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ABSTRACT

Large language models (LLMs) perform remarkably well on tabular datasets in
zero- and few-shot settings, since they can extract meaning from natural language
column headers that describe features and labels. In contrast to LLMs, gradient-
boosted decision trees (GBDTs) must learn the relationships among columns from
scratch, increasing their data requirements. Meanwhile, LLMs are not competi-
tive with GBDTs on medium or large datasets, and their scalability is capped by
their limited context lengths. In this paper, we propose LLM-Boost, a simple and
lightweight approach for fusing large language models with gradient-boosted de-
cision trees, which enables larger datasets to benefit from the natural language
capabilities of LLMs than was previously shown. While matching LLMs at suffi-
ciently small dataset sizes and GBDTs at sufficiently large sizes, LLM-Boost out-
performs both standalone models on a wide range of dataset sizes in between. We
demonstrate state-of-the-art performance against numerous baselines and ensem-
bling approaches, and we also show how to fuse GBDTs with TabPFN, a recent
non-LLM model for in-context learning on tabular data. We find that this combi-
nation achieves the best performance on larger datasets. We release our code at
https://anonymous.4open.science/r/LLM-Boost—-21DD.

1 INTRODUCTION

Tabular data, or spreadsheets, constitute a large portion of real-world machine learning problems
(Borisov et al., [2022). Tabular data comprise (a) columns, each containing a different feature or
label; (b) rows, each containing an individual data sample; and (c) column headers describing the
content of each column, often in the form of text.

Gradient-boosted decision trees (GBDTs), such as XGBoost (Chen & Guestrin, [2016)), LightGBM
(Ke et al., 2017), and CatBoost (Prokhorenkova et al., [2018)), have remained the de facto machine
learning algorithms for analyzing tabular data over the past decade (McElfresh et al.,2024). They
are efficient to train even on a CPU; they achieve competitive performance on a wide variety of
datasets and sample sizes’. However, GBDTs have a major drawback: they only ingest the row
features in a table and not the column headers, which may contain useful text descriptions. For
example, one may not need training data to anticipate that a hospital patient’s weight is useful for
predicting occurrences of heart disease. Instead of leveraging column headers, from which a human
might intuit relationships between columns, GBDTs have to learn these relationships from scratch
from the feature values themselves.

In contrast to GBDTs, large language models (LLMs) can parse and extract meaning from column
headers, enabling them to achieve superior performance to GBDTs on very small tabular datasets
with interpretable headers (Hegselmann et al., 2023). LLMs can even make accurate zero-shot pre-
dictions solely by applying natural language understanding to column headers without any training
samples at all (Hegselmann et al., 2023). Despite their ability to parse column headers, LLMs are
severely limited by their limited context length and high fine-tuning costs. Moreover, LLMs make
poor use of large sample sizes, whereas GBDTs scale well to massive datasets.

In this paper, we combine the strengths of gradient-boosted decision trees and large language models
to build models that simultaneously possess natural language understanding and use column headers,
additionally scaling to much larger tabular datasets than LLMs could alone. Our method, LLM-
Boost, uses LLM predictions as a starting point for GBDT algorithms, and then learns the residuals
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from LLM predictions to the label. This technique allows us to not only use the column headers
for a strong prior but also benefits from the strong inductive bias and scalability of decision tree
algorithms. In our experiments, LLM-Boost showcases state-of-the-art performance, outcompeting
strong baselines including both single models and other ensemble approaches, across a large range of
dataset sizes. LLM-Boost excels at small and medium sized datasets that are too large for LLMs yet
not large enough that GBDTs do not benefit from column headers. For scenarios where interpretable
column headers do not exist, we apply the same boosting approach except swapping out LLMs
for TabPFN (Hollmann et al., |2023a)), a recent in-context learning model that demonstrates strong
performance on small tabular datasets but lacks scalability due to its limited context length. Our
boosted TabPFN combination achieves the top performance among all methods we consider outside
of the very small dataset regime where our boosted LLMs reign supreme.

‘We summarize our contributions as follows:

* We propose LLM-Boost: a novel yet simple and easy-to-implement boosting mechanism that
combines LLMs, which ingest semantic column headers, with GBDTs that can scale to massive
datasets.

* We conduct thorough experiments across numerous datasets and sample sizes, comparing to
strong baselines. LLM-Boost demonstrates consistently strong performance.

* As additional studies, we show how to fuse TabPFN and GBDTs for performance gains over
GBDTs alone across dataset sizes without using column headers.

2 RELATED WORK

2.1 GBDTSs FOR TABULAR DATA

Gradient boosted decision tree algorithms such as XGBoost (Chen & Guestrin, 2016), Catboost
(Prokhorenkova et al., [2018) and LightGBM (Ke et al., 2017) offer state-of-the-art or near state-
of-the-art performance on many tabular tasks (Grinsztajn et al., [2022). Compared to deep learning
models with similar performance, GBDTs offer faster training and inference speeds even without
GPUgs, are easy to tune, and are more straightforward to interpret. However, when compared to deep
learning models, tree based models do not generalize as well to diverse unseen data and are not
as robust to uninformative features (Grinsztajn et al.l [2022). Recently, TabPFN (Hollmann et al.,
2023a)), a transformer for tabular in-context learning has demonstrated superior performance on
small datasets (McElfresh et al.,[2024)). In our work, we adopt GBDTs as a base model due to their
ability to benefit from large volumes of data, and we augment them with TabPFN and LLMs using
boosting.

2.2 BOOSTING

Boosting is an ensembling technique for combining multiple weak learners to form a single strong
prediction model (Freund & Schapire, [1997). Boosting algorithms are sequential processes whereby
new learners are progressively added to predict the residual error of the current ensemble until the
error becomes sufficiently small. Gradient boosting additionally provides a mechanism to update the
new learners using an arbitrary differentiable loss function via gradient descent (Friedmanl, [2001).
Although there are implementation differences in the GBDT algorithms mentioned above, they share
the fundamental process of making predictions using an ensemble of weak decision tree models.

2.3 LLMS FOR TABULAR DATA

Large language models (LLMs) are trained on vast and diverse datasets, enabling them to solve a
wide variety of problems, especially in zero- or few-shot settings (Hegselmann et al.,|2023)). Recent
works have successfully repurposed LLMs for tabular data related tasks such as table understand-
ing (Chen, 2023)), tabular representation learning (lida et al., 2021} |Chen et al., 2023)), time series
forecasting (Gruver et al.| 2023)), and quantitative reasoning (Sui et al., [2023)).

Repurposing LLMs for tabular prediction tasks requires data serialization and prompt engineering.
Data serialization is required as LLMs are sequence to sequence models. While direct serializa-
tion of the values in a row is possible, converting rows into meaningful human-readable sentences
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containing the row values and the column headers together aids the LLM in understanding the rows.
Prompt engineering methods such as task descriptions and in-context examples as well as fine-tuning
the LLM on the tabular prediction task itself can improve the model’s domain-specific abilities.

Although approaches such as in-context examples and task specific fine-tuning enable the model to
see more tabular examples, they come with drawbacks. LLMs are bottle-necked by context length
limits, so it is difficult to provide more than a few in-context examples. Additionally, fine-tuning
requires considerable computational overhead, even on simple tabular prediction tasks, and often
underperforms alternatives such as GBDTs on larger datasets (Dinh et al.|[2022) (Hegselmann et al.}
2023).

Alternatively, LLMs have been used for automatic feature engineering in the tabular domain.
Lightweight models, such as GBDTs, that are then trained on the augmented set of features have
demonstrated superior performance to those trained on the original features Hollmann et al.|(2023b));
Nam et al. (2024). While this approach is computationally efficient at inference-time compared to
our proposed procedure which uses the LLM during inference, the LLM typically only utilizes a
small fraction of the table’s samples to generate new features. Additionally, this approach usually
requires powerful API models to be effective [Hollmann et al.| (2023b).

2.4 TABPFN

TabPFN (Hollmann et al.l [2023a) is a transformer based network for tabular data, which is trained
offline once to approximate Bayesian inference on synthetic datasets drawn from a prior. TabPFN
performs in-context learning on the whole trainset, which does not require any parameter updates
and can make predictions for the entire testset in a single forward pass. Superior speed and per-
formance of TabPFN makes it ideal for datasets with up to 1000 samples. However, dataset size
limitations remain a significant downside when adopting this method.

2.5 ENSEMBLING DIFFERENT MODEL CLASSES FOR TABULAR DATA

Due to the contrasting strengths and weaknesses of tree-based algorithms, traditional deep learning
methods and LLMs for tabular data practitioners often use ensembles for more stable predictions.
The predominant ensemble approach is feature stacking (Levin et al., 2023)), where predictions of
one model are used as features for the next. Efficient fusion of different model classes for tabular
data is still an open problem.

3 METHOD

In this section, we detail the LLM-Boost algorithm, which is depicted in Figure[T] Broadly, LLM-
Boost first takes a tabular dataset and extracts LLM scores, or logits, for each row of the table. We
then augment a GBDT model by seeding it with the LLM’s logits so that it learns the residual to
the labels. When we perform this procedure, we must carefully tune a scaling parameter so that the
GBDT is not overly reliant on these LLM predictions but simultaneously does not ignore them. Our
approach is equivalent to replacing the first tree of the GBDT ensemble with the static prediction
of the LLM which need to be pre-computed only once for inference and training. We then fit the
GBDT to the residuals and evaluate the combined model’s classification performance. We detail our
pipeline in the following sections.
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Prompt:
Given information about an animal, you Raw Data
must predict if the animal is a cat or a dog. Serialization and Weight Age
Answer with one of the following: cat | dog. Prompt Engineering (Kg) (Years)
Example 1: Weight-10Kg, Age-12.
Answer: cat; 18 3
Example 2: Weight-22Kg, Age-5.
Answer: dog;
Now, make a prediction given the following
information.
Weight-18Kg, Age-3.
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Figure 1: How LLM-Boost works for a toy cat vs. dog classification problem. Note that here the
selected nodes are denoted in light blue. The scaling parameter denoted by S allows for controlling
the effect of the LLM predictions on the tree ensemble.

3.1 EXTRACTING LLM SCORES

Our first step is to extract the LLM predictions for each row of a given tabular dataset. We create
simple natural language, few-shot prompts utilizing the prompt generation and serialization tools
developed by [Slack & Singh| (2023). The prompts are designed so that an instruction-tuned LLM
will output one of the classification labels for each row of data. An example prompt for the UCI
adult income dataset is given below.

Example Prompt for the Adult dataset

Given information about a person, you must predict if their income exceeds $50K/yr.
Answer with one of the following: greater than 50K | less than or equal to 50K.

Example 1 -

workclass: Private , hours per week: 20, sex: Male, age: 17, occupation: Other-service,
capital loss: 0, education: 10th, capital gain: 0, marital status: Never-married, relation-
ship: Own-child, Answer: less than or equal to 50K

Example 2 - .....
Workclass: Private, hours per week: 40, sex: Female, age: 24, occupation: Sales, capital

loss: 0, education: Some-college, capital gain: 0, marital status: Never-married, rela-
tionship: Own-child, Answer:

We take the negative of the language modelling loss (mean reduced cross-entropy) of each clas-
sification label with the language model output as the language model’s un-normalized prediction
score for that class (SCORE] ). Note that each classification label can contain multiple words.
For example, ‘Greater than 50K’ and ‘Less than or equal to SOK’ for the Adult dataset. Thus, the
loss calculation can be over a different number of tokens for each class, which is why we use mean
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reduction. The exact loss extraction process will differ slightly depending on whether it is a Masked
LLM or a Causal LLM. Finally, we center these raw scores around zero by subtracting the mean of
the scores.

When combining GBDTs and TabPFN, it is straight forward to extract TabPFN scores as the model
directly outputs un-normalized raw prediction scores.

3.2 BOOSTING LLM SCORES

Once we have the LLM scores, we use them to kickstart a GBDT. GBDT algorithms sequentially
construct weak decision trees, where each tree is optimized to fit the residual error of the preceding
ensemble. The input to the first tree is usually a constant value for all classes (Chen & Guestrin,
2016). Our approach is simply to replace this constant value with the LLM scores so that the GBDT
algorithm learns the residual of the LLM prediction. This method can also be thought of as replacing
the first tree in the ensemble with the LLM, during both training and inference. See Figure I]for a
representation of this procedure.

3.3 THE SCALING PARAMETER

We use a scaling parameter s to scale the LLM scores before passing them on to the GBDT algo-
rithm. By setting the scaling parameter to zero, our method is equivalent to the standalone GBDT;
by making the scaling parameter very large, our method outputs predictions arbitrarily close to those
of the LLM. In our experiments, we tune this hyper-parameter using Optuna (Akiba et al.l [2019).
We find that for intermediate values of this hyper-parameter, we can often achieve performance that
exceeds both the GBDT and the LLM. Refer to Appendix [E|for an example.

The predictions of the ensemble consisting of the first  trees are now

pred o,y = predy iy + s * SCORELLm + C,

where predq p) is the sum of the predictions of all the trees from a to b; s denotes the aforementioned
scaling parameter that can take values [0, 00); SCOREL denotes the raw prediction of the LLM (or
TabPFN) which is a vector in the case of classification (See[I)); and C' denotes a constant which can
be added to make SCORE] |\ centered around O for numerical stability. Each tree i is progressively
optimized so that pred,g ;) minimized following the standard gradient boosting procedure.

4 EXPERIMENTS AND ABLATIONS

Our primary experiments focus on boosting XGBoost (Chen & Guestrin, 2016) with Flan-T5-
XXL (Chung et al., 2022) and TabPFN (Hollmann et al.| [2023a) predictions. The Flan-T5-XXL
model is the largest Flan-T5 variant with approximately 11 billion parameters. Flan-T5 models are
created by multi-task instruction finetuning the standard TS5 encoder-decoder model with chain-of-
thought reasoning.

We additionally perform ablations on different GBDT and LLM model combinations as our boosting
framework is agnostic with respect to both the precise LLM and GBDT. In addition to Flan-T5 mod-
els, we also include the newly released 8 billion paramter Meta-Llama-3-8B-Instruct (AI@ Meta,
2024) model as a drop-in replacement. The Meta-Llama family is a collection of high perform-
ing decoder-only language models. Together, we conduct ablations including the GBDTs XG-
Boost (Chen & Guestrin), 2016)) and LightGBM (Ke et al.,|2017)), and including seeding mechanisms
Flan-T5, Llama3-8B, and TabPFN.

4.1 DATASETS AND DATA PREPARATION

For our experiments, we adopt the UCI (Dua & Graff, |2017) datasets used by Slack & Singh|(2023)
together with the public tabular datasets used by [Hegselmann et al.| (2023)) (TabLLM). We filter out
the datasets which have more than 5 classes from the UCI datasets as few shot LLM performance
is generally poor when the number of classes are high. The final 16 datasets used after filtering are
listed in Table[I} As described in section 3.1 We prepare the data for few-shot (in-context) inference



Under review as a conference paper at ICLR 2025

utilizing the tools developed by [Slack & Singh|(2023). We sub-sample our datasets to much smaller
sizes so that we have sufficient granularity to bridge the few-shot regime where LLMs/TabPFN excel
at and the large dataset regime where GBDTs are better. We chose the sample sizes 10, 25, 50, 100,
200 and 500 for applicable datasets in addition to running the experiments on the full dataset.

Table 1: The 16 Datasets used for our Experiments

ucCl TabLLM
Abalone Bank
Adult (Also used for TabLLM) Blood
Breast Cancer Wisconsin - Diagnostic ~ California
Churn Car

Heart Disease Credit-g
Shark Tank Diabetes
Statlog - Australian Credit Approval Heart
Wine Jungle

4.2 HYPERPARAMETER OPTIMIZATION

One of the benefits of using GBDT based methods is the ability to perform many rounds of Hyper-
parameter optimization (HPO) with a low computation budget. HPO is well known to increase
performance of tabular models (Gorishniy et al., [2021) and is often included as part of the GBDT
pipeline. We perform HPO using Optuna (Akiba et al.,|2019). We use separate validation folds so
that test data is new used for HPO trials. The hyper-parameter search spaces used for our GBDT
experiments are listed in Appendix [A]

For best results, we find that the scaling hyper-parameter s should be independently tuned after
tuning the standard GBDT hyper-parameters. We find that this makes the tuning process more
stable and guarantees improvement in validation loss when including scaling. We tune the GBDT
hyper-parameters for 100 Optuna trials and tune the scaling parameter for an additional 30 trials.
Importantly, for our other ensembling baselines stated in section f.4] we tune the GBDT hyper-
parameters for 130 Optuna trials to keep the total HPO trials consistent.

4.3 COMPUTE RESOURCES

A major advantage of LLM-Boost is its lightweight overhead. The computational resources required
for our boosting process, disregarding LLM costs, is the same as that required for HPO of GBDTs.
Specifically, the boosting process can be performed on CPU. Full hyper-parameter tuning only takes
up to 4 hours for the largest datasets on CPU. For few-shot LLM inference (Flan-T5-XXL and Meta-
Llama-3-8B-Instruct) we use 4 RTX A4000 GPUs. Inference on the largest datasets we tested takes
up to 18 hours to precompute. Importantly, this significantly less resource intensive compared to
supervised fine tuning of LLMs for tabular tasks.

4.4 BASELINES

To validate our method, we first consider selecting the raw LLM and GBDT models as baselines.
However, on average LLM-Boost performs much better than either the GBDT or the LLM model
alone. Therefore, we utilize two strong and widely-used ensembling baselines and compare our
LLM-Boost against them. The first baseline is Selection, i.e., selecting the best performing model
out of the GBDT and LLM based on validation performance. The other is Stacking, i.e., appending
LLM scores as additional features for GBDTs.

5 RESULTS

In this section, we only present the aggregate performance statistics detailed next for brevity and
straightforward comparison between methods. Please see Appendix [B] for detailed results for each
combination of models and datasets. We calculate the rank and z-score between the three methods
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for each dataset at each train sample size based on AUC. Then, we average the rank and z-score
across datasets of a given sample size to illustrate the variation in relative performance between the
three methods across training sample sizes.

Average rank is an intuitive metric that is common in the tabular domain. Naturally, a lower value
on this metric is better. However, it is a coarse metric because some models may obtain similar
performance across all datasets and yet have very different average ranks. On the other hand, aver-
aging AUC across datasets conveys the magnitudes by which one model outperforms another, but
this metric can be dominated by a small number of datasets where the performance across models
has a high variance. The average z-score metric described below mitigates this effect.

The z-score for a model on a single dataset is calculated as z = %, the number of standard
deviations a model’s performance is away from the mean computed across all methods considered
in that experience. A negative z-score implies that the given method’s performance is below the
mean of all methods. A higher positive z-score implies better performance. We then average a
single model’s z-scores over all datasets and obtain an average z-score for that model. We include
average rank results in Appendix [C| and we instead focus on average AUC and average z-score in
the main body.

Important Note: Some of the datasets we use for our experiments have less than 250 samples.
Therefore, results we show on dataset sizes larger than 250 are for a subset of these datasets. A
detailed list of experiments for each dataset and size are included in the Appendix

5.1 XGBo0OST + FLAN-T5-XXL

Figure2|showcases our XGBoost + Flan-T5 results. Average z-score, rank and AUC are obtained by
taking the mean of the row-wise z-score, rank and AUC across all 16 datasets at each given sample
size shown in our full results Table|3] Each experiment in our full results is averaged over 5 seeds,
and we show standard errors. We provide more details in Appendix [B] As stated in Section [} the
model selection baseline is based on the validation performance of each model. All final XGBoost,
stacking and LLM-Boost results are obtained after HPO.

As seen in the results graphs, LLM-Boost wins on all of the sample sizes both in terms of average
rank and average z-score. We further reiterate that LLM-Boost significantly outperforms each of the
stand-alone models.

= XGB = FLAN-T5-XXL Selection = Stacking = LLM-Boost = XGB = FLAN-T5-XXL Selection = Stacking = LLM-Boost
! 085
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Figure 2: LLM-Boost, combining Flan-T5-XXL and XGBoost, outperforms ensemble baselines
and the standalone constituent models across dataset sizes. Left: Average z-score based on
AUC performance across dataset sizes for LLM-Boost and other ensemble baselines. Right: AUC
performance across dataset sizes. Important Note: For this experiment we always compute the
LLM Scores using a 3-shot prompt therefore the LLM performance remains constant throughout all
trainset sizes where the extra data is only used for GBDT training. The trough in LLM performance
in the 100-500 trainset range is due to us using only a subset of datasets which have sufficient
training samples, for these data points.
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5.2 XGBooOST + TABPFN

Figure [3]showcases the exceptionally strong performance of XGBoost + TabPFN in our experiments
across all sample sizes. We note that the comparatively stronger performance of LLM-Boost in the
XGBoost + TabPFN experiments may be a consequence of the TabPFN performance being much
stronger than our LLM baselines. Since the learning mechanisms for TabPFN and XGBoost are quite
different and they both have similar performance, it would be easier for them to learn useful tabular
features complementary to each other. The standalone models learning complementary features will
not benefit the selection baseline.

Figure [ gives a direct AUC comparison between boosted and non-boosted Flan-T5-XXL and
TabPFN on our datasets. Our experiments makes it clear that LLM-Boost with TabPFN yields
better results except in the smallest dataset sizes. This is expected as TabPFN can use upto 1000
in-context examples, while the LLM can use far less. Although using a stronger or fine-tuned LLM
might result in better performance, we conclude that using LLM-Boost with TabPFN+XGBoost is
better suited on instances where data sample size is not severely limited. Our full results are given
in Table [l where each experiment is averaged over 5 seeds. For the full-dataset experiments where
the train size is greater than 1000 we randomly select 1000 samples for TabPFN training which is
the standard procedure followed in the original work.

= XGB = TabPFN Selection = Stacking = PFN-Boost = XGB = TabPFN Selection = Stacking = PFN-Boost
1.0 0.85

0.5 /
N m .

10 25 50 100 250 500 Full Dataset 10 25 50 100 250 500 Full Dataset

z - score
AUC

Dataset Size Dataset Size

Figure 3: Performance of LLM-Boost with TabPFN and XGBoost compared to the ensemble
baselines and standalone models Left: Average Z-Score based on AUC performance across dataset
sizes for LLM-Boost and other ensemble baselines. Right: AUC across dataset sizes.
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Figure 4: Direct comparison of LLM-Boost with XGB+Flan-T5-XXL and XGB+TabPFN We
observe from this comparison that boosted TabPFN results are better except for the smallest dataset
size. This is as expected as standalone TabPFN results are far superior to our standalone LLM results
on average.
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5.3 OTHER BOOSTING COMBINATIONS

We perform further LLM-Boost experiments with XGBoost+Llama-3-8B-Instruct and
LightGBM+Flan-T5-XXL, in order to study sensitivity of LLM-Boost to the choice of lan-
guage model and GBDT algorithm. Our XGB+Llama-3 experiments can be found in Figure [0
We find it more difficult to design prompts for the Llama-3-8B model to predict exactly the class
label consistently compared to the Flan-T5 model. Therefore, the performance of the Llama-3
model is comparatively lower leading to lower boosted performance gains as well. The LightGBM
experiments yield superior results compared to baselines in the small dataset sizes as seen in Figure
However, the performance gain for LLM-Boost is not as pronounced compared to the XGBoost
experiments.

5.4 ABLATING THE VALUE OF COLUMN HEADERS BY SHUFFLING THEM

LLMs perform well in the few-shot tabular setting as they are able to make use of the column head-
ers (column names), which are valuable metadata that traditional tabular models cannot parse. To
investigate the importance of meaningful column headers for LLM-Boost, we conduct an experi-
ment where we randomly shuffle the column headers between columns and compare performance
degradation. Once the column headers are shuffled, all semantic meaning of a column disappears
because it is no longer corresponding to the appropriate value. We conduct this experiment on the
Adult dataset and we provide our boosted/standalone performance for both shuffled and direct col-
umn headers in Figure[5] We see there that the column headers are especially useful when the dataset
size is small, yet the LLM provides an advantage over XGBoost alone for very small dataset sizes,
even when the column headers are shuffled. As the dataset size grows, eventually all models perform
comparably well.

== LLMonly == LLM only Shuffled = LLM-Boost == LLM-Boost-Shuffled
- XGB

0.95
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Figure 5: This graph demonstrates the change in performance when the column headers are
randomly shuffled. To emulate datasets where column headers contain little or no semantic mean-
ing we shuffle the column headers of the Adult Income Dataset and run LLM-Boost. It can be seen
that even with the suffled column headers the LLM does provide some performance improvement
over XGBoost when the datasize is small. However, LLM-Boost with meaningful column performs
much better.

5.5 MODEL SIZE AND NUMBER OF FEW-SHOT SAMPLES

To test out whether the performance of our method is sensitive to the raw performance of the LLM,
we conduct several experiments to analyze the impact of the LLM model size and the number of
few-shot samples included in the LLM’s prompt. These results can be found in Figure[6] We use
different model sizes from the Flan-T5 model family to maintain as close as possible to an apples
to apples comparison as different models might perform differently depending on how the prompt
is engineered. As expected, both boosted and raw performance are best for the largest model when
the most in-context examples (shots) are given. We do not experiment with higher number of shots
since we run into context length limits for certain datasets.
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Figure 6: The graph on the left illustrates the change in LLM-Boost performance with model size.
The graph on the right showcases the change in LLM-Boost performance with varying number
of few-shots. Boosted and standalone LLM performance is included for both experiments

6 DISCUSSION AND CONCLUSION

In this paper, we show how to combine the benefits of LLMs and GDBTs for data-efficient predic-
tions on tabular datasets. LLM-Boost often outperforms LLMs and GDBTs individually as well as
ensemble baselines, adaptively focusing on the strengths of each method. In this final section, we
close by discussing the limitations of our work as well as promising directions for future research.

When to use LLM-Boost? LLM-Boost showcases competitive performance on classification
datasets with small to medium size training sets. In order to optimally benefit from fusing a lan-
guage model to decision trees, we need semantically meaningful column headers. When such col-
umn headers are unavailable or the dataset is medium-sized or large, our variant combining TabPFN
with GBDTs is highly effective.

Limitations. While we present promising performance on a slice of tabular datasets, we enumerate
several limitations:

* The biggest drawback that restricts LLM-Boost is the necessity for interpretable text de-
scriptors as column headers, namely column headers from which LLMs can extract mean-
ing. Accordingly, some datasets may require prompt engineering.

» Language models are big in parameter count and slow, and they require GPUs for large-
scale use. During training, LLM outputs can be pre-computed and re-used across all GBDT
training runs with various hyperparameter configurations. After this one-time cost, training
is no more expensive than GBDT training. For very large datasets, pre-computing LLM
outputs may become a non-trivial cost.

e Common GBDT libraries are implemented in C++, accompanied by APIs in other lan-
guages such as Python. Maintaining high-speed training while simultaneously modifying
the code for LLM-Boost may require implementing LLM-Boost in the original C++.

Future work. We finally present several promising directions for future research:

* Data scientists interact with tabular datasets, analyzing variable names, for example to
engineer new features, and employing tools such as gradient-boosted decision trees. Our
work is a first step towards automating this predictive modeling pipeline. A next step is to
expand the capabilities of LLMs, for a full stack of data science functionality such as data
visualization, hypothesis testing, and even suggesting valuable features to use.

* We only use three-shot prompting for the language model, but long-context methods may
unlock the ability to feed far more training samples into the LLM. This possibility raises
the question, will we still need XGBoost as LLMs gain the capability to ingest more data?

* Our boosting mechanism is model agnostic and may be expanded with other high perform-
ing tabular architectures such as Tabnet (Arik & Pfister, 2019) SAINT (Somepalli et al.|
2021), NODE (Popov et al.,|2019) and FT-Transformer (Gorishniy et al.,2021) in addition
to LLMs.
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A HYPER-PARAMETER SEARCH SPACES

Table 2: Hyper-parameter search spaces for our XGBoost and LightGBM experiments.

XGBoost
Parameter Distribution LightGEM
Max depth UniformInt[3, 10] Parameter Distribution
Min child weight LogUniform[le-8, 1e5] Num leaves UniformInt[2, 256]
Subsample Uniform[0.5, 1] Feature fraction Uniform[0.4, 1]
Learning rate LogUniform[le-5, 1] Bagging fraction Uniform[0.4, 1]
Col sample by level ~ Uniform|[0.5, 1] Bagging frequency  UniformInt[1, 7]
Col sample by tree ~ Uniform[0.5, 1] Min child samples ~ UniformInt[5, 100]
Gamma {0, LogUniform[le-8,1e2]} = LambdaLl {0, LogUniform[1le-8, 10]}
Lambda {0, LogUniform[le-8,1e2]} = Lambda L2 {0, LogUniform[le-8, 10]}
Alpha {0, LogUniform[le-8,1e2]} =~ Num boost rounds 100
Num boost rounds 20 Scale {0, LogUniform[le-4, le4]}
Scale {0, LogUniform[le-4, 1e4]} # Tterations 100
# Iterations 100

B FULL RESULTS

Full experimental results can be found here. Each AUC result is obtained after 130 rounds of HPO.
For LLM-Boost we perform HPO on the GBDT parameters for 100 Optuna (Akiba et al., [2019)
trials followd by an additional 30 trias for the scaling paramater. For the selection and stacking
baselines we perform HPO for 130 Optuna trials on the GBDT parameters. For each experiment
each we randomly sub-sample train/val splits as well as sample HPO initilization over 5 different
seeds and report mean AUC with standard error. However, we do not perform LLM inference over
multiple few-shot train samples due to computational costs. Summarised Averaged row-wise rank
and z-score metrics as well as Average AUC is given in
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Table 3: Full accuracy results for our XGBoost + Flan-T5-XXL experiments

Dataset ];Ejlen s\i,ji ;Fle;t XGB = Error LLM (Bes?ieGC;;’IerM) Stacking =+ Error LLM Ii%ousrts)i Error
10 10 836 0.6439 +£0.0407 0.7528 0.6734 0.6438 +0.0372 0.6753 + 0.0496
25 25 836 0.6996 +0.0259 0.7528 0.7033 0.6976 +0.0235 0.7250 + 0.0071
50 50 836 0.7534 £0.0047 0.7528 0.7257 0.7515 £ 0.0041 0.7638 + 0.0054
Abalone 100 100 836  0.7757£0.0082  0.7528 0.7779 0.7802 + 0.0067 0.7761 + 0.0069
250 250 836  0.8136+£0.0006 0.7528 0.8146 0.8099 + 0.0016 0.8142 + 0.0004
500 500 836 0.8280+0.0014 0.7528 0.8286 0.8224 +0.0012 0.8284 +0.0012
1336 334 836  0.8469 £0.0003 0.7528 0.8468 0.8406 + 0.0014 0.8469 + 0.0005
10 10 1000 0.6998 £0.0119  0.8058 0.7411 0.7253 +0.0235 0.8093 + 0.0078
25 25 1000 0.7764 +£0.0046  0.8058 0.7719 0.8177 +£0.0191 0.8413 + 0.0075
50 50 1000 0.7997 +0.0085 0.8058 0.8088 0.8271 +0.0109 0.8431 + 0.0056
Adult 100 100 1000 0.8430 +0.0062  0.8058 0.8427 0.8486 + 0.0033 0.8671 + 0.0026
250 250 1000 0.8680 +0.0019 0.8058 0.8683 0.8739 +0.0030 0.8796 + 0.0011
500 500 1000 0.8874 +0.0007  0.8058 0.8888 0.8885 +0.0019 0.8931 + 0.0010
15628 3907 1000 0.9313 £0.0006 0.8058 0.9318 0.9314 + 0.0004 0.9314 + 0.0005
10 10 114 09789 +£0.0031 0.9721 0.9762 0.9790 + 0.0034 0.9822 + 0.0019
25 25 114 0.9804 £0.0016 0.9721 0.9806 0.9789 +0.0033 0.9829 + 0.0020
BreastCancer 50 50 114 0.9783 £0.0015 0.9721 0.9777 0.9756 + 0.0057 0.9792 + 0.0016
100 100 114 0.9807 £0.0023 0.9721 0.9802 0.9803 + 0.0025 0.9822 + 0.0021
181 45 114 0.9871 £0.0009 0.9721 0.9864 0.9823 + 0.0020 0.9871 + 0.0009
10 10 1000 0.6848 +£0.0206 0.7155 0.7110 0.6784 +0.0271 0.7257 + 0.0189
25 25 1000 0.7614+0.0111 0.7155 0.7634 0.7558 +0.0120 0.7730 + 0.0108
50 50 1000 0.7868 +£0.0047 0.7155 0.7831 0.7730 + 0.0038 0.7906 + 0.0074
Churn 100 100 1000 0.7903 £0.0048 0.7155 0.7956 0.7934 + 0.0055 0.7928 + 0.0052
250 250 1000 0.8076 +0.0020 0.7155 0.8083 0.8076 +0.0017 0.8082 +0.0021
500 500 1000 0.8180+0.0005 0.7155 0.8171 0.8122 +0.0024 0.8188 + 0.0008
2253 563 1000 0.8278 +0.0005 0.7155 0.8269 0.8237 + 0.0020 0.8275 + 0.0006
10 10 61 0.8195+0.0161 0.8621 0.8195 0.8362 + 0.0090 0.8259 +0.0139
HeartDisease 25 25 61 0.8855+0.0089 0.8621 0.8812 0.8964 + 0.0068 0.8994 + 0.0033
o 50 50 61  0.9116+0.0081 0.8621 09117 0.9219 + 0.0026 0.9206 + 0.0044
96 24 61 0.9372+0.0040 0.8621 0.9386 0.9499 + 0.0018 0.9382 +0.0034
10 10 99 0.2509 £0.0398  0.5540 0.4930 0.2504 + 0.0406 0.5331 +0.0304
25 25 99 0.5241£0.0358 0.5540 0.5197 0.2596 + 0.0331 0.5452 +0.0275
Sharktank 50 50 99  0.5184£0.0114 0.5540 0.5325 0.5160 + 0.0205 0.5370 + 0.0154
100 100 99 0.4908 £0.0173  0.5540 0.4872 0.4832 + 0.0081 0.5113 £ 0.0062
316 79 99 0.5213£0.0036 0.5540 0.5130 0.5164 +0.0048 0.5213 + 0.0036
10 10 138 0.8037 £0.0400 0.8330 0.8071 0.7950 + 0.0350 0.8432 +0.0121
25 25 138 0.9018 +0.0064 0.8330 0.9063 0.9031 + 0.0054 0.9061 +0.0041
Statlog 50 50 138 0.9163 £0.0038  0.8330 0.9157 0.9091 £ 0.0065 0.9161 + 0.0037
100 100 138 0.9300+0.0046 0.8330 0.9292 0.9280 + 0.0036 0.9300 + 0.0046
250 250 138 0.9323+0.0024 0.8330 0.9300 0.9281 +0.0027 0.9324 +0.0023
446 111 138 0.9191+0.0017 0.8330 0.9204 0.9231 + 0.0024 0.9193 +0.0017
10 10 36 0.9853+0.0027 0.6304 0.9834 0.9854 + 0.0027 0.9789 + 0.0059
Wine 25 25 36 0.9988 +£0.0006 0.6304 0.9987 0.9980 + 0.0009 0.9988 + 0.0006
50 50 36 0.9999 +£0.0001 0.6304 0.9998 0.9998 + 0.0001 0.9999 + 0.0001
113 28 36 0.9999 +0.0000 0.6304 1.0000 1.0000 + 0.0000 0.9999 + 0.0000
10 10 9043 0.5559+0.0222  0.6915 0.6610 0.5599 +0.0323 0.6646 + 0.0137
25 25 9043 0.5968 +£0.0424  0.6915 0.6022 0.6046 + 0.0395 0.6446 + 0.0573
50 50 9043  0.6329+0.0286 0.6915 0.6470 0.6578 +0.0303 0.6657 + 0.0366
Bank 100 100 9043 0.6756 £0.0211  0.6915 0.6752 0.6517 +£0.0198 0.6836 + 0.0192
250 250 9043 0.7232+0.0171 0.6915 0.7208 0.7175 +£0.0138 0.7419 + 0.0194
500 500 9043 0.7392+0.0114 0.6915 0.7431 0.7252+0.0118 0.7257 +0.0098
28934 7233 9043  0.7901 £0.0008 0.6915 0.7830 0.7863 + 0.0016 0.7905 + 0.0010
10 10 150 0.5220+0.0115 0.5113 0.5207 0.5159 + 0.0076 0.5236 +0.0117
25 25 150 0.5205+0.0283 0.5113 0.5142 0.4989 +0.0228 0.5262 + 0.0294
Blood 50 50 150 0.5268 £0.0259 0.5113 0.5289 0.5242 +0.0198 0.5300 + 0.0262
100 100 150  0.5295+0.0138 0.5113 0.5362 0.5172 +0.0076 0.5295 +0.0138
250 250 150  0.5399+0.0079 0.5113 0.5404 0.5425 +0.0032 0.5449 + 0.0067
478 119 150 0.5343+0.0022 0.5113 0.5399 0.5492 + 0.0045 0.5380 + 0.0009
10 10 4128 0.7490 £0.0308 0.7972 0.7844 0.7634 +£0.0193 0.7965 + 0.0225
25 25 4128 0.8278 £0.0057 0.7972 0.8193 0.8269 +0.0037 0.8289 + 0.0064
50 50 4128 0.8370+0.0122 0.7972 0.8310 0.8340 +0.0102 0.8405 + 0.0134
CalHousing 100 100 4128 0.8623 +0.0040 0.7972 0.8640 0.8571 +0.0020 0.8635 +0.0038
250 250 4128 0.8853+0.0026 0.7972 0.8864 0.8797 + 0.0044 0.8862 + 0.0033
500 500 4128 0.8971 £0.0039 0.7972 0.8970 0.8897 + 0.0066 0.8983 + 0.0036
13209 3302 4128 0.9198 £0.0010 0.7972 0.9164 0.9155 +0.0019 0.9203 + 0.0008
25 25 346 0.7266 £ 0.0097  0.7461 0.7146 0.6739 +0.0196 0.7892 + 0.0141
Car 50 50 346 0.7750 £0.0085  0.7461 0.7799 0.6356 + 0.0826 0.7958 + 0.0142
100 100 346  0.8354+0.0076 0.7461 0.8189 0.7083 + 0.0302 0.8567 + 0.0085
1089 272 346 0.8730£0.0036 0.7461 0.8799 0.8390 + 0.0024 0.8720 + 0.0042
10 10 200 0.5845+0.0289 0.2730 0.5827 0.5830 + 0.0341 0.5845 + 0.0289
25 25 200 0.6451+£0.0146 0.2730 0.6467 0.6649 + 0.0100 0.6398 +0.0167
Credit-g 50 50 200 0.6641+0.0153 0.2730 0.6695 0.6719 + 0.0222 0.6641 +0.0153
100 100 200 0.7088 +£0.0123  0.2730 0.7124 0.7263 + 0.0110 0.7088 +0.0123
250 250 200 0.7420+0.0081 0.2730 0.7460 0.7487 % 0.0069 0.7393 +0.0090
640 160 200 0.7777 £0.0017  0.2730 0.7757 0.7783 + 0.0008 0.7780 + 0.0019
10 10 154 0.6759 £0.0391  0.6386 0.6800 0.6691 + 0.0412 0.6748 +0.0372
25 25 154 0.7609 +0.0126  0.6386 0.7635 0.7411 +0.0137 0.7497 + 0.0096
Diabetes 50 50 154 0.7900 £0.0071  0.6386 0.7900 0.7743 +0.0062 0.7829 + 0.0083
100 100 154 0.8097 £0.0017 0.6386 0.8094 0.7900 + 0.0075 0.8062 + 0.0021
250 250 154 0.8221+0.0047 0.6386 0.8224 0.7951 +0.0034 0.8130 + 0.0040
491 122 154 0.8349+0.0031 0.6386 0.8365 0.8170 % 0.0040 0.8341 +0.0034
10 10 184 0.7910£0.0129  0.5955 0.7930 0.7828 +£0.0147 0.7888 +0.0149
25 25 184 0.8209+£0.0119 0.5955 0.8160 0.8088 +0.0149 0.8159 +0.0122
Heart 50 50 184 0.8332£0.0096 0.5955 0.8311 0.8266 + 0.0086 0.8327 + 0.0096
100 100 184  0.8405+0.0058 0.5955 0.8414 0.8398 +0.0078 0.8397 +0.0058
250 250 184  0.8553+0.0028 0.5955 0.8526 0.8426 + 0.0028 0.8526 + 0.0034
587 146 184  0.8719+0.0023 0.5955 0.8713 0.8609 + 0.0035 0.8713 + 0.0021
10 10 8964 0.6551+0.0243 0.5659 0.6352 0.6611 + 0.0262 0.6372 +0.0237
25 25 8964 0.7127+0.0157 0.5659 0.7112 0.7213 £ 0.0129 0.7205 +0.0141
50 50 8964 0.7643 £0.0078  0.5659 0.7696 0.7659 + 0.0083 0.7690 + 0.0078
Jungle 100 100 8964 0.8070 +0.0054  0.5659 0.8063 0.8004 + 0.0032 0.8077 + 0.0057
250 250 8964 0.8182+0.0056 0.5659 0.8204 0.8254 + 0.0062 0.8174 + 0.0054
500 500 8964 0.8491 £0.0039 0.5659 0.8468 0.8378 +0.0029 0.8251 +0.0037
28684 7171 8964 0.9038 £0.0031 0.5659 0.9082 0.8995 +0.0032 0.9040 + 0.0029
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Table 4: Full accuracy results for our XGBoost + Llama-3-8B-Instruct experiments

Dataset ];Ejlen s\i,ji ;Fle;t XGB = Error LLM (Bes?ieGC;;’IerM) Stacking =+ Error LLM Ii%ousrts)i Error
10 10 836 0.6471£0.0412 0.7294 0.6442 0.6437 £0.0515 0.6712 + 0.0276
25 25 836 0.6970 +0.0260 0.7294 0.7042 0.6929 +0.0245 0.7415 + 0.0087
50 50 836 0.7512+0.0052 0.7294 0.7507 0.7303 £ 0.0097 0.7644 + 0.0039
Abalone 100 100 836  0.7795+0.0071 0.7294 0.7786 0.7595 +0.0126 0.7832 + 0.0073
250 250 836 0.8132+0.0012 0.7294 0.8136 0.7939 + 0.0039 0.8132 +0.0016
500 500 836 0.8296 +0.0004 0.7294 0.8280 0.8127 +0.0026 0.8298 + 0.0006
1336 334 836  0.8466 +0.0004 0.7294 0.8468 0.8399 +0.0015 0.8465 + 0.0003
10 10 1000 0.6882+0.0176 0.7059 0.7030 0.7027 +£0.0162 0.7303 + 0.0149
25 25 1000 0.7799 £0.0080 0.7059 0.7754 0.7864 + 0.0120 0.7968 + 0.0136
50 50 1000 0.8116+0.0108 0.7059 0.8113 0.8001 + 0.0094 0.8062 +0.0133
Adult 100 100 1000 0.8436 +0.0057 0.7059 0.8445 0.8310 +0.0071 0.8415 +0.0080
250 250 1000 0.8702 +0.0024 0.7059 0.8706 0.8628 +0.0021 0.8698 + 0.0024
500 500 1000 0.8882 +0.0005 0.7059 0.8890 0.8805 +0.0015 0.8878 + 0.0007
15628 3907 1000 0.9316 +0.0003 0.7059 0.9311 0.9321 + 0.0008 0.9316 + 0.0006
10 10 114 09753 £0.0051 0.9346 0.9799 0.9733 +0.0040 0.9767 +0.0051
25 25 114 0.9802+0.0015 0.9346 0.9775 0.9792 +0.0029 0.9832 + 0.0023
BreastCancer 50 50 114 0.9791 £0.0015 0.9346 0.9733 0.9796 + 0.0008 0.9808 + 0.0008
100 100 114 0.9801+0.0018 0.9346 0.9800 0.9790 + 0.0036 0.9824 + 0.0020
181 45 114 0.9859 £0.0005 0.9346 0.9873 0.9836 +0.0012 0.9884 + 0.0003
10 10 1000 0.6789 +0.0259 0.5323 0.6824 0.6919 + 0.0200 0.6802 +0.0261
25 25 1000 0.7669 +£0.0143  0.5323 0.7669 0.7549 + 0.0100 0.7659 +0.0141
50 50 1000 0.7826 +0.0048 0.5323 0.7861 0.7826 + 0.0042 0.7802 + 0.0064
Churn 100 100 1000  0.7928 +£0.0061 0.5323 0.7932 0.7874  0.0041 0.7913 + 0.0058
250 250 1000 0.8093 +0.0018 0.5323 0.8107 0.8083 +0.0018 0.8091 +0.0019
500 500 1000 0.8177+0.0011 0.5323 0.8184 0.8133 £0.0015 0.8175+0.0011
2253 563 1000 0.8281 +0.0003 0.5323 0.8271 0.8261 +0.0015 0.8281 + 0.0002
10 10 61 0.8161+0.0066 0.8685 0.8181 0.8242 +0.0117 0.8562 + 0.0119
HeartDisease 25 25 61 0.8977+0.0062 0.8685 0.8906 0.8989 +0.0126 0.9087 + 0.0078
o 50 50 61 0.9072 £0.0058 0.8685 0.9132 0.9198 + 0.0055 0.9075 +0.0041
96 24 61 0.9352+0.0030 0.8685 0.9410 0.9433 + 0.0024 0.9347 +0.0026
10 10 99 0.4938 £0.0401 0.4941 0.4949 0.4925 +0.0395 0.4648 +0.0254
25 25 99 0.5236£0.0338 0.4941 0.5235 0.5196 + 0.0343 0.5181 +0.0286
Sharktank 50 50 99 0.5310£0.0141 0.4941 0.5183 0.5240 +0.0129 0.5310 + 0.0150
100 100 99 0.4940 £0.0154 0.4941 0.5094 0.4953 +£0.0152 0.5022 + 0.0032
316 79 99 0.5149 £0.0057 0.4941 0.5159 0.5259 + 0.0056 0.5132 +0.0062
10 10 138 0.7966 +0.0404  0.6618 0.7999 0.7948 + 0.0381 0.7891 + 0.0387
25 25 138 0.9056 +0.0057 0.6618 0.9022 0.8955 +0.0075 0.9058 + 0.0057
Statlog 50 50 138 0.9157 £0.0021 0.6618 0.9144 0.9073 +0.0073 0.9157 + 0.0021
100 100 138 0.9270 +0.0058 0.6618 0.9264 0.9195 + 0.0062 0.9276 + 0.0060
250 250 138 0.9283+0.0020 0.6618 0.9293 0.9313 +0.0019 0.9283 +0.0019
446 111 138 0.9246 +0.0006 0.6618 0.9244 0.9231 +0.0029 0.9246 + 0.0006
10 10 36 0.9856+0.0017 0.7416 0.9857 0.9840 + 0.0029 0.9871 + 0.0007
Wine 25 25 36 0.9985+0.0004 0.7416 0.9987 0.9983 + 0.0007 0.9987 + 0.0004
50 50 36 0.9998 £0.0001 0.7416 0.9997 0.9997 + 0.0002 0.9999 + 0.0001
113 28 36 1.0000 +0.0000 0.7416 1.0000 1.0000 + 0.0000 1.0000 + 0.0000
10 10 9043 0.5494+0.0372 0.5867 0.5998 0.5518 +0.0339 0.5963 +0.0243
25 25 9043 0.6081+0.0279 0.5867 0.6252 0.5905 +0.0307 0.6142 +0.0225
50 50 9043 0.6379+0.0319 0.5867 0.6342 0.6196 +0.0310 0.6404 + 0.0329
Bank 100 100 9043 0.6415+0.0168 0.5867 0.6631 0.6606 +0.0171 0.6601 +0.0187
250 250 9043  0.7187 £0.0196  0.5867 0.7129 0.7232 + 0.0152 0.7202 +0.0188
500 500 9043 0.7471 £0.0147  0.5867 0.7435 0.7526 + 0.0123 0.7476 + 0.0145
28934 7233 9043 0.7858 £0.0023  0.5867 0.7792 0.7859 + 0.0035 0.7856 + 0.0025
10 10 150 0.5223 £0.0120  0.5039 0.5271 0.5152 +0.0138 0.5226 +0.0120
25 25 150 0.5171 £0.0263  0.5039 0.5131 0.5181 +0.0261 0.5207 +0.0238
Blood 50 50 150 0.5311£0.0234  0.5039 0.5230 0.5289 + 0.0226 0.5347 +0.0245
100 100 150  0.5288+0.0133 0.5039 0.5284 0.5301 + 0.0140 0.5290 + 0.0126
250 250 150 0.5374+0.0114  0.5039 0.5424 0.5404 + 0.0053 0.5343 £0.0116
478 119 150  0.5397 +£0.0016 0.5039 0.5322 0.5243 +0.0058 0.5258 +0.0076
10 10 4128 0.7645+0.0186 0.7076 0.7569 0.7542 +0.0229 0.7199 +0.0348
25 25 4128 0.8269+0.0062 0.7076 0.8281 0.8153 +£0.0016 0.8101 +£0.0129
50 50 4128 0.8292+0.0153 0.7076 0.8329 0.8231 £0.0105 0.8279 +£0.0125
CalHousing 100 100 4128 0.8650 +0.0052 0.7076 0.8622 0.8491 +0.0028 0.8652 + 0.0053
250 250 4128 0.8828 £0.0040 0.7076 0.8849 0.8692 + 0.0055 0.8817 +0.0034
500 500 4128 0.9001 £0.0047 0.7076 0.8986 0.8856 + 0.0058 0.8985 + 0.0043
13209 3302 4128 0.9184+0.0013 0.7076 0.9204 0.9101 +0.0034 0.9188 + 0.0006
25 25 346 0.7275+0.0050 0.6760 0.7210 0.7279 +0.0291 0.7792 + 0.0122
Car 50 50 346 0.7836 +0.0072  0.6760 0.7644 0.7598 + 0.0421 0.8207 + 0.0034
100 100 346  0.8318+£0.0071 0.6760 0.8162 0.8361 +0.0097 0.8397 +£0.0118
1089 272 346 0.8760 £0.0018 0.6760 0.8720 0.8562 + 0.0024 0.8803 + 0.0025
10 10 200 0.5724 £0.0246  0.6317 0.5843 0.5778 +0.0284 0.6111 £ 0.0176
25 25 200 0.6413+0.0134 0.6317 0.6432 0.6442 +0.0151 0.6458 + 0.0151
Credit-g 50 50 200 0.6651+0.0164 0.6317 0.6658 0.6631 +0.0171 0.6687 + 0.0184
100 100 200 0.7058 £0.0095 0.6317 0.7101 0.7013 +0.0128 0.7111 + 0.0097
250 250 200 0.7436 +£0.0069 0.6317 0.7452 0.7379 +0.0088 0.7477 £ 0.0081
640 160 200 0.7763 £0.0032 0.6317 0.7756 0.7717 +0.0029 0.7756 + 0.0029
10 10 154 0.6846 £0.0369 0.8042 0.6856 0.6955 +0.0453 0.7700 + 0.0250
25 25 154 0.7704 £0.0101  0.8042 0.7587 0.7795 +0.0108 0.8081 + 0.0065
Diabetes 50 50 154 0.7867 £0.0086  0.8042 0.7890 0.8052 + 0.0057 0.8076 + 0.0117
: 100 100 154 0.8109 £0.0034 0.8042 0.8082 0.8129 +0.0043 0.8254 +0.0033
250 250 154 0.8232+0.0052 0.8042 0.8249 0.8283 + 0.0041 0.8277 +£0.0033
491 122 154  0.8316+0.0015 0.8042 0.8329 0.8333 +0.0023 0.8328 + 0.0020
10 10 184 0.7898 £0.0114  0.6521 0.7927 0.7849 +0.0136 0.7654 +0.0281
25 25 184 0.8185+0.0129 0.6521 0.8164 0.8125 +0.0086 0.8256 + 0.0081
Heart 50 50 184 0.8315£0.0086 0.6521 0.8311 0.8268 +0.0077 0.8303 + 0.0063
100 100 184  0.8371+£0.0099 0.6521 0.8436 0.8274 + 0.0034 0.8370 +0.0127
250 250 184  0.8506 +0.0029 0.6521 0.8513 0.8415 +0.0045 0.8518 + 0.0027
587 146 184  0.8695+0.0020 0.6521 0.8696 0.8536 + 0.0037 0.8676 + 0.0025
10 10 8964 0.6495+0.0272 0.4789 0.6506 0.6525 + 0.0251 0.5869 +0.0415
25 25 8964 0.7064 £0.0189 0.4789 0.7100 0.7016 +0.0182 0.6754 +0.0279
50 50 8964 0.7622 +0.0057 0.4789 0.7661 0.7451 £0.0139 0.7577 £0.0071
Jungle 100 100 8964 0.8067 +0.0057 0.4789 0.8029 0.7930 + 0.0057 0.7980 + 0.0103
250 250 8964 0.8215+0.0059 0.4789 0.8249 0.8227 + 0.0054 0.8217 +0.0057
500 500 8964 0.8407 £0.0055 0.4789 0.8406 0.8358 +0.0041 0.8426 + 0.0052
28684 7171 8964 0.9096 +0.0032  0.4789 0.9050 0.8968 +0.0014 0.9087 + 0.0036
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Table 5: Full AUC results for our LightGBM + Flan-T5-XXL experiments

Train ~ Val  Test Selection . LLM-Boost =+ Error
Dataset size size  size XGB = Error LLM (Best XGB/LLM) Stacking + Error (Ours)
10 10 836 0.5046 +0.0072  0.7528 0.7022 0.5177 +£0.0173 0.7329 +0.0084
25 25 836 0.7060 +0.0270  0.7528 0.7027 0.7021 +£0.0176 0.7075 + 0.0211
50 50 836 0.7567 +0.0048 0.7528 0.7528 0.7473 +0.0043 0.7623 + 0.0058
Abalone 100 100 836  0.7780+0.0080 0.7528 0.7782 0.7776 + 0.0067 0.7759 +0.0079
250 250 836  0.8165+0.0007 0.7528 0.8160 0.8108 +0.0011 0.8164 + 0.0012
500 500 836  0.8307 £0.0009 0.7528 0.8304 0.8264 + 0.0016 0.8294 +0.0014
1336 334 836  0.8489+0.0006 0.7528 0.8491 0.8441 % 0.0002 0.8486 + 0.0005
10 10 1000 0.5515+0.0245 0.8058 0.7694 0.5419 + 0.0260 0.8070 + 0.0013
25 25 1000 0.7641 +0.0066 0.8058 0.7713 0.8296 + 0.0054 0.8448 + 0.0085
50 50 1000 0.7415+0.0095 0.8058 0.7493 0.8138 +0.0055 0.8334 + 0.0049
Adult 100 100 1000 0.7421 £0.0155 0.8058 0.7475 0.8168 +0.0013 0.8203 + 0.0096
250 250 1000 0.8456 +0.0068 0.8058 0.8540 0.8515 +0.0030 0.8595 + 0.0021
500 500 1000 0.8903 +0.0017 0.8058 0.8921 0.8829 +0.0021 0.8938 + 0.0009
15628 3907 1000 0.9336 +0.0001  0.8058 0.9337 0.9333 +0.0002 0.9338 + 0.0001
25 25 114 0.9803+0.0012 0.9721 0.9785 0.9810 + 0.0035 0.9829 +0.0017
BreastCancer 50 50 114 0.9757 £0.0038  0.9721 0.9785 0.9808 + 0.0011 0.9798 +0.0021
100 100 114 09788 +0.0025 0.9721 0.9799 0.9824 +0.0012 0.9827 +0.0017
181 45 114 0.9873 £0.0006 0.9721 0.9874 0.9894 + 0.0004 0.9895 + 0.0008
10 10 1000 0.5548 £0.0341 0.7155 0.7155 0.5658 + 0.0414 0.6968 + 0.0200
25 25 1000 0.7688 £0.0109 0.7155 0.7605 0.7559 +0.0140 0.7812 + 0.0035
50 50 1000 0.7833 +0.0066 0.7155 0.7841 0.7758 + 0.0050 0.7876 + 0.0036
Churn 100 100 1000  0.7942 +0.0046  0.7155 0.7936 0.7914 £ 0.0040 0.7986 + 0.0060
250 250 1000 0.8062 +0.0021 0.7155 0.8079 0.8055 + 0.0020 0.8082 + 0.0019
500 500 1000 0.8171+0.0009 0.7155 0.8191 0.8156 + 0.0007 0.8186 +0.0013
2253 563 1000 0.8286 +0.0001 0.7155 0.8283 0.8266 + 0.0005 0.8286 + 0.0001
10 10 61 0.6103+0.0471 0.8621 0.7516 0.6481 +0.0414 0.8348 + 0.0162
HeartDisease 25 25 61 0.8927+0.0121 0.8621 0.8950 0.9015 + 0.0108 0.8996 + 0.0092
; 50 50 61 0.9229 +0.0057 0.8621 0.9276 0.9283 +0.0043 0.9299 + 0.0047
96 24 61 0.9402+0.0010 0.8621 0.9402 0.9488 + 0.0009 0.9408 + 0.0008
10 10 99 0.4986 £0.0033  0.5540 0.4978 0.5003 + 0.0050 0.5356 + 0.0109
25 25 99 0.5238 £0.0300 0.5540 0.5264 0.5265 +0.0305 0.5395 +0.0194
Sharktank 50 50 99 0.5240£0.0122 0.5540 0.5326 0.5101 +0.0250 0.5524 +0.0162
100 100 99 0.4907 £0.0245 0.5540 0.4949 0.4878 +£0.0212 0.4935 +0.0254
316 79 99 0.5348 £0.0014  0.5540 0.5364 0.5140 + 0.0025 0.5348 +0.0014
10 10 138 0.5448 £0.0448  0.8330 0.6602 0.6375 +0.0702 0.8240 = 0.0090
25 25 138 0.8812+0.0130 0.8330 0.8923 0.8737 +0.0073 0.8826 +0.0129
Statlog 50 50 138 0.8924 £0.0056  0.8330 0.8998 0.8781 +0.0110 0.8932 + 0.0062
100 100 138 0.9146+0.0052 0.8330 0.9090 0.9087 + 0.0060 0.9145 + 0.0052
250 250 138 0.9224+0.0028 0.8330 0.9240 0.9239 +0.0016 0.9223 +0.0027
446 111 138 0.9147 £0.0010 0.8330 0.9162 0.9187 + 0.0020 0.9144 + 0.0009
10 10 36 0.5000 +0.0000 0.6304 0.6304 0.3865 + 0.0000 0.6372 + 0.0000
Wine 25 25 36 0.9984 +0.0003 0.6304 0.9982 0.9978 +0.0007 0.9983 + 0.0004
50 50 36 0.9998 +£0.0001  0.6304 0.9998 0.9998 + 0.0001 0.9998 + 0.0000
113 28 36 1.0000 +0.0000 0.6304 1.0000 1.0000 + 0.0000 1.0000 + 0.0000
10 10 9043  0.5000 +0.0000 0.6915 0.6915 0.5000 + 0.0000 0.6768 +0.0147
25 25 9043 0.6004 +£0.0354 0.6915 0.6591 0.6131 +£0.0412 0.6561 +0.0061
50 50 9043 0.6415+0.0361 0.6915 0.6492 0.6570 +0.0383 0.6625 + 0.0410
Bank 100 100 9043 0.6967 +0.0237  0.6915 0.7125 0.6778 +0.0240 0.7040 + 0.0210
250 250 9043 0.7320£0.0105 0.6915 0.7366 0.7609 + 0.0096 0.7383 +0.0084
500 500 9043  0.7638 +0.0040 0.6915 0.7640 0.7690 + 0.0099 0.7688 + 0.0055
28934 7233 9043 0.7838 £0.0008 0.6915 0.7840 0.7879 % 0.0009 0.7868 + 0.0017
10 10 150 0.5334+0.0080 0.5113 0.5216 0.5000 % 0.0000 0.5407 £ 0.0153
25 25 150 0.5154+0.0224 0.5113 0.5263 0.4953 +0.0186 0.5167 +0.0217
Blood 50 50 150 0.5184£0.0204 0.5113 0.5287 0.5057 +£0.0198 0.5256 + 0.0206
100 100 150 0.5362+0.0119 0.5113 0.5308 0.5065 + 0.0050 0.5404 +0.0112
250 250 150  0.5392+0.0122 0.5113 0.5384 0.5367 + 0.0086 0.5416 + 0.0123
478 119 150 0.5410£0.0040 0.5113 0.5329 0.5321 +0.0055 0.5457 + 0.0035
25 25 4128 0.7990 £0.0077  0.7972 0.8013 0.8130 + 0.0047 0.7906 + 0.0186
50 50 4128 0.8270+0.0110 0.7972 0.8317 0.8359 + 0.0063 0.8256 + 0.0092
CalHousing 100 100 4128 0.8647 £0.0041  0.7972 0.8608 0.8575 +0.0044 0.8640 + 0.0042
250 250 4128 0.8832+0.0037 0.7972 0.8854 0.8864 + 0.0029 0.8829 +0.0033
500 500 4128 0.8991 £0.0040 0.7972 0.9011 0.9005 + 0.0060 0.8997 +0.0041
13209 3302 4128 0.9181+0.0030 0.7972 0.9132 0.9229 + 0.0006 0.9180 + 0.0029
25 25 346 0.7855+0.0063 0.7461 0.7882 0.7468 + 0.0106 0.7846 + 0.0154
Car 50 50 346 0.8309 £0.0057 0.7461 0.8380 0.6972 +0.0152 0.8214 +0.0054
100 100 346 0.8689 +0.0062 0.7461 0.8684 0.7914 £ 0.0122 0.8519 + 0.0069
1089 272 346 0.9096 +£0.0040 0.7461 0.9102 0.8518 +0.0030 0.9095 + 0.0036
10 10 200 0.5313+0.0187 0.2730 0.4863 0.5463 + 0.0194 0.4859 + 0.0559
25 25 200 0.6099 +0.0079  0.2730 0.6223 0.6353 + 0.0157 0.6092 + 0.0086
Credit-g 50 50 200  0.5790 +£0.0143  0.2730 0.5791 0.6270 + 0.0107 0.5777 +0.0138
100 100 200 0.6062+0.0156 0.2730 0.6091 0.6848 + 0.0029 0.6060 + 0.0157
250 250 200  0.7000 £0.0064 0.2730 0.7045 0.7223 + 0.0053 0.6998 + 0.0064
640 160 200  0.7808 +0.0029 0.2730 0.7826 0.7829 + 0.0029 0.7808 + 0.0029
10 10 154 0.5270 £0.0081 0.6386 0.6386 0.5330 + 0.0330 0.6192 +0.0145
25 25 154 0.7530 £0.0056  0.6386 0.7649 0.7533 £ 0.0111 0.7427 £0.0144
Diabetes 50 50 154 0.7811+0.0048 0.6386 0.7787 0.7841 + 0.0032 0.7801 + 0.0049
100 100 154 0.7965+0.0075  0.6386 0.8012 0.7933 + 0.0080 0.7975 + 0.0069
250 250 154 0.8281£0.0058 0.6386 0.8254 0.8197 +0.0047 0.8144 + 0.0052
491 122 154 0.8428 £0.0009 0.6386 0.8419 0.8294 + 0.0008 0.8287 +0.0013
10 10 184 0.5284 +£0.0284  0.5955 0.5892 0.6102 + 0.0282 0.6047 +0.0093
25 25 184 0.8130£0.0101 0.5955 0.8162 0.8005 + 0.0070 0.8067 +0.0132
Heart 50 50 184  0.8170 £0.0127  0.5955 0.8170 0.8177 + 0.0110 0.8057 +0.0136
100 100 184  0.8172+0.0125 0.5955 0.8173 0.8182 + 0.0091 0.8130 +£0.0124
250 250 184 0.8557+0.0043 0.5955 0.8562 0.8526 +0.0031 0.8527 +0.0044
587 146 184  0.8731+0.0013 0.5955 0.8775 0.8759 + 0.0006 0.8717 £0.0014
10 10 8964 0.5492+0.0294 0.5659 0.5762 0.5289 +0.0289 0.5920 + 0.0206
25 25 8964 0.7156 £0.0124  0.5659 0.6916 0.7163 + 0.0145 0.6871 +£0.0319
50 50 8964 0.7636 +0.0061 0.5659 0.7718 0.7650 + 0.0114 0.7683 + 0.0063
Jungle 100 100 8964 0.8099 +0.0026  0.5659 0.8062 0.8028 + 0.0042 0.8094 + 0.0024
250 250 8964 0.8259 +0.0046 0.5659 0.8257 0.8279 + 0.0046 0.8259 +0.0047
500 500 8964 0.8433 £0.0050 0.5659 0.8440 0.8436 + 0.0029 0.8435 + 0.0049
28684 7171 8964 0.9123 £0.0015 0.5659 0.9105 0.9039 + 0.0004 0.9126 + 0.0008
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Table 6: Full AUC results for our XGBoost + TabPFN experiments

Dataset ];ri:len S\l/;l :;ezsé XGB = Error LLM (Bes?ie((;ll;/TLM) Stacking + Error LLM B(go];s)i Error
10 10 836 0.6757+0.0040 0.7109 0.6929 0.6985 +0.0193 0.7119 + 0.0309
25 25 836 0.7028 £0.0241  0.7418 0.7028 0.7193 £ 0.0271 0.7438 +0.0214
50 50 836 0.7525+0.0042 0.8073 0.7492 0.7804 + 0.0090 0.8067 + 0.0040
Abalone 100 100 836  0.7813+0.0067 0.8247 0.7786 0.8075 + 0.0069 0.8216 + 0.0050
250 250 836 0.8133+0.0013 0.8421 0.8132 0.8335 +0.0008 0.8403 + 0.0014
500 500 836  0.8277+£0.0013  0.8497 0.8285 0.8432 +0.0018 0.8491 + 0.0009
1336 334 836 0.8454+0.0003 0.8531 0.8454 0.8545 +0.0003 0.8559 + 0.0002
10 10 1000 0.6752 +0.0567 0.6321 0.6791 0.6575 +0.0217 0.6656 + 0.0681
25 25 1000 0.7541+0.0080 0.7153 0.7563 0.7369 +0.0114 0.7491 +0.0140
50 50 1000 0.7571+0.0058 0.7593 0.7469 0.7750 + 0.0108 0.7659 + 0.0078
Adult 100 100 1000  0.7990 +0.0070  0.7947 0.7958 0.7985 + 0.0044 0.8099 + 0.0054
250 250 1000 0.8540 +0.0044  0.8262 0.8515 0.8388 +0.0016 0.8579 +0.0033
500 500 1000 0.8800 £ 0.0057  0.8462 0.8816 0.8659 + 0.0024 0.8820 + 0.0048
15628 3907 1000 0.9234 +0.0018 0.8646 0.9234 0.9238 +0.0012 0.9241 £ 0.0015
10 10 114 0.9790 +0.0030 0.9865 0.9798 0.9788 +0.0042 0.9817 + 0.0020
25 25 114 0.9790 £0.0023  0.9892 0.9815 0.9812 + 0.0026 0.9844 + 0.0040
BreastCancer 50 50 114 0.9768 £0.0032  0.9882 0.9761 0.9765 + 0.0046 0.9796 + 0.0046
100 100 114 0.9800+0.0019  0.9909 0.9804 0.9822 +0.0022 0.9852 + 0.0032
181 45 114 0.9855+0.0006 0.9930 0.9859 0.9877 +0.0017 0.9931 + 0.0000
10 10 1000 0.7122+0.0000 0.6958 0.7151 0.7168 + 0.0000 0.7122 + 0.0000
25 25 1000 0.7663+0.0116 0.7361 0.7658 0.7551 +0.0098 0.7685 + 0.0117
50 50 1000 0.7829 £0.0045 0.7612 0.7854 0.7741 +0.0050 0.7836 + 0.0048
Churn 100 100 1000 0.7944 +0.0043  0.7745 0.7941 0.7825 +0.0035 0.7951 + 0.0045
250 250 1000 0.8052 +0.0028 0.7992 0.8078 0.7994 + 0.0027 0.8071 +0.0031
500 500 1000 0.8165+0.0009 0.8099 0.8168 0.8107 +0.0016 0.8180 + 0.0011
2253 563 1000 0.8282+0.0005 0.8135 0.8278 0.8226 + 0.0007 0.8281 + 0.0005
10 10 61 0.8303+0.0128 0.8506 0.8358 0.8128 +0.0150 0.8362 + 0.0171
HeartDiscase 25 25 61 0.8883+0.0085 0.9075 0.8908 0.8986 + 0.0074 0.9018 + 0.0078
50 50 61 09158 +0.0050 0.9188 0.9181 0.9177 + 0.0066 0.9215 + 0.0036
96 24 61 09399 £0.0032 0.9175 0.9423 0.9181 +0.0025 0.9397 + 0.0028
10 10 99 0.5120£0.0338 0.4984 0.5085 0.5017 +0.0340 0.5122 +0.0359
25 25 99 0.5136£0.0208 0.5046 0.5181 0.5027 +0.0214 0.5118 +0.0209
Sharktank 50 50 99 0.5040 £0.0047 0.5241 0.5052 0.5022 +0.0022 0.5020 + 0.0046
100 100 99 0.4864£0.0175 0.4964 0.4898 0.4988 + 0.0123 0.4877 +0.0163
316 79 99 0.4845£0.0092 0.4564 0.4817 0.4864 + 0.0134 0.4751 +£0.0078
10 10 138 0.8013+0.0388 0.8212 0.8020 0.7946 + 0.0358 0.8099 + 0.0422
25 25 138 0.9048 £0.0057 0.8891 0.9056 0.8975 £ 0.0063 0.9031 + 0.0035
Statlog 50 50 138 0.9123+0.0029 0.9011 0.9150 0.9080 + 0.0065 0.9138 +0.0031
100 100 138 0.9274 £0.0041  0.9135 0.9262 0.9134 £ 0.0068 0.9264 + 0.0047
250 250 138 0.9319+0.0021 0.9195 0.9297 0.9187 +0.0025 0.9267 +0.0014
446 111 138 0.9247 £0.0012 09178 0.9237 0.9177 +0.0007 0.9253 + 0.0007
10 10 36 0.9881+0.0004 0.9923 0.9904 0.9899 +0.0028 0.9934 + 0.0032
Wine 25 25 36 0.9983 +0.0006 0.9989 0.9987 0.9982 + 0.0006 0.9992 + 0.0003
50 50 36 0.9997 +£0.0001  0.9999 0.9998 0.9996 + 0.0001 0.9999 + 0.0000
113 28 36 1.0000 +0.0000 1.0000 1.0000 0.9999 + 0.0000 1.0000 + 0.0000
50 50 9043 0.6762+0.0000 0.7096 0.6673 0.6942 % 0.0000 0.6762 + 0.0000
100 100 9043 0.6651 +£0.0273  0.7140 0.6344 0.6917 + 0.0160 0.6884 + 0.0306
Bank 250 250 9043 0.6908 £0.0164 0.7585 0.6899 0.7202 % 0.0242 0.7180 + 0.0210
500 500 9043 0.7305+0.0131 0.7834 0.7236 0.7662 + 0.0091 0.7730 + 0.0086
28934 7233 9043 0.7820+0.0015 0.7884 0.7820 0.7925 + 0.0019 0.7861 + 0.0022
10 10 150  0.5355+0.0144 0.5578 0.5329 0.5465 + 0.0086 0.5592 +0.0115
25 25 150 0.5208 £0.0279  0.5397 0.5163 0.5217 +0.0227 0.5278 +0.0299
Blood 50 50 150 0.5299 £0.0213  0.5447 0.5307 0.5238 +0.0145 0.5491 + 0.0140
100 100 150  0.5231+0.0155 0.5424 0.5311 0.5342 +0.0137 0.5404 + 0.0108
250 250 150  0.5400 +0.0091 0.5412 0.5393 0.5498 + 0.0050 0.5416 + 0.0077
478 119 150  0.5367 £0.0049 0.5497 0.5350 0.5395 + 0.0032 0.5384 +0.0063
10 10 4128 0.7472+0.0334  0.7972 0.7821 0.7521 +0.0191 0.7998 + 0.0112
25 25 4128 0.8260 +0.0063 0.8744 0.8242 0.8576 + 0.0064 0.8731 + 0.0081
50 50 4128 0.8335+0.0168 0.9002 0.8311 0.8799 +0.0098 0.8938 + 0.0085
CalHousing 100 100 4128  0.8579+0.0050 0.9179 0.8590 0.9002 + 0.0048 0.9147 + 0.0045
250 250 4128 0.8836+0.0046 0.9302 0.8826 0.9241 +0.0030 0.9277 + 0.0029
500 500 4128 0.8977 £0.0067 0.9329 0.8967 0.9296 + 0.0028 0.9283 +0.0028
13209 3302 4128 0.9179+0.0018 0.9374 0.9137 0.9459 + 0.0009 0.9365 +0.0017
10 10 200 0.5729 +0.0368 0.5981 0.5817 0.5754 +0.0383 0.5849 +0.0312
25 25 200 0.6382+0.0146 0.6328 0.6428 0.6408 +0.0136 0.6399 + 0.0086
Credit-g 50 50 200 0.6687 £0.0164  0.6349 0.6649 0.6490 +0.0103 0.6659 + 0.0152
100 100 200  0.7099 +0.0089 0.6721 0.7094 0.6860 % 0.0070 0.7122 + 0.0102
250 250 200 0.7442+0.0084 0.7151 0.7504 0.7181 £ 0.0047 0.7489 + 0.0066
640 160 200 0.7763 +0.0016  0.7485 0.7770 0.7444 + 0.0026 0.7845 + 0.0011
10 10 154 0.6756 £0.0513  0.6971 0.6794 0.6806 + 0.0508 0.6890 + 0.0558
25 25 154 0.7582+0.0160 0.7778 0.7699 0.7814 + 0.0168 0.7728 +0.0218
Diabetes 50 50 154 0.7895 +£0.0082 0.8196 0.7879 0.8091 + 0.0062 0.8004 +0.0122
100 100 154 0.8091 £0.0041 0.8357 0.8103 0.8254 + 0.0048 0.8182 +0.0077
250 250 154 0.8244 £0.0033  0.8431 0.8203 0.8365 + 0.0034 0.8396 + 0.0037
491 122 154 0.8369 +0.0034 0.8530 0.8376 0.8483 + 0.0008 0.8383 +0.0035
10 10 184 0.7289 +0.0667  0.8206 0.8073 0.7096 + 0.0705 0.8141 +0.0148
25 25 184 0.8150+0.0182 0.8372 0.8214 0.8284 +0.0083 0.8334 +0.0117
Heart 50 50 184 0.8406 £0.0078  0.8455 0.8405 0.8400 + 0.0089 0.8485 + 0.0075
100 100 184  0.8490+0.0052 0.8474 0.8470 0.8495 +0.0023 0.8512 + 0.0044
250 250 184 0.8694 +0.0032 0.8633 0.8712 0.8680 + 0.0046 0.8734 + 0.0041
587 146 184  0.8749+0.0013 0.8721 0.8777 0.8734 +0.0013 0.8766 + 0.0006
10 10 8964 0.6638 +0.0141 0.6938 0.6688 0.6761 + 0.0130 0.6683 +0.0170
25 25 8964 0.7098 £0.0130 0.7275 0.7176 0.7257 + 0.0137 0.7169 +£ 0.0138
50 50 8964 0.7613+0.0080 0.7536 0.7590 0.7577 +0.0065 0.7649 + 0.0086
Jungle 100 100 8964 0.8014 +£0.0045 0.7894 0.8038 0.7941 +0.0035 0.8056 + 0.0050
250 250 8964 0.8271+0.0061 0.8151 0.8231 0.8138 +0.0067 0.8336 + 0.0062
500 500 8964 0.8431£0.0062 0.8352 0.8372 0.8354 +0.0037 0.8528 + 0.0057
28684 7171 8964 0.9096 +0.0024  0.8425 0.9078 0.8877 +0.0022 0.9094 + 0.0023
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C SUMMARISED RESULTS
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Figure 7: Average AUC based statistical metrics of XGBoost + Flan-T5-XXL
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Figure 9: Average AUC based statistical metrics of XGBoost + Meta-Llama-8B-Instruct



Under review as a conference paper at ICLR 2025

= LGBM = FLAN-T5-XXL Selection == Stacking = LLM-Boost
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Figure 10: Average AUC based statistical metrics of LightGBM + Flan-T5-XXL
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D COMPARISON WITH TABLLM

Dataset Size LLM-Boost Tabllm
7 057 0.59

8 0.61 0.64

16 062 0.65

bank 32 076 0.64
64 0.79 0.69

128 0.83 0.82

256 0.87 0.87

512 0.88 0.88

Z 0.54 0.58

8 0.58 0.66

16 058 0.66

32 061 0.68

blood 64 066 0.68
128  0.67 0.68

256 0.68 0.70

512 0.68 0.68

7 0.62 0.63

8 0.69 0.60

16 075 0.70

.32 078 0.77
calhousing 0 g 0.77
128 0.84 0.81

256 0.86 0.83

512 0.90 0.86

7 0.61 0.69

8 0.69 0.66

16 065 0.66

creditg 32 068 0.72
64 0.71 0.70

128  0.72 0.71

256 0.73 0.72

512 0.76 0.70

7 0.58 0.61

8 0.63 0.63

16 067 0.69

. 32 074 0.68
diabetes g1 977 0.73
128  0.80 0.79

256 0.80 0.78

512 0.80 0.78

g 0.64 0.76

8 0.77 0.83

16 082 0.87

32 088 0.87

heart 64 0.90 0.91
128 091 0.90

256 0.92 0.92

512 0.92 0.92

7 0.63 0.84

8 0.75 0.84

16 079 0.84

eome 32 084 0.84
64 0.82 0.84

128  0.87 0.86

256 0.87 0.87

512 0.88 0.89

7 0.61 0.64

8 0.62 0.64

16  0.64 0.65

- 32 074 0.71
jungie 64 075 0.78
128 0.82 0.81

256 0.85 0.84

512 0.88 0.89
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E EXAMPLE ILLUSTRATING THE IMPORTANCE OF THE SCALING PARAMETER
FOR LLM-BOOST

For LLM-Boost the predictions of the ensemble consisting of the first 7 trees are,
pred(w) == pTed(l)i) + s %* SCORE 1 m + C,
The following graph highlights the importance of tuning the scaling parameter s for our boosting

framework.
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Figure 11: LLM-Boost with intermediate scaling parameter values may lead to better perfor-
mance than either standalone model. This ablation study demonstrates the change in performance
with the scaling parameter when boosting a pre-fine tuned XGBoost model with Flan-T5 scores. The
x-axis represents the scaling parameter which ranges from 0 to infinity. When the scaling parameter
is close to 0, the performance approaches that of XGBoost, since the seed values in LLM-Boost are
negligent. As the scaling parameter increases, we approach the raw performance of the LLM. We
observe how with LLM-Boost, intermediate scaling values result in better performance than either
the individual LLM or GBDT algorithm.
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