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ABSTRACT

The introduction of large-scale, genome-wide, single-cell perturbation datasets
provides the chance to learn a full gene regulatory network in the relevant cell line.
However, existing gene regulatory network inference methods either fail to scale
or do not explicitly leverage the interventional nature of this data. In this work,
we propose an algorithm that builds upon GRNBoost by adding an additional step
that complements its performance in the presence of labeled, single-gene interven-
tional data. Applying BetterBoost to the CausalBench Challenge, we demonstrate
its superiority over the baseline methods in inferring gene regulatory networks
from large-scale single-cell perturbation datasets. Notably, BetterBoost exhibits
significantly improved performance when non-zero fractions of labeled interven-
tions are available, highlighting the effectiveness of our approach in leveraging
interventional data for accurate gene regulatory network inference.

1 INTRODUCTION

The introduction of large-scale, genome-wide, single-cell perturbation datasets (Replogle et al.,
2022; Dixit et al., 2016) provides a valuable opportunity to learn comprehensive gene regulatory
networks. However, existing methods for gene regulatory network inference fail to scale (Brouil-
lard et al., 2020; Sethuraman et al., 2023) or lack explicit utilization of the interventional nature
of this data (Moerman et al., 2019; Passemiers et al., 2022). Methods that fail to scale often have
algorithmic complexity issues, such as those encountered when computing the exponential of large
matrices. On the other hand, methods capable of handling datasets with over 10,000 genes (Moer-
man et al., 2019; Passemiers et al., 2022) often treat the data as observational, thereby overlooking
the valuable interventional information. While incorporating interventional data can enhance the
predictive power of models that treat the data as observational, these models fail to fully exploit
causal inference principles that aid in identifying causal relationships. To address these challenges
and facilitate the advancement of causal inference methods on single-cell data, the CausalBench
framework has been developed (Chevalley et al., 2022), and the CausalBench challenge was orga-
nized within the ICLR 2023 Workshop on Machine Learning for Drug Discovery. In this paper, we
introduce BetterBoost, our winning method for the CausalBench challenge.

BetterBoost builds on the baselines proposed in the CausalBench framework. Among the scalable
models that do not incorporate interventional data, we found that GRNBoost (Moerman et al., 2019)
performed the best. GRNBoost defines the target gene’s parents as the target’s most predictive genes
using a prediction importance score Gi,j from gene i to gene j. We adapted the GRNBoost score
Gi,j into a score Bi,j in our proposed method, BetterBoost, which leverages interventional data in
complement to observational data. The score Bi,j reduces to Gi,j when only observational data is
available and improves as more interventional data becomes available.

BetterBoost assumes that if the dataset was generated by a causal model, the observed data’s joint
distribution can be factorized as:

p(x1 . . .xG) =

G∏
i=1

p(xi|Pa(xi)). (1)
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If a candidate gene is a parent of the target, it will be a good predictor for the target, as GRNBoost
assumes. But with labeled, interventional data, one can attempt to identify the true causal parents of
a given observed variable xi by looking at the effects of interventions on the candidate parents of
xi. In particular, in a sample where a candidate parent gene is knocked down, the perturbed gene
will only remain a good predictor for the target gene if it is a true causal parent of the target. Hence,
if knocking down a candidate gene leads to a statistically significant prediction of the target gene,
it indicates strong evidence of a causal relationship directed from the candidate parent to the target
gene. We leverage the impact of knocking down candidate genes in the prediction importance score
of BetterBoost.

We find that BetterBoost performs significantly better than leading methods GRNBoost (Passemiers
et al., 2022) and DCDI (Brouillard et al., 2020) on provided sample data according to the chal-
lenge metric, average Wasserstein distance. Below, we detail the proposed method and go over the
preliminary results of BetterBoost and relevant baselines on sample datasets.

2 METHODS

In this section, we restate the objective of the challenge and detail the algorithm, BetterBoost.

2.1 OBJECTIVE

The considered single-cell perturbational datasets each consist of a matrix of UMI counts per cell,
X ∈ Z+N×G

, and associated interventional labels, s ∈ {unperturbed,unlabeled, 1, . . . , G}N , for
each cell. Note the interventions can only affect at most one gene, which can be achieved via high-
precision CRISPRi technology (Larson et al., 2013). We denote the fraction of genes g ∈ [G] with
labeled interventional data as ρ.

Since ground truth causal network data does not exist for these datasets, a proposed causal graph
is evaluated by the average Wasserstein distance which is defined as follows: for each edge in the
inferred causal graph (i, j) ∈ Ĝ, the Wasserstein distance is computed between the distribution of
Xj in the unperturbed data and in the subset of data where Xi is perturbed. Therefore, the average
Wasserstein distance can be written as:

d(Ĝ) := 1

|Ĝ|

∑
(i,j)∈Ĝ

W1(p(xj |s = unperturbed), p(xj |s = i)) (2)

where W1 denotes the first Wasserstein distance between two distributions.

The space of valid causal graphs, Ĝ is constrained to {Ĝ : |Ĝ| ≥ 1000}, but otherwise can include
cycles and disconnected components.

2.2 ALGORITHM

We found GRNBoost to work the best in the observational case, i.e. no labeled interventional data,
but fail to improve on this metric after adding strictly more information in the form of intervention
labels. Thus, we developed a simple procedure for leveraging any available intervention labels. As
previously mentioned, we assume that the true causal graph, G is a directed, acyclic graph (DAG),
and therefore the joint distribution factorizes as in Equation 1. To identify if gene j ∈ [G] is a
strong candidate parent gene for a given target gene i ∈ [G], we look if j is predictive of the target
gene i in the dataset formed by observational data and the interventional data on gene j. For a true
causal parent, we expect that when j is knocked down, there will be a statistically significant shift
in the distribution of observed UMIs of gene i between observational and interventional data. Since
we held no priors on the nature of causal effects, we chose to use the Kolmogorov-Smirnov (KS)
test (Massey, 1951) to test these distributional shifts between observational and interventional data.
Additionally, we used the Benjamini-Hochberg procedure to correct the p-values for multiple testing
(Benjamini & Hochberg, 1995).

To formulate the new score used by BetterBoost to rank the impact of gene i on gene j, we write Gi,j

the predictive score of gene i on gene j computed by GRNBoost, and pi,j the Benjamini-Hochberg
corrected KS test p-value of the impact of knocking down gene i on gene j. If no interventional
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Table 1: Average Wasserstein Distance of Methods on RPE1 Perturb-seq dataset

Method ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 1.0

DCDI 0.126 0.126 0.127 0.125 0.130
GRNBoost 0.115 0.106 0.106 0.106 0.106
GRNBoost-1000 0.151 0.147 0.146 0.146 0.145
BetterBoost 0.151 0.398 0.531 0.599 0.636

data was available on i, we set all p-values pi,∗ to 0.05, as to neither strongly accept nor reject
hypotheses for these interactions. We then define the score Bi,j = (−pi,j , Gi,j) that we sort from
larger to smaller (in lexicographic order).

For some desired number of edges, K, BetterBoost returns the KB := min(K, |{(i, j) : Bi,j [0] ≥
−0.05}|) candidate edges with the smallest H score and acceptable p-values. The KB candidate
edges will have the smallest p-values for the KS test up to 0.05, which can include gene pairs
where no interventional data and hence no p-value was available. Since the p-values of these gene
pairs were set to 0.05, this ranking will favor in practice the edges of pairs with small p-values
(obtained from combined interventional and observation data) followed by the edges with the highest
GRNBoost scores Gi,j (from observational data only). Typically, this results in more of the final
edges being chosen by p-value than by GRNBoost score as more labeled interventional data becomes
available.

3 RESULTS

We compared BetterBoost to the two suggested baseline methods, GRNBoost and DCDI, on the
RPE1 perturbational data from (Replogle et al., 2022). The methods were evaluated with varying
fractions of available labeled interventional data, ranging from 0.25 to 1.0. In order to comply with
the challenge requirements, we choose to return K = 1000 edges for the challenge. By default,
GRNBoost returns all edges with non-zero importance, so we additionally tested against a variant
of GRNBoost that only returns the 1000 top importance edges.

We found that for every fraction of labeled interventional data, ρ considered, BetterBoost improved
significantly on the average Wasserstein metric. Additionally, we found that the improvement in the
metric correlated perfectly with ρ as shown in Table 1.

Remark: We haven’t tuned DCDI; the reported results are from running the provided baseline.

4 DISCUSSION

Our proposed method, BetterBoost, utilizes labeled interventional data to identify the true causal
parents of a given observed variable by looking at the effects of interventions on candidate parents.
BetterBoost significantly outperforms leading methods GRNBoost and DCDI on provided sample
data according to the challenge metric, average Wasserstein distance. In conclusion, our results
suggest that BetterBoost is a promising gene regulatory network inference method.

BetterBoost can be extended for future work to consider the invariance property of causal relation-
ships mentioned previously. Currently, if a chain of strong causal effects exists, xi → xj → xk,
BetterBoost will likely assign an edge from xi → xk. However, if the interventional data on xj

is present and labeled, one can identify that an edge does not exist between xi and xk. This sce-
nario also exposes a shortcoming of the average Wasserstein metric, which would not penalize the
presence of such an edge in the inferred graph.
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