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Segmentation of anatomical structures and pathologies in medical images is essential for modern disease
diagnosis, clinical research, and treatment planning. While significant advancements have been made in deep
learning-based segmentation techniques, many of these methods still suffer from limitations in data efficiency,
generalizability, and interactivity. As a result, developing robust segmentation methods that require fewer
labeled datasets remains a critical challenge in medical image analysis. Recently, the introduction of foundation
models like CLIP and Segment-Anything-Model (SAM), with robust cross-domain representations, has paved
the way for interactive and universal image segmentation. However, further exploration of these models for
data-efficient segmentation in medical imaging is an active field of research. In this paper, we introduce
MedCLIP-SAMv2, a novel framework that integrates the CLIP and SAM models to perform segmentation on
clinical scans using text prompts, in both zero-shot and weakly supervised settings. Our approach includes fine-
tuning the BiomedCLIP model with a new Decoupled Hard Negative Noise Contrastive Estimation (DHN-NCE)
loss, and leveraging the Multi-modal Information Bottleneck (M2IB) to create visual prompts for generating
segmentation masks with SAM in the zero-shot setting. We also investigate using zero-shot segmentation labels
in a weakly supervised paradigm to enhance segmentation quality further. Extensive validation across four
diverse segmentation tasks and medical imaging modalities (breast tumor ultrasound, brain tumor MRI, lung
X-ray, and lung CT) demonstrates the high accuracy of our proposed framework. Our code is available at
https://github.com/HealthX-Lab/MedCLIP-SAMv2.

1. Introduction existing models often fail to generalize across modalities/tasks and lack
the flexibility required for interactive clinical deployment. Addressing
these limitations requires a framework that can operate in a zero-shot
setting, adapt to multiple imaging types/tasks, and incorporate human
guidance.

Recently, the introduction of foundation models, such as Contrastive
Language-Image Pre-Training (CLIP) (Radford et al., 2021) and Seg-

ment Anything Model (SAM) (Kirillov et al.,, 2023) has paved the

With the growing availability of radiological technologies, there is
an increasing demand for precise and efficient medical image segmen-
tation to support the study, diagnosis, and treatment of various medical
conditions (Siuly and Zhang, 2016). Deep learning (DL) techniques
have emerged as state-of-the-art (SOTA) in this field; however, they
face three key challenges that hinder their broader clinical adoption.
First, the scarcity of large, well-annotated datasets presents a major

obstacle to DL model development. Second, the lack of interactivity
and interpretability undermines trust in these methods. Finally, most
medical DL models are trained for specific tasks and contrasts/modali-
ties, limiting their flexibility. While several self-supervised and weakly
supervised approaches (Baevski et al., 2023; Chen et al., 2020; Taleb
et al.,, 2021) have been introduced to improve training efficiency,
and explainable AI (XAI) techniques, including uncertainty estima-
tion (Loquercio et al., 2020; Liu et al., 2020) and saliency maps (Arun
et al.,, 2021; Bae et al.,, 2020) are under active investigation, cross-
domain generalization remains a major challenge. Despite these efforts,
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way for interactive and universal medical image segmentation. Several
research groups have adapted CLIP and SAM for radiological tasks,
including the development of BiomedCLIP (Zhang et al., 2023) and
MedSAM (Ma et al., 2024), which were pre-trained on vast amounts
of biomedical data. These models promise cross-modal alignment and
segmentation flexibility, but unlocking their full potential for clinical
imaging tasks requires further adaptation and fine-tuning. Particularly,
to mitigate the dependence on precise drawing-based visual prompts
from trained eyes for SAM models, CLIP could offer an alternative
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mechanism to provide these visual prompts through interfacing the user
with natural languages, which are more flexible, intuitive, and scalable.

Although CLIP training primarily operates at a global level for
image-text mapping, research (Fu et al., 2024) has revealed that these
models can encode rich feature representations of images. This allows
us to establish the relationship between global textual information
and local visual features (Zhou et al., 2022; Rao et al., 2022), which
can be exploited for efficient zero-shot medical image segmentation,
enabling broader applicability even in data-scarce settings, as we ex-
plored for the first time in our MICCAI 2024 paper (Koleilat et al.,
2024b). However, transferring CLIP’s success from natural images to
radiology is non-trivial due to the complexity of medical descriptions
and the subtlety of diagnostic imaging features. While adapting CLIP
to the medical image domain may seem attractive, it is non-trivial
and requires substantial ground truth labels to fine-tune the model
effectively, especially for segmentation downstream tasks (Poudel et al.,
2024). The lack of large, high-quality annotated datasets in medical
imaging further exacerbates this challenge. This motivates the use of
biomedical domain-specific variants such as BiomedCLIP (Zhang et al.,
2023), which are better suited to capture disease-relevant radiological
representations, as well as effective fine-tuning loss functions to estab-
lish more effective cross-modal learning in radiological applications,
such as pathology localization, segmentation, and diagnosis.

On the other hand, as interest in SAM grows, to mitigate its reliance
on visual prompts (e.g., point and/or bounding box) for segmenta-
tion, which require prior clinical knowledge, recent methods have
emerged to fine-tune SAM without these prompts (Chen et al., 2024;
Hu et al., 2023), generate prompts via Class Activation Maps (CAM)
from classification tasks (Li et al., 2025, 2023b; Liu and Huang, 2024),
and refine its output using weak supervision (Yang and Gong, 2024;
Chen et al., 2023; Huang et al., 2023). These approaches point to a
growing interest and a new avenue for frameworks that can bridge
vision-language understanding with interactive segmentation, instead
of relying on manual drawing-based prompts.

Recently, to address these challenges, we introduced MedCLIP-
SAM in MICCAI2024 (Koleilat et al., 2024b), which leverages Biomed-
CLIP (Zhang et al., 2023) to generate text-based box prompts for
SAM (Kirillov et al., 2023) towards interactive and universal med-
ical image segmentation, in both zero-shot and weakly supervised
settings. Following the preliminary success, further improvement and
exploration of the framework are necessary to elevate performance
and gain deeper insights into the CLIP and SAM foundation models
for medical imaging applications. Therefore, in this paper, we pro-
pose MedCLIP-SAMV2, a significantly enhanced framework that builds
on MedCLIP-SAM by refining CLIP-SAM integration, saliency-guided
prompt generation, and uncertainty-aware weak supervision to better
harness the synergy of these foundation models for universal, scalable
medical segmentation.

Specifically, the prominent upgrades for the newly proposed
MedCLIP-SAMv2 framework from the original method include:

+ We investigated different saliency map generation techniques for
CLIP models, where we replaced gScoreCAM (Chen et al., 2022)
with M2IB (Wang et al., 2024), which, when combined with
our fine-tuning of BiomedCLIP (Zhang et al., 2023), significantly
improved zero-shot segmentation accuracy.

We enhanced weakly supervised segmentation results and in-
terpretability from the previous framework by training nnUNet
(Isensee et al., 2021) using pseudo-labels while providing uncer-
tainty estimation via checkpoint ensembling (Zhao et al., 2022).
The validation was expanded by incorporating an additional Lung
CT dataset, thereby covering four key radiological modalities: CT,
MRYI, ultrasound, and X-ray. This comprehensive testing further
demonstrates the framework’s versatility and robustness across
diverse segmentation tasks.
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» We investigated and optimized advanced text prompt engineer-
ing strategies by leveraging large language model (LLM) rea-
soning and various ensembling methods, which are shown to
significantly boost zero-shot segmentation performance.
Significantly more extensive experiments were conducted for fur-
ther validation of our framework’s design components, including
testing different SAM backbones and visual prompt types. We
meticulously evaluate the necessity of each component in our
framework and demonstrate their individual contribution to the
overall performance enhancement.

The proposed MedCLIP-SAMv2 framework addresses fundamental
limitations in prior works by combining cross-modal alignment from
BiomedCLIP with SAM’s flexible segmentation capabilities, thereby
advancing towards practical, universal, and interactive segmentation
tools in radiology. The newly proposed MedCLIP-SAMv2 framework is
more accurate, advancing further towards universal text-driven medical
image segmentation with an increase of 13.07% and 11.21% in Dice
score for zero-shot and weakly supervised paradigms, respectively. Our
main contributions are threefold: First, we propose a new CLIP train-
ing/fine-tuning loss function called Decoupled Hard Negative Noise
Contrastive Estimation (DHN-NCE). Second, we introduce a text-driven
zero-shot medical segmentation method, combining CLIP and SAM
for radiological tasks. Lastly, we explore a weakly-supervised strat-
egy to further refine zero-shot segmentation results with uncertainty
estimation. Our proposed framework is extensively validated across
four distinct segmentation tasks and modalities, including breast tumor
segmentation in ultrasound, brain tumor segmentation in MRI, and lung
segmentation in chest X-ray and CT.

2. Related work

The core challenge in medical image segmentation lies in generaliz-
ing to new tasks with minimal or no annotated training data. Conven-
tional fully supervised segmentation requires large, curated datasets,
often impractical in medical imaging due to cost and expertise barriers.
As a result, various alternatives have emerged: (1) few-shot segmenta-
tion, where limited support examples are provided; (2) weakly super-
vised methods with coarse annotations; and (3) zero-shot or test-time
adaptation strategies that leverage pretrained models and prompts. Our
work falls in the third category, proposing a universal segmentation
method that eliminates the need for retraining or annotations by using
BiomedCLIP and SAM through multimodal prompt ensembling.

2.1. CLIP in medical domain

Several works have utilized CLIP for medical images and texts.
Despite being trained on 400 million natural image-text pairs, CLIP’s
performance suffers on medical tasks. For this reason, works like Pub-
MedCLIP (Eslami et al., 2023) suggested fine-tuning CLIP on a set of
PubMed articles for the task of Medical Question-Answering; Zhang
et al. (2023) later showed PubMedCLIP’s poor performance on cross-
modal retrieval tasks (worse than CLIP). On the other hand, Med-
CLIP (Wang et al., 2022) proposed a technique to utilize decoupled
images and texts in training to augment data while Windsor et al.
(2023) explored different methods of enhancing the performance of
vision-language models for medical domain tasks in a limited data set-
ting. Alternatively, Wu et al. (2023a) proposed a method of enhancing
the text in medical reports by simplifying the sentence complexity.
Moreover, other works like (Keicher et al., 2023; Tiu et al., 2022) have
utilized CLIP for the task of pathology detection and medical report
generation. However, notably, almost all mentioned works (Wang et al.,
2022; Windsor et al., 2023; Wu et al., 2023a; Keicher et al., 2023; Tiu
et al., 2022) only utilized Chest X-ray data for their proposed methods.
BiomedCLIP (Zhang et al., 2023) is by far the most recent work for
multi-modal medical data on a large scale, which was shown to be
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superior for cross-modal retrieval accuracy. Notable studies (Koleilat
et al., 2025; Poudel et al., 2024) have investigated the transfer capa-
bilities of BiomedCLIP in downstream tasks such as classification and
segmentation. However, its adaptability remains largely unexplored
compared to the extensive body of CLIP literature. To the best of our
knowledge, our work is the first to explore the potential of BiomedCLIP
in zero-shot segmentation tasks, paving the way for more efficient
usage in medical imaging where annotations are scarce.

2.2. SAM for medical imaging segmentation

With the advent of SAM, a foundation model for image segmen-
tation that enables zero-shot generalization through a promptable ar-
chitecture consisting of a powerful image encoder, a flexible prompt
encoder, and a lightweight mask decoder, a myriad of research has been
dedicated to adapting it for medical imaging purposes. MedSAM (Ma
et al., 2024) provided a large-scale fine-tuning of SAM on about 1 mil-
lion medical image-mask pairs and demonstrated superior performance
when it comes to multiple segmentation tasks. AutoSAM (Shaharabany
et al., 2023) offered a more efficient approach to fine-tuning SAM on
medical images through training the prompt encoder and developing
a lightweight deconvolution mask decoder for medical segmentation
tasks. Cheng et al. (2023) found that bounding boxes gave the best
results when prompting SAM across 12 different medical segmentation
tasks, and Huang et al. (2023) proposed a pseudo-mask correction
framework to enhance noisy labels generated from SAM for medical
images that can be used for further fine-tuning. Finally, Gong et al.
(2023) replaced SAM’s mask decoder with a 3D convolutional neural
network so that volumetric medical images can be supported. While
these approaches adapt SAM for medical imaging, they typically rely on
retraining, prompt augmentation, or user input. Our approach avoids
all supervision by using text prompts derived from BiomedCLIP, with
no point, box, or mask annotations required during inference.

2.3. Few-shot, weakly supervised, and test-time adaptation approaches

Recent works have extended few-shot segmentation to the medi-
cal domain by integrating prompt-based methods and support-query
frameworks. UniverSeg (Butoi et al., 2023) trains a shared universal
segmentation model that generalizes across medical tasks using a task-
agnostic architecture. ProtoSAM (Ayzenberg et al.,, 2024) combines
SAM with prototypical learning to leverage a few annotated examples
per task. Similarly, Self-Prompt-SAM (Wu et al., 2023b) generates
pseudo-prompts from support images for few-shot segmentation with-
out heavy retraining. While effective, these methods still rely on a
few support examples per new task and often require task-specific
adaptation. In contrast, our approach performs segmentation purely
from text prompts, requiring no support images or finetuning.

Self-configuring models, such as nnUNet (Isensee et al., 2021) serve
as a robust, fully supervised baseline but require dense annotations.
Our weakly supervised nnUNet variant operates with pseudo-masks
derived via multimodal saliency and ensemble voting, showing that
large vision-language models can bootstrap segmentation performance
without needing precise pixel-level supervision. On the other hand,
SaLIP (Aleem et al., 2024) proposed a test-time adaptation method for
segmenting new classes in medical images by optimizing prompts dur-
ing inference. Similarly, SAMAug (Dai et al., 2024) augments prompts
for SAM to enhance point-level segmentation in unseen domains. While
effective, these methods involve adaptation at inference time, increas-
ing computational cost and complexity. Our method avoids this by
using static ensembling of pre-generated text prompts, requiring no
tuning or optimization at test time.

Overall, our method contributes to the growing body of foundation
model-driven segmentation by providing a modular, label-free, and
inference-efficient pipeline that bridges CLIP-based text semantics with
SAM’s universal segmentation capabilities.
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Fig. 2. Comparison of the standard CLIP loss, which applies uniform penalties
to all examples regardless of difficulty, with our DHN-NCE loss, which prioritizes
harder examples. The DHN-NCE loss enhances the differentiation of medical cases by
appropriately penalizing close negatives through adaptive weighting formulas. Green
outline represents the anchor example while the red outline represents the negative
examples.

3. Methods

A full overview of the proposed MedCLIP-SAMv2 framework is
presented in Fig. 3, which is organized into three distinct stages: (1)
BiomedCLIP fine-tuning employing our new DHN-NCE loss, (2) zero-
shot segmentation guided by text-prompts, and (3) weakly supervised
segmentation for potential label refinement. We additionally showcase
a summary of the main components of the framework in Fig. 1 for the
readers’ easy reference.

3.1. Efficient DHN-NCE fine-tuning

CLIP-like models are commonly trained on extensive datasets con-
sisting of images paired with their corresponding textual descriptions.
These models employ an image encoder and a text encoder to ex-
tract features, representing them as vectors in a shared dimensional
space': I,; for images and T,; for texts. Through the mechanism of
contrastive learning, CLIP aligns semantically related image-text pairs
by minimizing their distance in the embedding space while maximiz-
ing the separation of unrelated pairs. This shared embedding frame-
work facilitates a cohesive understanding of multimodal data. Although
BiomedCLIP (Zhang et al., 2023) was trained on medical charts/im-
ages and clinical texts, further fine-tuning can significantly enhance
its performance on tasks specific to medical imaging. In traditional
CLIP training with the InfoNCE loss (Oord et al., 2018), the negative-
positive-coupling (NPC) effect (Yeh et al., 2022) can reduce learning
efficiency, especially with smaller batch sizes. Additionally, for medical
images, distinguishing between subtle differences in cases within the
same imaging category can be challenging. To address these issues,

1 It is important to note that CLIP utilizes the global [CLS] tokens of the
final vision and text encoder layers before projection to the shared embedding
space.
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Fig. 3. An overview of the proposed MedCLIP-SAMv2 framework.

we propose the Decoupled Hard Negative Noise Contrastive Estimation
(DHN-NCE) loss, which (1) combines the InfoNCE loss (Oord et al.,
2018) with hard negative sampling (Robinson et al., 2021), empha-
sizing “close samples”, and (2) incorporates decoupled contrastive
learning (Yeh et al.,, 2022) by removing the positive term in the
denominator, allowing for smaller batch sizes.

Original InfoNCE Loss: The standard InfoNCE loss for contrastive
learning is formulated as follows:

exp(z] 2] /1)
LinfoNcE = Zl <5 - 1
i=1 Z, | exp(z 2;/7)
where B is the batch size, z; represents the feature embedding of the
anchor sample, z! is the positive pair for z;, 7 is the temperature
parameter, and B is the batch size.

InfoNCE for Vision-Language Matching: To get a vision-language
contrastive loss, we replace generic embeddings with image (I,;) and
text (T,;) embeddings. In this context, r — v refers to text-to-image,
while v — ¢ indicates image-to-text:

B expd! T, /7)

Lot z log /’—” @
= X 16XP(I T/
B exp(T L/t

[0 = _ Z log —p 3)

=1 exp(Tpl L,;/0

Decoupling Positives and Negatives: Expanding the logarithm and
separating terms of Eq. (2) and (3), we obtain:

50T,
—z[”;

i=1

E,_,U=_2|: plP

Since the summation in the denominators of Eq. (2) and (3) includes
both the positive pair (j = i) and the negatives (j # i), we split it as:

Lot — —log Z exp(I ¥ p,j/r)] @

—log Z exp(Tp, ) /T):| ()

Jj=1

B
z exp(I;iTm /7) = exp(I;iTpJ/r) + 2 exp(I;iTN /7) (6)

Jj=1 J#i

Following the positive-negative decoupling approach in Yeh et al.
(2022), we remove the positive pair and obtain the decoupled vision-
language contrastive loss:
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Applying Hardness Weights: The resulting DHN-NCE loss function,

Lpun-ncE»> employs weighting functions (Wll:{. W}"”I ) to increase

the penalty for negative samples that are close to the anchor, using
image-to-text and text—to—image hardness parameters g, , > 0.

I
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where the hardness weighting formulas are as follows:
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The weighting functions leverage exponential scaling to amplify the
contributions of hard negatives — those with higher similarity scores
— while suppressing easier negatives, ensuring the total weight distri-
bution prioritizes these challenging cases (see Fig. 2). By decoupling
the positive term from the denominator, DHN-NCE prevents easy pos-
itives from diminishing the gradients associated with hard negatives.
This mechanism sharpens the model’s focus on refining distinctions
for harder cases, enabling more efficient training even with small
batch sizes. Such properties make DHN-NCE particularly suited for
medical imaging tasks with limited data availability and subtle feature
variations.

3.2. Zero-shot medical image segmentation

In this stage, we utilize the fine-tuned BiomedCLIP with the up-
dated parameters 0 = {0, Oy} as the backbone model for feature
extraction from both images and text prompts. The core segmentation
process relies on the Multi-modal Information Bottleneck (M2IB) tech-
nique (Wang et al., 2024), which generates visual saliency maps of the
target regions by associating text prompts with image regions.

The zero-shot segmentation pipeline can be described as follows:

Image and Text Embedding Extraction: Given input medical images
I and their corresponding text prompts T, the image encoder ®@;,; and
the text encoder @,.,; from the fine-tuned BiomedCLIP model are used
to extract embeddings:

Z 14

img = d)img(l; eimg)

Ziext = Prext(T; Orext) (15)
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LLM Prompt Generation: Accurate and context-aware biomedical text
prompts are crucial for effectively guiding vision-language models in
medical image understanding. However, crafting such prompts manu-
ally often requires substantial clinical expertise and domain knowledge,
and thus can be laborious, particularly for non-experts. Moreover,
handcrafted prompts can suffer from inconsistency and ambiguity with
non-experts, potentially limiting their effectiveness. To address this, we
propose to leverage LLMs to automate the generation of semantically
rich prompts that can better inform and guide VLMs during inference
in the absence of experts. Recent studies, such as LLaVA-Med (Li et al.,
2023a), have demonstrated the promise of integrating LLM-generated
prompts into the training pipelines of biomedical VLMs, achieving
notable improvements in visual grounding and interpretation. Building
on this insight, and in light of recent advancements in LLMs like
GPT-4, which now exhibit near-human-level accuracy and stability
in generating diagnostic medical reports (Krishna et al., 2024; Gertz
et al., 2024), we explore how general-purpose LLMs can complement
biomedical-specific VLMs (e.g., BiomedCLIP) to enhance performance
in downstream tasks. While BiomedCLIP uses PubMed captions for
pretraining to align image and text representations, we extend this
paradigm by querying GPT-4 to generate task-specific prompts at infer-
ence time. For instance, we use the following format to guide attention
to salient image regions:

Give a sentence caption that describes unique visual
features of [TARGET] in [MODALITY]

We can engineer different prompt configurations ranging from
generic to class-specific context captions and we study the effect of
these different styles in Section 4.3.1.

Saliency Map Generation: The embeddings Z;y,, and Z, are then
passed through the Multi-modal Information Bottleneck (M2IB) mod-
ule (Wang et al.,, 2024), which learns to align the image and text
modalities by maximizing the mutual information between the input
image I and a good representative text prompt T while filtering out
irrelevant information between the image embedding and the input
image. By doing so, the process bridges the semantic gap between en-
coded visual and textual features ensuring that embeddings emphasize
the content that is jointly relevant across image and text. Specifically,
the M2IB module introduces a stochastic information bottleneck Ag
€ RW such that 0 < Ag < | where H, W are the respective height
and weight of the input image I. This produces a continuous visual
saliency map for the image representing the importance of each pixel
concerning the text prompt. This visual saliency map is produced by
optimizing the following objective function:

As =MI(Zimg,Ztext;G)—yxMI(Z» L;0) (16)

img>

where M is the mutual information operation and y is a hyperparam-
eter that balances the trade-off between relevance and compression.

Post-processing for Initial Segmentation: To obtain a discrete pixel-
wise segmentation, we apply Otsu’s thresholding (Otsu, 1979) to the
saliency map Ag, automatically determining an optimal threshold #*
that separates foreground (regions of interest) from background by
minimizing intra-class variance. The binarized segmentation is then
given by:

Yo I, Agx,») 274"
otsu — «
0, As(x,y»)<n

After thresholding, small, disconnected contours may still exist.
To refine the segmentation and ensure robust results, we perform
Connected Component Analysis on the identified contours C. For each
connected component ¢ € C, we compute a confidence score based
on the saliency map Ag. The confidence of a connected component is
derived as follows:

Yie i i

Ziec )A)i ’

a7

Confidence(c) = (18)
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where p; is the probability that pixel i belongs to the foreground class
derived from the saliency map Ag, and j; is the predicted binary label
for pixel i derived from the thresholded discrete map Y. Using this
confidence score, we identify the most confident connected components
to form the final coarse segmentation:

Y oarse = {¢ € C : Confidence(c) > 7.}, (19)

where 7, is a confidence threshold that was set to 0.5, which we found
to be robust across samples, as most low-confidence components cor-
responded to small, irrelevant blobs or artifacts. This approach retains
all high-confidence connected components, allowing the framework to
support multiple foreground regions within the same class. It enhances
the initial segmentation by filtering out unreliable areas and retaining
only the most confident and well-defined regions.

Segmentation Refinement via SAM: The initial segmentation is used
as input to the Segment Anything Model, which refines the segmen-
tation by taking visual prompts V (e.g., bounding boxes or points)
derived from the post-processed clusters. For bounding boxes, we cal-
culate 4 box coordinates (bounding boxes) that enclose each connected
contour in the coarse segmentation, while for points, we randomly
sample different points that lie within the contour. The final zero-shot
segmentation mask Y. o.qhot 1S thus produced as:

Yeroshot = SAM (Yeoarses V) (20)
3.3. Uncertainty-aware weakly supervised segmentation

To further enhance the segmentation accuracy, the zero-shot seg-
mentation results Y,q.,.shot are then used as pseudo-labels with the
input medical images I to train a segmentation network M in a weakly
supervised manner. Thus, the training data will be 7 = {(L, Y,ero-shot) } -
Building on the recent work by Zhao et al. (2022), checkpoint ensem-
bling has demonstrated superior effectiveness in uncertainty estimation
for medical image segmentation when compared to techniques such
as Monte Carlo Dropout and mean-field Bayesian Neural Networks.
This finding is particularly relevant in the context of the nnUNet
framework (Isensee et al., 2021). Given a total number of epochs E,
the training process is divided into D cycles composed of E;, = %
epochs, and during each cycle, we save G, checkpoints of the model.
Importantly, this checkpoint strategy adds no delays to the training
process, as it involves saving alternate checkpoints of the same model
rather than training separate models. Unlike the standard nnUNet
protocol that trains across cross-validation folds, we trained on the
entire training set in a single run and validated using an external
validation set. This not only improves computational efficiency, but
also enhances robustness when using pseudo-labels, as high-quality
labels in the full dataset help offset noisier ones that could otherwise
dominate individual folds. We verify this choice in Section 4.3.6. After
completing all training cycles, the probabilistic prediction of the final
segmentation Yy, is obtained by averaging the predictions from the
G = D % G, total checkpoints saved during the training process,
providing a Monte-Carlo-like approximation:

G
1
PVl X T % = Y p(Vginat|X: M) (21)
G n=1

where M,, represents the weights of the model at the nth checkpoint,
and X are unseen testing input images.

Segmentation Uncertainty Estimation: The variation in predictions
across different checkpoints also allows for estimating uncertainty in
the final segmentation mask. The generated uncertainty map helps
pinpoint regions of the medical scan that exhibit high uncertainty in the
prediction. Given R classes in the medical image, the uncertainty for
each pixel (i, j) can be computed by calculating the entropy as follows:

R
H(Yginal ) = — ., h(r) log h(r) (22)

r=1
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where

h(r) = p(Yfinar,jy = r1X%:7) (23)

3.4. Datasets and experimental setup

3.4.1. BiomedCLIP fine-tuning

We employed the public MedPix (Siragusa et al., 2024) dataset,
which contains various radiological modalities, to fine-tune the
BiomedCLIP model (Zhang et al., 2023) with our DHN-NCE loss.
The base encoders for images and text were the Vision Transformer
(ViT) and PubMedBERT (Zhang et al., 2023), respectively. The MedPix
dataset was cleaned by removing special characters, trimming leading
and trailing white spaces, and excluding samples with captions shorter
than 20 characters. All images were resized to 224 x 224 pixels
and normalized according to the RGB channel means and standard
deviations used in the original CLIP model (Radford et al., 2021). We
performed an 85%-15% split, resulting in 20,292 training images and
3515 validation images. Fine-tuning was performed with a learning rate
of 1E-6, a 50% decay rate, and a batch size of 64.

To validate the fine-tuning quality of BiomedCLIP, we assessed the
top-1 and top-2 accuracy of matching retrievals for both image-to-
text and text-to-image on the ROCO (Radiology Objects in COntext)
dataset (Pelka et al., 2018), which contains approximately 7042 multi-
modal medical images covering a wide range of radiological cases. We
ran the experiments five times with a batch size of 50, using shuffling
to randomize image-text pairs (resulting in 70,420 shuffled examples).
In addition, we compared different SOTA loss functions for fine-tuning,
including InfoNCE (Oord et al., 2018), DCL (Yeh et al., 2022) and HN-
NCE (Radenovic et al., 2023) against our DHN-NCE loss. For a fair
comparison, all strategies were trained using the same hyperparameters
(z = 0.6, learning rate = 1E—6), with the hardness parameters for HN-
NCE and DHN-NCE set to f;, = f, = 0.15. As a reference, we also
included baseline results from pre-trained BiomedCLIP (Zhang et al.,
2023), PMC-CLIP (Lin et al., 2023), and CLIP (Radford et al., 2021).

3.4.2. Datasets

To evaluate the zero-shot and weakly supervised segmentation re-
sults, as well as various design elements of the proposed MedCLIP-
SAMv2 framework, we utilized four public datasets, each representing
different radiology modalities and tasks. These datasets, which include
segmentations of breast tumors, brain tumors, and lungs, were divided
into training, validation, and testing sets as follows:

+ Breast Tumor Ultrasound: The Breast Ultrasound Images dataset
(BUSI) (Al-Dhabyani et al., 2020), containing 600 images of
benign and malignant tumors for training. Additionally, 50 and
113 images from the UDIAT dataset (Byra et al., 2020) were used
for validation and testing, respectively. The images in this dataset
do not have a fixed resolution, meaning each image has its own
unique size, which we preserved during processing.

Brain Tumor MRI: The Brain Tumor dataset (Cheng, 2017),
comprising 1462 T1-weighted MRI scans for training, 1002 for
validation, and 600 for testing. All MRI slices had a resolution of
512 x 512 pixels, and were preprocessed to discard empty slices
as provided by the dataset.

Lung Chest X-ray: The COVID-19 Radiography Database (COVID-
QU-Ex) (Chowdhury et al., 2020; Rahman et al., 2021) is divided
into 16,280 chest X-rays (normal, lung opacity, viral pneumonia,
and COVID-19 cases) for training, 1372 for validation, and 957
for testing. The images had a resolution of 299 x 299 pixels.
Lung CT: CT scans from Konya (2020), consisting of segmentation
masks for fibrotic diseased lungs from 107 patients, split into
7959 slices for training, 3010 for validation, and 1800 for testing.
The split was done by patient ID to prevent data leakage. All
slices were provided at a resolution of 512 x 512 pixels, and
only non-empty slices were used as preprocessed by the dataset
authors.
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3.4.3. Experimental setup and metrics

We performed a comprehensive comparison of segmentation quality
using the initial labels derived from post-processed M2IB results, zero-
shot pseudo-masks, and weakly supervised outputs on the specified
testing datasets. To generate visual prompts from BiomedCLIP, all
images were resized to 224 x 224 pixels, as required by the model.
For inference with SAM, images were resized to 1024 x 1024, in
line with SAM’s input specification. All zero-shot segmentation out-
puts were subsequently resized back to the original resolution of
the input images for nnUNet training and evaluation. Our zero-shot
method was benchmarked against SOTA zero-shot segmentation meth-
ods, such as SaLIP (Aleem et al.,, 2024) and SAMAug (Dai et al.,
2024) and few-shot approaches, such as UniverSeg (Butoi et al., 2023),
ProtoSAM (Ayzenberg et al., 2024), and Self-Prompt-SAM (Wu et al.,
2023b). Additionally, we compare our weakly supervised method with
nnUNet (Isensee et al., 2021) trained on pseudo-labels without check-
point ensembling. For weakly supervised segmentation, we trained the
nnUNet (Isensee et al., 2021) architecture for 600 epochs with 3 cycles
for all datasets. The learning rate was initialized to 0.01 and we adopted
a cyclical learning rate schedule as described in Zhao et al. (2022),
where the learning rate oscillates between a maximum and minimum
value throughout each cycle. This allows the model to escape local
optima and explore a wider solution space, leading to more diverse and
robust predictions. We saved the last 10 checkpoints in each of the 3
cycles, resulting in 30 total model checkpoints. The final segmentation
result is averaged from the predictions of these 30 checkpoints and is
later thresholded to create a binary mask.

As part of the ablation studies for zero-shot segmentation, we ex-
amined: (1) the impact of fine-tuning BiomedCLIP and the choice of
explainable AI (XAI) technique for saliency map generation, (2) the in-
fluence of different text prompts on overall segmentation performance,
(3) the contribution of each model component to the final performance,
and (4) the selection of SAM pre-trained models with various visual
prompting strategies. These ablation studies were conducted on the test
sets of all four datasets mentioned. In all experiments, Dice-Sgrensen
Coefficient (DSC) and Normalized Surface Distance (NSD) were used
as evaluation metrics. Paired-sample t-tests were also conducted to
validate the observed trends, with a p-value of less than 0.05 indicating
statistical significance.

4. Results
4.1. Comparison with SOTA methods

Table 1 shows a comparison of the proposed MedCLIP-SAMv2 with
different SOTA techniques. Compared to the original MedCLIP-SAM,
our approach significantly improved the average DSC from 64.54%
to 77.61% and NSD from 66.10% to 81.56% in the zero-shot setting.
Similarly, in the weakly supervised scenario, the average DSC increased
from 70.90% to 82.11% and NSD from 73.77% to 87.33%, even
surpassing weakly supervised nnUNet trained on pseudo-labels without
checkpoint ensembling on average. Overall, our method significantly
outperformed all zero-shot and few-shot SOTA methods across various
imaging modalities/tasks (p < 0.05), except for Lung X-ray. However,
the fully supervised methods still offer higher accuracy than those using
limited resources.

4.2. Effectiveness of DHN-NCE

The accuracy of cross-modal retrieval (text-to-image and image-
to-text) for the ROCO dataset (Pelka et al., 2018) is shown in Table
2 across different losses for fine-tuning BiomedCLIP, with three pre-
trained CLIP models as baselines. It can be seen that domain-specific
pre-trained models performed better than CLIP, with the larger-scale
pretraining offering better retrieval accuracy while the pre-trained
BiomedCLIP demonstrated the highest retrieval accuracy among all
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Table 1
Comparison of DSC and NSD values (%) with different few-shot and zero-shot medical image segmentation methods (mean,,;).
Technique Method Breast Ultrasound Brain MRI Lung X-ray Lung CT All
DsC 1 NSD t DSC t NSD 1 DSC 1 NSD t DSC 1 NSD t DsC 1 NSD t
SaLIP 44.330.1, 48.62( 5 47.969 1, 50.24 5 63.14),5,  66.44), 5 76.321 5 78.46,, 35 57.94,0.49 60.94,65
Zero-shot SAMAug 56.3955 59.23)09p  45.71y3 48.81), 5 57.18),;, 60.08,3,  44.61,,, 46.48)y5;  50.97,59  53.65,3
MedCLIP-SAM 67.824 56 69.12),,  66.72s,, 68.01,,, 6449, 6589,  59.1455,  60.47,5 64545,  66.10,
Ours 77.7645, 811144 76.52; 6 82.23; 5 75.79;3.44 80.88; 5, 80.385, 82.035, 77.615g, 81.56;
Weakly supervised nnUNet 73.77 448 79.711429 77164, 85.21),4, 70.154 4 74.104 59 82.24; |, 85.65,,  75.83)03  81.17,5,
MedCLIP-SAM 58.625 ¢4 60.945,;  58.804; 6177,  86.074,  88.65,5  80.125  83.734,  70.90,4  73.77.4
Ours 78.87 529 84.58,, 80.03, 4, 88.25,,,,  80.77,4 84.53, 5, 88.78, 3 91.95, 4 82.11;, 87.33;46
One-shot UniverSeg 40.565 ,, 53.25,,,  23.815,, 35.28,,  68.15,,  80.09,,, 54945,  69.62,5  46.875,  59.565
ProtoSAM 48.44,) 93 50.24)5,  45.685 4 51.69 565 80.75, 4 85.11 3 84.504.9, 87.62 1, 64.84,),  68.67,)7,
Few-shot (K = 4) UniverSeg 47.564 5, 54.25;;, 53.82)),; 66.40, 6 79.25, 84.80, 4 65.68), 70.56,,;  61.58y, 69.005 g6
- Self-Prompt-SAM  42.04,,y  44.30,,5  46.43;555  50.29,55  67.97,4  71.63,5  81.5055,  83.405,,  59.49,,,, 6241,
Few-shot (K = 16) UniverSeg 66.365 5, 72.224 3, 62.82;, 72.76;94 83.44, 5, 87.73, 4 86.49, 49 89.96, o, 74.784 03 80.675 g6
B Self-Prompt-SAM 62.364 33 66.01,59,  52.55/55 57.07 593 82.49, 5, 86.49, 45 83.66; ¢ 85.49; ¢, 70.271 44 737715
Fully supervised nnUNet 82.47 049 88.32)4; 87.74¢ 15 95.104 5 98.72 65 99.51¢,4, 97.10, 44 99.18, 3 84.63¢ 90.42¢ 33
¥ Sup nnUNet ensemble ~ 84.72,05;  90.85,,,,  88.825; 95.84s5,  99.14,5,  99.82,9  98.12,59  99.65,;  85.43.  91.7444

Table 2
Top-K cross-modal retrieval accuracy (mean,,,) for CLIP models.

image — text (%) text — image (%)

Model Version
Top-1 Top-2 Top-1 Top-2

CLIP (Radford et al., 2021) Pre-trained 26.68) 3, 41.80 9 26.175 41.13,,

PMC-CLIP (Lin et al., 2023) Pre-trained 75.47 3, 87.46, 76.78, 88.35 ;9

Pre-trained 81.83, 92.79.13 81.36 45 92.27, 14

InfoNCE (Oord et al., 2018) 84.21 35 94.47, 16 85.73.19 94.99) 16

BiomedCLIP (Zhang et al., 2023) DCL (Yeh et al., 2022) 84.44 5, 94.68, ;9 85.89 16 95.09. 19

HN-NCE (Radenovic et al., 2023) 84.33 35 94.60, ;9 85.80, ;; 95.104 19

DHN-NCE (ours) 84.70,;;  9473,,,  85.99),  95.17,,

Table 3
Effect of different text prompt templates on the segmentation performance (%, mean,,,).
Prompt Breast Ultrasound Brain MRI Lung X-ray Lung CT
DSC 1t NSD 1t DSC 1 NSD t DSC 1 NSD 1 DSC 1 NSD 1

PO 63.791515 67.89;5 08 70.98; 1 76.42; ¢3 75.793.44 80.88; 5, 69.895 14 71.83,98

P1 67.6614.35 71.5614 75 37.19;0.08 39.7711.63 69.72,4 65 73.524¢3 - -
P2 69.0415 45 73.331997 71.18; 16 77.19;14 63.91,75 67.635.13 80.385 4, 82.03;5 44

P3 77.76g 55 81.114 49 76.52; 06 82.23; 13 63.92, gg 67.734.96 - -
P4 59.11,4.30 62.61,4.05 70.16, g6 73.124 05 58.56, 76 62.48, 4, 65.39;055 67.3110.83

P5 57.9416.11 61.55,7 39 73.525 g 78.78, 15 58.82 43 52.624 55 - -
P6 67.651654 71.02¢ g9 69.234 41 74.324 59 68.95, 9; 72.31,95 75.84, gg 77.564.97

p7 65.18,,5, 68.7517.03 69.81, g6 75.01,, 68.44,¢, 72.09, 4, - -
P8 66.101¢ 25 69.4316.9; 71.03; 76.02; g5 66.795 67 70.525 91 74.114 49 75.98 65

P9 65.321¢ 15 68.696 g5 73.04;, 19 78.27 96 65.984 3, 68.91 5, - -

pre-trained models. Fine-tuning BiomedCLIP further enhanced its per-
formance. Specifically, BiomedCLIP fine-tuned with DHN-NCE reached
84.70% top-1 and 94.7 3% top-2 in image-to-text retrieval, and 85.99%
top-1 and 95.17% top-2 in text-to-image retrieval, significantly out-
performing other loss functions and the baseline models (p < 0.01).
Additionally, the benefit of fine-tuning BiomedCLIP with our DHN-NCE
loss is further validated with improved segmentation quality across
different tasks and image modalities in Tables 4 and 5.

4.3. Ablation experiments

4.3.1. Effect of text prompt designs

We conducted a series of experiments to analyze the impact of
various text prompt designs on zero-shot segmentation performance.
In particular, we compared six different prompt configurations: PO and
P1 include the class name of the object to be segmented, while P2
and P3 consist of longer, descriptive single prompts. Note that PO, P2,
P4, P6, and P8 are generic text prompts, while P1, P3, P5, P7, and
P9 are more nuanced with subtypes of the target object of interests.
For example, for Breast Ultrasound, PO is “breast tumor” while P1 can

either be “malignant breast tumor” or ‘“benign breast tumor” depending
on the tumor class. For P2, we used one descriptive sentence, such as “A
medical breast mammogram showing a suspicious, irregularly shaped mass
suggestive of a breast tumor.” P3, on the other hand, includes descriptive
text about a specific tumor subtype, like “A medical breast mammogram
showing an irregularly shaped, spiculated mass suggestive of a malignant
breast tumor.” P4-P5, P6-P7, and P8-P9 are similar to P2 and P3, but
they use an ensemble approach by averaging the text embeddings of 5,
20, and 50 different prompts respectively. Here, all descriptive clinical
prompts are generated using GPT-4 (Achiam et al., 2023). For Lung
CT, we evaluated solely on generic prompts as there is only one class
available. As shown in Table 3, the choice of text prompt significantly
influences segmentation performance. Class-specific prompts (P3) gen-
erally yielded better results for smaller structures like breast and brain
tumors whereas generic prompts (PO, P2) performed better for larger
structures like lungs in X-ray and CT scans, where simpler, more generic
descriptions allowed the model to focus on larger areas. Importantly,
LLM-generated prompts (P2, P3) consistently outperformed manually
crafted prompts (PO, P1) across most tasks, underscoring the benefit of
using automatically generated, semantically rich descriptions to guide
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Table 4

Effect of different components (%, mean,,).
Method DSC?t NSD?t
1: Saliency maps 46.234 55 50.504 g6
2: + DHN-NCE fine-tuning 49.104 46 53.544¢,
3: + Post-processing 51.62, 5, 55.23;,,
4: + Connected component analysis ~ 57.89;; 61.54 ),
5: + SAM 77.61¢, 81.56,
6: + nnUNet ensemble 82.115 87.335.46

the model. On the other hand, increasing the number of prompts
from 5 (P4, P5) to 20 (P6, P7) led to a noticeable improvement
in segmentation performance across all datasets, except brain MRI.
However, expanding from 20 to 50 (P8, P9) prompts resulted in a
slight decrease in performance for most tasks. For the case of brain
tumors, performance remained relatively stable regardless of prompt
count. This suggests that while a moderate number of diverse prompts
can enhance the semantic richness of the text embedding and improve
alignment with the image features, too many prompts may introduce
redundancy or noise, potentially diluting the relevance of the aver-
aged embedding. These results highlight the importance of balancing
diversity and specificity in prompt design for optimal performance. The
best prompt configuration for each task is used to generate the results
presented in Table 1.

4.3.2. Ablation analysis of algorithm components

Table 4 shows the contribution of each component of our framework
in improving the average segmentation performance on all datasets.
Starting with saliency maps generated using the M2IB, we achieved a
baseline DSC of 46.23% and an NSD of 50.50%, providing an initial
focus on key regions of interest. Fine-tuning BiomedCLIP with the
proposed DHN-NCE loss raised the DSC to 49.10% and the NSD to
53.54%. Post-processing the saliency maps further enhanced the seg-
mentation quality, allowing the model to better delineate foreground
and background areas by refining the initial segmentation boundaries.
Incorporating a connected component analysis step greatly impacted
the results, increasing the DSC to 57.89% and the NSD to 61.54%, as
it eliminated small, irrelevant clusters and reduced noise, improving
overall precision. With the integration of SAM and the use of visual
prompts, such as bounding boxes or points, our zero-shot method
yielded a substantial improvement, achieving a DSC of 77.61% and an
NSD of 81.56%. Finally, weakly supervised training with checkpoint
ensembling further refined the segmentation quality by leveraging
pseudo-labels generated from the zero-shot method. By using these
pseudo-labels to train a segmentation network from scratch, we were
able to reach a final DSC of 82.11% and an NSD of 87.33%.

4.3.3. Impact of saliency maps generation methods

As shown in Table 5, M2IB achieved the highest performance across
all tasks, with an average DSC of 77.61% and NSD of 81.56% when
using the fine-tuned BiomedCLIP model. In both its pre-trained and
fine-tuned forms, M2IB significantly outperformed gScoreCAM and
GradCAM (p < 0.05). BiomedCLIP fine-tuning improved the scores
across all saliency map techniques on average, with the largest gains
seen in M2IB, which improved by 3.92% in DSC and 4.24% in NSD
compared to its pre-trained version.

4.3.4. Comparison of visual prompts for SAM

Table 6 compares different SAM models and visual prompting tech-
niques. For point-based prompting, we sampled between 5 to 10 ran-
dom positive points for each task. We exclusively used positive points,
as including negative points or increasing the number of points beyond
10 was found to degrade performance. We see that bounding boxes
generally provided the best segmentation performance, except in Lung
X-rays, where adding point prompts enhanced results. On the other
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Table 5

Comparison between different saliency map techniques as
well as the pre-trained and fine-tuned BiomedCLIP on the
overall performance (%, mean,,,).

Model Technique Al

DSC 1 NSD 1

M2IB 73.69 77.32.
Pre-trained 7.58 743
BiomedCLIP gScoreCAM 58.92¢ 7 62.19,
GradCAM 29.214 4, 31.364 44

M2IB 77.61 81.56
Fine-tuned 6.82 7.00
BiomedCLIP gScoreCAM 60.52¢ 4, 63.89 39
GradCAM 30.114,, 326144,

hand, point prompts alone performed worse except in certain tasks,
such as Lung X-ray (75.79% DSC, 80.88% NSD). Additionally, we
tested an ensemble approach, where SAM was run five times with
different randomly sampled positive point prompts, and the resulting
masks were averaged. While this ensembling marginally improved per-
formance in some cases (e.g., Lung X-ray), it did not lead to consistent
gains over a single point prompt run. Given the high computational
cost of this method, we conclude that multi-run point-based ensembling
offers limited benefit and is not a practical alternative to single-pass
prompting.

In addition, the comparison across SAM, MedSAM, and SAM-Med2D
reveals that SAM (ViT-H) consistently outperforms the medical SAM
variants, despite not being pre-trained on medical imaging data. It
achieves strong performance with bounding box prompts across most
modalities and tasks, including challenging ones like Lung CT. SAM
(ViT-B), while smaller, still performs on par with or better than the
ViT-B-based medical SAM models (SAM-Med2D and MedSAM) in many
cases.

4.3.5. Effect of ensembling pseudo-masks

In Table 7, we compared two pseudo-mask ensembling strategies
using different combinations of text prompts: (1) ensembling coarse
segmentation masks from multiple text prompts before SAM refinement
(i.e., “Before Refinement” in Table 7), and (2) ensembling zero-shot
SAM outputs generated from different prompts after individual refine-
ment (i.e., “After Refinement”). Prompt settings included All (PO-P3,
P6-7), Class-specific (P1, P3, P7), Generic (PO, P2, P6), and Sin-
gle (best-performing prompt per task). For All, Class-specific, and
Generic, we generated one pseudo-mask per sub-strategy in the re-
spective setting (e.g., Generic produces three masks from PO, P2,
and P6), which were then ensembled either before or after SAM re-
finement. In contrast, the Single configuration used only one prompt
(one pseudo-mask output). Ensembling SAM mask outputs consistently
outperformed ensembling coarse masks before refining across most
tasks. However, we do not observe any improvement in merging pseudo
masks from different text prompt configurations. We conclude that
using a single, well-designed prompt will often yield even better per-
formance, highlighting the importance of prompt quality for guiding
zero-shot segmentation.

4.3.6. Effect of nnunet ensembling strategies

To assess whether more selective or weighted ensemble strate-
gies can improve weakly supervised segmentation performance, we
conducted an ablation study comparing different checkpoint ensem-
bling techniques within the nnUNet framework on the Breast Ultra-
sound and Lung CT datasets. Specifically, we examined four weighting
schemes (Huang et al., 2017): Average, which applies uniform av-
eraging across all saved checkpoints; Early, which assigns linearly
decreasing weights to prioritize early-stage checkpoints; Late, which
applies linearly increasing weights to favor later-stage checkpoints;
and Middle, which uses a Gaussian-shaped weighting centered around
the midpoint of training checkpoint outcomes, emphasizing mid-stage
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Table 6
Comparison between different SAM pre-trained models and visual prompting techniques (%, mean,,,).
Model Type Prompts Breast Ultrasound Brain MRI Lung X-ray Lung CT
DSC 1 NSD 1t DSC 1 NSD 1 DSC 1 NSD t DSC 1 NSD 1
Points 59.86,54 62671602 52.28659 55.67 1775 64.49 67.99.19 51.98,5 54.30,05,
SAM ViT-B BBoxes 74.27 536 78.44,, ., 70.81,, 43 76.59,, 6, 55.58; g5 60.63,,,; 63.49, ¢4 66.10,, 3,
Points + BBoxes 64.91,, 4, 68.50), 3 61.91,5, 66.58(5, 64.864 95 68.98; 52.51, 46 54.32;
Points 65.564 g9 68.20g o, 65.54¢ 45 70.73g 35 75.793 44 80.88; 5, 61.49 55 63.904 74
SAM ViT-H BBoxes 77769 50 81.114 4 76.52; ¢ 82.23; 1, 70.555 35 74125, 80.38; 4, 82.03;5 ¢4
Points + BBoxes 74.38,05, 79.6010.65 75.484 66 80.29 ¢, 73.305 04 79.22 1, 62.83., 64.576 99
Points ensemble 62.86,396 64.84,, 44 61.06,3 3 64.20,5 76.83, 4 82.415,, 63.12; 04 6573145
Points 731295, 75.164 15 66.784 9, 70.12¢ 55 60.58 43 64.42, 55 65.94, ,, 68.05; 99
SAM-Med2D ViT-B BBoxes 75.2210.04 80.03,0,04 55.21 g5 61.349 g5 30.18,; 5 36.35, 93 63.104 5, 68.59 4g
Points + BBoxes 74.831y78 79.501012 67.8510.96 72.0414 45 37.23g¢69 44.90, 5, 71.22g 9 78.05g 1,
MedSAM ViT-B BBoxes 63.50,; 45 68.11,; o5 67.68,575 73.89567 73.03¢03 76.23¢ 02 62.14, 4, 65.00, 1,
Table 7
Zero-shot evaluation of pseudo-mask ensembling techniques using different text prompts.
Technique Prompts Breast Ultrasound Brain MRI Lung X-ray Lung CT
DsSC 1 NSD t DSC 1 NSD t DSC 1 NSD 1 DSC 1 NSD 1
All 57.43 61.57 60.00 64.23 54.78 58.65 59.84 61.40
Before refinement Class-specific 60.65 64.74 61.78 66.13 54.87 58.91 - -
Generic 52.30 56.41 63.17 67.77 55.84 59.76 59.84 61.40
Single 77.76 81.11 76.52 82.23 75.79 80.88 80.38 82.03
All 74.30 78.29 61.49 65.80 68.37 72.63 68.03 69.96
After refinement Class-specific 73.55 77.56 61.83 66.21 65.23 69.56 - -
Generic 66.97 70.73 63.47 68.10 67.83 72.09 68.03 69.96
Single 77.76 81.11 76.52 82.23 75.79 80.88 80.38 82.03

Table 8
Comparison between different nnUNet ensembling techniques on weakly
supervised segmentation.

Technique Weighting Breast Ultrasound Lung CT
DSC 1 NSD 1 DSC 1 NSD 1
Average 78.87 84.58 88.78 91.95
Checkpoint Early 77.34 82.92 88.74 91.92
ensembling Middle 77.43 83.00 88.71 91.88
Late 77.69 83.24 88.75 91.93
2-fold Average 74.46 80.14 66.51 70.76
5-fold Average 77.34 83.04 57.08 60.99

checkpoints believed to strike a balance between underfitting and
overfitting.

As shown in Table 8, the simple averaging method outperformed
all alternative weighting strategies across the two datasets. While late
checkpoints intuitively may capture more refined representations, we
did not observe any statistically significant improvements compared to
uniform averaging. This indicates that the diversity among checkpoints,
when averaged uniformly, serves as a strong regularizer and leads to
more robust predictions.

We also compared this approach with 2-fold and 5-fold averaging
schemes (i.e., ensembles trained on subset splits of the data), which
resulted in lower performance, likely due to reduced data exposure per
fold and increased sensitivity to pseudo-label noise. These results sug-
gest that while selective weighting is a plausible direction, in practice,
simple averaging remains the most reliable and effective ensembling
strategy in the weakly supervised setup.

4.4. Evaluation on challenging tasks

Lung nodule segmentation in CT scans is a particularly demanding
task due to the high variability in nodule size, irregular shapes, and

the often subtle contrast between nodules and surrounding anatomical
structures. This challenge is especially pronounced with small nod-
ules, which can be easily overlooked or confused with nearby tissues,
making accurate segmentation difficult even for expert clinicians. We
evaluate our method on the UniToChest dataset (Chaudhry et al.,
2022), which comprises CT scans from 623 patients with 10,071 lesions
annotated for segmentation. The dataset categorizes nodules by size
into Lung Nodules Big (>10 mm) and Lung Nodules Big (<10 mm), with
11,466/1132/1514 and 7089/580/953 samples allocated to training,
validation, and test splits, respectively. All scans are preprocessed and
uniformly sliced into 2D images for consistent evaluation. As shown
in Table 9, our method consistently outperforms all existing state-
of-the-art zero-shot, few-shot, and weakly supervised segmentation
techniques across both large and small nodule categories. Notably, our
model achieves the highest DSC and NSD scores despite not relying on
any additional supervision, highlighting its strong ability to generalize
across complex and heterogeneous cases. Despite this relatively strong
performance, it still lags behind fully supervised models, particularly in
small nodules segmentation. This gap highlights the general advantage
of dense annotations in maximizing segmentation accuracy. Nonethe-
less, our approach offers a promising trade-off between performance
and annotation efficiency, and with minimal supervision, it has the
potential to close the gap with fully supervised methods, making it a
viable and scalable solution for practical clinical deployment.

4.5. Qualitative segmentation results

Lastly, we present qualitative segmentation results across the four
imaging modalities evaluated for our proposed method in Fig. 4. Our
proposed MedCLIP-SAMv2 consistently produced high-quality segmen-
tation masks in weakly supervised settings. For all datasets except
Brain MRI, the initial coarse segmentation was suboptimal. However,
it provided a sufficient starting point for the zero-shot approach to
refine coarse activation maps. For breast and brain tumors, the zero-
shot results were notably better than those for Lung CT and Lung
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Table 9
Comparison of DSC and NSD values (%) on Small and Big Lung Nodules (mean,,,).
Technique Method Lung Nodules Big Lung Nodules Small
DSC 1t NSD 1t DSC 1t NSD 1t
SaLIP 13.74,, 5, 17.26,, 3, 3.42, 4, 4.88, 5
SAMAug 16.43, g 19.52,;, 291,46 3.76,, 08
Zero-shot MedCLIP-SAM ~ 25.61,,,, 26835, 413,04 501,
Ours 40.76,3 13 46.44 5 95 7.93 508 10.84 6,
nnUNet 5827, 66135, 21.19,,, 2831,
Weakly supervised MedCLIP-SAM 29.42,, 43 33.17 54 9.64,4.97 10.12), 54
Ours 60.64,,, 6879, 24730 3077,
UniverSeg 3.16, 5 4.84; 55 1.41,¢, 2.60, 43
One-shot ProtoSAM 30.67,,5 351015,  3.27.5 412,
UniverSeg 8.85¢ ;5 11.98, ¢, 1.51;, 2.80, g5
Few-shot (K = - X X
ew-shot (K =4 gl prompt-SAM  6.05, 6.8640, 1.04, 1.97,
UniverSeg 2437006  28.6l;555  3.23,. 5.49, 5,
Few-shot (K = 1 y 5 3.
ew-shot (K =16) it prompt-SAM  13.70,05,  14.05.5, 2125 319,
) nnUNet 79.4154  88.82,  50.44,5  58.63,5
Fully supervised iiNet ensemble  81.78,,,  90.93,y, 5203,  60.65,

Brain ) ®
MRI ;

DSC 84.80

Breast
Ultrasound
Lung
CT
DSC 65.84

Lung

(a) Image

(b) Coarse

DSC 96.75

DSC 66.29 DSC 97.18 DSC 97.73
Xray ' ‘
e
DSC 72.44 DSC 95.35 DSC 96.77

(c) Zero-shot
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DSC 97.09
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(e) GT (f) Uncertainty Map

Fig. 4. Qualitative comparison of segmentation results. Coarse=post-processed saliency map, WSS=Weakly Supervised Segmentation and GT=Ground Truth. The uncertainty map

corresponds to the weakly supervised segmentation.

X-ray. In Lung CT, the primary challenge for the algorithm was dis-
tinguishing between the two lobes. The post-processed results showed
one large, connected contour in the center. The zero-shot refinement
slightly separated these two regions, though some artifacts persisted.
However, the weakly supervised training effectively corrected these
false activations, producing a high-quality segmentation map. For Lung
X-ray, while the weakly supervised training improved upon the less
precise zero-shot masks, the improvement was not as substantial as
with Lung CT. Furthermore, we also included uncertainty maps for all
predictions. For Brain MRI, high uncertainty was observed only at the
edges of the segmentation, which is typical. For Breast Ultrasound, high
uncertainty was observed at the borders of the segmentation, while
the surrounding area outside the borders showed low uncertainty. In
contrast, for Lung X-rays, slight uncertainty appeared in the center of
the mask, increasing towards the edges. In the case of Lung CT, high
uncertainty was observed both at the edges and in the center of the
lung lobes. This was largely due to the artifacts present in the zero-shot
pseudo-labels.

5. Discussion

The proposed MedCLIP-SAMv2 framework demonstrates superior
performance in zero-shot and weakly supervised medical image seg-
mentation tasks than SOTA methods and the original MedCLIP-SAM
method (Koleilat et al., 2024b) across four critical medical imaging
modalities (CT, MRI, Ultrasound, and X-ray). By leveraging Biomed-
CLIP and SAM with text and visual prompts, our method exhibits
robust domain and task generalization, excelling in complex tasks, such
as brain and breast tumor segmentation, where smaller and intricate
anatomical details pose challenges in typical segmentation tasks. Our
approach notably surpasses other SOTA zero-shot and few-shot meth-
ods, especially in difficult segmentation scenarios (see Table 1). Recent
methods like (Ding et al., 2022) have demonstrated the potential of
CLIP for zero-shot segmentation by decoupling the pixel-level and
image-level classification tasks in natural vision applications. However,
such methods require fully supervised segmentation ground truths, lim-
iting their application in settings where labels are scarce or noisy, like

10
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medical image segmentation. In contrast, MedCLIP-SAMv2 bypasses
this requirement and operates without relying on segmentation labels
during training, offering a more scalable approach for medical imaging,
particularly in weakly supervised settings.

Compared with the original MedCLIP-SAM, the component updates
in MedCLIP-SAMv2 have greatly contributed to the performance im-
provement. One of the key strengths of our framework lies in the
integration of M2IB for radiological tasks, which effectively extracts
meaningful information from medical images and texts, enhancing seg-
mentation performance. The introduction of the DHN-NCE loss played
a crucial role in fine-tuning BiomedCLIP, enabling the model to focus
on challenging details while maintaining high performance across all
tasks and modalities. Importantly, the combination of M2IB and DHN-
NCE allowed the model to generate coarse segmentation masks that are
later refined via SAM in a zero-shot setting (see Table 5), proving the
versatility of the method without the need for ground truth annotations.
Finally, the effectiveness of prompt design was another critical insight.
Contextually rich, descriptive prompts yielded better results in complex
tasks like tumor segmentation, where finer anatomical understanding is
required. Conversely, more generic prompts sufficed for simpler tasks
like lung segmentation, where larger, distinct structures allowed the
model to achieve strong performance with less specific guidance. This
insight suggests the importance of tailoring the text prompts in visional
language models for specific radiological tasks. This contrasts with
findings from other studies that used the frozen BiomedCLIP encoder
with an added decoder head for segmentation transfer learning, where
text prompts had little impact on segmentation quality (Poudel et al.,
2024). The choice of BiomedCLIP over CLIP also facilitates the success
of our method. Fig. 5 shows the latent representations produced by
CLIP and BiomedCLIP (both utilizing the same architecture, i.e., ViT-
B/16) on sample medical images. These visualizations are generated
by extracting the 196 patch tokens (excluding the CLS token) from the
last layer of the image encoder, reshaping them to a 14 x 14 x 768
tensor, and upsampling to the original resolution (224 x 224 x 768)
using the FeatUp upsampler (Fu et al.,, 2024). We then apply PCA
to project the 768-dimensional features into the RGB space, resulting
in a 224 x 224 x 3 visualization. It is important to note that these
color maps are abstract and not tied to specific anatomical regions
(e.g., red does not signify tumor or skull); rather, they are intended
to qualitatively assess the contrast and separability in the learned
representations. Compared to CLIP, BiomedCLIP exhibits greater dif-
ferentiation between salient and background regions, as evidenced by
the stronger visual contrast. This indicates that BiomedCLIP is more
effective at capturing subtle, disease-relevant cues within medical scans
using only natural language supervision, making it better suited for
downstream medical imaging tasks.

Our framework’s ability to operate in a weakly supervised paradigm
further strengthens its potential clinical applicability. By using pseudo-
labels from zero-shot segmentation to train the model from scratch,
we observed notable improvements, particularly in lung CT segmenta-
tion, where the combination of zero-shot labels and weak supervision
generated significant accuracy gains. To the best of our knowledge,
we are the first to integrate uncertainty estimation through nnUNet
with checkpoint ensembling by training on pseudo-segmentation data,
providing a robust method for enhancing segmentation quality while
offering insights into prediction confidence for potential end users.
Uncertainty measures are essential in clinical adoption, as they help
identify regions, where the model’s predictions are less certain, en-
abling clinicians to focus on areas that may require further examination
or validation.

Despite the original SAM model not being pre-trained on medi-
cal images, it showed strong performance in zero-shot settings, out-
performing MedSAM and SAM-Med2D when provided with imperfect
visual prompts like points and/or bounding boxes. This underscores
the robustness of SAM to suboptimal input conditions as highlighted
by Huang et al. (2024). Specifically, this can be seen in Fig. 4, where
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Brain Tumors Breast Tumors Chest CT

Chest X-ray

BiomgdCLIP Image

CLIP

Fig. 5. Diagram showing upsampled feature representations from the last transformer
layer of CLIP and BiomedCLIP. Feature Maps were upsampled using FeatUp (Fu et al.,
2024) for visualization purposes.

even coarse segmentations can be refined using both zero-shot and
weakly supervised methods. Although SAM demonstrates strong per-
formance, it is important to highlight that our framework is model-
agnostic and not limited to SAM. It is compatible with any interactive
segmentation foundation models, provided that the visual prompts
generated from CLIP saliency maps during post-processing are accurate.
Notably, our framework can be seamlessly integrated with models
such as ScribblePrompt (Wong et al., 2024) and SegVol (Du et al.,
2024), both of which support visual prompts. This underscores the
flexibility of our approach and its applicability beyond SAM-based
models. Looking ahead, our future work will focus on extending our
framework to handle 3D medical data, a crucial step in advancing
the segmentation of volumetric imaging modalities like MRI and CT.
Incorporating 3D models will enable our framework to better capture
complex anatomical structures, further enhancing its clinical utility.
Overall, our findings show that MedCLIP-SAMv2, with its integrated
components, marks a significant step forward in the development of
universal, interactive medical image segmentation. The framework’s
adaptability across different tasks and its ability to operate with min-
imal labeled data emphasize its potential for clinical adoption, par-
ticularly in resource-constrained settings. For our exploration, we fo-
cused on radiological tasks, with image modalities having more distinct
characteristics than natural images. In the future, we will further in-
corporate and assess the performance of photograph-based biomedical
images, such as histopathological images and surgical video with our
proposed framework.

While our framework shows strong performance in 2D binary seg-
mentation tasks, several limitations remain. It currently does not sup-
port multi-class segmentation, which is common in clinical applica-
tions; this could be addressed by extending the framework to handle
one-vs-all class-specific prompts or by generating multi-class saliency
maps with pixel-wise probabilities. Building on the insights from this
study, we will explore multi-class segmentation in the future. Addi-
tionally, the framework is limited to 2D inputs due to BiomedCLIP’s
architecture. However, recent developments like CT-CLIP (Hamamci
et al., 2024) and SAM2 (Ravi et al., 2024) offer promising opportunities
for extending to 3D: for instance, a text prompt could localize an
object in a single slice, while SAM2’s tracking capability propagates
the segmentation across adjacent slices, enabling efficient volumetric
annotation. Clinically, while our method may not yet replace fully
supervised systems in high-stakes diagnostic tasks, its low annotation
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burden and generalizability make it suitable for interactive segmenta-
tion and rapid dataset curation, especially in the context of rare diseases
where annotated data is often limited. A core motivation behind our
framework is to overcome three longstanding limitations in medical
deep learning: the scarcity of annotated data, limited interactivity, and
poor generalizability across modalities. While most interactive segmen-
tation systems rely on manually placed visual prompts (e.g., clicks
or bounding boxes), our approach introduces a more intuitive and
scalable alternative through text-based prompting. This allows users
to interact with the model using natural languages, whether typed,
spoken, or generated through LLMs like GPT-4, lowering the barrier for
clinical adoption and reducing reliance on precise manual inputs. To
explore this further, we analyzed how different prompt styles impact
segmentation quality, providing insights into how clinicians might
tailor prompts to specific tasks. On the interpretability aspect, we
incorporated uncertainty estimation to enhance user trust and safety,
which are key considerations in clinical workflows. As indicated by Zou
et al. (2023), uncertainty maps help visualize prediction confidence
at a local level, allowing users to identify regions where additional
validation may be needed. We believe that combining intuitive in-
teraction with transparent output interpretation offers a promising
step towards more clinician-in-the-loop, trustworthy Al segmentation
systems. Finally, we plan to extend our work beyond radiological tasks
to other biomedical image types, such as histopathology and surgical
video, to broaden the applicability of our universal, language-guided
segmentation framework.

6. Conclusion

We presented MedCLIP-SAMv2, an upgraded version of the original
MedCLIP-SAM framework, significantly improving segmentation per-
formance with minimal supervision across CT, X-ray, Ultrasound, and
MRI. By introducing the novel DHN-NCE loss for fine-tuning Biomed-
CLIP and leveraging SAM, our model achieved enhanced accuracy,
particularly in complex tasks. MedCLIP-SAMv2 outperforms its pre-
decessor through superior generalization and refined segmentation,
demonstrating strong potential for clinical use in data-limited environ-
ments.
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