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Abstract

The intuitive interaction between the audio and
visual modalities is valuable for cross-modal
self-supervised learning. This concept has been
demonstrated for generic audiovisual tasks like
video action recognition and acoustic scene clas-
sification. However, self-supervision remains
under-explored for audiovisual speech. We pro-
pose a method to learn self-supervised speech rep-
resentations from the raw audio waveform. We
train a raw audio encoder by combining audio-
only self-supervision (by predicting informative
audio attributes) with visual self-supervision (by
generating talking faces from audio). The vi-
sual pretext task drives the audio representations
to capture information related to lip movements.
This enriches the audio encoder with visual infor-
mation and the encoder can be used for evaluation
without the visual modality. Our method attains
competitive performance with respect to exist-
ing self-supervised audio features on established
isolated word classification benchmarks, and sig-
nificantly outperforms other methods at learning
from fewer labels. Notably, our method also out-
performs fully supervised training, thus providing
a strong initialization for speech related tasks. Our
results demonstrate the potential of multimodal
self-supervision in audiovisual speech for learn-
ing good audio representations.

1. Introduction
Self-supervised learning of representations from large unla-
beled datasets is a popular contemporary trend in machine
learning. After being widely adopted in areas like natural
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language processing and computer vision, self-supervision
is now rapidly developing as a noteworthy topic in audio
and speech processing. Self-supervision aims to capture
the most informative properties from the underlying struc-
ture of unlabeled data to learn generalized representations.
This is extremely promising in problem settings involv-
ing a large amount of unlabeled data but limited labeled
data. In the context of audio and speech processing, this
is relevant to low resource languages, emotion recognition,
cross-cultural speech recognition and other such problems
with small-sized datasets. Even though there has been re-
cent research interest in self-supervised learning for speech
data, most works focus only on the audio modality alone.
Audiovisual speech data offers interesting possibilities for
cross-modal self-supervision, which is something relatively
lesser explored. In this work, we present a method for self-
supervised representation learning of audio features that
leverages both the audio and visual modalities. We demon-
strate how generating a talking lip video from a single frame
and the corresponding audio can be used as a pretext task
for visual self-supervision to train a raw audio encoder.
We combine this with audio-only self-supervision based on
predicting informative audio attributes, similar to (Pascual
et al., 2019). This results in an audio encoder trained by
joint audiovisual self-supervision. We evaluate the method
on spoken word classification and achieve competitive re-
sults when comparing with existing self-supervised methods.
Our method also results in significantly better performance
when learning with limited data (10 % of training set) for
the downstream tasks. Importantly, our method also outper-
forms fully supervised training (directly training the encoder
on the downstream task). Our observations motivate the util-
ity of self-supervised pretraining for audio related tasks.
We demonstrate that cross-modal supervision in audiovi-
sual speech can learn better representations compared to
unimodal audio-only or visual-only self-supervision.

1.1. Related work

Self-supervised learning has been very influential in recent
advances in natural language processing (BERT (Devlin
et al., 2018), RoBERTa (Liu et al., 2019) etc.) and com-
puter vision (CPC (Oord et al., 2018), MoCo (He et al.,
2020), PIRL (Misra & van der Maaten, 2019) etc.). It is
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also beginning to mature as a relevant topic in audio and
speech processing. CPC (Contrast Predictive Coding) (Oord
et al., 2018) was a seminal work in self-supervised learning
which also demonstrated the applicability of contrastive self-
supervised learning to audio. Wav2vec (Schneider et al.,
2019) refines the idea from CPC specifically for speech.
CPC based self-supervision has also been shown to general-
ize well to multiple languages (Rivière et al., 2020). APC
(Autoregressive Predictive Coding) (Chung et al., 2019) is
a similar approach that predicts the next token of a speech
segment from the history. Another very relevant recent
work is PASE (Problem Agnostic Speech Encoder) (Pas-
cual et al., 2019), which aims to learn multi-task speech
representations from raw audio by predicting a number of
handcrafted features such as MFCCs, prosody and wave-
form. Teacher-student models have also been explored for
audio self-supervision where the trained model from a pre-
vious epoch acts as the teacher model for the next epoch
(Kumar & Ithapu, 2020). All of the works discussed so far
are unimodal audio-only self-supervised methods. There
are also a few other works that utilize both audio and vi-
sual information. There are multiple ways to capture this
cross-modal interaction including audiovisual synchroniza-
tion (Owens et al., 2018), cross-modal transition modeling
(Pham et al., 2019), cross-modal pseudolabel based clus-
tering (Alwassel et al., 2019), contrastive learning (Tian
et al., 2019; Patrick et al., 2020), and audiovisual instance
discrimination (Morgado et al., 2020). However most of
these works present cross-modal self-supervision in the con-
text of generic audiovisual data, with application to tasks
like video action recognition and acoustic scene classifica-
tion. There is limited work that explores self-supervision
specifically in the context of audiovisual speech. We have
explored this concept in recent related work (Shukla et al.,
2020c;b;a). This work extends the idea from our prior work.
Specifically, we move from learning speech representations
directly from raw audio instead of from mel features. We
also adopt a different and more refined approach for audio-
only self-supervision (described in Section 2.3).

2. Method
2.1. Audio encoder architecture

We use a 1D Resnet18 (He et al., 2016) encoder as the back-
bone for all of our proposed methods (detailed architecture
in appendix). The encoder fa (see Fig. 2 and 3) takes as
input a 16 kHz raw audio waveform and converts it into a
512-D audio feature vector for every timestep. The output
sample rate is 25 audio feature vectors per second, which
matches that of 25 FPS video in the LRW dataset. This
allows us to have a one-to-one mapping between the two
modalities, which helps in cross-modal learning and allows
us to avoid oversampling or undersampling either modal-

ity. Other contemporary self-supervised methods (Alwassel
et al., 2019; Patrick et al., 2020) use a 2D Resnet18 audio
encoder operating on mel features (operating similar to im-
age based CNNs). However, we wanted our audio encoder
to directly operate on the raw audio waveform and perform
end-to-end self-supervised representation learning without
starting from an intermediate feature like MFCCs or log mel
spectrograms, which is why we chose a 1D Resnet18.

2.2. Visual Self-Supervision

For visual self-supervision, we generate a talking lip video
from a still image and the corresponding audio (see Fig. 1
and Fig. 2). The model is comprised of three components:
(i) the audio encoder fa (1D Resnet18), (ii) the identity
encoder fid, and (iii) the frame decoder fd. The model oper-
ates on 1 second long segments from an audiovisual speech
dataset. The audio encoder fa (Fig. 2 bottom-left) converts
the 1 second audio sample x into a 512 dimensional em-
bedding with 25 timesteps (zaud). The identity encoder fid
(Fig. 2 top-left) is a 6 layer CNN that converts the mouth
region of the first video frame xim (a 64x64 image) into a
64 dimensional identity embedding (zid). This embedding
is replicated 25 times to match the timesteps of the audio
embedding. The latent representation z is the concatena-
tion of zaud and zid (as shown in Fig. 2). This then goes
through the frame decoder fd (see Fig. 2 top-right), which is
a CNN that uses strided transposed convolutions to generate
the video frames of the lip movements. The skip connec-
tions between the identity encoder and frame decoder help
in preserving subject identity in the generated frames. An
L1 reconstruction loss between frames from the generated
video (fd(z)) and those from the real video (yvideo) is used
to train the network. We use the L1 loss as opposed to the
L2 loss to get relatively sharper reconstructions. Our model
aims to predict lip movements given only audio and speaker
identity information from the first frame. In this process, the
audio encoder is driven to produce useful speech features
that correlate with lip movements (because accurate lip
movement reconstruction will reduce the loss). The au-
dio features obtained by reconstructing lip movements are
likely to contain information about the speech content. Our
proposed method is related to our prior work on visual self-
supervision to learn audio features (Shukla et al., 2020c;b;a).
In this work, the key difference is that we use a raw audio
encoder for end-to-end learning as opposed to the log mel
spectrogram encoder we used in (Shukla et al., 2020b;a).
Also, instead of reconstructing the full face, we focus on the
mouth region which contains visual information about the
speech content, which we hypothesized would lead to better
representations for speech recognition.

z(x, xim) = cat(fa(x), fid(xim)) (1)

Lvideo(x, xim) = |fd(z(x, xim))− yvideo| (2)
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Figure 1. An illustration of the encoder-decoder model we use for joint audiovisual self-supervision. From an unlabeled sample of
audiovisual speech, we use the raw audio waveform and the first video frame to generate a talking lip video. Lip movement reconstruction
offers visual self-supervision. We also use decoders to reconstruct salient audio attributes (MFCCs, log mel, waveform) for audio-only
self-supervision. By jointly optimizing the reconstruction losses for both modalities, we get joint audiovisual self-supervision. The trained
audio encoder can then be used for audio-only downstream tasks.

Table 1. Results for spoken word classification (Accuracy in %) on the Speech Commands (SPC, 30 classes) (Warden, 2018) and the
Lip Reading in the Wild (LRW, 500 classes) (Chung & Zisserman, 2016) datasets. For evaluation, a 2 layer GRU model is used on the
encoder outputs for each pretraining method, before finetuning on the downstream task.

Pretraining method Self-supervision Input type
Dataset and % of Labels used

SPC SPC LRW LRW
100% 10% 100% 10%

MFCC - - 94.33 87.08 90.16 37.56
PASE (Pascual et al., 2019) Audio Raw audio 95.61 83.81 93.40 1.88
APC (Chung et al., 2019) Audio Mel features 94.87 89.91 93.97 57.41
wav2vec (Schneider et al., 2019) Audio Raw audio 96.04 91.57 94.60 19.50
L1 (Shukla et al., 2020b) Visual Mel features 95.11 86.43 94.45 33.43
L1 + Odd (Shukla et al., 2020b) Audiovisual Mel features 95.77 90.16 94.72 67.98

Ours (A) Audio Raw audio 95.06 90.56 94.14 69.70
Ours (V) Visual Raw audio 94.38 88.31 92.18 52.99
Ours (AV) Audiovisual Raw audio 95.21 90.63 95.37 77.13

Supervised 1D Resnet18 - Raw audio 93.79 81.12 90.34 13.72
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2.3. Audio Self-Supervision

In prior work (Shukla et al., 2020b), we employed tempo-
ral order based pretext task for audio-only self-supervision
(predicting which of the inputs are jumbled or reversed).
We wanted to examine whether it is possible to yield better
speech representations using a more refined pretext task. In
this work, our methodology for audio-only self-supervision
is inspired from PASE (Pascual et al., 2019). We predict
three informative audio attributes: (i) MFCCs, (ii) Log mel
spectrograms, and (iii) the waveform. The key difference of
our method with PASE is the fact that we directly train a 1D
Resnet18 encoder model on the raw audio waveform. PASE
requires intermediate steps like adding speech distortions
for data augmentation, SincNet filters, and a penultimate
Quasi-RNN layer. We also adopt only 3 of the most infor-
mative predicted attributes from PASE for simplicity. Fig. 3
illustrates our method for audio-only self-supervision. The
audio encoder (fa) converts 1 second of 16 kHz input audio
(x) into a 512 dimensional audio embedding (zaud) with
25 timesteps (exactly the same as in the method for visual
self-supervision). The audio representation is then used as
input to three separate decoders (fmfcc, flogmel & fwav)
that reconstruct the desired audio attributes. We keep the
decoder architectures as simple as possible in order to incen-
tivize the important information about the audio attributes
to be captured by the audio encoder. The MFCC and the log
mel spectrogram decoders (Fig. 3 right) are both comprised
of a single fully connected layer of 256 units. The waveform
decoder (Fig. 3 top-left) is made of a transposed convolution
layer followed by a convolution layer that outputs the re-
constructed waveform (in an autoencoder-like fashion). We
use an L1 loss between each reconstructed attribute with its
ground truth (yattrib) to train the model. The total loss is the
sum of the MFCC loss, the log mel loss, and the waveform
loss. For attrib ∈ {mfcc, logmel, wav}, the loss is:

Laudio(x) =
∑
attrib

|fattrib(fa(x))− yattrib| (3)

2.4. Audiovisual Self-Supervision

For joint audiovisual self-supervision (see Fig. 1), we sim-
ply combine the two proposed methods for visual-only and
audio-only self-supervision. Since the same audio encoder
architecture has been used in both models, we can simply
use the shared audio representation as input to each of the
four decoders (frame decoder, MFCC decoder, log mel de-
coder, waveform decoder). The total loss is the sum of the
audio-only and the visual-only losses. The audio encoder
(fa) is thus trained end-to-end and is driven to produce fea-
tures that contain information about each of the predicted
attributes from both the audio and the visual modalities.

Ltotal(x, xim) = Lvideo(x, xim) + Laudio(x) (4)

3. Experiments
Datasets The LRW dataset (Chung & Zisserman, 2016)
is a large, in-the-wild dataset of 500 different isolated words
primarily from BBC recordings. It is an audiovisual speech
dataset and is thus appropriate for training our methods. We
use a subset of LRW that has only nearly frontal videos
(with yaw, pitch and roll restricted to a maximum of 10
degrees), in order to have a cleaner supervisory signal from
the visual modality. This filtering leaves us with a total of
around 40 hours of usable data. We use this subset of the
LRW dataset for self-supervised pretraining of our proposed
methods. We also use it as a spoken word classification
evaluation dataset. The SPC (Speech Commands v0.01)
dataset (Warden, 2018) contains 64,727 total utterances of
30 different words by 1,881 speakers. We use SPC also as a
spoken word classification evaluation dataset.

Baselines We compare our methods against other self-
supervised methods for learning speech representations. For
all the baselines, we use the code (and pretrained models)
provided by the authors. We compare against PASE (Pas-
cual et al., 2019), APC (Chung et al., 2019) and wav2vec
(Schneider et al., 2019). We also compare against our prior
related work. L1 (Shukla et al., 2020b) is similar to our pro-
posed method for visual-only self-supervision but is based
on log mel spectrograms as opposed to raw audio. L1 + Odd
(Shukla et al., 2020b) is an audio-visual self-supervised
method. We use a more refined audio self-supervision ap-
proach in this work. We also compare our methods against
two supervised learning baselines for audio. We use 39 di-
mensional MFCCs (13 coefficients, 13 deltas, and 13 delta-
deltas) as the first supervised baseline. The second baseline
is a fully supervised 1D Resnet18 model (same architecture
as our pretrained encoders but trained from scratch directly
on the evaluation datasets).

Experimental setup We evaluate all methods on isolated
word classification on the Speech Commands (SPC) (War-
den, 2018) and Lip Reading in the Wild (LRW) (Chung &
Zisserman, 2016) datasets. We use a 2 layer BiGRU (with
256 units in each layer) on the encoder outputs followed by
a linear layer with as many units as the number of target
classes (30 for SPC, 500 for LRW). This acts as the down-
stream classifier and remains the same for every method.
For downstream classifiction, we finetune the models (as
shown in bottom of Fig. 1) for 50 epochs. The learning rate
is 0.0001 for the first 40 epochs and 0.00001 for the last
10 epochs. We use the standard softmax + cross entropy
loss for training. We opted to use a BiGRU for simplicity,
however this can be replaced by any model that can clas-
sify variable length sequences into discrete categories (such
as LSTMs, TCNs, LiGRUs (Ravanelli et al., 2018)). The
results can be seen in Table 1.
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Table 2. Results for spoken word classification (Accuracy in %) under various levels of introduced noise (SNR in dB). Babble noise from
the NOISEX database is used to perturb the audio samples in the LRW and SPC datasets.

Dataset Model Noise level (SNR)
-5 dB 0 dB 5dB 10 dB 15 dB 20 dB Clean

SPC

MFCC 76.31 84.97 90.56 91.98 93.05 94.19 94.33
Ours (A) 79.35 88.42 92.34 93.41 94.63 95.04 95.06
Ours (V) 77.92 86.92 91.01 92.80 93.47 93.88 94.38
Ours (AV) 79.79 88.69 92.21 93.57 94.65 95.02 95.21

LRW

MFCC 50.18 70.75 81.08 85.74 88.41 90.11 90.16
Ours (A) 58.84 79.13 89.14 91.72 92.87 93.84 94.14
Ours (V) 51.40 73.47 84.61 88.11 90.98 91.58 92.18
Ours (AV) 64.63 82.59 90.08 92.09 92.91 93.87 95.37

Results with all labels With 100% of the training dataset
used, all self-supervised methods achieve comparable per-
formance and outperform fully supervised training. On the
SPC dataset, the best overall performance is attained by
wav2vec with an accuracy of 96.04%, followed by our prior
work at 95.77%, PASE at 95.61% and our proposed method
at 95.21%. On LRW, the best performance is by our method
with an accuracy of 95.37%.

Learning with fewer labels The concept of self-
supervision is especially relevant to situations where labeled
data is scarce. To compare the methods in such situations,
we perform the same word classification experiments on
the SPC and LRW datasets but with only 10% of the sam-
ples being used in the training set (the validation and test
sets remain unchanged). Note that we completely omit the
remaining 90% of the training set (see Tables 6, 7, 8 for
exact split details). This leaves us with around 170 training
examples per class for the SPC dataset (30 classes) and only
around 20 training examples per class for the LRW dataset
(500 classes). This makes the problem significantly more
challenging. On SPC, there is a slight degradation in the
performance of all methods. Our method attains an accuracy
of 90.63% which is second to only wav2vec at an accuracy
of 91.57%. On LRW, all other methods get severely affected
and overfit to the small training set. Our method is the least
affected and significantly outperforms all other methods
with a best performance of 77.13%.

Noisy situations We also compare the performance of the
variations of our method under various levels of artificially
induced noise. We introduce babble noise from the NOISEX
(Varga & Steeneken, 1993) database to create noisy versions
of the SPC and LRW datasets. We use six levels of noise, in
the range of -5 dB SNR to 20 dB SNR in increments of 5
dB. The results for the noisy datasets can be seen in Table 2.
All our methods outperform MFCCs at all noise levels on
both datasets. The joint audiovisual method is the best.

4. Discussion
There are multiple interesting observations from our ob-
tained results. Audio-only supervision yields better results
than visual-only supervision. However, the model trained
with joint audiovisual self-supervision performs better than
the models trained with unimodal audio-only and visual-
only self-supervision in almost all scenarios. including
noisy datasets. This highlights the utility of the comple-
mentary information encoded by visual self-supervision and
demonstrates the potential of multimodal self-supervision as
a useful tool in speech representation learning. Also notably,
despite all tested methods being very similar in performance
on the full datasets, there is a clear gap when using a small
training set and our method is the best at learning with fewer
labels, which is very relevant to low resource domains. This
can have significant impact in problems like low resource
language ASR, emotion recognition and cross-cultural ASR.
Our method also significantly outperforms fully supervised
training from scratch, which further motivates the utility of
self-supervised pretraining for speech.

Future work This is a work in progress and there are
many other speech related applications that we can evaluate
our model on. In this work, we only focused on the clas-
sification of isolated words. We will also test the model
on continuous CTC based speech recognition on datasets
like Librispeech and TIMIT, and other tasks like speaker
identification and speech emotion recognition. An espe-
cially relevant application would be low resource language
ASR. There are also interesting directions to explore to
improve our method. In this work, we exhibit how joint
audiovisual information can be used for audio representa-
tion learning. In a similar manner, we could also utilize this
cross-modal information for visual representation learning
(e.g. predicting speech attributes from the visual modality).
Another interesting line of work is multimodal contrastive
self-supervised learning which has been demonstrated for
generic audiovisual data but not for audiovisual speech.
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Appendix

A. Audio encoders

Table 3. Encoder type and number of trainable parameters in each
of the compared methods.

Method Encoder type Parameters

PASE SincNet + CNN + FC 5,818,020
APC Log mel + GRU 4,105,296
wav2vec CNN 32,537,088
L1 + Odd Log mel + GRU 4,065,282

Ours 1D Resnet18 3,848,576

Table 4. Feature dimensionality and sample rate of each of the
compared methods.

Method Dim. Hz

MFCC 39 101
PASE 100 100
APC 512 101
wav2vec 512 98
L1 512 101
L1 + Odd 512 101

Ours 512 25

Table 5. Pretraining dataset and duration for each method

Method Pretraining Dataset Duration

PASE Librispeech subset 10 hours
APC Librispeech train-clean-360 360 hours
wav2vec Full Librispeech + WSJ 1000 hours
L1 LRW frontal subset 36 hours
L1 + Odd LRW frontal subset 36 hours

Ours LRW frontal subset 36 hours

Pretraining datasets for baselines The results in Table
1 for all the baseline methods (PASE, APC, wav2vec) have
been computed using the public code and pretrained models
provided by the authors. These baseline methods (and our
method) have been pretrained on varying amounts and types
of data. For a completely fair comparison, all methods
need to be pretrained with the same data. We experimented
with pretraining all baseline methods on the same 36 hour
LRW frontal subset that we use for our method. The results
obtained with the baseline methods using this approach were
either equivalent or worse to those with the public pretrained
models. This shows that our model may be able to learn
better representations on the same amount of pretraining
data. However for the results, we use the public pretrained
models which may assist with reproducibility.

B. Dataset and split details

Table 6. The number of data samples in each split of each dataset.

Dataset - % labels Split size (samples)
Train Val Test

SPC-100% 51088 6798 6835
SPC-10% 5097 6798 6835

LRW-100% 112812 5878 5987
LRW-10% 11054 5878 5987

Table 7. The duration (in hours) of each split of each dataset.

Dataset - % labels Split duration (hours)
Train Val Test

SPC-100% 14.19 1.89 1.90
SPC-10% 1.41 1.89 1.90

LRW-100% 36.35 1.89 1.92
LRW-10% 3.56 1.89 1.92

Table 8. The average number of samples (rounded to nearest inte-
ger) and duration in minutes of each class in the training set.

Dataset Classes n/class t/class

SPC-100% 30 1703 28.38
SPC-10% 30 170 2.82

LRW-100% 500 225 4.36
LRW-10% 500 22 0.42
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Figure 2. A detailed illustration of the encoder-decoder model we use for lip video reconstruction. From an unlabeled sample of audiovisual
speech, we use the audio and the first frame of the video (t = 0) to generate a video with t frames. The model contains: (1) an identity
encoder which produces a 64-D identity embedding; (2) an audio encoder which converts the input audio (t frames of 80 dimensional log
mel spectrograms) into a 512-D audio embedding; (3) a frame decoder which generates video from the concatenated latent representation
using transposed convolutions.

Figure 3. A detailed illustration of the encoder-decoder model we use for audio-only self-supervised representation learning. From an
input waveform of 1 second, we predict three informative attributes: MFCC, log mel spectrogram and the waveform. The decoders are
kept as simple as possible to incentivize the audio representations to capture the necessary information about the attributes.


