LLMS BOOST THE PERFORMANCE OF DECISION TREES ON TABULAR DATA ACROSS SAMPLE SIZES

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

021

025

026

Paper under double-blind review

Abstract

Large language models (LLMs) perform remarkably well on tabular datasets in zero- and few-shot settings, since they can extract meaning from natural language column headers that describe features and labels. In contrast to LLMs, gradientboosted decision trees (GBDTs) must learn the relationships among columns from scratch, increasing their data requirements. Meanwhile, LLMs are not competitive with GBDTs on medium or large datasets, and their scalability is capped by their limited context lengths. In this paper, we propose LLM-Boost, a simple and lightweight approach for fusing large language models with gradient-boosted decision trees, which enables larger datasets to benefit from the natural language capabilities of LLMs than was previously shown. While matching LLMs at sufficiently small dataset sizes and GBDTs at sufficiently large sizes, LLM-Boost outperforms both standalone models on a wide range of dataset sizes in between. We demonstrate state-of-the-art performance against numerous baselines and ensembling approaches, and we also show how to fuse GBDTs with TabPFN, a recent non-LLM model for in-context learning on tabular data. We find that this combination achieves the best performance on larger datasets. We release our code at https://anonymous.4open.science/r/LLM-Boost-21DD.

028 1 INTRODUCTION

Tabular data, or spreadsheets, constitute a large portion of real-world machine learning problems
 (Borisov et al., 2022). Tabular data comprise (a) columns, each containing a different feature or
 label; (b) rows, each containing an individual data sample; and (c) column headers describing the
 content of each column, often in the form of text.

034 Gradient-boosted decision trees (GBDTs), such as XGBoost (Chen & Guestrin, 2016), LightGBM 035 (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018), have remained the de facto machine learning algorithms for analyzing tabular data over the past decade (McElfresh et al., 2024). They 037 are efficient to train even on a CPU; they achieve competitive performance on a wide variety of 038 datasets and sample sizes'. However, GBDTs have a major drawback: they only ingest the row features in a table and not the column headers, which may contain useful text descriptions. For example, one may not need training data to anticipate that a hospital patient's weight is useful for 040 predicting occurrences of heart disease. Instead of leveraging column headers, from which a human 041 might intuit relationships between columns, GBDTs have to learn these relationships from scratch 042 from the feature values themselves. 043

In contrast to GBDTs, large language models (LLMs) can parse and extract meaning from column headers, enabling them to achieve superior performance to GBDTs on very small tabular datasets
 with interpretable headers (Hegselmann et al., 2023). LLMs can even make accurate zero-shot pre dictions solely by applying natural language understanding to column headers without any training samples at all (Hegselmann et al., 2023). Despite their ability to parse column headers, LLMs are severely limited by their limited context length and high fine-tuning costs. Moreover, LLMs make poor use of large sample sizes, whereas GBDTs scale well to massive datasets.

In this paper, we combine the strengths of gradient-boosted decision trees and large language models
 to build models that simultaneously possess natural language understanding and use column headers,
 additionally scaling to much larger tabular datasets than LLMs could alone. Our method, LLM Boost, uses LLM predictions as a starting point for GBDT algorithms, and then learns the residuals

054 from LLM predictions to the label. This technique allows us to not only use the column headers 055 for a strong prior but also benefits from the strong inductive bias and scalability of decision tree 056 algorithms. In our experiments, LLM-Boost showcases state-of-the-art performance, outcompeting 057 strong baselines including both single models and other ensemble approaches, across a large range of 058 dataset sizes. LLM-Boost excels at small and medium sized datasets that are too large for LLMs yet not large enough that GBDTs do not benefit from column headers. For scenarios where interpretable column headers do not exist, we apply the same boosting approach except swapping out LLMs 060 for TabPFN (Hollmann et al., 2023a), a recent in-context learning model that demonstrates strong 061 performance on small tabular datasets but lacks scalability due to its limited context length. Our 062 boosted TabPFN combination achieves the top performance among all methods we consider outside 063 of the very small dataset regime where our boosted LLMs reign supreme. 064

We summarize our contributions as follows:

- We propose LLM-Boost: a novel yet simple and easy-to-implement boosting mechanism that combines LLMs, which ingest semantic column headers, with GBDTs that can scale to massive datasets.
- We conduct thorough experiments across numerous datasets and sample sizes, comparing to strong baselines. LLM-Boost demonstrates consistently strong performance.
- As additional studies, we show how to fuse TabPFN and GBDTs for performance gains over GBDTs alone across dataset sizes without using column headers.

2 RELATED WORK

065 066

067

068

069

071

072

073 074

075 076

077

090

098

100

2.1 GBDTs for TABULAR DATA

078 Gradient boosted decision tree algorithms such as XGBoost (Chen & Guestrin, 2016), Catboost 079 (Prokhorenkova et al., 2018) and LightGBM (Ke et al., 2017) offer state-of-the-art or near stateof-the-art performance on many tabular tasks (Grinsztajn et al., 2022). Compared to deep learning 081 models with similar performance, GBDTs offer faster training and inference speeds even without 082 GPUs, are easy to tune, and are more straightforward to interpret. However, when compared to deep 083 learning models, tree based models do not generalize as well to diverse unseen data and are not 084 as robust to uninformative features (Grinsztajn et al., 2022). Recently, TabPFN (Hollmann et al., 2023a), a transformer for tabular in-context learning has demonstrated superior performance on 085 small datasets (McElfresh et al., 2024). In our work, we adopt GBDTs as a base model due to their 086 ability to benefit from large volumes of data, and we augment them with TabPFN and LLMs using 087 boosting. 088

2.2 BOOSTING

Boosting is an ensembling technique for combining multiple weak learners to form a single strong prediction model (Freund & Schapire, 1997). Boosting algorithms are sequential processes whereby new learners are progressively added to predict the residual error of the current ensemble until the error becomes sufficiently small. Gradient boosting additionally provides a mechanism to update the new learners using an arbitrary differentiable loss function via gradient descent (Friedman, 2001). Although there are implementation differences in the GBDT algorithms mentioned above, they share the fundamental process of making predictions using an ensemble of weak decision tree models.

099 2.3 LLMs for TABULAR DATA

Large language models (LLMs) are trained on vast and diverse datasets, enabling them to solve a wide variety of problems, especially in zero- or few-shot settings (Hegselmann et al., 2023). Recent works have successfully repurposed LLMs for tabular data related tasks such as table understanding (Chen, 2023), tabular representation learning (Iida et al., 2021; Chen et al., 2023), time series forecasting (Gruver et al., 2023), and quantitative reasoning (Sui et al., 2023).

Repurposing LLMs for tabular prediction tasks requires data serialization and prompt engineering.
 Data serialization is required as LLMs are sequence to sequence models. While direct serialization of the values in a row is possible, converting rows into meaningful human-readable sentences

containing the row values and the column headers together aids the LLM in understanding the rows.
 Prompt engineering methods such as task descriptions and in-context examples as well as fine-tuning the LLM on the tabular prediction task itself can improve the model's domain-specific abilities.

Although approaches such as in-context examples and task specific fine-tuning enable the model to see more tabular examples, they come with drawbacks. LLMs are bottle-necked by context length limits, so it is difficult to provide more than a few in-context examples. Additionally, fine-tuning requires considerable computational overhead, even on simple tabular prediction tasks, and often underperforms alternatives such as GBDTs on larger datasets (Dinh et al., 2022) (Hegselmann et al., 2023).

Alternatively, LLMs have been used for automatic feature engineering in the tabular domain.
Lightweight models, such as GBDTs, that are then trained on the augmented set of features have demonstrated superior performance to those trained on the original features Hollmann et al. (2023b);
Nam et al. (2024). While this approach is computationally efficient at inference-time compared to our proposed procedure which uses the LLM during inference, the LLM typically only utilizes a small fraction of the table's samples to generate new features. Additionally, this approach usually requires powerful API models to be effective Hollmann et al. (2023b).

- 124
- 125 126
- 127 128

129

2.4 TABPFN

TabPFN (Hollmann et al., 2023a) is a transformer based network for tabular data, which is trained
 offline once to approximate Bayesian inference on synthetic datasets drawn from a prior. TabPFN
 performs in-context learning on the whole trainset, which does not require any parameter updates
 and can make predictions for the entire testset in a single forward pass. Superior speed and per formance of TabPFN makes it ideal for datasets with up to 1000 samples. However, dataset size
 limitations remain a significant downside when adopting this method.

Due to the contrasting strengths and weaknesses of tree-based algorithms, traditional deep learning

methods and LLMs for tabular data practitioners often use ensembles for more stable predictions.

The predominant ensemble approach is feature stacking (Levin et al., 2023), where predictions of

one model are used as features for the next. Efficient fusion of different model classes for tabular

2.5 ENSEMBLING DIFFERENT MODEL CLASSES FOR TABULAR DATA

- 136 137
- 138
- 139
- 140
- 141

142 143

144 145

- 146 147
- 148
- 149 150

3 Method

data is still an open problem.

151 152

153 154

In this section, we detail the LLM-Boost algorithm, which is depicted in Figure 1. Broadly, LLM-155 Boost first takes a tabular dataset and extracts LLM scores, or logits, for each row of the table. We 156 then augment a GBDT model by seeding it with the LLM's logits so that it learns the residual to 157 the labels. When we perform this procedure, we must carefully tune a scaling parameter so that the 158 GBDT is not overly reliant on these LLM predictions but simultaneously does not ignore them. Our 159 approach is equivalent to replacing the first tree of the GBDT ensemble with the static prediction of the LLM which need to be pre-computed only once for inference and training. We then fit the 160 GBDT to the residuals and evaluate the combined model's classification performance. We detail our 161 pipeline in the following sections.

Figure 1: How **LLM-Boost works for a toy cat vs. dog classification problem.** Note that here the selected nodes are denoted in light blue. The scaling parameter denoted by S allows for controlling the effect of the LLM predictions on the tree ensemble.

3.1 EXTRACTING LLM SCORES

Our first step is to extract the LLM predictions for each row of a given tabular dataset. We create simple natural language, few-shot prompts utilizing the prompt generation and serialization tools developed by Slack & Singh (2023). The prompts are designed so that an instruction-tuned LLM will output one of the classification labels for each row of data. An example prompt for the UCI adult income dataset is given below.

Example Prompt for the Adult dataset
Given information about a person, you must predict if their income exceeds \$50K/yr. Answer with one of the following: greater than 50K less than or equal to 50K.
Example 1 - workclass: Private , hours per week: 20, sex: Male, age: 17, occupation: Other-service, capital loss: 0, education: 10th, capital gain: 0, marital status: Never-married, relation- ship: Own-child, Answer: less than or equal to 50K
Example 2
Workclass: Private, hours per week: 40, sex: Female, age: 24, occupation: Sales, capital loss: 0, education: Some-college, capital gain: 0, marital status: Never-married, relationship: Own-child, Answer:

<sup>We take the negative of the language modelling loss (mean reduced cross-entropy) of each classification label with the language model output as the language model's un-normalized prediction
score for that class (SCORE_{LLM}). Note that each classification label can contain multiple words.
For example, 'Greater than 50K' and 'Less than or equal to 50K' for the Adult dataset. Thus, the loss calculation can be over a different number of tokens for each class, which is why we use mean</sup>

reduction. The exact loss extraction process will differ slightly depending on whether it is a Masked
 LLM or a Causal LLM. Finally, we center these raw scores around zero by subtracting the mean of
 the scores.

When combining GBDTs and TabPFN, it is straight forward to extract TabPFN scores as the model directly outputs un-normalized raw prediction scores.

221 222 223

220

3.2 BOOSTING LLM SCORES

Once we have the LLM scores, we use them to kickstart a GBDT. GBDT algorithms sequentially construct weak decision trees, where each tree is optimized to fit the residual error of the preceding ensemble. The input to the first tree is usually a constant value for all classes (Chen & Guestrin, 2016). Our approach is simply to replace this constant value with the LLM scores so that the GBDT algorithm learns the residual of the LLM prediction. This method can also be thought of as replacing the first tree in the ensemble with the LLM, during both training and inference. See Figure 1 for a representation of this procedure.

231 232

240 241

242 243

244

245

246

247

248 249

250

3.3 THE SCALING PARAMETER

We use a scaling parameter *s* to scale the LLM scores before passing them on to the GBDT algorithm. By setting the scaling parameter to zero, our method is equivalent to the standalone GBDT; by making the scaling parameter very large, our method outputs predictions arbitrarily close to those of the LLM. In our experiments, we tune this hyper-parameter using Optuna (Akiba et al., 2019). We find that for intermediate values of this hyper-parameter, we can often achieve performance that exceeds both the GBDT and the LLM. Refer to Appendix E for an example.

The predictions of the ensemble consisting of the first *i* trees are now

$$pred_{(0,i)} = pred_{(1,i)} + s * \mathsf{SCORE}_{\mathsf{LLM}} + C,$$

where $pred_{(a,b)}$ is the sum of the predictions of all the trees from a to b; s denotes the aforementioned scaling parameter that can take values $[0, \infty)$; SCORE_{LLM} denotes the raw prediction of the LLM (or TabPFN) which is a vector in the case of classification (See 1); and C denotes a constant which can be added to make SCORE_{LLM} centered around 0 for numerical stability. Each tree i is progressively optimized so that $pred_{(0,i)}$ minimized following the standard gradient boosting procedure.

4 EXPERIMENTS AND ABLATIONS

Our primary experiments focus on boosting XGBoost (Chen & Guestrin, 2016) with Flan-T5-XXL (Chung et al., 2022) and TabPFN (Hollmann et al., 2023a) predictions. The Flan-T5-XXL model is the largest Flan-T5 variant with approximately 11 billion parameters. Flan-T5 models are created by multi-task instruction finetuning the standard T5 encoder-decoder model with chain-of-thought reasoning.

We additionally perform ablations on different GBDT and LLM model combinations as our boosting
framework is agnostic with respect to both the precise LLM and GBDT. In addition to Flan-T5 models, we also include the newly released 8 billion paramter Meta-Llama-3-8B-Instruct (AI@Meta,
2024) model as a drop-in replacement. The Meta-Llama family is a collection of high performing decoder-only language models. Together, we conduct ablations including the GBDTs XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017), and including seeding mechanisms
Flan-T5, Llama3-8B, and TabPFN.

263

264 4.1 DATASETS AND DATA PREPARATION 265

For our experiments, we adopt the UCI (Dua & Graff, 2017) datasets used by Slack & Singh (2023) together with the public tabular datasets used by Hegselmann et al. (2023) (TabLLM). We filter out the datasets which have more than 5 classes from the UCI datasets as few shot LLM performance is generally poor when the number of classes are high. The final 16 datasets used after filtering are listed in Table 1. As described in section 3.1 We prepare the data for few-shot (in-context) inference utilizing the tools developed by Slack & Singh (2023). We sub-sample our datasets to much smaller
sizes so that we have sufficient granularity to bridge the few-shot regime where LLMs/TabPFN excel
at and the large dataset regime where GBDTs are better. We chose the sample sizes 10, 25, 50, 100,
200 and 500 for applicable datasets in addition to running the experiments on the full dataset.

276		
277	UCI	TabLLM
278	Abalone	Bank
279	Adult (Also used for TabLLM)	Blood
280	Breast Cancer Wisconsin - Diagnostic	California
281	Churn	Car
282	Heart Disease	Credit-g
283	Shark Tank	Diabetes
284	Statlog - Australian Credit Approval	Heart
285	Wine	Jungle

Table 1: The 16 Datasets used for our Experiments

4.2 HYPERPARAMETER OPTIMIZATION

One of the benefits of using GBDT based methods is the ability to perform many rounds of Hyperparameter optimization (HPO) with a low computation budget. HPO is well known to increase performance of tabular models (Gorishniy et al., 2021) and is often included as part of the GBDT pipeline. We perform HPO using Optuna (Akiba et al., 2019). We use separate validation folds so that test data is new used for HPO trials. The hyper-parameter search spaces used for our GBDT experiments are listed in Appendix A.

For best results, we find that the scaling hyper-parameter *s* should be independently tuned after tuning the standard GBDT hyper-parameters. We find that this makes the tuning process more stable and guarantees improvement in validation loss when including scaling. We tune the GBDT hyper-parameters for 100 Optuna trials and tune the scaling parameter for an additional 30 trials. Importantly, for our other ensembling baselines stated in section 4.4 we tune the GBDT hyperparameters for 130 Optuna trials to keep the total HPO trials consistent.

301 302

274

275

287

288

4.3 COMPUTE RESOURCES

A major advantage of LLM-Boost is its lightweight overhead. The computational resources required for our boosting process, disregarding LLM costs, is the same as that required for HPO of GBDTs. Specifically, the boosting process can be performed on CPU. Full hyper-parameter tuning only takes up to 4 hours for the largest datasets on CPU. For few-shot LLM inference (Flan-T5-XXL and Meta-Llama-3-8B-Instruct) we use 4 RTX A4000 GPUs. Inference on the largest datasets we tested takes up to 18 hours to precompute. Importantly, this significantly less resource intensive compared to supervised fine tuning of LLMs for tabular tasks.

311 4.4 BASELINES

To validate our method, we first consider selecting the raw LLM and GBDT models as baselines. However, on average LLM-Boost performs much better than either the GBDT or the LLM model alone. Therefore, we utilize two strong and widely-used ensembling baselines and compare our LLM-Boost against them. The first baseline is Selection, i.e., selecting the best performing model out of the GBDT and LLM based on validation performance. The other is Stacking, i.e., appending LLM scores as additional features for GBDTs.

319

312

5 Results

320 321

In this section, we only present the aggregate performance statistics detailed next for brevity and straightforward comparison between methods. Please see Appendix B for detailed results for each combination of models and datasets. We calculate the rank and z-score between the three methods 324 for each dataset at each train sample size based on AUC. Then, we average the rank and z-score 325 across datasets of a given sample size to illustrate the variation in relative performance between the 326 three methods across training sample sizes. 327

Average rank is an intuitive metric that is common in the tabular domain. Naturally, a lower value 328 on this metric is better. However, it is a coarse metric because some models may obtain similar 329 performance across all datasets and yet have very different average ranks. On the other hand, aver-330 aging AUC across datasets conveys the magnitudes by which one model outperforms another, but 331 this metric can be dominated by a small number of datasets where the performance across models 332 has a high variance. The average z-score metric described below mitigates this effect. 333

The z-score for a model on a single dataset is calculated as $z = \frac{a-\mu}{\sigma}$, the number of standard 334 deviations a model's performance is away from the mean computed across all methods considered 335 in that experience. A negative z-score implies that the given method's performance is below the 336 mean of all methods. A higher positive z-score implies better performance. We then average a 337 single model's z-scores over all datasets and obtain an average z-score for that model. We include 338 average rank results in Appendix C, and we instead focus on average AUC and average z-score in 339 the main body.

Important Note: Some of the datasets we use for our experiments have less than 250 samples. Therefore, results we show on dataset sizes larger than 250 are for a subset of these datasets. A detailed list of experiments for each dataset and size are included in the Appendix B.

343 344

345 346

347 348

349

350

351

352

353

354

361

363

367

340

341

342

5.1 XGBOOST + FLAN-T5-XXL

Figure 2 showcases our XGBoost + Flan-T5 results. Average z-score, rank and AUC are obtained by taking the mean of the row-wise z-score, rank and AUC across all 16 datasets at each given sample size shown in our full results Table 3. Each experiment in our full results is averaged over 5 seeds, and we show standard errors. We provide more details in Appendix B. As stated in Section 4, the model selection baseline is based on the validation performance of each model. All final XGBoost, stacking and LLM-Boost results are obtained after HPO.

As seen in the results graphs, LLM-Boost wins on all of the sample sizes both in terms of average 355 rank and average z-score. We further reiterate that LLM-Boost significantly outperforms each of the 356 stand-alone models.

371 Figure 2: LLM-Boost, combining Flan-T5-XXL and XGBoost, outperforms ensemble baselines 372 and the standalone constituent models across dataset sizes. Left: Average z-score based on AUC performance across dataset sizes for LLM-Boost and other ensemble baselines. Right: AUC 373 performance across dataset sizes. Important Note: For this experiment we always compute the 374 LLM Scores using a 3-shot prompt therefore the LLM performance remains constant throughout all 375 trainset sizes where the extra data is only used for GBDT training. The trough in LLM performance 376 in the 100-500 trainset range is due to us using only a subset of datasets which have sufficient 377 training samples, for these data points.

XGBOOST + TABPFN 5.2

Figure 3 showcases the exceptionally strong performance of XGBoost + TabPFN in our experiments across all sample sizes. We note that the comparatively stronger performance of LLM-Boost in the XGBoost + TabPFN experiments may be a consequence of the TabPFN performance being much stronger than our LLM baselines. Since the learning mechanisms for TabPFN and XGBoost are quite different and they both have similar performance, it would be easier for them to learn useful tabular features complementary to each other. The standalone models learning complementary features will not benefit the selection baseline.

Figure 4 gives a direct AUC comparison between boosted and non-boosted Flan-T5-XXL and TabPFN on our datasets. Our experiments makes it clear that LLM-Boost with TabPFN yields better results except in the smallest dataset sizes. This is expected as TabPFN can use upto 1000 in-context examples, while the LLM can use far less. Although using a stronger or fine-tuned LLM might result in better performance, we conclude that using LLM-Boost with TabPFN+XGBoost is better suited on instances where data sample size is not severely limited. Our full results are given in Table 6 where each experiment is averaged over 5 seeds. For the full-dataset experiments where the train size is greater than 1000 we randomly select 1000 samples for TabPFN training which is the standard procedure followed in the original work.

Figure 3: Performance of LLM-Boost with TabPFN and XGBoost compared to the ensemble baselines and standalone models Left: Average Z-Score based on AUC performance across dataset sizes for LLM-Boost and other ensemble baselines. Right: AUC across dataset sizes.

Figure 4: Direct comparison of LLM-Boost with XGB+Flan-T5-XXL and XGB+TabPFN We observe from this comparison that boosted TabPFN results are better except for the smallest dataset size. This is as expected as standalone TabPFN results are far superior to our standalone LLM results on average.

432 5.3 OTHER BOOSTING COMBINATIONS

We perform further LLM-Boost experiments with XGBoost+Llama-3-8B-Instruct and LightGBM+Flan-T5-XXL, in order to study sensitivity of LLM-Boost to the choice of lan-guage model and GBDT algorithm. Our XGB+Llama-3 experiments can be found in Figure 9. We find it more difficult to design prompts for the Llama-3-8B model to predict exactly the class label consistently compared to the Flan-T5 model. Therefore, the performance of the Llama-3 model is comparatively lower leading to lower boosted performance gains as well. The LightGBM experiments yield superior results compared to baselines in the small dataset sizes as seen in Figure 10. However, the performance gain for LLM-Boost is not as pronounced compared to the XGBoost experiments.

5.4 ABLATING THE VALUE OF COLUMN HEADERS BY SHUFFLING THEM

LLMs perform well in the few-shot tabular setting as they are able to make use of the column head-ers (column names), which are valuable metadata that traditional tabular models cannot parse. To investigate the importance of meaningful column headers for LLM-Boost, we conduct an experi-ment where we randomly shuffle the column headers between columns and compare performance degradation. Once the column headers are shuffled, all semantic meaning of a column disappears because it is no longer corresponding to the appropriate value. We conduct this experiment on the Adult dataset and we provide our boosted/standalone performance for both shuffled and direct col-umn headers in Figure 5. We see there that the column headers are especially useful when the dataset size is small, yet the LLM provides an advantage over XGBoost alone for very small dataset sizes, even when the column headers are shuffled. As the dataset size grows, eventually all models perform comparably well.

5.5 MODEL SIZE AND NUMBER OF FEW-SHOT SAMPLES

To test out whether the performance of our method is sensitive to the raw performance of the LLM, we conduct several experiments to analyze the impact of the LLM model size and the number of few-shot samples included in the LLM's prompt. These results can be found in Figure 6. We use different model sizes from the Flan-T5 model family to maintain as close as possible to an apples to apples comparison as different models might perform differently depending on how the prompt is engineered. As expected, both boosted and raw performance are best for the largest model when the most in-context examples (shots) are given. We do not experiment with higher number of shots since we run into context length limits for certain datasets.

Figure 6: The graph on the left illustrates the change in **LLM-Boost performance with model size.** The graph on the right showcases the change in **LLM-Boost performance with varying number of few-shots**. Boosted and standalone LLM performance is included for both experiments

6 DISCUSSION AND CONCLUSION

497

498

499 500 501

502

515

516

517

518

519

521

522

523

524

525

526 527

528 529

530

531

534

In this paper, we show how to combine the benefits of LLMs and GDBTs for data-efficient predictions on tabular datasets. LLM-Boost often outperforms LLMs and GDBTs individually as well as ensemble baselines, adaptively focusing on the strengths of each method. In this final section, we close by discussing the limitations of our work as well as promising directions for future research.

When to use LLM-Boost? LLM-Boost showcases competitive performance on classification
datasets with small to medium size training sets. In order to optimally benefit from fusing a language model to decision trees, we need semantically meaningful column headers. When such column headers are unavailable or the dataset is medium-sized or large, our variant combining TabPFN
with GBDTs is highly effective.

Limitations. While we present promising performance on a slice of tabular datasets, we enumerateseveral limitations:

- The biggest drawback that restricts LLM-Boost is the necessity for interpretable text descriptors as column headers, namely column headers from which LLMs can extract meaning. Accordingly, some datasets may require prompt engineering.
- Language models are big in parameter count and slow, and they require GPUs for largescale use. During training, LLM outputs can be pre-computed and re-used across all GBDT training runs with various hyperparameter configurations. After this one-time cost, training is no more expensive than GBDT training. For very large datasets, pre-computing LLM outputs may become a non-trivial cost.
 - Common GBDT libraries are implemented in C++, accompanied by APIs in other languages such as Python. Maintaining high-speed training while simultaneously modifying the code for LLM-Boost may require implementing LLM-Boost in the original C++.
- **Future work.** We finally present several promising directions for future research:
 - Data scientists interact with tabular datasets, analyzing variable names, for example to engineer new features, and employing tools such as gradient-boosted decision trees. Our work is a first step towards automating this predictive modeling pipeline. A next step is to expand the capabilities of LLMs, for a full stack of data science functionality such as data visualization, hypothesis testing, and even suggesting valuable features to use.
- We only use three-shot prompting for the language model, but long-context methods may unlock the ability to feed far more training samples into the LLM. This possibility raises the question, will we still need XGBoost as LLMs gain the capability to ingest more data?
- Our boosting mechanism is model agnostic and may be expanded with other high performing tabular architectures such as Tabnet (Arik & Pfister, 2019) SAINT (Somepalli et al., 2021), NODE (Popov et al., 2019) and FT-Transformer (Gorishniy et al., 2021) in addition to LLMs.

540	REFERENCES
541	

542	AI@Meta.Llama3modelcard,2024.URLhttps://github.com/meta-llama/llama3	/
543	blob/main/MODEL_CARD.md.	

- Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
 A next-generation hyperparameter optimization framework. In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, 2019.
- Sercan Omer Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. CoRR, abs/1908.07442, 2019. URL http://arxiv.org/abs/1908.07442.
- Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
 Kasneci. Deep neural networks and tabular data: A survey. *IEEE Transactions on Neural Networks and Learning Systems*, 2022.
- Pei Chen, Soumajyoti Sarkar, Leonard Lausen, Balasubramaniam Srinivasan, Sheng Zha, Ruihong Huang, and George Karypis. Hytrel: Hypergraph-enhanced tabular data representation learning. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in *Neural Information Processing Systems*, volume 36, pp. 32173–32193. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/ file/66178beae8f12fcd48699de95acc1152-Paper-Conference.pdf.
- Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining*, pp. 785–794, 2016.
- Wenhu Chen. Large language models are few (1)-shot table reasoners. In *Findings of the Association* for Computational Linguistics: EACL 2023, pp. 1120–1130, 2023.
- Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
 Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai,
 Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams
 Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean,
 Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instructionfinetuned language models, 2022. URL https://arxiv.org/abs/2210.11416.
- Tuan Dinh, Yuchen Zeng, Ruisu Zhang, Ziqian Lin, Michael Gira, Shashank Rajput, Jy yong Sohn, Dimitris Papailiopoulos, and Kangwook Lee. LIFT: Language-interfaced fine-tuning for non-language machine learning tasks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=s_PJMEGIUfa.
- 578 Dheeru Dua and Casey Graff. Uci machine learning repository, 2017. URL http://archive. 579 ics.uci.edu/ml.
- Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. *Journal of computer and system sciences*, 55(1):119–139, 1997.
- Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. *The Annals of Statistics*, 29(5):1189 1232, 2001. doi: 10.1214/aos/1013203451. URL https://doi.org/10.1214/aos/1013203451.
- Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning models for tabular data. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, 2021. URL https://openreview. net/forum?id=i_QlyrOegLY.
- Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still outperform
 deep learning on typical tabular data? In *Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2022. URL https://openreview.net/forum?id=Fp7_phQszn.

- Nate Gruver, Marc Anton Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models are zero-shot time series forecasters. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=md68e8iZK1.
- Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
 Sontag. Tabllm: Few-shot classification of tabular data with large language models. In *International Conference on Artificial Intelligence and Statistics*, pp. 5549–5581. PMLR, 2023.
- Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
 that solves small tabular classification problems in a second. In *The Eleventh International Con- ference on Learning Representations*, 2023a. URL https://openreview.net/forum?
 id=cp5Pvc16w8_.
- Noah Hollmann, Samuel Müller, and Frank Hutter. Large language models for automated data science: Introducing caafe for context-aware automated feature engineering. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 44753–44775. Curran Associates, Inc., 2023b. URL https://proceedings.neurips.cc/paper_files/paper/2023/
 file/8c2df4c35cdbee764ebb9e9d0acd5197-Paper-Conference.pdf.
- Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. TABBIE: Pretrained representations of tabular data. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 3446–3456, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.270. URL https://aclanthology.org/2021.naacl-main.270.
- Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30, 2017.
- Roman Levin, Valeriia Cherepanova, Avi Schwarzschild, Arpit Bansal, C. Bayan Bruss, Tom
 Goldstein, Andrew Gordon Wilson, and Micah Goldblum. Transfer learning with deep tabular
 models. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 https://openreview.net/forum?id=b0RuGUY08pA.
- Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Ganesh Ramakrishnan, Micah Goldblum, and Colin White. When do neural nets outperform boosted trees on tabular data? Advances in Neural Information Processing Systems, 36, 2024.
- Jaehyun Nam, Kyuyoung Kim, Seunghyuk Oh, Jihoon Tack, Jaehyung Kim, and Jinwoo Shin. Optimized feature generation for tabular data via llms with decision tree reasoning, 2024. URL https://arxiv.org/abs/2406.08527.
- 633 Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles
 634 for deep learning on tabular data. ArXiv, abs/1909.06312, 2019. URL https://api.
 635 semanticscholar.org/CorpusID:202573030.
- Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin. Catboost: unbiased boosting with categorical features. *Advances in neural information processing systems*, 31, 2018.
- 640 Dylan Slack and Sameer Singh. Tablet: Learning from instructions for tabular data. *arXiv*, 2023.
- Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
 Saint: Improved neural networks for tabular data via row attention and contrastive pre-training. *arXiv preprint arXiv:2106.01342*, 2021.
- Yuan Sui, Jiaru Zou, Mengyu Zhou, Xinyi He, Lun Du, Shi Han, and Dongmei Zhang. Tap4llm: Table provider on sampling, augmenting, and packing semi-structured data for large language model
 reasoning. *CoRR*, abs/2312.09039, 2023. URL https://doi.org/10.48550/arXiv.
 2312.09039.

А HYPER-PARAMETER SEARCH SPACES

Table 2: Hyper-parameter search spaces for our XGBoost and LightGBM experiments.

663						
664		XGBoost				
665 666	Parameter	Distribution	LightGBM			
667	Max depth	UniformInt[3, 10]	Parameter	Distribution		
668	Min child weight	LogUniform[1e-8, 1e5]	Num leaves	UniformInt[2, 256]		
669	Subsample	Uniform[0.5, 1]	Feature fraction	Uniform[0.4, 1]		
670	Learning rate	LogUniform[1e-5, 1]	Bagging fraction	Uniform[0.4, 1]		
/1 70	Col sample by level	Uniform[0.5, 1]	Bagging frequency	UniformInt[1,7]		
73	Col sample by tree	Uniform[0.5, 1]	Min child samples	UniformInt[5, 100]		
74	Gamma	$\{0, \text{LogUniform}[1e-8, 1e2]\}$	Lambda L1	$\{0, \text{LogUniform}[1e-8, 10]\}$		
5	Lambda	$\{0, \text{LogUniform}[1e-8, 1e2]\}$	Lambda L2	$\{0, \text{LogUniform}[1e-8, 10]\}$		
6	Alpha	$\{0, \text{LogUniform}[1e-8, 1e2]\}$	Num boost rounds	100		
7	Num boost rounds	20	Scale	$\{0, \text{LogUniform}[1e-4, 1e4]\}$		
'8	Scale	$\{0, LogUniform[1e-4, 1e4]\}$	# Iterations	100		
79 80	# Iterations	100				

FULL RESULTS В

Full experimental results can be found here. Each AUC result is obtained after 130 rounds of HPO. For LLM-Boost we perform HPO on the GBDT parameters for 100 Optuna (Akiba et al., 2019) trials followd by an additional 30 trias for the scaling paramater. For the selection and stacking baselines we perform HPO for 130 Optuna trials on the GBDT parameters. For each experiment each we randomly sub-sample train/val splits as well as sample HPO initilization over 5 different seeds and report mean AUC with standard error. However, we do not perform LLM inference over multiple few-shot train samples due to computational costs. Summarised Averaged row-wise rank and z-score metrics as well as Average AUC is given in C.

Table 3: Full accuracy results for our XGBoost + Flan-T5-XXL experiments

703				5					1
704	Dataset	Train	Val	Test	$XGB \pm Error$	LLM	Selection (Best XCB/LLM)	Stacking \pm Error	LLM-Boost ± Error
705		10	10	836	0.6439 ± 0.0407	0.7528	0.6734	0.6438 ± 0.0372	0.6753 ± 0.0496
706		25 50	25 50	836 836	0.6996 ± 0.0259 0.7534 ± 0.0047	0.7528 0.7528	0.7033 0.7257	0.6976 ± 0.0235 0.7515 ± 0.0041	0.7250 ± 0.0071 0.7638 ± 0.0054
707	Abalone	100 250	100 250	836 836	0.7757 ± 0.0082 0.8136 ± 0.0006	0.7528 0.7528	0.7779 0.8146	0.7802 ± 0.0067 0.8099 ± 0.0016	0.7761 ± 0.0069 0.8142 ± 0.0004
708		500 1336	500 334	836 836	0.8280 ± 0.0014 0.8469 ± 0.0003	0.7528 0.7528	0.8286 0.8468	0.8224 ± 0.0012 0.8406 ± 0.0014	0.8284 ± 0.0012 0.8469 ± 0.0005
709		10	10	1000	0.6998 ± 0.0119	0.8058	0.7411	0.7253 ± 0.0235	0.8093 ± 0.0078
710		25 50	25 50	1000	0.7764 ± 0.0046 0.7997 ± 0.0085	0.8058	0.7719 0.8088	0.8177 ± 0.0191 0.8271 ± 0.0109	0.8413 ± 0.0075 0.8431 ± 0.0056
711	Adult	100 250	100 250	1000 1000	0.8430 ± 0.0062 0.8680 ± 0.0019	0.8058 0.8058	0.8427 0.8683	0.8486 ± 0.0033 0.8739 ± 0.0030	0.8671 ± 0.0026 0.8796 ± 0.0011
712		500 15628	500 3907	1000 1000	0.8874 ± 0.0007 0.9313 ± 0.0006	0.8058 0.8058	0.8888 0.9318	0.8885 ± 0.0019 0.9314 ± 0.0004	0.8931 ± 0.0010 0.9314 ± 0.0005
713		10	10	114	0.9789 ± 0.0031	0.9721	0.9762	0.9790 ± 0.0034	0.9822 ± 0.0019 0.9820 ± 0.0020
714	BreastCancer	50	50	114	0.9783 ± 0.0015 0.9783 ± 0.0015	0.9721	0.9777	0.9756 ± 0.0057 0.9756 ± 0.0057	0.9329 ± 0.0020 0.9792 ± 0.0016 0.9822 ± 0.0021
715		181	45	114	0.9807 ± 0.0023 0.9871 ± 0.0009	0.9721	0.9862	0.9803 ± 0.0023 0.9823 ± 0.0020	$\begin{array}{r} 0.9822 \pm 0.0021 \\ 0.9871 \pm 0.0009 \end{array}$
716		10 25	10 25	1000 1000	0.6848 ± 0.0206 0.7614 ± 0.0111	0.7155 0.7155	0.7110 0.7634	0.6784 ± 0.0271 0.7558 ± 0.0120	0.7257 ± 0.0189 0.7730 ± 0.0108
717	Churn	50 100	50 100	1000 1000	0.7868 ± 0.0047 0.7903 ± 0.0048	0.7155	0.7831 0.7956	0.7730 ± 0.0038 0.7934 ± 0.0055	0.7906 ± 0.0074 0.7928 ± 0.0052
718		250 500	250 500	1000	0.8076 ± 0.0020 0.8180 ± 0.0005	0.7155	0.8083	0.8076 ± 0.0017 0.8122 ± 0.0024	0.8082 ± 0.0021 0.8188 ± 0.0008
719		2253	563	1000	0.8278 ± 0.0005	0.7155	0.8269	0.8237 ± 0.0020	0.8275 ± 0.0006
720	HeartDisease	10 25	10 25	61 61	0.8195 ± 0.0161 0.8855 ± 0.0089	0.8621 0.8621	0.8195 0.8812	0.8362 ± 0.0090 0.8964 ± 0.0068	0.8259 ± 0.0139 0.8994 ± 0.0033
721	TicattDisease	50 96	50 24	61 61	0.9116 ± 0.0081 0.9372 ± 0.0040	0.8621 0.8621	0.9117 0.9386	$\begin{array}{c} 0.9219 \pm 0.0026 \\ 0.9499 \pm 0.0018 \end{array}$	0.9206 ± 0.0044 0.9382 ± 0.0034
722		10	10	99	0.2509 ± 0.0398	0.5540	0.4930	0.2504 ± 0.0406	0.5331 ± 0.0304
723	Sharktank	25 50	23 50	99 99	0.5241 ± 0.0338 0.5184 ± 0.0114	0.5540	0.5325	0.2396 ± 0.0331 0.5160 ± 0.0205	0.5452 ± 0.0275 0.5370 ± 0.0154
724		100 316	100 79	99 99	0.4908 ± 0.0173 0.5213 ± 0.0036	0.5540 0.5540	0.4872 0.5130	0.4832 ± 0.0081 0.5164 ± 0.0048	$\begin{array}{c} 0.5113 \pm 0.0062 \\ 0.5213 \pm 0.0036 \end{array}$
725		10 25	10 25	138 138	0.8037 ± 0.0400 0.9018 ± 0.0064	0.8330 0.8330	0.8071 0.9063	0.7950 ± 0.0350 0.9031 ± 0.0054	0.8432 ± 0.0121 0.9061 ± 0.0041
726	Statlog	50 100	50 100	138	0.9163 ± 0.0038 0.9300 ± 0.0046	0.8330	0.9157	0.9091 ± 0.0065 0.9280 ± 0.0036	0.9161 ± 0.0037 0.9300 + 0.0046
727		250	250	138	0.9323 ± 0.0024 0.9191 ± 0.0017	0.8330	0.9300	0.9280 ± 0.0030 0.9281 ± 0.0027 0.9231 ± 0.0024	0.9324 ± 0.0023 0.9193 ± 0.0017
728		10	10	36	0.9853 ± 0.0027	0.6304	0.9834	0.9854 ± 0.0027	0.9789 ± 0.0059
729	Wine	25 50	25 50	36 36	0.9988 ± 0.0006 0.9999 ± 0.0001	0.6304 0.6304	0.9987 0.9998	0.9980 ± 0.0009 0.9998 ± 0.0001	0.9988 ± 0.0006 0.9999 ± 0.0001
730		113	28	36	0.9999 ± 0.0000	0.6304	1.0000	1.0000 ± 0.0000	0.9999 ± 0.0000
731		10 25	25	9043 9043	0.5559 ± 0.0222 0.5968 ± 0.0424	0.6915	0.6610	0.5599 ± 0.0323 0.6046 ± 0.0395	0.6646 ± 0.0137 0.6446 ± 0.0573
701	Bank	50 100	50 100	9043 9043	0.6329 ± 0.0286 0.6756 ± 0.0211	0.6915 0.6915	0.6470 0.6752	0.6578 ± 0.0303 0.6517 ± 0.0198	0.6657 ± 0.0366 0.6836 ± 0.0192
732		250 500	250 500	9043 9043	0.7232 ± 0.0171 0.7392 ± 0.0114	0.6915 0.6915	0.7208 0.7431	0.7175 ± 0.0138 0.7252 ± 0.0118	0.7419 ± 0.0194 0.7257 ± 0.0098
733		28934	7233	9043	0.7901 ± 0.0008 0.5220 ± 0.0115	0.6915	0.7830	0.7863 ± 0.0016 0.5159 ± 0.0076	0.7905 ± 0.0010 0.5236 ± 0.0117
734		25	25	150	0.5220 ± 0.0113 0.5205 ± 0.0283 0.5268 ± 0.0250	0.5113	0.5142	0.4989 ± 0.0228 0.5242 ± 0.0108	0.5260 ± 0.0117 0.5262 ± 0.0294 0.5300 ± 0.0262
730	Blood	100	100	150	0.5208 ± 0.0239 0.5295 ± 0.0138	0.5113	0.5362	0.5242 ± 0.00198 0.5172 ± 0.0076	0.5295 ± 0.0138
730		478	119	150	0.5399 ± 0.0079 0.5343 ± 0.0022	0.5113	0.5399	0.5425 ± 0.0052 0.5492 ± 0.0045	0.5349 ± 0.0007 0.5380 ± 0.0009
730		10 25	10 25	4128 4128	0.7490 ± 0.0308 0.8278 ± 0.0057	0.7972 0.7972	0.7844 0.8193	0.7634 ± 0.0193 0.8269 ± 0.0037	0.7965 ± 0.0225 0.8289 ± 0.0064
730	CalHousing	50 100	50 100	4128 4128	0.8370 ± 0.0122 0.8623 ± 0.0040	0.7972	0.8310 0.8640	0.8340 ± 0.0102 0.8571 ± 0.0020	0.8405 ± 0.0134 0.8635 ± 0.0038
739	8	250 500	250 500	4128 4128	0.8853 ± 0.0026 0.8971 ± 0.0039	0.7972	0.8864 0.8970	0.8797 ± 0.0044 0.8897 ± 0.0066	0.8862 ± 0.0033 0.8983 ± 0.0036
740		13209	3302	4128	0.9198 ± 0.0010	0.7972	0.9164	0.9155 ± 0.0019	0.9203 ± 0.0008
741	Car	25 50	25 50	346 346	0.7266 ± 0.0097 0.7750 ± 0.0085	0.7461 0.7461	0.7146 0.7799	0.6739 ± 0.0196 0.6356 ± 0.0826	0.7892 ± 0.0141 0.7958 ± 0.0142
742	Cai	100 1089	100 272	346 346	0.8354 ± 0.0076 0.8730 ± 0.0036	0.7461 0.7461	0.8189 0.8799	0.7083 ± 0.0302 0.8390 ± 0.0024	0.8567 ± 0.0085 0.8720 ± 0.0042
743		10	10	200	0.5845 ± 0.0289	0.2730	0.5827	0.5830 ± 0.0341	0.5845 ± 0.0289
744	Credit-g	25 50	25 50	200	0.6431 ± 0.0146 0.6641 ± 0.0153	0.2730	0.6695	0.6649 ± 0.0100 0.6719 ± 0.0222 0.7262 ± 0.0110	0.6398 ± 0.0167 0.6641 ± 0.0153 0.7088 ± 0.0122
745	-	250	250	200	0.7088 ± 0.0123 0.7420 ± 0.0081	0.2730	0.7460	0.7283 ± 0.0110 0.7487 ± 0.0069	0.7088 ± 0.0123 0.7393 ± 0.0090
746		640 10	160	154	0.7777 ± 0.0017 0.6759 ± 0.0391	0.2730	0.7757	0.6691 + 0.0412	0.7780 ± 0.0019 0.6748 ± 0.0372
747		25 50	25 50	154 154	0.7609 ± 0.0126 0.7900 ± 0.0071	0.6386	0.7635	0.7411 ± 0.0137 0.7743 ± 0.0062	0.7497 ± 0.0096 0.7829 ± 0.0083
748	Diabetes	100 250	100	154	0.8097 ± 0.0017 0.8221 ± 0.0047	0.6386	0.8094	0.7900 ± 0.0075 0.7951 ± 0.0034	0.8062 ± 0.0021 0.8130 ± 0.0040
749		491	122	154	0.8349 ± 0.0031	0.6386	0.8365	0.8170 ± 0.0034	0.8341 ± 0.0034
750		10 25	10 25	184 184	$\begin{array}{c} 0.7910 \pm 0.0129 \\ 0.8209 \pm 0.0119 \end{array}$	0.5955 0.5955	0.7930 0.8160	0.7828 ± 0.0147 0.8088 ± 0.0149	0.7888 ± 0.0149 0.8159 ± 0.0122
751	Heart	50 100	50 100	184 184	0.8332 ± 0.0096 0.8405 ± 0.0058	0.5955 0.5955	0.8311 0.8414	0.8266 ± 0.0086 0.8398 ± 0.0078	0.8327 ± 0.0096 0.8397 ± 0.0058
752		250 587	250 146	184 184	0.8553 ± 0.0028 0.8719 ± 0.0023	0.5955 0.5955	0.8526 0.8713	0.8426 ± 0.0028 0.8609 ± 0.0035	0.8526 ± 0.0034 0.8713 ± 0.0021
753		10	10	8964	0.6551 ± 0.0243	0.5659	0.6352	0.6611 ± 0.0262	0.6372 ± 0.0237
754		25 50	25 50	8964 8964	0.7127 ± 0.0157 0.7643 ± 0.0078	0.5659	0.7112 0.7696	0.7213 ± 0.0129 0.7659 ± 0.0083	0.7205 ± 0.0141 0.7690 ± 0.0078
755	Jungle	100 250	100 250	8964 8964	$0.80/0 \pm 0.0054$ 0.8182 ± 0.0056	0.5659 0.5659	0.8063 0.8204	0.8004 ± 0.0032 0.8254 ± 0.0062	0.8077 ± 0.0057 0.8174 ± 0.0054
		500 28684	500 7171	8964 8964	0.8491 ± 0.0039 0.9038 ± 0.0031	0.5659 0.5659	0.8468 0.9082	0.8378 ± 0.0029 0.8995 ± 0.0032	0.8251 ± 0.0037 0.9040 ± 0.0029

Table 4: Full accuracy results for our XGBoost + Llama-3-8B-Instruct experiments

757			2						1
758	Dataset	Train	Val	Test	$XGB \pm Error$	LLM	Selection (Best YCB/LLM)	Stacking \pm Error	LLM-Boost ± Error
759		10	10	836	0.6471 ± 0.0412	0.7294	0.6442	0.6437 ± 0.0515	0.6712 ± 0.0276
760		25 50	25 50	836 836	0.6970 ± 0.0260 0.7512 ± 0.0052	0.7294 0.7294	0.7042 0.7507	0.6929 ± 0.0245 0.7303 ± 0.0097	0.7415 ± 0.0087 0.7644 ± 0.0039
761	Abalone	100 250	100 250	836 836	0.7795 ± 0.0071 0.8132 ± 0.0012	0.7294	0.7786 0.8136	0.7595 ± 0.0126 0.7939 ± 0.0039	0.7832 ± 0.0073 0.8132 + 0.0016
762		500	500 334	836 836	0.8296 ± 0.0004 0.8466 ± 0.0004	0.7294	0.8280	0.8127 ± 0.0026 0.8399 ± 0.0015	0.8298 ± 0.0006
763		10	10	1000	0.6882 ± 0.0176	0.7059	0.7030	0.7027 ± 0.0162	0.7303 ± 0.0149
764		25 50	25 50	1000 1000	0.7799 ± 0.0080 0.8116 ± 0.0108	0.7059 0.7059	0.7754 0.8113	0.7864 ± 0.0120 0.8001 ± 0.0094	0.7968 ± 0.0136 0.8062 ± 0.0133
765	Adult	100 250	100	1000	0.8436 ± 0.0057 0.8702 ± 0.0024	0.7059	0.8445	0.8310 ± 0.0071 0.8628 ± 0.0021	0.8415 ± 0.0080 0.8698 ± 0.0024
766		500	500 3007	1000	0.8882 ± 0.0005 0.9316 ± 0.0003	0.7059	0.8890	0.8805 ± 0.0015 0.9321 ± 0.0008	0.8878 ± 0.0007 0.9316 ± 0.0006
767		10	10	114	0.9753 ± 0.0051	0.9346	0.9799	0.9733 ± 0.0040	0.9767 ± 0.0051
769	BreastCancer	25 50	25 50	114 114	0.9802 ± 0.0015 0.9791 ± 0.0015	0.9346 0.9346	0.9775 0.9733	0.9792 ± 0.0029 0.9796 ± 0.0008	0.9832 ± 0.0023 0.9808 ± 0.0008
760		100 181	100 45	114 114	0.9801 ± 0.0018 0.9859 ± 0.0005	0.9346 0.9346	0.9800	0.9790 ± 0.0036 0.9836 ± 0.0012	0.9824 ± 0.0020 0.9884 ± 0.0003
709		101	10	1000	0.6789 ± 0.0259	0.5323	0.6824	0.6919 ± 0.0200	0.6802 ± 0.0261
770		25 50	25 50	1000 1000	0.7669 ± 0.0143 0.7826 ± 0.0048	0.5323 0.5323	0.7669 0.7861	0.7549 ± 0.0100 0.7826 ± 0.0042	0.7659 ± 0.0141 0.7802 ± 0.0064
//1	Churn	100 250	100 250	1000 1000	0.7928 ± 0.0061 0.8093 ± 0.0018	0.5323	0.7932 0.8107	0.7874 ± 0.0041 0.8083 ± 0.0018	0.7913 ± 0.0058 0.8091 ± 0.0019
772		500 2253	500 563	1000	0.8177 ± 0.0011 0.8281 ± 0.0003	0.5323	0.8184	0.8133 ± 0.0015 0.8261 ± 0.0015	0.8175 ± 0.0011 0.8281 + 0.0002
773		10	10	61	0.8161 ± 0.0066	0.8685	0.8181	0.8242 ± 0.0117	0.8562 ± 0.0119
774	HeartDisease	25 50	25 50	61 61	0.8977 ± 0.0062 0.9072 ± 0.0058	0.8685 0.8685	0.8906 0.9132	0.8989 ± 0.0126 0.9198 ± 0.0055	0.9087 ± 0.0078 0.9075 ± 0.0041
775		96	24	61	0.9352 ± 0.0030	0.8685	0.9410	0.9433 ± 0.0024	0.9347 ± 0.0026
776		10 25	10 25	99 99	0.4938 ± 0.0401 0.5236 ± 0.0338	0.4941 0.4941	0.4949 0.5235	0.4925 ± 0.0395 0.5196 ± 0.0343	0.4648 ± 0.0254 0.5181 ± 0.0286
777	Sharktank	50 100	50 100	99 99	0.5310 ± 0.0141 0.4940 ± 0.0154	0.4941 0.4941	0.5183 0.5094	0.5240 ± 0.0129 0.4953 ± 0.0152	0.5310 ± 0.0150 0.5022 ± 0.0032
778		316	79	99	0.5149 ± 0.0057	0.4941	0.5159	0.5259 ± 0.0056	0.5132 ± 0.0062
779		25	25	138	0.9056 ± 0.0057	0.6618	0.9022	0.7948 ± 0.0381 0.8955 ± 0.0075	0.7891 ± 0.0387 0.9058 ± 0.0057 0.9157 ± 0.0021
780	Statlog	50 100	50 100	138 138	0.9157 ± 0.0021 0.9270 ± 0.0058	0.6618	0.9144 0.9264	0.9073 ± 0.0073 0.9195 ± 0.0062	0.9157 ± 0.0021 0.9276 ± 0.0060
781		250 446	250 111	138 138	0.9283 ± 0.0020 0.9246 ± 0.0006	0.6618 0.6618	0.9293 0.9244	0.9313 ± 0.0019 0.9231 ± 0.0029	0.9283 ± 0.0019 0.9246 ± 0.0006
782		10	10	36	0.9856 ± 0.0017	0.7416	0.9857	0.9840 ± 0.0029 0.0082 ± 0.0007	0.9871 ± 0.0007
783	Wine	50	23 50	36	0.9985 ± 0.0004 0.9998 ± 0.0001	0.7416	0.9987	0.9983 ± 0.0007 0.9997 ± 0.0002	0.9987 ± 0.0004 0.9999 ± 0.0001
784		115	10	9043	1.0000 ± 0.0000 0.5494 ± 0.0372	0.7416	0.5998	1.0000 ± 0.0000 0.5518 ± 0.0339	0.5963 ± 0.0243
785		25 50	25 50	9043 9043	0.6081 ± 0.0279 0.6379 ± 0.0319	0.5867 0.5867	0.6252 0.6342	0.5905 ± 0.0307 0.6196 ± 0.0310	0.6142 ± 0.0225 0.6404 ± 0.0329
786	Bank	100	100	9043 9043	0.6415 ± 0.0168 0.7187 ± 0.0196	0.5867	0.6631	0.6606 ± 0.0171 0.7232 ± 0.0152	0.6601 ± 0.0187 0.7202 ± 0.0188
787		500	500 7222	9043 9043	0.7471 ± 0.0147 0.7471 ± 0.0147	0.5867	0.7435	0.7526 ± 0.0132 0.7526 ± 0.0123 0.7850 ± 0.0035	0.7476 ± 0.0145 0.7856 ± 0.0025
788		10	10	150	0.7838 ± 0.0023 0.5223 ± 0.0120	0.5039	0.5271	0.5152 ± 0.0138	0.7836 ± 0.0023 0.5226 ± 0.0120
789		25 50	25 50	150 150	0.5171 ± 0.0263 0.5311 ± 0.0234	0.5039	0.5131 0.5230	0.5181 ± 0.0261 0.5289 ± 0.0226	0.5207 ± 0.0238 0.5347 ± 0.0245
700	Blood	100	100	150	0.5288 ± 0.0133 0.5374 ± 0.0114	0.5039	0.5284	0.5301 ± 0.0140	0.5290 ± 0.0126 0.5343 ± 0.0116
701		478	119	150	0.5397 ± 0.0016 0.5397 ± 0.0016	0.5039	0.5322	0.5243 ± 0.0058	0.5258 ± 0.0076
791		10 25	10 25	4128 4128	0.7645 ± 0.0186 0.8269 ± 0.0062	0.7076 0.7076	0.7569 0.8281	0.7542 ± 0.0229 0.8153 ± 0.0016	0.7199 ± 0.0348 0.8101 ± 0.0129
792	CalHousing	50 100	50 100	4128 4128	0.8292 ± 0.0153 0.8650 ± 0.0052	0.7076	0.8329 0.8622	0.8231 ± 0.0105 0.8491 ± 0.0028	0.8279 ± 0.0125 0.8652 ± 0.0053
793	currousing	250	250	4128	0.8828 ± 0.0040 0.9001 ± 0.0047	0.7076	0.8849	0.8692 ± 0.0055 0.8856 ± 0.0058	0.8817 ± 0.0034 0.8985 ± 0.0043
794		13209	3302	4128	0.9184 ± 0.0013	0.7076	0.9204	0.9101 ± 0.0034	0.9188 ± 0.0006
795	-	25 50	25 50	346 346	0.7275 ± 0.0050 0.7836 ± 0.0072	0.6760 0.6760	0.7210 0.7644	0.7279 ± 0.0291 0.7598 ± 0.0421	0.7792 ± 0.0122 0.8207 ± 0.0034
796	Car	100	100 272	346 346	0.8318 ± 0.0071 0.8760 ± 0.0018	0.6760	0.8162	0.8361 ± 0.0097 0.8562 ± 0.0024	0.8397 ± 0.0118 0.8803 ± 0.0025
797		10	10	200	0.5724 ± 0.0246	0.6317	0.5843	0.5778 ± 0.0284	0.6111 ± 0.0176
798	Cradit a	25 50	25 50	200 200	0.6413 ± 0.0134 0.6651 ± 0.0164	0.6317 0.6317	0.6432 0.6658	0.6442 ± 0.0151 0.6631 ± 0.0171	0.6458 ± 0.0151 0.6687 ± 0.0184
799	Crean-g	100 250	100 250	200 200	0.7058 ± 0.0095 0.7436 ± 0.0069	0.6317 0.6317	0.7101 0.7452	0.7013 ± 0.0128 0.7379 ± 0.0088	0.7111 ± 0.0097 0.7477 ± 0.0081
800		640	160	200	0.7763 ± 0.0032	0.6317	0.7756	0.7717 ± 0.0029	0.7756 ± 0.0029
801		10 25	10 25	154 154	0.6846 ± 0.0369 0.7704 ± 0.0101	0.8042 0.8042	0.6856 0.7587	0.6955 ± 0.0453 0.7795 ± 0.0108	0.7700 ± 0.0250 0.8081 ± 0.0065
802	Diabetes	50 100	50 100	154 154	0.7867 ± 0.0086 0.8109 ± 0.0034	0.8042 0.8042	0.7890 0.8082	0.8052 ± 0.0057 0.8129 ± 0.0043	$\begin{array}{c} 0.8076 \pm 0.0117 \\ 0.8254 \pm 0.0033 \end{array}$
803		250 491	250 122	154 154	0.8232 ± 0.0052 0.8316 ± 0.0015	0.8042 0.8042	0.8249 0.8329	0.8283 ± 0.0041 0.8333 ± 0.0023	0.8277 ± 0.0033 0.8328 ± 0.0020
804		10	10	184	0.7898 ± 0.0114	0.6521	0.7927	0.7849 ± 0.0136	0.7654 ± 0.0281
805	Heart	25 50	25 50	184 184	0.8185 ± 0.0129 0.8315 ± 0.0086	0.6521	0.8164 0.8311	0.8125 ± 0.0086 0.8268 ± 0.0077	0.8256 ± 0.0081 0.8303 ± 0.0063
806		100 250	100 250	184 184	0.8371 ± 0.0099 0.8506 ± 0.0029	0.6521 0.6521	0.8436 0.8513	0.8274 ± 0.0034 0.8415 ± 0.0045	0.8370 ± 0.0127 0.8518 ± 0.0027
807		587	146	184	0.8695 ± 0.0020	0.6521	0.8696	0.8536 ± 0.0037	0.8676 ± 0.0025
808		25	25	8964 8964	0.0495 ± 0.0272 0.7064 ± 0.0189	0.4789	0.0506	0.0525 ± 0.0251 0.7016 ± 0.0182	0.3809 ± 0.0413 0.6754 ± 0.0279
809	Jungle	50 100	50 100	8964 8964	0.7622 ± 0.0057 0.8067 ± 0.0057	0.4789 0.4789	0.7661 0.8029	0.7451 ± 0.0139 0.7930 ± 0.0057	0.7577 ± 0.0071 0.7980 ± 0.0103
		250 500	250 500	8964 8964	0.8215 ± 0.0059 0.8407 ± 0.0055	0.4789 0.4789	0.8249 0.8406	0.8227 ± 0.0054 0.8358 ± 0.0041	0.8217 ± 0.0057 0.8426 ± 0.0052
		28684	7171	8964	0.9096 ± 0.0032	0.4789	0.9050	0.8968 ± 0.0014	0.9087 ± 0.0036

Table 5: Full AUC results for our LightGBM + Flan-T5-XXL experiments

					U			
Dataset	Train	Val	Test	XGB ± Error	LLM	Selection	Stacking \pm Error	LLM-Boost ± Error
	size 10	size 10	836	0.5046 ± 0.0072	0.7528	0.7022	0.5177 ± 0.0173	0.7329 ± 0.0084
	25 50	25 50	836 836	0.7060 ± 0.0270 0.7567 ± 0.0048	0.7528	0.7027	0.7021 ± 0.0176 0.7473 ± 0.0043	0.7075 ± 0.0211 0.7623 ± 0.0058
Abalone	100	100	836	0.7780 ± 0.0080 0.8165 ± 0.0007	0.7528	0.7782	0.7776 ± 0.0067 0.8108 ± 0.0011	0.7759 ± 0.0079 0.8164 ± 0.0012
	500	500	836	0.8103 ± 0.0007 0.8307 ± 0.0009	0.7528	0.8304	0.8108 ± 0.0011 0.8264 ± 0.0016	0.8294 ± 0.0012
	1336	10	1000	0.8489 ± 0.0006 0.5515 ± 0.0245	0.7528	0.7694	0.8441 ± 0.0002 0.5419 ± 0.0260	0.8486 ± 0.0005
	25 50	25 50	1000	0.7641 ± 0.0066 0.7415 ± 0.0095	0.8058	0.7713	0.8296 ± 0.0054 0.8138 ± 0.0055	0.8448 ± 0.0085 0.8334 ± 0.0049
Adult	100	100	1000	0.7421 ± 0.0055 0.7421 ± 0.0155	0.8058	0.7475	0.8168 ± 0.0013	0.8203 ± 0.0096 0.8505 ± 0.0096
	230 500	230 500	1000	0.8436 ± 0.0008 0.8903 ± 0.0017	0.8058	0.8921	0.8313 ± 0.0030 0.8829 ± 0.0021	0.8938 ± 0.0021 0.8938 ± 0.0009
	25	3907	1000	0.9336 ± 0.0001 0.9803 ± 0.0012	0.8058	0.9337	0.9333 ± 0.0002 0.9810 ± 0.0035	0.9338 ± 0.0001 0.9829 ± 0.0017
BreastCancer	50	50 100	114	0.9757 ± 0.0038 0.9788 ± 0.0025	0.9721	0.9785	0.9808 ± 0.0011 0.9824 ± 0.0012	0.9798 ± 0.0021 0.9827 + 0.0017
	181	45	114	0.9733 ± 0.0025 0.9873 ± 0.0006	0.9721	0.9874	0.9824 ± 0.0012 0.9894 ± 0.0004	0.9895 ± 0.0008
	10 25	10 25	1000 1000	0.5548 ± 0.0341 0.7688 ± 0.0109	0.7155 0.7155	0.7155 0.7605	0.5658 ± 0.0414 0.7559 ± 0.0140	0.6968 ± 0.0200 0.7812 ± 0.0035
Churn	50 100	50 100	1000	0.7833 ± 0.0066 0.7942 ± 0.0046	0.7155	0.7841	0.7758 ± 0.0050 0.7914 ± 0.0040	0.7876 ± 0.0036 0.7986 ± 0.0060
chun	250	250	1000	0.8062 ± 0.0021 0.8171 ± 0.0009	0.7155	0.8079	0.8055 ± 0.0020 0.8156 ± 0.0007	0.8082 ± 0.0019
	2253	563	1000	0.8171 ± 0.0009 0.8286 ± 0.0001	0.7155	0.8283	0.8150 ± 0.0007 0.8266 ± 0.0005	0.8180 ± 0.0013 0.8286 ± 0.0001
	10 25	10 25	61 61	0.6103 ± 0.0471 0.8927 ± 0.0121	0.8621 0.8621	0.7516 0.8950	0.6481 ± 0.0414 0.9015 ± 0.0108	0.8348 ± 0.0162 0.8996 ± 0.0092
HeartDisease	50	50 24	61	0.9229 ± 0.0057 0.9402 ± 0.0010	0.8621	0.9276	0.9283 ± 0.0043 0.9488 + 0.0009	0.9299 ± 0.0047 0.9408 ± 0.0009
	10	10	99	0.4986 ± 0.0033	0.5540	0.4978	0.5003 ± 0.0050	0.5356 ± 0.0109
Sharktank	25 50	25 50	99 99	0.5238 ± 0.0300 0.5240 ± 0.0122	0.5540	0.5264	0.5265 ± 0.0305 0.5101 ± 0.0250	0.5395 ± 0.0194 0.5524 ± 0.0162
	100 316	100 79	99 99	0.4907 ± 0.0245 0.5348 ± 0.0014	0.5540	0.4949	0.4878 ± 0.0212 0.5140 ± 0.0025	0.4935 ± 0.0254 0.5348 ± 0.0014
	10	10	138	0.5448 ± 0.0448	0.8330	0.6602	0.6375 ± 0.0702	0.8240 ± 0.0090
0. 4	25 50	25 50	138 138	0.8812 ± 0.0130 0.8924 ± 0.0056	0.8330 0.8330	0.8923 0.8998	0.8737 ± 0.0073 0.8781 ± 0.0110	0.8826 ± 0.0129 0.8932 ± 0.0062
Statlog	100	100	138 138	0.9146 ± 0.0052 0.9224 ± 0.0028	0.8330	0.9090	0.9087 ± 0.0060 0.9239 ± 0.0016	0.9145 ± 0.0052 0.9223 ± 0.0027
	446	111	138	0.9224 ± 0.0020 0.9147 ± 0.0010	0.8330	0.9162	0.9187 ± 0.0020	0.9144 ± 0.0009
Win -	10 25	10 25	36 36	0.5000 ± 0.0000 0.9984 ± 0.0003	0.6304 0.6304	0.6304 0.9982	0.3865 ± 0.0000 0.9978 ± 0.0007	0.6372 ± 0.0000 0.9983 ± 0.0004
wine	50 113	50 28	36 36	0.9998 ± 0.0001 1.0000 ± 0.0000	0.6304	0.9998	0.9998 ± 0.0001 1.0000 + 0.0000	0.9998 ± 0.0000 1.0000 ± 0.0000
	10	10	9043	0.5000 ± 0.0000	0.6915	0.6915	0.5000 ± 0.0000	0.6768 ± 0.0147
	25 50	25 50	9043 9043	0.6004 ± 0.0354 0.6415 ± 0.0361	0.6915 0.6915	0.6591 0.6492	0.6131 ± 0.0412 0.6570 ± 0.0383	0.6561 ± 0.0061 0.6625 ± 0.0410
Bank	100 250	100 250	9043 9043	0.6967 ± 0.0237 0.7320 ± 0.0105	0.6915 0.6915	0.7125 0.7366	0.6778 ± 0.0240 0.7609 ± 0.0096	0.7040 ± 0.0210 0.7383 ± 0.0084
	500 28934	500 7233	9043 9043	0.7638 ± 0.0040 0.7838 ± 0.0008	0.6915	0.7640	0.7690 ± 0.0099 0.7879 ± 0.0009	0.7688 ± 0.0055 0.7868 ± 0.0017
	10	10	150	0.5334 ± 0.0080	0.5113	0.5216	0.5000 ± 0.0000	0.5407 ± 0.0153
Blood	25 50	25 50	150 150	0.5154 ± 0.0224 0.5184 ± 0.0204	0.5113 0.5113	0.5263 0.5287	0.4953 ± 0.0186 0.5057 ± 0.0198	0.5167 ± 0.0217 0.5256 ± 0.0206
Blood	100 250	100 250	150 150	0.5362 ± 0.0119 0.5392 ± 0.0122	0.5113 0.5113	0.5308 0.5384	0.5065 ± 0.0050 0.5367 ± 0.0086	0.5404 ± 0.0112 0.5416 ± 0.0123
	478	119	150	0.5410 ± 0.0040	0.5113	0.5329	0.5321 ± 0.0055	0.5457 ± 0.0035
	25 50	25 50	4128	0.7990 ± 0.0077 0.8270 ± 0.0110	0.7972	0.8013	0.8150 ± 0.0047 0.8359 ± 0.0063	0.7906 ± 0.0186 0.8256 ± 0.0092
CalHousing	100 250	100 250	4128 4128	0.8647 ± 0.0041 0.8832 ± 0.0037	0.7972 0.7972	0.8608 0.8854	0.8575 ± 0.0044 0.8864 ± 0.0029	0.8640 ± 0.0042 0.8829 ± 0.0033
	500 13209	500 3302	4128 4128	0.8991 ± 0.0040 0.9181 ± 0.0030	0.7972 0.7972	0.9011 0.9132	0.9005 ± 0.0060 0.9229 ± 0.0006	0.8997 ± 0.0041 0.9180 ± 0.0029
	25	25	346	0.7855 ± 0.0063	0.7461	0.7882	0.7468 ± 0.0106	0.7846 ± 0.0154
Car	100	100	346	0.8509 ± 0.0057 0.8689 ± 0.0062	0.7461	0.8684	0.0972 ± 0.0152 0.7914 ± 0.0122	0.8214 ± 0.0054 0.8519 ± 0.0069
	1089	272	346 200	0.9096 ± 0.0040 0.5313 ± 0.0187	0.7461	0.9102	0.8518 ± 0.0030 0.5463 ± 0.0194	0.9095 ± 0.0036 0.4859 ± 0.0559
	25	25	200	0.6099 ± 0.0079 0.5790 ± 0.0143	0.2730	0.6223	0.6353 ± 0.0157 0.6270 ± 0.0107	0.6092 ± 0.0086 0.5777 ± 0.0129
Credit-g	100	100	200	0.6062 ± 0.0143	0.2730	0.6091	0.6848 ± 0.0029	0.6060 ± 0.0158 0.6060 ± 0.0157
	250 640	250 160	200	0.7000 ± 0.0064 0.7808 ± 0.0029	0.2730	0.7045	0.7223 ± 0.0053 0.7829 ± 0.0029	0.0998 ± 0.0064 0.7808 ± 0.0029
	10 25	10 25	154 154	0.5270 ± 0.0081 0.7530 ± 0.0056	0.6386	0.6386	0.5330 ± 0.0330 0.7533 ± 0.0111	0.6192 ± 0.0145 0.7427 ± 0.0144
Diabetes	50	50	154	0.7811 ± 0.0048 0.7865 ± 0.0075	0.6386	0.7787	0.7841 ± 0.0032	0.7801 ± 0.0049 0.7975 ± 0.0069
	250	250	154	0.7905 ± 0.0075 0.8281 ± 0.0058	0.6386	0.8012	0.7953 ± 0.0080 0.8197 ± 0.0047	0.7975 ± 0.0069 0.8144 ± 0.0052
	491	122	154 184	0.8428 ± 0.0009 0.5284 ± 0.0284	0.6386	0.5892	0.8294 ± 0.0008 0.6102 ± 0.0282	0.8287 ± 0.0013 0.6047 + 0.0093
	25	25	184	0.8130 ± 0.0101 0.8170 ± 0.0127	0.5955	0.8162	0.8005 ± 0.0070 0.8177 ± 0.0110	0.8067 ± 0.0132 0.8057 ± 0.0132
Heart	100	100	184	0.8170 ± 0.0127 0.8172 ± 0.0125	0.5955	0.8173	0.8182 ± 0.0091	0.8037 ± 0.0136 0.8130 ± 0.0124
	250 587	250 146	184 184	0.8557 ± 0.0043 0.8731 ± 0.0013	0.5955 0.5955	0.8562 0.8775	0.8526 ± 0.0031 0.8759 ± 0.0006	0.8527 ± 0.0044 0.8717 ± 0.0014
	10 25	10 25	8964	0.5492 ± 0.0294 0.7156 ± 0.0124	0.5659	0.5762	0.5289 ± 0.0289 0.7163 ± 0.0145	0.5920 ± 0.0206
In al	2.5 50	2.5 50	8964	0.7636 ± 0.0021	0.5659	0.7718	0.7650 ± 0.0145 0.7650 ± 0.0114	0.0671 ± 0.0019 0.7683 ± 0.0063
Jungle	100	100	8964	0.8099 ± 0.0026 0.8259 ± 0.0046	0.5659	0.8062	0.8028 ± 0.0042	0.8094 ± 0.0024
	250	250	8904	0.0239 ± 0.0040	0.5059	0.8237	0.0279 ± 0.0040	0.8239 ± 0.0047

Table 6: Full AUC results for our XGBoost + TabPFN experiments

Dataset	Train size	Val size	Test size	$XGB\pm Error$	LLM	Selection (Best XGB/LLM)	Stacking \pm Error	LLM-Boost ± Error (Ours)
	10	10	836	0.6757 ± 0.0040	0.7109	0.6929	0.6985 ± 0.0193	0.7119 ± 0.0309
	25	25	836	0.7028 ± 0.0241	0.7418	0.7028	0.7193 ± 0.0271	0.7438 ± 0.0214
	50	50	836	0.7525 ± 0.0042	0.8073	0.7492	0.7804 ± 0.0090	0.8067 ± 0.0040
Abalone	250	250	836	0.7813 ± 0.0067 0.8133 ± 0.0013	0.8247	0.7786	$0.80/5 \pm 0.0069$ 0.8335 ± 0.0008	0.8216 ± 0.0050 0.8403 \pm 0.0014
	500	500	836	0.8133 ± 0.0013 0.8277 ± 0.0013	0.8497	0.8285	0.8432 ± 0.0018	0.8491 ± 0.0009
	1336	334	836	0.8454 ± 0.0003	0.8531	0.8454	0.8545 ± 0.0003	0.8559 ± 0.0002
	10 25	10 25	1000 1000	0.6752 ± 0.0567 0.7541 ± 0.0080	0.6321	0.6791 0.7563	0.6575 ± 0.0217 0.7369 ± 0.0114	0.6656 ± 0.0681 0.7491 ± 0.0140
	50	50	1000	0.7571 ± 0.0058	0.7593	0.7469	0.7750 ± 0.0108	0.7659 ± 0.0078
Adult	100	100	1000	0.7990 ± 0.0070	0.7947	0.7958	0.7985 ± 0.0044	0.8099 ± 0.0054
	250	250	1000	0.8540 ± 0.0044	0.8262	0.8515	0.8388 ± 0.0016	0.8579 ± 0.0033
	500 15628	500 3907	1000 1000	0.8800 ± 0.0057 0.9234 ± 0.0018	0.8462 0.8646	0.8816 0.9234	0.8659 ± 0.0024 0.9238 ± 0.0012	0.8820 ± 0.0048 0.9241 ± 0.0015
	10	10	114	0.9790 ± 0.0030	0.9865	0.9798	0.9788 ± 0.0042	0.9817 ± 0.0020
Derecto	25	25	114	0.9790 ± 0.0023	0.9892	0.9815	0.9812 ± 0.0026	0.9844 ± 0.0040
BreastCancer	100	100	114	0.9708 ± 0.0032 0.9800 ± 0.0019	0.9882	0.9804	0.9703 ± 0.0040 0.9822 ± 0.0022	0.9790 ± 0.0040 0.9852 ± 0.0032
	181	45	114	0.9855 ± 0.0006	0.9930	0.9859	0.9877 ± 0.0017	0.9931 ± 0.0000
	10	10	1000	0.7122 ± 0.0000	0.6958	0.7151	0.7168 ± 0.0000	0.7122 ± 0.0000
	25	25	1000	0.7663 ± 0.0116 0.7820 ± 0.0045	0.7501	0.7658	0.7551 ± 0.0098 0.7741 ± 0.0050	0.7685 ± 0.0117 0.7826 ± 0.0048
Churn	100	100	1000	0.7944 ± 0.0043	0.7745	0.7941	0.7825 ± 0.0035	0.7951 ± 0.0048
	250	250	1000	0.8052 ± 0.0028	0.7992	0.8078	0.7994 ± 0.0027	0.8071 ± 0.0031
	500	500	1000	0.8165 ± 0.0009	0.8099	0.8168	0.8107 ± 0.0016	0.8180 ± 0.0011
	10	10	61	0.8282 ± 0.0003	0.8155	0.8278	0.8228 ± 0.0007	0.8281 ± 0.0005
HaartDissos-	25	25	61	0.8883 ± 0.0085	0.9075	0.8908	0.8986 ± 0.0074	0.9018 ± 0.0078
nearuAisease	50	50	61	0.9158 ± 0.0050	0.9188	0.9181	0.9177 ± 0.0066	0.9215 ± 0.0036
	96	24	61	0.9399 ± 0.0032	0.9175	0.9423	0.9181 ± 0.0025	0.9397 ± 0.0028
	10	10	99	0.5120 ± 0.0338 0.5136 ± 0.0208	0.4984	0.5085	0.5017 ± 0.0340 0.5027 ± 0.0214	0.5122 ± 0.0359 0.5118 ± 0.0200
Sharktank	23 50	23 50	99 99	0.5130 ± 0.0208 0.5040 ± 0.0047	0.5241	0.5052	0.5027 ± 0.0214 0.5022 ± 0.0022	0.5118 ± 0.0209 0.5020 ± 0.0046
	100	100	99	0.4864 ± 0.0175	0.4964	0.4898	0.4988 ± 0.0123	0.4877 ± 0.0163
	316	79	99	0.4845 ± 0.0092	0.4564	0.4817	0.4864 ± 0.0134	0.4751 ± 0.0078
	10	10	138	0.8013 ± 0.0388	0.8212	0.8020	0.7946 ± 0.0358	0.8099 ± 0.0422
	23 50	23 50	138	0.9048 ± 0.0037 0.9123 ± 0.0029	0.8891	0.9056	0.8975 ± 0.0065 0.9080 ± 0.0065	0.9031 ± 0.0033 0.9138 ± 0.0031
Statlog	100	100	138	0.9274 ± 0.0041	0.9135	0.9262	0.9134 ± 0.0068	0.9264 ± 0.0047
	250	250	138	0.9319 ± 0.0021	0.9195	0.9297	0.9187 ± 0.0025	0.9267 ± 0.0014
	446	111	138	0.9247 ± 0.0012	0.9178	0.9237	0.9177 ± 0.0007	0.9253 ± 0.0007
	10	10	36	0.9881 ± 0.0004 0.9983 ± 0.0006	0.9923	0.9904	0.9899 ± 0.0028 0.9882 ± 0.0006	0.9934 ± 0.0032 0.9992 ± 0.0003
Wine	50	50	36	0.9997 ± 0.0001	0.9999	0.9998	0.9996 ± 0.0001	0.9999 ± 0.0000
	113	28	36	1.0000 ± 0.0000	1.0000	1.0000	0.9999 ± 0.0000	1.0000 ± 0.0000
	50	50	9043	0.6762 ± 0.0000	0.7096	0.6673	0.6942 ± 0.0000	0.6762 ± 0.0000
Bank	250	250	9043	0.6651 ± 0.0273 0.6908 ± 0.0164	0.7140	0.6344	0.6917 ± 0.0160 0.7202 ± 0.0242	0.6884 ± 0.0306 0.7180 ± 0.0210
Dunit	500	500	9043	0.7305 ± 0.0131	0.7834	0.7236	0.7662 ± 0.0091	0.7730 ± 0.0086
	28934	7233	9043	0.7820 ± 0.0015	0.7884	0.7820	0.7925 ± 0.0019	0.7861 ± 0.0022
	10	10	150	0.5355 ± 0.0144 0.5208 ± 0.0270	0.5578	0.5329	0.5465 ± 0.0086 0.5217 ± 0.0227	0.5592 ± 0.0115 0.5278 ± 0.0200
	50	50	150	0.5208 ± 0.0279 0.5299 ± 0.0213	0.5447	0.5307	0.5217 ± 0.0227 0.5238 ± 0.0145	0.5278 ± 0.0299 0.5491 ± 0.0140
Blood	100	100	150	0.5231 ± 0.0155	0.5424	0.5311	0.5342 ± 0.0137	0.5404 ± 0.0108
	250	250	150	0.5400 ± 0.0091	0.5412	0.5393	0.5498 ± 0.0050	0.5416 ± 0.0077
	4/0	10	4128	0.3307 ± 0.0049	0.3497	0.3330	0.7521 ± 0.0191	0.3384 ± 0.0003
	25	25	4128	0.8260 ± 0.0063	0.8744	0.8242	0.8576 ± 0.0064	0.8731 ± 0.0081
a	50	50	4128	0.8335 ± 0.0168	0.9002	0.8311	0.8799 ± 0.0098	0.8938 ± 0.0085
CalHousing	100	100	4128	0.8579 ± 0.0050	0.9179	0.8590	0.9002 ± 0.0048	0.9147 ± 0.0045 0.9277 ± 0.0020
	230 500	230 500	4128	0.8977 ± 0.0046	0.9302	0.8967	0.9241 ± 0.0030 0.9296 ± 0.0028	0.9283 ± 0.0029
	13209	3302	4128	0.9179 ± 0.0018	0.9374	0.9137	0.9459 ± 0.0009	0.9365 ± 0.0017
	10	10	200	0.5729 ± 0.0368	0.5981	0.5817	0.5754 ± 0.0383	0.5849 ± 0.0312
	25 50	25 50	200	0.0382 ± 0.0146 0.6687 ± 0.0164	0.6328	0.6649	0.6408 ± 0.0136 0.6490 ± 0.0103	0.0599 ± 0.0086 0.6659 + 0.0152
Credit-g	100	100	200	0.7099 ± 0.0089	0.6721	0.7094	0.6860 ± 0.0070	0.7122 ± 0.0102
	250	250	200	0.7442 ± 0.0084	0.7151	0.7504	0.7181 ± 0.0047	0.7489 ± 0.0066
	040	160	200	0.7755 ± 0.0016	0.7485	0.77/0	0.7444 ± 0.0026	0.7845 ± 0.0011
	25	25	154	0.07582 ± 0.0513 0.7582 ± 0.0160	0.6971	0.6794	0.0800 ± 0.0508 0.7814 ± 0.0168	0.0890 ± 0.0558 0.7728 ± 0.0218
Diabetes	50	50	154	0.7895 ± 0.0082	0.8196	0.7879	0.8091 ± 0.0062	0.8004 ± 0.0122
- 1000003	100	100	154	0.8091 ± 0.0041	0.8357	0.8103	0.8254 ± 0.0048	0.8182 ± 0.0077
	250 491	250 122	154 154	0.8244 ± 0.0033 0.8369 ± 0.0034	0.8431	0.8203	0.8303 ± 0.0034 0.8483 ± 0.0008	0.8383 ± 0.0037 0.8383 ± 0.0035
	10	10	184	0.7289 ± 0.0667	0.8206	0.8073	0.7096 ± 0.0705	0.8141 ± 0.0148
	25	25	184	0.8150 ± 0.0182 0.8406 ± 0.0072	0.8372	0.8214	0.8284 ± 0.0083	0.8334 ± 0.0117 0.8485 ± 0.0077
Heart	50 100	100	184	0.8400 ± 0.0078 0.8490 ± 0.0052	0.8455	0.8405	0.8400 ± 0.0089 0.8495 ± 0.0023	0.8512 ± 0.0075
	250	250	184	0.8694 ± 0.0032	0.8633	0.8712	0.8680 ± 0.0046	0.8734 ± 0.0041
	587	146	184	0.8749 ± 0.0013	0.8721	0.8777	0.8734 ± 0.0013	0.8766 ± 0.0006
	10	10	8964	0.6638 ± 0.0141	0.6938	0.6688	0.6761 ± 0.0130	0.6683 ± 0.0170
	25 50	25 50	8964 8964	0.7098 ± 0.0130 0.7613 ± 0.0080	0.7275	0.7176	0.7257 ± 0.0137 0.7577 ± 0.0065	0.7169 ± 0.0138 0.7649 ± 0.0086
Jungle	100	100	8964	0.8014 ± 0.0045	0.7894	0.8038	0.7941 ± 0.0035	0.8056 ± 0.0050
0	250	250	8964	0.8271 ± 0.0061	0.8151	0.8231	0.8138 ± 0.0067	0.8336 ± 0.0062
	500	500	8964	0.8431 ± 0.0062	0.8352	0.8372	0.8354 ± 0.0037	0.8528 ± 0.0057
	28684	7171	8964	0.9096 ± 0.0024	0.8425	0.9078	0.8877 ± 0.0022	0.9094 ± 0.0023

1134 D COMPARISON WITH TABLLM

1136				
1137		<u> </u>	LIMP	70.1.11
1138	Dataset	Size	LLM-Boost	
1130		4 8	0.57	0.39
1100		16	0.62	0.65
1140	11.	32	0.76	0.64
1141	bank	64	0.79	0.69
1142		128	0.83	0.82
1143		256	0.87	0.87
1144		512	0.88	0.88
1145		4	0.54	0.58
11/6		8 16	0.58	0.00
1140		32	0.61	0.68
1147	blood	64	0.66	0.68
1148		128	0.67	0.68
1149		256	0.68	0.70
1150		512	0.68	0.68
1151		4	0.62	0.63
1152		8	0.69	0.60
1152		16	0.75	0.70
1155	calhousing	52 64	0.78	0.77
1154		128	0.84	0.81
1155		256	0.86	0.83
1156		512	0.90	0.86
1157		4	0.61	0.69
1158		8	0.69	0.66
1159		16	0.65	0.66
1100	creditg	32	0.68	0.72
1160		64	0.71	0.70
1161		128	0.72	0.71
1162		230 512	0.75	0.72
1163		4	0.58	0.61
1164		8	0.63	0.63
1165		16	0.67	0.69
1166	diabetes	32	0.74	0.68
1167	andottes	64	0.77	0.73
1107		128	0.80	0.79
1108		230 512	0.80	0.78
1169		4	0.64	0.76
1170		8	0.77	0.83
1171		16	0.82	0.87
1172	heart	32	0.88	0.87
1173		64	0.90	0.91
1174		128	0.91	0.90
1175		230 512	0.92	0.92
1176		4	0.63	0.84
11/0		8	0.75	0.84
11//		16	0.79	0.84
1178	income	32	0.84	0.84
1179		64	0.82	0.84
1180		128	0.87	0.87
1181		∠30 512	0.87	0.87
1182		4	0.61	0.64
1183		8	0.62	0.64
1107		16	0.64	0.65
1104	jungle	32	0.74	0.71
1185	Juligie	64	0.75	0.78
1186		128	0.82	0.81
1187		256	0.85	0.84
		512	0.88	0.89

E EXAMPLE ILLUSTRATING THE IMPORTANCE OF THE SCALING PARAMETER FOR LLM-BOOST

For LLM-Boost the predictions of the ensemble consisting of the first *i* trees are,

$$pred_{(0,i)} = pred_{(1,i)} + s * SCORE_{LLM} + C,$$

The following graph highlights the importance of tuning the scaling parameter s for our boosting framework.

Figure 11: LLM-Boost with intermediate scaling parameter values may lead to better perfor-mance than either standalone model. This ablation study demonstrates the change in performance with the scaling parameter when boosting a pre-fine tuned XGBoost model with Flan-T5 scores. The x-axis represents the scaling parameter which ranges from 0 to infinity. When the scaling parameter is close to 0, the performance approaches that of XGBoost, since the seed values in LLM-Boost are negligent. As the scaling parameter increases, we approach the raw performance of the LLM. We observe how with LLM-Boost, intermediate scaling values result in better performance than either the individual LLM or GBDT algorithm.