 0.30 0.20 0.59 0.23 0.35

40% SVD-LLM 65.09 0.12 0.34 0.54 0.28 0.18 0.55 0.23 0.32
Basis Sharing 59.95 0.14 0.34 0.54 0.28 0.19 0.56 0.23 0.33

50% SVD-LLM 106.42 0.12 0.31 0.51 0.27 0.18 0.54 0.22 0.30
Basis Sharing 104.69 0.12 0.31 0.49 0.27 0.19 0.54 0.23 0.30

A.6 COMPRESSION GAINS

To demonstrate the compression gains through layer sharing, we did two further experiments. In
the first experiment, we used SVD to decompose weight matrices in each layer of LLaMA-7B and
compressed matrices with 20% compression ratio. Under this compression ratio, we evaluated how
many top k singular values were kept in the Σ after SVD decomposition. When basis sharing is
applied to group every 2, 4, 8, 16 and 32 consecutive layers, the same value of k was used as the
number of basis vectors to evaluate the model performance after basis sharing. The results are shown
in the following left table. According to this table, with more layers shared, the compression ratio
increases while the performance degrades without LoRA fine-tuning. However, the performance can
be enhanced significantly after LoRA fine-tuning.

In the second experiment, 30% compression ratio was used to compress weight matrices in each layer
to evaluate the number of top singular values k kept in the Σ after SVD decomposition. Afterwards,
this number was used to evaluate the performance of basis sharing, the result of which is shown in
the following right table. Similarly, compression ratios increase when basis sharing is enabled. The
performance of basis sharing can still be enhanced by LoRA fine-tuning.

17

Published as a conference paper at ICLR 2025

Table 11: Compression gain with basis
sharing, start from 20% compression ratio.
#Layers is the number of shared layers.
PPL′ is the PPL after LoRA fine-tuning.

#Layers Comp. Ratio PPL PPL′

1 20% 7.94 7.78
2 29% 8.94 7.52
4 34% 10.1 8.15
8 36% 11.99 8.27

16 37% 20.99 9.16
32 38% 35.48 9.45

Table 12: Compression gain with basis
sharing, start from 30% compression ratio.
#Layers is the number of shared layers.
PPL′ is the PPL after LoRA fine-tuning.

#Layers Comp. Ratio PPL PPL′

1 30% 9.56 9.14
2 37% 11.32 8.74
4 42% 13.56 9.12
8 43% 19.72 9.48

16 44% 35 10.57
32 45% 93.85 11.00

A.7 GENERATED TEXT WITH COMPRESSED LLM

RATIO BASIS SHARING

Original What is the universe? The universe is a vast collection of galaxies and stars. The Sun, Earth, Moon are all part of this
Universe which includes everything that can be seen with our naked eyes or telescopes such as...

20% What is the universe? The universe is a huge collection of interstellar objects. The Sun is one such object and, in fact we
are located within this vast system known as our home star system (the solar system)...

30% What is the universe? The universe is a gigantic system of stars held together by gravity, which binds them to each other.
The Sun has been at its present distance from Earth since it formed over 4 billion years ago...

40% What is the universe? The universe is a giant star system that contains many stars and planet systems. The Milky Way,
the galaxy containing our solar system, has two main components: the inner part of the system composed of small gas...

50% What is the universe? The universe is a large collection of objects, stars. These stars are arranged in layers and form
different stellar classes . The outer solar regions have many denser stars called main sequences with massive hydrogen
masses, which...

Table 13: An example of contents generated by the compressed LLaMA-7B with Basis Sharing under
different compression ratios. The input is marked in bold and the normal texts are the generated
sentences.

A.8 SHARE ERROR HEAT MAP

The Frobenius loss inccured by basis sharing for WQ , WV , WUp and WGate.

la
y
e
r

1 1

3
2

32layer

(b)

la
y
e
r

(a)

1 1

3
2

32layer

Figure 8: Frobenius loss incurred by basis sharing across any two layers. The number/color in a block
represents the resulting Frobenius loss if a basis matrix is shared by two layers and the numbers in
the diagonal direction are obtained by applying SVD to the scaled weight matrix of a layer directly.
(a) Frobenius loss incurred by basis sharing across two layers for WQ in LLaMA2-7B. (b) Frobenius
loss incurred by basis sharing across two layers for WV in LLaMA2-7B.

18

Published as a conference paper at ICLR 2025

1 32layer

la
y
e
r

(a)

1
3
2

(b)

la
y
e
r

1 1

3
2

32layer

Figure 9: Frobenius loss incurred by basis sharing across any two layers. The number/color in a block
represents the resulting Frobenius loss if a basis matrix is shared by two layers and the numbers in the
diagonal direction are obtained by applying SVD to the scaled weight matrix of a layer directly. (a)
Frobenius loss incurred by basis sharing across two layers for WUp in LLaMA2-7B. (b) Frobenius
loss incurred by basis sharing across two layers for WGate in LLaMA2-7B.

19

	Introduction
	Related Work
	Methodology
	Representing Weight Matrices across Layers with Combinations of Basis Vectors and Coefficients
	Selection of Weight Matrices in LLMs for Cross-Layer Parameter Sharing
	Selection of Layers for Basis Sharing

	Experiments
	Settings
	Results
	Impact of Layer Selection of Basis Sharing on LLM Performance
	Performance on Real Hardware

	Conclusion
	Appendix
	Final structure of two layers in LLaMA-7B with basis sharing
	Relation between compression ratio and number of basis vectors
	Analysis of Mathematical Properties of Matrices Shared Across Layers
	Evaluating Zero-Shot Common-Sense Reasoning Tasks After LoRA Fine-tuning
	Performance of LLaMA3.2-3B with Basis Sharing
	Compression Gains
	Generated text with Compressed LLM
	Share Error Heat Map

