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Abstract

Preference-based reinforcement learning (PbRL) has emerged as a promising ap-1

proach for learning behaviors from human feedback without predefined reward2

functions. However, current PbRL methods face a critical challenge in effectively3

exploring the preference space, often converging prematurely to suboptimal policies4

that satisfy only a narrow subset of human preferences. In this work, we identify5

and address this preference exploration problem through population-based meth-6

ods. We demonstrate that maintaining a diverse population of agents enables more7

comprehensive exploration of the preference landscape compared to single-agent8

approaches. Crucially, this diversity improves reward model learning by generating9

preference queries with clearly distinguishable behaviors, a key factor in real-world10

scenarios where humans must easily differentiate between options to provide mean-11

ingful feedback. Our experiments reveal that current methods may fail by getting12

stuck in local optima, requiring excessive feedback, or degrading significantly when13

human evaluators make errors on similar trajectories, a realistic scenario often14

overlooked by methods relying on perfect oracle teachers. Our population-based15

approach demonstrates robust performance when teachers mislabel similar trajec-16

tory segments and shows significantly enhanced preference exploration capabilities,17

particularly in environments with complex reward landscapes.18

1 Introduction19

Reinforcement learning (RL) has demonstrated remarkable success across a wide range of applica-20

tions, from game playing to robotic control. However, the effectiveness of traditional RL methods21

remains heavily dependent on carefully designed reward functions, which are often challenging to22

specify for complex tasks involving subjective outcomes or intricate human preferences [Hadfield-23

Menell et al., 2017]. Preference-based reinforcement learning (PbRL) offers a promising alternative24

by enabling agents to learn directly from human feedback through preferences between pairs of25

behavior trajectories [Christiano et al., 2017, Lee et al., 2021a]. This approach eliminates the need26

for hand-crafted reward functions and provides a more intuitive interface for humans to express27

their intentions. Despite these advantages, PbRL faces a fundamental challenge: policies optimized28

for the current reward model often generate similar queries for preference elicitation, limiting the29

informativeness of human feedback needed to improve the model.30

Current PbRL implementations typically use single-policy approaches that often converge too early31

to behaviors representing only a limited subset of human preferences. This happens because these32

methods increasingly generate similar trajectory segments pairs for human evaluation, limiting the33

range of behaviors presented. As a result, the reward model learns from less diverse examples over34

time, leading to poor exploration and suboptimal policies. The problem becomes worse when humans35
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need to evaluate trajectory segments pairs with only minor differences. In such cases, evaluators36

often give inconsistent feedback, adding noise that significantly degrades learning performance.37

Existing approaches attempt to address preference illiciation challenges through various query38

selection strategies: uncertainty-based methods targeting uncertain preference regions [Marta et al.,39

2023], policy-aligned techniques focusing on current behavior [Hu et al., 2024], ensemble-based40

strategies leveraging model disagreement [Liang et al., 2022], and information-theoretic approaches41

maximizing information gain [Biyik et al., 2020, Biyik and Sadigh, 2018]. While improving sample42

efficiency, these methods operate within a single-agent framework, limiting behavioral diversity43

during evaluation. This becomes problematic when humans must compare similar trajectories, often44

leading to inconsistent feedback [Huang et al., 2025]. Without mechanisms for maintaining diversity,45

existing approaches remain vulnerable to local optima, requiring excessive feedback and degrading46

under realistic conditions of human evaluation inconsistency.47

In this paper, we present PB²: a novel population-based approach to preference space exploration48

in PbRL. Our key insight is that simultaneously training multiple distinct policies facilitates more49

thorough preference landscape exploration than conventional single-policy methods. By collecting50

experiences across different policies to construct comparison pairs, we substantially enhance the51

variety of behaviors evaluated while preserving alignment with expressed human preferences. This52

behavioral diversity significantly improves reward model training by creating preference queries that53

are more easily distinguishable, an essential consideration often overlooked by existing methods54

that implicitly assume humans can reliably evaluate even subtly different behaviors. As illustrated55

in Figure 1, our approach implements this insight through a feedback loop where diverse policies56

generate distinct trajectories, human preferences on these trajectories train a reward model, and a57

discriminator maintains population diversity while encouraging behaviors that align with current58

preferences.59

Our contributions are as follows:60

1. We identify the preference exploration problem in PbRL, demonstrating how single-agent61

methods frequently fail by converging to suboptimal local minima in the preference space.62

2. We propose a population-based framework for PbRL that maintains policy diversity while63

optimizing for human preferences, significantly enhancing exploration of the preference64

landscape.65

3. We demonstrate through experiments that PB² produces more distinguishable queries that66

improve reward learning efficiency, achieving greater robustness when human feedback is67

inconsistent and improving performance with limited feedback.68

We validate these claims through three complementary experimental evaluations: (1) a systematic69

evaluation across DMControl locomotion tasks with varying similarity thresholds ϵ to simulate human70

judgment inconsistency, and (2) a qualitative demonstration of how PB² escapes local optima in71

complex preference landscapes where single-agent methods remain trapped and (3) a comparative72

analysis in navigation tasks with extremely limited feedback, demonstrating PB²’s feedback efficiency73

in this limited setting.74

The remainder of this paper is organized as follows: Section 2 reviews related work in preference-75

based RL and population-based methods. Section 3 establishes preliminaries and formalizes the76

preference exploration problem. Section 4 presents our population-based approach in detail. Section77

5 describes our experimental setup, and Section 6 presents and analyzes our results. Finally, Section78

7 discusses limitations, future directions, and broader implications of our work.79

2 Related Work80

Preference-based Reinforcement Learning Preference-based Reinforcement Learning (PbRL)81

enables agents to learn from human feedback through trajectory comparisons [Christiano et al., 2017,82

Lee et al., 2021a, Wirth et al., 2017]. Despite its intuitive interface, PbRL faces a fundamental explo-83

ration challenge, as policies optimized for the current reward model often generate similar queries for84

preference elicitation, limiting the informativeness of human feedback needed to improve the model.85

Recent methods address this through reward uncertainty [Liang et al., 2022], semi-supervised learning86

[Park et al., 2022], model-based approaches [Liu et al., 2023], bi-level optimization [Liu et al., 2022],87
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Figure 1: Overview of PB². After an initial unsupervised exploration phase, we sample experience
from different agents and form comparison pairs to train a reward model using human feedback. A
discriminator is trained on the experience of the agents, with the goal of maintaining diversity in the
population. The discriminator exploration bonus is added to the learned reward, in order to encourage
the discovery of different behaviours, aligned with the current human preferences, thereby helping to
elicit more informative and refined preferences.

dynamics encoding [Metcalf et al., 2022], and query-policy alignment (QPA) [Hu et al., 2024],88

though they remain primarily exploitative. Our approach extends QPA’s insights while addressing89

exploration-exploitation tradeoffs through diversity that generates distinguishable behaviors crucial90

for meaningful human feedback.91

Population-based Reinforcement Learning Population-based methods maintain multiple agents92

to enhance exploration, from Population-Based Training [Jaderberg et al., 2017] to extensions93

incorporating Bayesian optimization [Wan et al., 2022], long-term performance [Dalibard and94

Jaderberg, 2021], and evolutionary selection [Salimans et al., 2017, Alam et al., 2020]. Our approach95

shares core principles with these methods but targets preference landscape exploration rather than96

hyperparameter optimization, building on diversity-promoting concepts like DvD [Parker-Holder97

et al., 2020] while uniquely aligning diversity with human preferences.98

Quality-Diversity Quality Diversity algorithms discover diverse high-performing solutions, evolv-99

ing from Novelty Search [Lehman, 2012] through approaches like NSLC [Lehman and Stanley, 2011]100

and MAP-Elites [Mouret and Clune, 2015], with recent integration into RL [Nilsson and Cully, 2021,101

Cully, 2019]. Unlike QD methods requiring manually designed descriptors, our method automatically102

identifies meaningful behavioral patterns while adapting to evolving human preferences rather than103

pursuing general diversity.104

Unsupervised Skill Discovery Skill discovery leverages intrinsic motivation through mutual105

information maximization [Eysenbach et al., 2019], dynamics-awareness [Sharma et al., 2020],106

and task-aligned methods [Kumar et al., 2020, Osa et al., 2022]. Our approach is inspired by107

SMERL [Kumar et al., 2020] but operates without expert access, encouraging distinctiveness between108

behaviors from different population members rather than between latent-conditioned policies of a109

single agent.110

3 Preliminaries111

Reinforcement Learning We consider the standard reinforcement learning framework with an112

environment modeled as a Markov Decision Process (MDP) M := (S,A, T, r, γ) [Sutton et al.,113

1998], where S is the state space, A is the action space, T is the transition function, r is the reward114

function, and γ is the discount factor. The agent’s goal is to find a policy π that maximizes the115

expected discounted cumulative reward, Eπ[
∑∞
t=0 γ

tr(st, at)].116
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Preference-Based Reinforcement Learning In preference-based reinforcement learning (PbRL)117

[Christiano et al., 2017, Wirth et al., 2017], the agent lacks access to an explicit reward function.118

Instead, a human teacher provides preference feedback between pairs of trajectory segments (σ0, σ1),119

where a segment σ is a sequence of state-action pairs. Following the Bradley-Terry model [Bradley120

and Terry, 1952, Fürnkranz et al., 2012], we learn a reward function r̂ϕ that induces a preference121

predictor:122

Pψ[σ
1 ≻ σ0] =

exp
(∑

t r̂ϕ(s
1
t , a

1
t )
)∑

i∈{0,1} exp
(∑

t r̂ϕ(s
i
t, a

i
t)
) (1)

The reward function is trained by minimizing the cross-entropy loss:123

Lreward = −E(σ0,σ1,y)∼D

[
y(0) logPϕ[σ

0 ≻ σ1] + y(1) logPϕ[σ
1 ≻ σ0]

]
(2)

This learned reward function guides policy training through standard RL methods. Like recent PbRL124

methods [Lee et al., 2021b, Hu et al., 2024, Liang et al., 2022], we also use Soft Actor-Critic (SAC)125

[Haarnoja et al., 2018] as our base RL algorithm.126

4 Balancing Preference Space Exploration and Exploitation127

In preference-based reinforcement learning (PbRL), human feedback serves as a crucial but costly128

resource. The strategic selection of queries presented to human evaluators significantly impacts129

the learning process. PbRL systems face a fundamental challenge: effectively exploring the prefer-130

ence space to discover human preferences while exploiting current knowledge to improve policies,131

requiring two competing objectives:132

• Exploitation: Refining the reward model in areas most relevant to current policy improve-133

ment134

• Exploration: Discovering previously unknown aspects of human preferences through135

diverse queries136

Current approaches struggle with this balance. PEBBLE [Lee et al., 2021b] samples queries137

from outdated trajectories, creating temporal misalignment between feedback and current poli-138

cies. Uncertainty-driven approaches like RUNE [Liang et al., 2022] often prioritize informationally139

rich regions that may be irrelevant to current capabilities. Even QPA [Hu et al., 2024], which aligns140

queries with current policies, becomes overly exploitative, creating blind spots in the preference141

model and potentially trapping agents in local optima.142

To overcome these limitations, our approach employs a population of agents, where each agent143

maintains a slightly different policy. This population collectively generates trajectories that ex-144

plore different preference regions while remaining aligned with known preferences. Our method145

actively encourages agents to develop distinct behavioral patterns, enhancing the natural diversity146

from maintaining multiple agents. The population-based approach offers several advantages: (1)147

Natural behavioral diversity that spans the preference landscape (2) More informative queries with148

clearly distinguishable behaviors (3) Targeted exploration relevant to learning human preferences (4)149

Maintained alignment with current reward model while discovering new preference information150

4.1 Motivating Example151

Figure 2 compares preference exploration strategies in a 2D navigation task, where the agent starts152

at the bottom left and the goal is at the top right. Trajectories from a single-agent, using QPA in153

this case, concentrate in high-reward regions but provide limited exploration, thus hindering future154

queries. In contrast, our population-based method generates trajectories from multiple agents that155

collectively cover a wider area of the state space, including both high-reward regions and informative156

boundary areas. Trajectories from different population members are more distinguishable, making157

preference queries more informative for human evaluators.158
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Figure 2: Diverse population-based query strategy improves preference space coverage com-
pared to single-agent approaches. (Top row) (Column 1) Reward model predictions across the state
space, showing higher rewards in the upper region. (Column 2-4) Diversity bonus (Sec. 5.1) for
three different agents, with distinct spatial concentrations. (Bottom row) (Column 1) Single agent
trajectories (QPA), (Column 2-4) Trajectories from 3 agents of PB². QPA maximizes only the reward
model, while PB² agents maximizes the combination of reward model predictions and the diversity
bonus. The agent in the blue box does not receive the diversity bonus (Sec. 5.1). Note how agents
naturally converge to different strategies that satisfy both the learned reward model (reaching upper
regions) and the diversity bonuses (exploring different areas), demonstrating comprehensive prefer-
ence space exploration. PB² achieves better coverage of both high-reward regions and informative
boundary areas compared to the single-agent approach. Comparing trajectories across agents is also
easier (distinguishable) and more informative than in the single-agent approach.

5 PB²: Population-Based Preference-Based Reinforcement Learning159

In this section, we present PB²: a Population-Based approach for Preference-Based Reinforcement160

Learning that effectively explores the preference landscape while maintaining alignment with human161

preferences.162

As illustrated in Figure 1, PB² creates a feedback loop where population diversity enhances preference163

learning. Our approach maintains a population of policies that collectively explore the preference164

space while remaining individually aligned with current human feedback, ensuring comprehensive165

exploration without sacrificing performance on known preferences.166

The central advantage of PB² lies in its information-theoretic formulation that maximizes the mutual167

information between policies and their state distributions. This encourages each agent to explore a168

distinct subset of states that can be readily identified by a discriminator, naturally generating clearly169

distinguishable behaviors for human evaluation. To maintain effective diversity in a continuously170

evolving preference landscape, we employ an adaptive discriminator that identifies policy-specific171

behavioral patterns while remaining aligned with the current reward model, as detailed in the following172

section.173

5.1 Performance-Constrained Diversity for Preference Exploration174

PB² addresses the preference exploration challenge through a population-based approach with two175

key mechanisms: (1) a reference policy that tracks achievable performance under current preferences,176

and (2) diverse policies that explore the preference landscape while remaining aligned with human177

intent.178

Performance-Constrained Diversity. Building on the performance-constrained diversity principle179

introduced in SMERL [Kumar et al., 2020], we adapt this mechanism to the preference learning180

setting. Unlike SMERL, which requires access to an expert or optimal return value, PB² operates in181

settings where the reward function itself is being learned. Our approach maintains a reference policy182

that purely maximizes the current reward model, establishing a performance baseline. The remaining183
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Algorithm 1 PB²: Population-Based Preference-Based RL

1: Initialize reference policy πref, diverse policies {πi}Ni=2, discriminator qψ, reward model rϕ
(Section 5)

2: Perform initial unsupervised exploration to collect diverse trajectory [Lee et al., 2021b]
3: while feedback budget not exhausted do
4: Sample trajectories from all policies (reference + diverse) (Section 5)
5: Collect human preferences on trajectory segments pairs across policies (Section 5, Fig. 1)
6: Update reward model rϕ to predict preferences (Section 3)
7: Update πref to maximize rϕ(τ) only (Section 5.1)
8: Rref = E[Rϕ(τ)] for trajectories from πref (Section 5.1)
9: for each diverse policy πi, i ≥ 2 do

10: Ri = E[Rϕ(τ)] for trajectories from πi (Section 5.1)
11: if Ri ≥ α ·Rref then
12: Update πi to maximize rϕ(τ) + λ · qψ(i) (Section 5.1)
13: else
14: Update πi to maximize rϕ(τ) only (Section 5.1)
15: end if
16: end for
17: Train qψ to distinguish between diverse policies (Section 5.2, Eq. 4)
18: end while

policies are encouraged to develop distinct behaviors, but only when their performance is within a184

specified threshold of the reference policy:185

π∗
i = argmax

πi

Eτ∼πi

[
Rϕ(τ) + λ · 1[Rϕ(τ)≥α·Rϕ(τref)] · log qψ(i|τ)

]
(3)

where Rϕ(τ) =
∑T
t=0 γ

trϕ(st, at) is the expected discounted return from the current reward model,186

1[Rϕ(τ)≥α·Rϕ(τref)] is an indicator function that equals 1 when the agent’s expected return is at least α187

times the reference agent’s return, and qψ(i|τ) is a learned discriminator that predicts which policy188

generated a given trajectory.189

Adaptive Discriminator. To maintain diversity as preferences evolve, we employ a discriminator190

trained to maximize the mutual information between policies and their trajectories:191

Ldisc(ψ) = Ei∼p(i),τ∼πi
[log qψ(i|τ)] (4)

Unlike approaches with fixed reward objectives, our discriminator adapts continuously to the changing192

landscape of behaviors. This adaptation is crucial when human preferences shift, as it encourages193

policies to discover new distinguishable behaviors that remain aligned with current preferences.194

When the reward model rϕ is updated with new preferences, we temporarily disable the diversity195

bonus, allowing policies to first adapt to the new reward landscape before reintroducing diversity196

incentives. This prevents diversity from interfering with the initial adaptation to updated preferences.197

Figure 2 illustrates how this mechanism results in each agent receiving distinct exploration bonuses,198

creating a diverse set of behaviors that collectively span the preference space.199

Implementation details, including network architectures, hyperparameter values, and training proce-200

dures, are provided in appendix.201

6 Experiments202

We evaluate PB² across diverse environments to demonstrate its effectiveness in preference space203

exploration and learning from limited human feedback.204

Environments and Baselines. We use two environment categories: (1) Low-feedback envi-205

ronments (2D Navigation and PointMaze) for testing exploration efficiency, and (2) DMControl206

locomotion tasks (cheetah_run, quadruped_walk, walker_run, walker_walk) [Tassa et al., 2018]207

6



Table 1: Performance Comparison in 2D Navigation and PointMaze environments by Feedback
Amount (N)

Feedback Amount

Algorithm N=2* N=4 N=6 N=8 N=10
2D

N
av

ig
. PB² −503.7 ± 72.8 −211.3 ± 58.7 −141.0 ± 48.5 −178.7 ± 70.7 −126.5 ± 18.9

QPA −520.8 ± 67.3 −405.7 ± 164.6 −285.4 ± 160.3 −234.8 ± 154.9 −112.1 ± 24.4
PEBBLE −472.3 ± 62.0 −323.6 ± 66.0 −156.1 ± 41.2 −196.3 ± 95.9 −164.5 ± 71.1
RUNE −450.2 ± 81.1 −359.8 ± 78.5 −204.6 ± 109.6 −251.45 ± 81.5 −147.08 ± 62.6

N=4* N=8 N=12 N=16 N=20

Po
in

tM
az

e PB² 64.1 ± 48.4 18.9 ± 3.63 85.0 ± 45.3 132.2 ± 28.7 146.1 ± 29.3
QPA 35.9 ± 42.2 30.7 ± 37.0 63.6 ± 55.0 116.4 ± 18.5 110.6 ± 14.2
PEBBLE 62.3 ± 49.2 33.2 ± 30.5 80.6 ± 63.1 91.4 ± 60.4 98.1 ± 52.5
RUNE 72.4 ± 45.6 36.3 ± 36.3 57.9 ± 38.3 65.5 ± 38.6 90.2 ± 49.9

for evaluating distinguishability. We compare against three leading PbRL methods: PEBBLE [Lee208

et al., 2021b], which samples queries from previous policies; RUNE [Liang et al., 2022], which uses209

ensemble-based uncertainty for exploration; and QPA [Hu et al., 2024], which focuses on queries210

from recently generated trajectories. We selected these specific methods as they represent the primary211

query selection strategies in PbRL literature: historical sampling, uncertainty-driven exploration, and212

current-policy alignment. Additional methods are not included as they typically fall into these same213

categories without fundamentally altering the query diversity mechanism, which is the focus of our214

study.215

Evaluation methodology. For all experiments, we use the ground truth reward (which is hidden from216

the learning algorithms) to evaluate performance. We report the mean and standard deviation across217

5 random seeds. For simulating human evaluation inconsistency, we implement the Equal teacher218

from B-Pref [Lee et al., 2021a] with a similarity threshold mechanism. Specifically, for a query219

comparing trajectories with ground truth returns R1 and R2, we assign random preference labels220

when |R1 − R2| < ϵ ·max(R1, R2), where ϵ is the similarity threshold parameter. This approach221

only introduces inconsistency when trajectories are genuinely similar and difficult to distinguish,222

better simulating human evaluation challenges. While ϵ = 0 (no similarity threshold) provides a223

theoretical baseline, we emphasize results with ϵ > 0 as more realistic, since human evaluators224

inevitably provide less consistent feedback when comparing similar behaviors.225

Escaping Local Optima in Preference Landscapes Figure 4 illustrates a failure case for single-agent226

methods and how PB² overcomes it. After identical initial feedback (4 queries), both algorithms227

learn similar reward models favoring an upper-left region. After 20 feedback instances, QPA remains228

trapped in this suboptimal region due to its exploitative behavior, while PB² successfully discovers a229

path to the high-reward region through its diverse population. The discriminator encourages different230

agents to explore distinct regions while maintaining performance, allowing discovery of paths that231

eventually lead to optimal areas. This demonstrates a key advantage of population-based methods:232

when facing potentially suboptimal initial queries, PB² can escape local optima through diversity,233

while single-agent approaches often remain trapped. The complete progression of trajectories with234

increasing feedback iterations is provided in appendix, showing the step-by-step evolution of each235

method’s exploration patterns.236

Preference Exploration Improves Feedback Efficiency Table 1 presents performance with varying237

amounts of feedback in navigation tasks. In 2D Navigation, PB² achieves significantly better238

performance than QPA with limited feedback (N=4 to N=8), with improvements of up to 50% at some239

feedback levels. As feedback increases to N=10, the gap narrows, suggesting that with sufficient240

feedback, the exploration advantage becomes less critical.241

In the more complex PointMaze environment, PB² consistently outperforms QPA at most feedback242

levels (N=12, N=16, N=20), with advantages of 20-30% in some cases. Overall, these results confirm243

that maintaining a diverse population enables more efficient exploration of complex preference244

landscapes when feedback is scarce, a crucial advantage in applications where minimizing human245

interaction is essential. Note that the N=2 for 2D Navigation and N=4 for PointMaze represents per-246

formance after initial unsupervised exploration and random query selection, before the distinguishing247

characteristics of each algorithm have meaningful impact on the learning process.248
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Figure 3: Performance comparison on DMControl tasks with varying similarity thresholds. Each
column represents a different similarity threshold ϵ that determines when trajectory comparisons result
in inconsistent feedback. As ϵ increases from 0 (perfect oracle) to 0.1 (significant inconsistency with
similar trajectories), PB² (pink) maintains robust performance while single-agent methods degrade
more substantially, particularly in the quadruped_walk and walker_walk tasks. This demonstrates
PB²’s advantage in scenarios where humans must evaluate similar behaviors.

Robustness to Trajectory Distinguishability Challenges Figure 3 compares performance across249

DMControl tasks with three trajectory similarity thresholds (ϵ ∈ {0, 0.05, 0.1}). With ϵ = 0 (oracle250

teacher, no similarity consideration), PB² and QPA achieve comparable performance. However, as the251

similarity threshold increases, PB² maintains stronger performance, particularly in quadruped_walk252

and walker_walk. This advantage emerges because similar trajectories present a fundamental chal-253

lenge for preference learning. When trajectories are nearly indistinguishable, humans may provide254

inconsistent feedback, potentially causing the reward model to learn incorrect preferences.255

The superior performance of PB² is particularly evident in the walker_walk task with ϵ = 0.1, where256

it achieves approximately 750 return compared to around 400 for QPA and 350 for PEBBLE. By257

presenting more diverse and distinguishable trajectory segments pairs for evaluation, PB² makes258

it easier for humans to provide consistent, reliable feedback, offering a significant advantage in259

real-world settings where trajectories may be similar and difficult to differentiate. Notably, we used260

the same diversity parameter λ = 0.25 across all DMControl environments for fair comparison,261

though task-specific tuning could potentially yield further improvements by better balancing the262

exploration-exploitation tradeoff for each environment.263
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Reward function QPA (20 feedbacks) PB² (20 feedbacks)Initial trajectories (4 feedbacks)

Figure 4: Escaping local optima in preference landscapes. After the same initial feedback following
unsupervised exploration (4 queries), both algorithms learn similar reward models favoring the upper-
left region. After 20 feedback instances, QPA (middle) remains trapped in this suboptimal region due
to its exploitative behavior, while PB² (right) successfully discovers a path to the high-reward region
(left) through its diverse population approach.

7 Limitations and Future Work264

Computational Complexity PB² requires training multiple policies simultaneously, currently in-265

creasing computational demands compared to single-agent methods. While frameworks like JAX266

[Frey et al., 2023, Nikulin et al., 2024, Rutherford, 2022] enable efficient parallelization through267

just-in-time compilation and vectorized operations on GPUs/TPUs, implementing these optimizations268

remains as future work. Such improvements would allow population-based methods to scale with269

minimal overhead. Nevertheless, the computational bottleneck in preference-based RL typically270

remains human feedback rather than compute resources, making the additional computational cost271

justified by the improved robustness to human inconsistency that our method demonstrates.272

Scalability with Population Size Our implementation uses a small population (3 agents) due to273

practical constraints in the preference learning setting. With feedback budgets typically limited to274

approximately 10 evaluations per iteration, larger populations would reduce the number of learning275

iterations possible. Future work could explore adaptive population sizing strategies that balance276

diversity benefits against feedback constraints in different preference landscapes.277

Exploration-Exploitation Tradeoff hyperparameter PB² introduces a new hyperparameter, λ,278

that controls the balance between diversity and reward optimization. To ensure fair evaluation, we279

kept λ consistent across all environments within each class (locomotion tasks and navigation tasks),280

rather than tuning it per environment. Nevertheless, requiring different values for each environment281

classes remains a limitation, as individually tuning λ for each specific environment could potentially282

yield better performance. Future work could develop adaptive methods that automatically adjust this283

exploration-exploitation tradeoff based on the current state of preference learning, eliminating the284

need for domain-specific parameter tuning.285

8 Conclusion286

We presented PB², a population-based approach for preference-based reinforcement learning that287

addresses the challenge of preference space exploration. By maintaining diverse agents that collec-288

tively explore the preference landscape, PB² generates more distinguishable behaviors for human289

evaluation, improving reward model learning efficiency and robustness to evaluation inconsistencies.290

Our experimental results demonstrate three key advantages: improved feedback efficiency with291

limited feedback, greater robustness to labeling inconsistency, and enhanced ability to escape local292

optima in complex preference landscapes. These benefits make PB² particularly well-suited for293

real-world applications where human feedback is costly and potentially inconsistent.294
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A Implementation Details398

A.1 PB² Algorithm399

In this section, we provide the full procedure for PB², our population-based approach for preference-400

based reinforcement learning, in Algorithm 2.401

A.2 Population Management402

A.2.1 Population Design choice403

Unlike methods such as DIAYN and SMERL that use a single policy network conditioned on a latent404

variable to learn multiple behaviors, PB² maintains separate policy networks for each agent in the405

population. This design choice offers key advantages: it allows for independent update of population406

members, enables different agents to fulfill distinct roles (exploration vs. exploitation) and provides a407

robust mechanism for recovery when individual agents fail. Having a dedicated reference agent that408

focuses solely on maximizing the learned reward function creates a stable anchor for the population,409

serving as a reliable fallback that can replace underperforming explorer agents when necessary.410

A.2.2 Reference Agent Approach411

One of the key innovations in PB² is our reference agent mechanism, which provides a stable412

performance benchmark without requiring access to an expert policy or ground-truth reward function.413

This section details the complete implementation of this approach.414

The reference agent (indexed as agent 0 in our implementation) is trained to maximize only the415

current reward model without any diversity bonus:416

π0 = argmax
π

Eτ∼π

[
T∑
t=0

γtrϕ(st, at)

]
(5)

The reward model rϕ is continuously updated based on human preference feedback. After each417

reward model update, we track the reference agent’s expected return under the new reward function:418

Rref = Eτ∼π0

[
T∑
t=0

γtrϕ(st, at)

]
(6)

In practice, this expectation is approximated by maintaining a running average of episode returns for419

the reference agent over a window of recent episodes.420

The other agents in the population (indexed 1 through N − 1) are trained with the following objective:421

πi = argmax
π

Eτ∼π

[
T∑
t=0

γtrϕ(st, at) + λ · 1[Rϕ(τ)≥α·Rref] · log qψ(i|τ)

]
(7)

Where:422

• λ is the diversity coefficient (typically 0.5)423

• α is the performance threshold (approximately 0.9 in our implementation)424

• 1[Rϕ(τ)≥α·Rref] is an indicator function that equals 1 when the agent’s expected return is at425

least α times the reference return426

• qψ(i|τ) is the discriminator that predicts which policy generated a trajectory427

In our implementation, we track the recent performance of each agent and apply the diversity428

bonus only when an agent’s performance exceeds the threshold relative to the reference agent. This429

performance-constrained diversity mechanism ensures that exploration through diversity is only430

encouraged when it doesn’t significantly compromise task performance.431
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A.2.3 Policy Inheritance in the Population432

After each feedback session in PB², we transfer the critic and actor networks from the reference433

agent to all explorer agents in the population. This inheritance mechanism preserves the core task434

knowledge while still enabling agent specialization through the diversity bonuses. It serves multiple435

purposes:436

It allows all agents to quickly benefit from updated reward models based on human feedback, ensuring437

the entire population adapts to new preference information simultaneously. It maintains a healthy438

balance between exploration and exploitation across the population, with the reference agent focusing439

on exploitation while explorer agents develop diverse behaviors from a common foundation. Most440

importantly, it prevents explorer agents from drifting too far from the task objective due to diversity441

pressures, which could otherwise lead to behaviors that are novel but ineffective.442

This periodic knowledge sharing proved particularly beneficial in complex environments where443

unguided exploration can be inefficient, allowing the population to maintain both performance and444

diversity throughout training.445

A.3 Stability Mechanisms446

A.3.1 Transition Handling Between Preference Updates447

A critical challenge in our population-based approach is managing the discriminator’s behavior during448

preference transitions. When the reward model updates, we implement several specific techniques to449

ensure stable and effective diversity guidance:450

1. Temporary Diversity Suspension: Immediately after a reward model update, we temporar-451

ily disable the diversity bonus by setting the discriminator coefficient to zero for a fixed452

period (typically 5000 environment steps). This suspension period allows all agents to first453

adapt to the new reward landscape before reintroducing diversity incentives, preventing454

potentially counterproductive exploration based on outdated preferences.455

2. On-Policy Discriminator Training: During transition periods, the discriminator is trained456

exclusively on recent experiences rather than the full replay buffer. This is implemented457

through our on-policy sampling mechanism that selects state samples from only the most458

recent trajectories for each agent.459

3. Reward Normalization and Clipping: To prevent extreme diversity bonuses during tran-460

sition periods, we implement Exponential Moving Average (EMA) normalization with a461

decay rate of 0.99 for the discriminator’s outputs. Additionally, we clip the normalized462

intrinsic rewards to the range [-2, 2], which prevents destabilizing spikes in the diversity463

bonus that could otherwise derail learning during preference transitions.464

These implementation details are crucial for maintaining stable diversity during preference transitions,465

as they address the practical challenges of keeping a population-based system aligned with changing466

preference signals. By temporarily reducing diversity pressure, carefully normalizing rewards, and467

ensuring balanced training, we allow the discriminator to smoothly adapt to new preference landscapes468

without destabilizing the learning process.469

B Technical Details470

B.1 Implementation Framework471

Our implementation builds upon established preference-based reinforcement learning frameworks.472

We extend the QPA codebase [Hu et al., 2024], which itself extends the B-Pref framework [Lee et al.,473

2021a] that provides core functionality for preference-based learning through the PEBBLE [Lee et al.,474

2021b] algorithm architecture.475

To accommodate our population-based approach, we expanded this framework to manage multiple476

policy networks simultaneously, while incorporating the on-policy query selection mechanism477

introduced in QPA [Hu et al., 2024]. This combination allows us to leverage on-policy query selection478

across a diverse population of agents, rather than limiting it to a single policy.479

14



Each agent in our population maintains its own replay buffer for experience collection and policy op-480

timization. We introduced additional components for our discrimination-based diversity mechanism,481

and policy inheritance procedures.482

For comparisons against baselines, we integrated implementations of competing methods including483

PEBBLE [Lee et al., 2021b], RUNE [Liang et al., 2022] and QPA [Hu et al., 2024] using their484

official codebases, ensuring fair evaluation across all approaches. Our implementation maintains485

compatibility with the underlying frameworks while introducing the population management and486

diversity mechanisms that define PB².487

B.2 Network Architectures488

For fair comparison, PB² uses the same network architectures as QPA for both the SAC algorithm489

and reward model, with our modifications focused exclusively on the population-based exploration490

mechanism.491

The reward model consists of 3 hidden layers with 256 units each and LeakyReLU activations, taking492

state-action pairs as input and producing scalar reward predictions with tanh activation.493

The policy networks follow the standard SAC architecture with 2 hidden layers of 1024 units and494

ReLU activations. The actor outputs action means and log standard deviations (bounded between -5495

and 2), while the critic takes state-action pairs as input and outputs Q-value predictions.496

Our discriminator network uses 2 hidden layers of 256 units with ReLU activations and layer497

normalization. The output dimension matches the population size, with softmax activation for498

classification. This discriminator is trained using cross-entropy loss on balanced batches of states499

from each policy in the population.500

B.3 Hyperparameters501

We maintain consistent hyperparameters across all comparison methods for fair evaluation, with the502

only differences being in the population-specific parameters introduced by PB². Tables 2-6 provide a503

comprehensive overview of the hyperparameters used in our experiments.504

The general hyperparameters (Table 2) are common across all environments, while environment-505

specific parameters (Table 6) highlight the varying complexity and requirements of different tasks.506

DMControl tasks generally required more feedback than navigation tasks due to their higher-507

dimensional state and action spaces, while maintaining a consistent diversity coefficient of 0.25.508

Navigation tasks benefited from a higher diversity coefficient (0.5) to encourage more extensive509

exploration of the state space.510

For the discriminator-related parameters (Table 5), we performed a limited hyperparameter search511

and found that a learning rate of 1e-5 and hidden size of 256 worked well across environments. The512

reward model (Table 4) and SAC parameters (Table 3) were selected to match those used in prior513

work for direct comparison.514

Parameter Description Value
Discount factor (γ) Reward discount factor 0.99
Replay buffer capacity Maximum transitions stored Training steps
Population size Number of agents (including reference) 3
Activation function For all networks tanh
Gradient update frequency Updates per environment step 1

Table 2: General hyperparameters used in the PB² algorithm

Parameter Description Value
Ensemble size Number of networks in reward ensemble 1
Learning rate Learning rate for reward model 3e-4
Number of hidden layers Hidden layers in reward network 3
Hidden size Units per hidden layer 256

Table 4: Reward model hyperparameters
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Parameter Description Value
Actor learning rate Learning rate for policy network 5e-4
Critic learning rate Learning rate for Q-networks 5e-4
Alpha learning rate Learning rate for temperature parameter 1e-4
Initial temperature Initial value of entropy coefficient 0.1
Target update rate (τ ) Polyak averaging coefficient 0.005
Target update frequency Steps between target network updates 2
Actor update frequency Steps between policy updates 1

Table 3: SAC hyperparameters used in the PB² algorithm

Parameter Description Value
Batch size States per gradient update 256
Learning rate Learning rate for discriminator 1e-5
Hidden size Units per hidden layer 256
On-policy ratio Ratio of on-policy samples for training 0.5

Table 5: Discriminator hyperparameters

Environment Feedback Budget Total Steps Diversity λ Other Parameters
Cheetah_run 100 500,000 0.25 Segment length: 50
Walker_walk 100 500,000 0.25 Unsupervised steps: 9,000
Walker_run 250 500,000 0.25 Interact steps: 20,000
Quadruped_walk 1000 500,000 0.25 Queries per iteration: 10
2D Navigation 10 20,000 0.5 Segment length: 20-50
PointMaze 20 80,000 0.5 Unsupervised steps: 900-400

Interact steps: 2,000-10,000
Queries per iteration: 2-4

Table 6: Environment-specific hyperparameters

C Environment Details515

To thoroughly evaluate our population-based approach for preference-based RL, we selected envi-516

ronments that specifically challenge the two key aspects of our method: efficient preference space517

exploration and robustness to human feedback inconsistency. Our environment selection targets two518

critical scenarios: (1) low-feedback settings where efficient exploration is crucial, and (2) complex519

environments where trajectory similarity makes human evaluation difficult and error-prone.520

Navigation tasks provide intuitive visualization of exploration patterns and allow us to demonstrate521

how our method escapes local optima in preference landscapes with limited feedback. DMControl522

tasks, with their high-dimensional state-action spaces, create scenarios where trajectories can appear523

similar to human evaluators despite having different underlying rewards, testing our method’s ability524

to generate distinguishable queries and handle inconsistent feedback.525

While previous methods often include robotic manipulation tasks from Meta-World, these environ-526

ments typically require substantially more feedback (often 2,000-3,000 queries) to achieve meaningful527

performance. Such high feedback requirements are unrealistic in practical human-in-the-loop scenar-528

ios. Nevertheless, we include one high-feedback experiment (1,000 queries) on the Quadruped_walk529

task to demonstrate our method’s performance across the feedback spectrum.530

C.1 Navigation Tasks531

C.1.1 2D Navigation532

The 2D navigation environment consists of a 10× 10 continuous arena where the agent starts at the533

bottom left corner (0, 0) and must navigate to a goal position at the top right corner (10, 10). The534

state space is 2-dimensional, corresponding to the agent’s (x, y) position. The action space is also535
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2-dimensional, where actions directly change the agent’s position with values in the range [−1, 1]. If536

the agent attempts to move outside the boundaries of the arena, it is projected to the closest point537

inside. The reward function used for ground truth evaluation (not accessible to the agent) is the538

negative Euclidean distance to the goal position.539

For human feedback simulation, we compare trajectory segments of length 50 timesteps. The oracle540

provides preferences based on the total progress made toward the goal during each segment. When541

the similarity threshold ϵ is applied, random labels are provided when the difference in progress542

between segments falls below the threshold.543

C.1.2 PointMaze544

In the PointMaze environment, a point mass agent navigates through a maze with walls to reach545

a designated goal location. The state space consists of the agent’s position and velocity (4D). The546

action space is 2-dimensional, controlling the force applied in the x and y directions.547

Instead of using the original reward function based on Euclidean distance to the goal, we replace it548

with a handcrafted reward function that better aligns with human preferences by guiding the agent549

through the maze as shown in Figure 4. This reward function provides higher values along the550

correct path through the maze corridors, creating a more structured reward landscape that captures551

the preference for following the intended route rather than attempting to move directly toward the552

goal (which would cause collisions with walls). This modification helps simulate realistic human553

preferences that incorporate domain knowledge about the maze’s structure rather than simple distance554

metrics.555

C.2 DMControl Tasks556

We evaluate our method on four continuous control tasks from the DeepMind Control Suite (DM-557

Control) [Tassa et al., 2018]: Cheetah_run, Walker_run, Walker_walk, and Quadruped_walk. These558

environments feature continuous state and action spaces with increasing complexity, from the 17-559

dimensional state space of Cheetah_run to the 78-dimensional state space of Quadruped_walk. All560

DMControl tasks have episode lengths of 1000 timesteps.561

The ground truth rewards in these environments, which are used only for evaluation and not acces-562

sible to the learning algorithms, combine task-specific objectives (such as forward velocity above563

environment-specific thresholds) with control penalties. The Walker and Quadruped environments564

additionally reward upright posture maintenance.565

D Additional Experimental Results566

D.1 Component Ablation Study567

To evaluate the contribution of individual components in PB², we conducted ablation studies exam-568

ining the impact of on-policy sampling and policy inheritance mechanisms. Figure 5 shows results569

across three DMControl environments.570

The results demonstrate that both on-policy sampling and inheritance contribute positively to perfor-571

mance. The full PB² method (On-policy , Inheritance ) consistently achieves the highest performance572

across all environments. Removing policy inheritance (On-policy , Inheritance ) leads to noticeable573

performance degradation, particularly in the later stages of training. This confirms the importance of574

knowledge sharing between agents in the population. Interestingly, removing on-policy sampling575

while keeping inheritance (On-policy , Inheritance ) shows competitive performance in some environ-576

ments, suggesting that the benefits of these components can be complementary depending on the task577

complexity.578

D.2 Diversity Parameter Analysis579

We investigated the effect of the diversity parameter λ on learning performance. Figure 6 shows580

results for the Walker_walk environment with different values of λ ranging from 0 to 1.581
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Figure 5: Ablation study on DMControl locomotion tasks showing the contribution of key components
in PB². Results demonstrate that both on-policy query generation and agent inheritance mechanisms
are essential for achieving optimal performance across different environments and feedback budgets.

The results reveal that moderate values of λ (0.1-0.25) achieve the best performance, with λ = 0.25582

showing the strongest results. Setting λ = 0 (no diversity bonus) leads to reduced performance due583

to insufficient exploration and limited behavioral diversity across the population. Conversely, very584

high values (λ = 1) also underperform, suggesting that excessive emphasis on diversity can distract585

agents from optimizing the primary reward signal. The optimal range around λ = 0.25 (for the current586

environment) provides an effective balance between reward maximization and exploration diversity,587

enabling agents to discover distinct yet effective behaviors.588

D.3 Population Size Sensitivity589

Figure 7 examines the impact of different population sizes (2, 3, 4, 5 agents) on learning performance590

in the Walker_walk environment.591

The results show that population sizes of 3-4 agents achieve the best performance, with diminishing592

returns as population size increases further. A population of size 2 shows competitive early perfor-593

mance but fails to maintain the same final performance level as larger populations. This is likely594

because with a fixed query budget of 10 per iteration, having only 2 agents results in trajectories that595

are too similar to each other, limiting the diversity of preference queries. Conversely, populations of596

size 5 do not provide significant benefits over size 4, potentially because the available queries become597

too sparse across agents, reducing the learning signal for each individual policy. The population598

size of 3, which we use in our main experiments, appears to be well-chosen based on this analysis,599

providing sufficient diversity while maintaining concentrated learning signals.600
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Figure 6: Sensitivity analysis of the diversity parameter λ in the walker_walk environment with 100
feedback queries. The results show that small values of λ (0.1-0.25) achieve the best balance between
exploration and exploitation in this setup, while extreme values (λ = 0 or λ = 1) lead to suboptimal
performance.
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Figure 7: Impact of population size on learning performance in the walker_walk environment with
100 feedback queries. Results indicate that a population size of 3-4 agents provides the optimal
trade-off between diversity benefits and computational efficiency, with diminishing returns for larger
populations.
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D.4 Detailed Trajectory Evolution in Point Maze Environment601

This section provides the complete trajectory progression referenced in Figure 4 of the main text,602

showing the step-by-step evolution of exploration patterns as feedback increases from N=4 to N=16603

queries in the Point Maze environment.604

Figure 8 illustrates how PB² (red box) and QPA (blue box) evolve their exploration strategies with605

increasing feedback. At N=4, both methods show similar initial exploration patterns after receiving606

identical feedback. However, as feedback increases, the population-based approach in PB² enables607

the three agents to explore distinct regions of the maze, attempting to find high reward regions. In608

contrast, QPA’s single-agent approach becomes increasingly concentrated in the initially promising609

but suboptimal upper-left region, demonstrating the local optima problem discussed in the main text.610

Crucially, while not all agents in PB² necessarily discover the optimal path simultaneously, once one611

agent finds a better trajectory (Agent 3, N=12), the reward model update incorporates this improved612

knowledge by comparing it against the previous suboptimal behaviors from other agents. This allows613

the shared reward model to capture the superior strategy, subsequently guiding all agents toward614

the newly discovered high reward region (N=16, Agents 1,2 and 3). This progression clearly shows615

how PB²’s diverse population prevents premature convergence and enables discovery of multiple616

pathways that eventually lead to finding the optimal solution, while QPA remains trapped in its initial617

exploration pattern.618

E Computational Resources and Reproducibility619

E.1 Compute Resources620

All experiments were conducted on NVIDIA V100. Training times varied significantly across621

environments and methods due to the population-based nature of our approach.622

Training Times Navigation tasks (2D Navigation, PointMaze) required approximately 5 minutes623

per seed for baseline methods and 20 minutes for PB² due to population management overhead.624

DMControl tasks took 30 minutes to 2 hours for baselines depending on task complexity and feedback625

budget, while PB² required 7-21 hours for the same tasks. The computational overhead of PB² scales626

approximately 3-4× compared to single-agent baselines, primarily due to maintaining and training627

multiple agents simultaneously. While our current implementation trains agents sequentially, this628

overhead could be significantly reduced through parallel training in future work.629

E.2 Code and Data Access630

Code Repository Our implementation will be made publicly available upon paper acceptance.631

We provide the complete codebase in the supplementary materials as a zip archive for immediate632

access. The codebase includes all experimental configurations, training scripts, and evaluation utilities633

necessary for reproduction.634
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Figure 8: Complete trajectory evolution in Point Maze environment showing exploration patterns
of PB² (red box, with Agent 1, 2, 3) versus QPA (blue box) as feedback increases from N=4 to
N=16 queries. The progression demonstrates how PB²’s population-based approach maintains diverse
exploration strategies across multiple agents, while QPA’s single-agent method becomes trapped in
suboptimal regions due to its exploitative nature.
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Algorithm 2 PB²: Population-Based Preference-Based Reinforcement Learning (Detailed)

1: Initialize: Reference policy πref, diverse policies {πi}Ni=2, discriminator qψ , reward model rϕ
2: Initialize replay buffers {Bi}Ni=1 ← ∅ for each policy
3: Initialize preference dataset D ← ∅
4: for each unsupervised pre-training step t do
5: for each policy πi in population do
6: Collect sit+1 by taking ait ∼ πi(at|sit)
7: Compute state entropy reward riint ← − log p(sit+1)

8: Store transitions Bi ← Bi ∪ (sit, a
i
t, s

i
t+1, r

i
int)

9: end for
10: for each gradient step do
11: for each policy πi in population do
12: Sample minibatch (sij , a

i
j , s

i
j+1, r

i
int,j)

B
j=1 ∼ Bi

13: Optimize policy πi using SAC with intrinsic reward
14: end for
15: end for
16: end for
17: while feedback budget not exhausted do
18: // Experience Collection Phase
19: for each environment step do
20: for each policy πi in population do
21: Collect sit+1 by taking ait ∼ πi(at|sit)
22: Compute reward r̂it = rϕ(s

i
t, a

i
t)

23: Compute discriminator reward ridisc = log qψ(i|sit)− log p(i)
24: Store transitions Bi ← Bi ∪ (sit, a

i
t, s

i
t+1, r̂

i
t, r

i
disc)

25: end for
26: end for
27: // Feedback Collection Phase
28: if step to query preferences then
29: Sample K recent trajectories from each policy’s replay buffer {Bi}Ni=1
30: Randomly select trajectory segments to form candidate query set Q = {(σ0, σ1)}
31: Collect human feedback {yi} for queries in Q
32: Store preferences D ← D ∪ {(σi0, σi1, yi)}
33: // Reward Model Update
34: Update reward model rϕ using dataset D by minimizing loss in Equation (2)
35: Relabel replay buffers {Bi}Ni=1 using updated rϕ
36: end if
37: // Policy Optimization Phase
38: // Reference Agent Update
39: Calculate reference performance Rref = Eτ∼πref [Rϕ(τ)]
40: Update reference policy πref to maximize E[rϕ(s, a)] using SAC
41: // Diverse Agents Update
42: for each diverse policy πi, i ≥ 2 do
43: Calculate agent performance Ri = Eτ∼πi [Rϕ(τ)]
44: if Ri ≥ α ·Rref then
45: Update πi to maximize E[rϕ(s, a) + λ · ridisc(s)] using SAC
46: else
47: Update πi to maximize E[rϕ(s, a)] using SAC (no diversity bonus)
48: end if
49: end for
50: // Discriminator Update
51: Collect state samples {sji} from each policy πi
52: Update discriminator qψ by maximizing E[log qψ(i|sji )]
53: end while
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