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Abstract
Optimal transport (OT) has emerged as a power-
ful framework to compare probability measures,
a fundamental task in many statistical and ma-
chine learning problems. Substantial advances
have been made over the last decade in design-
ing OT variants which are either computationally
and statistically more efficient, or more robust to
the measures/datasets to compare. Among them,
sliced OT distances have been extensively used
to mitigate optimal transport’s cubic algorithmic
complexity and curse of dimensionality. In par-
allel, unbalanced OT was designed to allow com-
parisons of more general positive measures, while
being more robust to outliers. In this paper, we
propose to combine these two concepts, namely
slicing and unbalanced OT, to develop a general
framework for efficiently comparing positive mea-
sures. We propose two new loss functions based
on the idea of slicing unbalanced OT, and study
their induced topology and statistical properties.
We then develop a fast Frank-Wolfe-type algo-
rithm to compute these losses, and show that our
methodology is modular as it encompasses and
extends prior related work. We finally conduct
an empirical analysis of our loss functions and
methodology on both synthetic and real datasets,
to illustrate their relevance and applicability.

1. Introduction
Positive measures are ubiquitous in various fields, including
data sciences and machine learning (ML) where they com-
monly serve as data representations. A common example
is the density fitting task, which arises in generative mod-
eling (Arjovsky et al., 2017; De Bortoli et al., 2021): the
observed samples can be represented as a discrete positive
measure α and the goal is to find a parametric measure βη
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which fits the best α. This can be achieved by training a
model that minimizes a loss function over η, usually defined
as a distance between α and βη. Therefore, it is important
to choose a meaningful discrepancy with desirable statisti-
cal, robustness and computational properties. In particular,
some settings require comparing arbitrary positive measures,
i.e. measures whose total mass can have an arbitrary value,
as opposed to probability distributions, whose total mass
is equal to 1. In cell biology (Schiebinger et al., 2019),
for example, measures are used to represent and compare
gene expressions of cell populations, and the total mass
represents the population size.

(Unbalanced) Optimal Transport. Optimal transport has
been chosen as a loss function in various ML applications.
OT defines a distance between two positive measures of
same mass α and β (i.e. m(α) = m(β)) by moving the
mass of α toward the mass of β with least possible effort.
The mass equality can nevertheless be hindering by impos-
ing a normalization of α and β to enforce m(α) = m(β),
which is potentially spurious and makes the problem less
interpretable. In recent years, OT has then been extended to
settings where measures have different masses, leading to
the unbalanced OT (UOT) framework (Liero et al., 2018;
Kondratyev et al., 2016; Chizat et al., 2018b). An appealing
outcome of this new OT variant is its robustness to outliers
which is achieved by discarding them before transporting α
to β. UOT has been useful for many theoretical and prac-
tical applications, e.g. theory of deep learning (Chizat &
Bach, 2018; Rotskoff et al., 2019), biology (Schiebinger
et al., 2019; Demetci et al., 2022) and domain adaptation
(Fatras et al., 2021). We refer to (Séjourné et al., 2022a)
for an extensive survey of UOT. Computing OT requires to
solve a linear program whose complexity is in O(n3 log n).
Besides, accurately estimating OT distances through empiri-
cal disributions is challenging as OT suffers from the curse
of dimension (Dudley, 1969). A common workaround is
to rely on OT variants with lower complexities and better
statistical properties. Among the most popular, we can list
entropic OT (Cuturi, 2013), minibatch OT (Fatras et al.,
2020) and sliced OT (Radon, 2005; Bonneel et al., 2015).
In this paper, we will focus on the latter.

Slicing (U)OT and related work. Sliced OT leverages
the OT 1D closed-form solution to define a new cost. It
averages the OT cost between projections of (α, β) on 1D
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subspaces of Rd. For 1D data, the OT solution can be
computed through a sort algorithm, leading to an appealing
O(n log(n)) complexity (Peyré et al., 2019). Furthermore,
it has been shown to lift useful topological and statistical
properties of OT from 1-dimensional to multi-dimensional
settings (Bayraktar & Guo, 2021; Nadjahi et al., 2020; Gold-
feld & Greenewald, 2021). It therefore helps to mitigate
the curse of dimensionality making SOT-based algorithms
theoretically-grounded, statistically efficient and efficiently
solvable even on large-scale settings. These appealing prop-
erties motivated the development of several variants and
generalizations, e.g. to different types or distributions of
projections (Kolouri et al., 2019; Deshpande et al., 2019;
Nguyen et al., 2020; Ohana et al., 2023) and non-Euclidean
data (Bonet et al., 2023a; 2022a; 2023b). The slicing opera-
tion has also been applied to partial OT (Bonneel & Coeur-
jolly, 2019; Bai et al., 2022; Sato et al., 2020), a particular
case of UOT, in order to speed up comparisons of unnormal-
ized measures at large scale. However, while (sliced) partial
OT allows to compare measures with different masses, it as-
sumes that each input measure is discrete and supported on
points that all share the same mass (typically 1). In contrast,
the Gaussian-Hellinger-Kantorovich (GHK) distance (Liero
et al., 2018), another popular formulation of UOT, allows to
compare measures with different masses and supported on
points with varying masses, and has not been studied jointly
with slicing.

Contributions. This paper presents the first general frame-
work combining UOT and slicing. Our main contribution
is the introduction of two novel sliced variants of UOT,
respectively called Sliced UOT (SUOT) and Unbalanced
Sliced OT (USOT). SUOT and USOT both leverage one-
dimensional projections and the newly-proposed implemen-
tation of UOT in 1D (Séjourné et al., 2022b), but differ in
the penalization used to relax the constraint on the equality
of masses: USOT essentially performs a global reweight-
ing of the inputs measures (α, β), while SUOT reweights
each projection of (α, β). Our work builds upon the Frank-
Wolfe-type method (Frank & Wolfe, 1956) recently pro-
posed in (Séjourné et al., 2022b) to efficiently compute GHK
between univariate measures, an instance of UOT which has
not yet been combined with slicing. We derive the asso-
ciated theoretical properties, along with the corresponding
fast and GPU-friendly algorithms. We demonstrate its ver-
satility and efficiency on challenging experiments, where
slicing is considered on a non-Euclidean hyperbolic mani-
fold, as a similarity measure for document classification, or
for computing barycenters of geoclimatic data.

Outline. In Section 2, we provide background knowledge
on UOT and sliced OT (SOT). In Section 3, we define our
two new loss functions (SUOT and USOT) and prove their
metric, topological, statistical and duality properties in wide
generality. We then detail in Section 4 the numerical imple-

mentation of SUOT and USOT based on the Frank-Wolfe
algorithm. We investigate their empirical performance on
hyperbolic and geophysical data as well as document classi-
fication in Section 5.

2. Background
Unbalanced Optimal Transport. We denote by M+(Rd)
the set of all positive Radon measures on Rd. For any
α ∈ M+(Rd), supp(α) is the support of α and m(α) =∫
Rd dα(x) the mass of α. We recall the standard formu-

lation of unbalanced OT (Liero et al., 2018), which uses
φ-divergences for regularization.

Definition 2.1. (Unbalanced OT) Let α, β ∈ M+(Rd).
Let φ : R → R ∪ {+∞} be an entropy function,
i.e. φ is convex, lower semicontinuous, dom(φ) ≜ {x ∈
R, φ(x) < +∞} ⊂ [0,+∞) and φ(1) = 0. Denote
φ′
∞ ≜ limx→+∞ φ(x)/x. The φ-divergence between α

and β is defined as,

Dφ(α|β) ≜
∫
Rd

φ

(
dα

dβ
(x)

)
dβ(x) + φ′

∞

∫
Rd

dα⊥(x) ,

(1)

where α⊥ is defined as α = (dα/dβ)β + α⊥. Given two
entropy functions (φ1, φ2) and a cost Cd : Rd × Rd → R,
the unbalanced OT problem between α and β reads

UOT(α, β) ≜ inf
π∈M+(Rd×Rd)

∫
Cd(x, y)dπ(x, y)

+ Dφ1(π1|α) + Dφ2(π2|β) ,
(2)

where (π1, π2) denote the marginal distributions of π.

When φ1 = φ2 and φ1(x) = 0 for x = 1, φ1(x) = +∞
otherwise, (2) boils down to the Kantorovich formulation
of OT (or balanced OT), which we denote by OT(α, β).
Indeed, in that case, Dφ1

(π1|α) = Dφ2
(π2|β) = 0 if π1 =

α and π2 = β, Dφ1
(π1|α) = Dφ2

(π2|β) = +∞ otherwise.

Under suitable choices of entropy functions (φ1, φ2),
UOT(α, β) allows to compare α and β even when m(α) ̸=
m(β) and can discard outliers, which makes it more robust
than OT(α, β). Two common choices are φ(x) = ρ |x− 1|
and φ(x) = ρ(x log(x)− x+ 1), where ρ > 0 is a charac-
teristic radius w.r.t. Cd. They respectively correspond to
Dφ = ρTV (total variation distance (Chizat et al., 2018a))
and Dφ = ρKL (Kullback-Leibler divergence).

The UOT problem has been shown to admit an equivalent
formulation obtained by deriving the dual of (2) and prov-
ing strong duality. Based on Proposition 2.2, computing
UOT(α, β) consists in optimizing a pair of continuous func-
tions (f, g).
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Proposition 2.2. (Liero et al., 2018, Corollary 4.12) The
UOT problem (2) can equivalently be written as

UOT(α, β) = sup
f⊕g≤Cd

∫
φ◦
1(f(x))dα(x)+

∫
φ◦
2(g(y))dβ(y),

(3)
where for i ∈ {1, 2}, φ◦

i (x) ≜ −φ∗
i (−x) with φ∗

i (x) ≜
supy≥0 xy − φi(y) the Legendre transform of φi, and f ⊕
g ≤ Cd means that for (x, y) ∼ α ⊗ β, f(x) + g(y) ≤
Cd(x, y).

In this paper, we mainly focus on the GHK setting, both
theoretically and computationally. It corresponds to (2)
with Cd(x, y) = ||x − y||2, Dφi

= ρiKL, leading to
φ◦
i (x) = ρi(1− e−x/ρi). UOT(α, β) is known to be com-

putationally intensive (Pham et al., 2020), thus motivating
the development of methods that can scale to dimensions
and sample sizes encountered in ML applications.

Sliced Optimal Transport. Among the many workarounds
that have been proposed to overcome the OT computational
bottleneck (Peyré et al., 2019), Sliced OT (Rabin et al.,
2012) has attracted a lot of attention due to its computational
benefits and theoretical guarantees. We define it below.

Definition 2.3 (Sliced OT). Let Sd−1 ≜ {θ ∈ Rd : ∥θ∥ =
1} be the unit sphere in Rd. For θ ∈ Sd−1, denote by
θ⋆ : Rd → R the linear map such that for x ∈ Rd, θ⋆(x) ≜
⟨θ, x⟩. Let σ be the uniform probability over Sd−1. For
α, β ∈ M+(Rd), the Sliced OT problem reads

SOT(α, β) ≜
∫
Sd−1

OT(θ⋆♯α, θ
⋆
♯β)dσ(θ) , (4)

where for any measurable function f and ξ ∈ M+(Rd),
f♯ξ is the push-forward measure of ξ by f , i.e. for any
measurable set A ⊂ R, f♯ξ(A) ≜ ξ(f−1(A)), f−1(A) ≜
{x ∈ Rd : f(x) ∈ A}.

Note that θ⋆♯α, θ
⋆
♯β are two measures supported on R, there-

fore OT(θ⋆♯µ, θ
⋆
♯ ν) is defined in terms of a cost function

C1 : R× R → R. Since OT between univariate measures
can be efficiently computed, SOT(α, β) can provide sig-
nificant computational advantages over OT(α, β) in large-
scale settings. In practice, if α and β are discrete measures
supported on {xi}ni=1 and {yi}ni=1 respectively, the stan-
dard procedure for approximating SOT(α, β) consists in
(i) sampling m i.i.d. samples {θj}mj=1 from σ, (ii) com-
puting OT((θ⋆j )♯α, (θ

⋆
j )♯β), j = 1, . . . ,m. Computing OT

between univariate discrete measures amounts to sorting
(Peyré et al., 2019, Section 2.6), thus step (ii) involves
O(n log n) operations for each θj .

SOT(α, β) is defined in terms of the Kantorovich for-
mulation of OT, hence inherits the following drawbacks:
SOT(α, β) < +∞ only when m(α) = m(β), and may not
provide meaningful comparisons in presence of outliers. To

overcome such limitations, prior work have proposed sliced
versions of partial OT (Bonneel & Coeurjolly, 2019; Bai
et al., 2022), a particular instance of UOT. However, their
contributions only apply to measures whose samples have
constant mass. We generalize their line of work in the next
section.

3. Sliced Unbalanced OT and Unbalanced
Sliced OT: Theoretical Analysis

We propose two strategies to make unbalanced OT scalable,
by leveraging sliced OT. We formulate two loss functions
(Definition 3.1), then study their theoretical properties and
discuss their implications.

Definition 3.1. Let α, β ∈ M+(Rd). The Sliced Unbal-
anced OT loss (SUOT) and the Unbalanced Sliced OT
loss (USOT) between α and β are defined as,

SUOT(α, β) ≜
∫
Sd−1

UOT(θ⋆♯α, θ
⋆
♯β)dσ(θ) , (5)

USOT(α, β) ≜ inf
(π1,π2)∈M+(Rd)×M+(Rd)

SOT(π1, π2)

+ Dφ1(π1|α) + Dφ2(π2|β) .
(6)

SUOT(α, β) compares α and β by solving the UOT prob-
lem between θ⋆♯α and θ⋆♯β for θ ∼ σ. Note that SUOT
extends the sliced partial OT problem (Bonneel & Coeur-
jolly, 2019; Bai et al., 2022) (where Dφi = ρiTV) by allow-
ing the use of arbitrary φ-divergences. On the other hand,
USOT is a completely novel approach and stems from the
following property on UOT (Liero et al., 2018, Equations
(4.21)): UOT(α, β) = inf(π1,π2)∈M+(Rd)2 OT(π1, π2) +
Dφ1

(π1|α) + Dφ2
(π2|β).

SUOT vs. USOT. As outlined in Definition 3.1, SUOT and
USOT differ in how the transportation problem is penalized:
SUOT(α, β) regularizes the marginals of πθ for θ ∼ σ
where πθ denotes the solution of UOT(θ⋆♯α, θ

⋆
♯β), while

USOT(α, β) operates a geometric normalization directly on
(α, β). We illustrate this difference on the following prac-
tical setting: we consider (α, β) ∈ M+(R2) where α is
polluted with some outliers, and we compute SUOT(α, β)
and USOT(α, β). We plot the input measures and the sam-
pled projections {θk}k (Figure 1, left), the marginals of πθk
for SUOT and the marginals of (θk)⋆♯π for USOT (Figure 1,
right). As expected, SUOT marginals change for each θk.
We also observe that the source outliers have successfully
been removed for any θ when using USOT, while they may
still appear with SUOT (e.g. for θ = 120◦): this is a direct
consequence of the penalization terms Dφi in USOT, which
operate on (α, β) rather than on their projections.

Theoretical analysis. In the rest of this section, we prove a
set of theoretical properties of SUOT and USOT. All proofs
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Figure 1: Toy illustration on the behaviors of SUOT and USOT. (left) Original 2D samples and slices used for illustration.
KDE density estimations of the projected samples: grey, original distributions, colored, distributions reweighed by SUOT
(center), and reweighed by USOT (right).

are provided in Appendix A. We first identify the condi-
tions on the cost C1 and entropies φ1, φ2 under which the
infimum is attained in UOT(θ⋆♯α, θ

⋆
♯β) for θ ∈ Sd−1 and in

USOT(α, β): the formal statement is given in Appendix A.
We also show that these optimization problems are convex,
both SUOT and USOT are jointly convex w.r.t. their input
measures, and that strong duality holds (Theorem 3.7).

Next, we prove that both SUOT and USOT preserve some
topological properties of UOT, starting with the metric ax-
ioms as stated in the next proposition.

Proposition 3.2. (Metric properties) (i) Suppose UOT
is non-negative, symmetric and/or definite on M+(R) ×
M+(R). Then, SUOT is respectively non-negative, sym-
metric and/or definite on M+(Rd) × M+(Rd). If there
exists p ∈ [1,+∞) s.t. for any (α, β, γ) ∈ M+(R),
UOT1/p(α, β) ≤ UOT1/p(α, γ) + UOT1/p(γ, β), then
SUOT1/p(α, β) ≤ SUOT1/p(α, γ) + SUOT1/p(γ, β).

(ii) For α, β ∈ M+(Rd), USOT(α, β) ≥ 0. If φ1 = φ2,
USOT is symmetric. If Dφ1 ,Dφ2 are definite, so is USOT.

By Proposition 3.2(i), establishing the metric axioms of
UOT between univariate measures (e.g., as detailed in
(Séjourné et al., 2022a, Section 3.3.1)) suffices to prove
the metric axioms of SUOT between multivariate measures.
Since e.g. GHK (Liero et al., 2018, Theorem 7.25) is a
metric for p = 2, then so is the associated SUOT.

In our next theorem, we show that SUOT, USOT and UOT
are equivalent, under certain assumptions on the entropies
(φ1, φ2), cost functions, and input measures (α, β).

Theorem 3.3. (Equivalence of SUOT,USOT,UOT) Let
X ⊂ Rd be a compact set with radius R. Let p ∈ [1,+∞).
Assume C1(x, y) = |x− y|p, Cd(x, y) = ∥x−y∥p, Dφ1 =

Dφ2 = ρKL. Then, for α, β ∈ M+(X),

SUOT(α, β) ≤ USOT(α, β) ≤ UOT(α, β) , and (7)

UOT(α, β) ≤ c(m(α),m(β), ρ, R)SUOT(α, β)1/(d+1) ,
(8)

where c(m(α),m(β), ρ, R) is constant depending on
m(α),m(β), ρ, R, which is non-decreasing in m(α) and
m(β). Additionally, assume there exists M > 0 s.t.
m(α) ≤ M,m(β) ≤ M . Then, c(m(α),m(β), ρ, R) no
longer depends on m(α),m(β), which proves the equiva-
lence of SUOT, USOT and UOT.

Theorem 3.3 is an application of a more general result,
which we derive in the appendix. In particular, we show
that the first two inequalities in (7) hold under milder
assumptions on φ1, φ2 and C1,Cd. The equivalence of
SUOT,USOT and UOT is useful to prove that SUOT and
USOT metrize the weak∗ convergence when UOT does,
e.g. in the GHK setting (Liero et al., 2018, Theorem
7.25). Before formally stating this result, we recall that a
sequence of positive measures (αn)n∈N∗ converges weakly
to α ∈ M+(Rd) (denoted αn ⇀ α) if for any continuous
f : Rd → R, limn→+∞

∫
fdαn =

∫
fdα.

Theorem 3.4. (Weak∗ metrization) Assume Dφ1
= Dφ2

=
ρKL. Let p ∈ [1,+∞) and consider C1(x, y) =
|x− y|p, Cd(x, y) = ∥x − y∥p. Let (αn) be a se-
quence of measures in M+(X) and α ∈ M+(X),
where X ⊂ Rd is compact with radius R > 0.
Then, αn ⇀ α ⇔ limn→+∞ SUOT(αn, α) = 0 ⇔
limn→+∞ USOT(αn, α) = 0.

The metrization of weak∗ convergence is an important prop-
erty when comparing measures. For instance, it can be lever-
aged to justify the well-posedness of approximating an un-
balanced Wasserstein gradient flow (Ambrosio et al., 2005)
using SUOT, as done in (Bonet et al., 2022b; Candau-Tilh,
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2020) for SOT. Unbalanced Wasserstein gradient flows have
been a key tool in deep learning theory, e.g. to prove global
convergence of 1-hidden layer neural networks (Chizat &
Bach, 2018; Rotskoff et al., 2019).

We now specialize some metric and topological properties
to sliced partial OT, a particular case of SUOT. Theo-
rem 3.5 shows that our framework encompasses existing
approaches and more importantly, helps complement their
analysis (Bonneel & Coeurjolly, 2019; Bai et al., 2022).

Theorem 3.5. (Properties of Sliced Partial OT) Assume
C1(x, y) = |x− y| and Dφ1 = Dφ2 = ρTV. Then,
USOT satisfies the triangle inequality. Additionally, for any
(α, β) ∈ M+(X) where X ⊂ Rd is compact with radius R,
UOT(α, β) ≤ c(ρ,R)SUOT(α, β)1/(d+1), and USOT and
SUOT both metrize the weak∗ convergence.

We move on to the statistical properties and prove that SUOT
offers important statistical benefits, as it lifts the sample
complexity of UOT from one-dimensional setting to multi-
dimensional ones. In what follows, for any α ∈ M+(Rd),
we use α̂n to denote the empirical approximation of α over
n ≥ 1 i.i.d. samples, i.e. α̂n = 1

n

∑n
i=1 δZi , Zi ∼ α.

Theorem 3.6. (Sample complexity) If for µ, ν ∈ M+(R),
E|UOT(µ, ν) − UOT(µ̂n, ν̂n)| ≤ κ(n), then for α, β ∈
M+(Rd), E|SUOT(α, β)− SUOT(α̂n, β̂n)| ≤ κ(n).

If for µ, ν ∈ M+(R), E|UOT(µ, µ̂n)| ≤ ξ(n), then for
α, β ∈ M+(Rd), E|SUOT(α, α̂n)| ≤ ξ(n).

Theorem 3.6 means that SUOT enjoys a dimension-free
sample complexity, even when comparing multivariate mea-
sures: this advantage is recurrent of sliced divergences (Nad-
jahi et al., 2020) and further motivates their use on high-
dimensional settings. The sample complexity rates κ(n) or
ξ(n) can be deduced from the literature on UOT for univari-
ate measures, for example we refer to (Vacher & Vialard,
2022) for the GHK setting. Establishing the statistical prop-
erties of USOT may require extending (Nietert et al., 2022):
we leave this question for future work.

We conclude this section by deriving the dual formula-
tions of SUOT,USOT and proving that strong duality
holds. We will consider that σ is approximated with
σ̂K = 1

K

∑K
k=1 δθk , θk ∼ σ. This corresponds to the

routine case in practice, as practitioners usually resort to a
Monte Carlo approximation to estimate the expectation w.r.t.
σ defining sliced OT.

Theorem 3.7. (Strong duality) For i ∈ {1, 2}, let φi

be an entropy function s.t. dom(φ∗
i ) ∩ R− is non-empty,

and either 0 ∈ dom(φi) or m(α),m(β) ∈ dom(φi).
Define E ≜ {∀θ ∈ supp(σK), fθ ⊕ gθ ≤ C1}. Let
favg ≜

∫
Sd−1 fθdσ̂K(θ), gavg ≜

∫
Sd−1 gθdσ̂K(θ).

Then, SUOT (5) and USOT (6) can be equivalently written

for α, β ∈ M+(Rd) as,

SUOT(α, β)

= sup
(fθ),(gθ)∈E

∫
Sd−1

(∫
φ◦
1

(
fθ ◦ θ⋆(x)

)
dα(x)

+

∫
φ◦
2

(
gθ ◦ θ⋆(y)

)
dβ(y)

)
dσ̂K(θ)

(9)

USOT(α, β)

= sup
(fθ),(gθ)∈E

∫
φ◦
1

(
favg ◦ θ⋆(x)

)
dα(x)

+

∫
φ◦
2

(
gavg ◦ θ⋆(y)

)
dβ(y) (10)

We conjecture that strong duality also holds for σ Lebesgue
over Sd−1, and discuss this aspect in Appendix A. Theo-
rem 3.7 has important pratical implications, since it justifies
the Frank-Wolfe-type algorithms that we develop in Sec-
tion 4 to compute SUOT and USOT in practice.

4. Computing SUOT and USOT with
Frank-Wolfe algorithms

We propose two algorithms by leveraging our strong du-
ality result (Theorem 3.7) along with a Frank-Wolfe algo-
rithm (FW, Frank & Wolfe (1956)) introduced in (Séjourné
et al., 2022b) to optimize UOT dual (3). Our methods, sum-
marized in Algorithms 1 and 2, can be applied for smooth
Dφ1 ,Dφ2 : this is satisfied for GHK (where Dφi = ρiKL),
but not for sliced partial OT (where Dφi = ρiTV, Bai et al.
(2022)). We refer to Appendix B for more technical details
on our methodology and its theoretical justification.

FW is an iterative procedure which aims at maximizes a
functional H over a compact convex set E , by maximizing
a linear approximation ∇H: given iterate xt, FW solves
the linear oracle rt+1 ∈ argmaxr∈E ⟨∇H(xt), r⟩ and per-
forms a convex update xt+1 = (1 − γt+1)x

t + γt+1r
t+1,

with γt+1 typically chosen as γt+1 = 2/(2 + t + 1). We
call this step FWStep in our pseudo-code. When applied
in (Séjourné et al., 2022b) to compute UOT(α, β) dual (3),
FWStep updates (ft, gt) s.t. ft ⊕ gt ≤ Cd, and the linear
oracle is the balanced dual of OT(αt, βt) where (αt, βt)
are normalized versions of (α, β). Updating (αt, βt) in-
volves (ft, gt) and ρ = (ρ1, ρ2): we refer to this routine as
Norm(α, β, ft, gt,ρ) and report the closed-form updates in
Appendix B. In other words, computing UOT amounts to
solve a sequence of OT problems, which can efficiently be
done for univariate measures (Séjourné et al., 2022b).

Analogously to UOT, and by Theorem 3.7, we propose
to compute SUOT(α, β) and USOT(α, β) based on their
dual forms. FW iterates consists in solving a sequence of
sliced OT problems. We derive the updates for the FWStep
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Algorithm 1 – SUOT
Input: α, β, F , (θk)Kk=1, ρ = (ρ1, ρ2)
Output: SUOT(α, β), (fθ, gθ)

(fθ, gθ)← (0, 0)
for t = 0, 1, . . . , F − 1, for θ ∈ (θk)

K
k=1 do

(αθ, βθ) ← Norm(θ⋆♯α, θ
⋆
♯β, fθ, gθ,ρ)

(rθ, sθ) ← SlicedDual(αθ, βθ)
(fθ, gθ) ← FWStep(fθ, gθ, rθ, sθ, γt)

end for
Return SUOT(α, β), (fθ, gθ) as in (9)

Algorithm 2 – USOT
Input: α, β, F , (θk)Kk=1, ρ = (ρ1, ρ2)
Output: USOT(α, β), (favg, gavg)

(fθ, gθ, favg, gavg)← (0, 0, 0, 0)
for t = 0, 1, . . . , F − 1, for θ ∈ (θk)

K
k=1 do

(π1, π2) ← Norm(α, β, favg, gavg,ρ)
(rθ, sθ) ← SlicedDual(θ⋆♯π1, θ

⋆
♯π2)

ravg, savg ← AvgPot(rθ),AvgPot(sθ)
(favg, gavg) ← FWStep(favg, gavg, ravg, savg, γt)
end for
Return USOT(α, β), (favg, gavg) as in (10)

tailored for SUOT and USOT in Appendix B, and re-use
the aforementioned Norm routine. For USOT, we imple-
ment an additional routine called AvgPot

(
(fθ)

)
to com-

pute
∫
fθdσ̂K(θ) given the sliced potentials (fθ).

A crucial difference is the need of SOT dual potentials
(rθ, sθ) to call Norm. However, past implementations only
return the loss SOT(α, β) for e.g. training models (Desh-
pande et al., 2019; Nguyen et al., 2020). Thus we designed
two novel (GPU) implementations in PyTorch (Paszke et al.,
2019) which return them. The first one leverages that
the gradient of OT(α, β) w.r.t. (α, β) are optimal (f, g),
which allows to backpropagate OT(θ⋆♯α, θ

⋆
♯β) w.r.t. (α, β)

to obtain (rθ, sθ). The second implementation computes
them in parallel on GPUs using their closed form, which to
the best of our knowledge is a new sliced algorithm. We
call SlicedDual(θ⋆♯α, θ

⋆
♯β) the step returning optimal

(rθ, sθ) solving OT(θ⋆♯α, θ
⋆
♯β) for all θ. Both routines pre-

serve the O(N logN) per slice time complexity and can
be adapted to any SOT variant. Thus, our FW approach
is modular in that one can reuse the SOT literature. We
illustrate this by computing USOT between distributions in
the hyperbolic Poincaré disk. (Figure 2).

Algorithmic complexity. FW algorithms and its vari-
ants have been widely studied theoretically. Computing
SlicedDual has a complexity O(KN logN), where N
is the number of samples, and K the number of projections
of σ̂K . The overall complexity of SUOT and USOT is thus
O(FKN logN), where F is the number of FW iterations
needed to reach convergence. Our setting falls under the
assumptions of (Lacoste-Julien & Jaggi, 2015, Theorem 8),
thus ensuring fast convergence of our methods. We plot in
Appendix B empirical evidence that a few iterations of FW
(F ≤ 20) suffice to reach numerical precision.

Outputing marginals of SUOT and USOT. The optimal
primal marginals of UOT (therefore, SUOT and USOT) are
geometric normalizations of inputs (α, β) with discarded
outliers. Their computation involves the Norm routine,
using optimal dual potentials. This is how we compute
marginals in Figures 1, 2 and 4: see Appendix B.

Stochastic USOT. In practice, σ̂K = 1
K

∑K
i δθi is

fixed, and (favg, gavg) are computed w.r.t. σ̂K . However,
Eθk∼σ[σ̂K ] = σ. Thus, assuming Theorem 3.7 holds for σ,
we have Eθk∼σ[favg(x)] =

∫
fθ(θ

⋆(x))dσ(θ) if we sam-
ple a new σ̂K at each FW step. This approach, which we
refer to as, Stochastic USOT, should output a more accurate
estimate of the USOT w.r.t. σ, but is more expensive: we
need to sort projected data w.r.t new projections at each
iteration. More importantly, for balanced OT (φ◦(x) = x),
USOT = SOT and this idea remains valid for sliced OT.
See Section 5 for applications.

5. Experiments
Comparing hyperbolic datasets. We display in Figure 2
the impact of the parameter ρ = ρ1 = ρ2 on the opti-
mal marginals of USOT. To illustrate the modularity of
our FW algorithm, our inputs are synthetic mixtures of
Wrapped Normal Distribution on the 2-hyperbolic manifold
H (Nagano et al., 2019), so that the FW oracle is hyperbolic
sliced OT (Bonet et al., 2022a). The parameter θ character-
izes on H any geodesic curve passing through the origin,
and each sample is projected by taking the shortest path to
such geodesics. Once projected on a geodesic curve, we
sort data and compute SOT w.r.t. hyperbolic metric dH.

Inputs (α, β)We display the 2-hyperbolic
manifold on the Poincaré disc.
The measure α (in red) is a
mixture of 3 isotropic normal
distributions, with a mode at
the top of the disc playing
the role of an outlier. The
measure β is a mixture of
two anisotropic normal dis-
tributions, whose means are
close to two modes of α, but
are slightly shifted at the disc’s
center. We illustrate several
take-home messages, stated in
Section 3. First, the optimal
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ρ = 10−3 ρ = 10−1 ρ = 101
(π

1
,π

2
)

Figure 2: KDE estimation (kernel e−d2
H/σ) of optimal (π1, π2) of USOT(α, β) when Dφi

= ρKL.

marginals (π1, π2) are renormalisation of (α, β) accounting
for their geometry, which are able to remove outliers for
properly tuned ρ. When ρ is large, (π1, π2) ≃ (α, β) and
we retrieve SOT. When ρ is too small, outliers are removed,
but we see a shift of the modes, so that modes of (π1, π2)
are closer to each other, but do not exactly correspond to
those of (α, β). Second, note that such plot cannot be made
with SUOT, since the optimal marginals depend on the pro-
jection θ (see Figure 1). Third, we are indeed able to reuse
any variant of SOT existing in the literature.

Document classification. To show the benefits of our pro-
posed losses over SOT, we consider a document classifica-
tion problem (Kusner et al., 2015). Documents are repre-
sented as distributions of words embedded with word2vec
(Mikolov et al., 2013) in dimension d = 300. Let Dk be the
k-th document and xk1 , . . . , x

k
nk

∈ Rd be the set of words
in Dk. Then, Dk =

∑nk

i=1 w
k
i δxk

i
where wk

i is the fre-
quency of xki in Dk normalized s.t.

∑nk

i=1 w
k
i = 1. Given a

loss function L, the document classification task is solved
by computing the matrix

(
L(Dk, Dℓ)

)
k,ℓ

, then using a k-
nearest neighbor classifier. Since a word typically appears
several times in a document, the measures are not uniform
and sliced partial OT (Bonneel & Coeurjolly, 2019; Bai
et al., 2022) cannot be used in this setting. The aim of this
experiment is to show that by discarding possible outliers us-
ing a well chosen parameter ρ, USOT is able to outperform
SOT and SUOT on this task. We consider BBCSport dataset
(Kusner et al., 2015), Movies reviews (Pang et al., 2002) and
the Goodreads dataset (Maharjan et al., 2017) on two tasks
(genre and likability). We report in Table 1 the accuracy of
SUOT, USOT and the stochastic USOT (SUSOT) compared
with SOT, OT and UOT computed with the majorization
minimization algorithm (Chapel et al., 2021) or approxi-
mated with the Sinkhorn algorithm (Pham et al., 2020). All
the benchmark methods are computed using the POT library
(Flamary et al., 2021). For sliced methods (SOT, SUOT,
USOT and SUSOT), we average over 3 computations of
the loss matrix and report the standard deviation in Table 1.
The number of neighbors was selected via cross validation.
The results in Table 1 are reported for ρ yielding the best
accuracy, and we display an ablation of this parameter on
the BBCSport dataset in Figure 3. We observe that when

ρ is tuned, USOT outperforms SOT, just as UOT outper-
forms OT. Note that OT and UOT cannot be used in large
scale settings (typically large documents) as their complex-
ity scale cubically. We report in Appendix C runtimes on the
Goodreads dataset. In particular, computing the OT matrix
took 3 times longer than computing the USOT matrix on
GPU. Morever, we were unable to run UOT using POT on
the Movies and Goodreads datasets in a reasonable amount
of time, due to their computational complexity.

Barycenter on geophysical data. OT barycenters have
been an important topic of interest (Bonet et al., 2022b; Le
et al., 2021). To compute barycenters under the USOT ge-
ometry on a fixed grid, we employ a mirror-descent strategy
similar to (Cuturi & Doucet, 2014a, Algorithm (1)): see
Appendix C. We showcase unbalanced sliced OT barycenter
using climate model data. Ensembles of multiple models are
commonly employed to reduce biases and evaluate uncer-
tainties in climate projections (e.g. (Sanderson et al., 2015;
Thao et al., 2022)). The commonly used Multi-Model Mean
approach assumes models are centered around true values
and averages the ensemble with equal or varying weights.
However, spatial averaging may fail in capturing specific
characteristics of the physical system at stake. We propose
to use USOT barycenter here instead. We consider the Cli-
mateNet dataset (Prabhat et al., 2021), and more specifically
the TMQ (precipitable water) indicator. The ClimateNet
dataset is a human-expert-labeled curated dataset that cap-
tures notably tropical cyclones (TCs). In order to simulate
the output of several climate models, we take a specific in-
stant (first date of 2011) and deform the data with the elastic
deformation from TorchVision (Paszke et al., 2019), in an
area located close to the eastern part of the U.S. We obtain 4
different TCs (Figure 4, first row). As expected, the classical
L2 spatial mean (Figure 4, second row) reveals 4 different
TCs centers/modes, which is undesirable. Since the total
TMQ mass in the considered zone varies between the dif-
ferent models, a direct application of SOT is impossible,
or requires a normalization of the mass that has undesired
effect as can be seen on the second picture of the second row.
Finally, we show the result of the USOT barycenter with
ρ1 = 1e1 (related to the data) and ρ2 = 1e4 (related to the
barycenter). As a result, the corresponding barycenter has
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Table 1: Accuracy on document classification

BBCSport Movies Goodreads genre Goodreads like
OT 91.64 68.88 52.75 70.60

UOT 96.27 - - -
Sinkhorn UOT 93.64 63.8 42.55 66.06

SOT 89.39±0.76 66.95±0.45 50.09±0.51 65.60±0.20

SUOT 90.12±0.15 67.84±0.37 50.15±0.04 66.72±0.38

USOT 92.36±0.07 69.21±0.37 51.87±0.56 67.41±1.06

SUSOT 92.45±0.39 69.53±0.53 51.93±0.53 67.33±0.26

10 4 10 3 10 2 10 1 100
0.80

0.85

0.90

Ac
cu

ra
cy

SOT
USOT
SUOT

Figure 3: Ablation on BBCSport of
the parameter ρ.

Figure 4: Barycenter of geophysical data. (First row) Simulated output of 4 different climate models depicting different
scenarios for the evolution of a tropical cyclone (Second row) Results of different averaging/aggregation strategies.

only one apparent mode which is the expected behaviour.
The considered measures have a size of 100 × 200, and
we run the barycenter algorithm for 500 iterations (with
K = 64 projections), which takes 3 minutes on a com-
modity GPU. UOT barycenters for this size of problems
are untractable, and to the best of our knowledge, this is
the first time such large scale unbalanced OT barycenters
can be computed. This experiment encourages an in-depth
analysis of the relevance of this aggregation strategy for
climate modeling and related problems.

6. Conclusion and Discussion
We proposed two losses merging unbalanced and sliced OT,
with theoretical guarantees and an efficient Frank-Wolfe
algorithm which allows to reuse any sliced OT variant. We
highlighted experimentally the performance improvement
over SOT, and described novel applications of unbalanced
OT barycenters of positive measures, with a new case study
on geophysical data. These novel results and algorithms
pave the way to numerous new applications of sliced vari-

ants of OT: we believe our contributions will motivate prac-
titioners to further explore their use in ML applications,
without having to pre-process probability measures.

An immediate drawback is the induced additional computa-
tional cost w.r.t. SOT. While our empirical results show that
SUOT and USOT significantly outperform SOT, and though
the complexity is sub-quadratic in the number of samples,
our FW approach uses SOT as a subroutine, rendering it nec-
essarily more expensive. Another practical burden comes
from the introduction of hyperparameters (ρ1, ρ2), which
requires cross-validation when possible. A future direc-
tion would be to derive efficient strategies to tune (ρ1, ρ2),
maybe w.r.t. the applicative context, and complement possi-
ble interpretations of ρ as a “threshold” for the geometric
information encoded by C1, Cd. On the other hand, while
OT between univariate measures defines a reproducing ker-
nel and sliced OT takes advantage of this property (Kolouri
et al., 2016; Carriere et al., 2017), some of our experiments
suggest this no longer holds for UOT (therefore, for SUOT,
USOT). This leaves as an open direction the design of OT-
based kernel methods between arbitrary positive measures.
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Peyré, G., Cuturi, M., et al. Computational optimal trans-
port: With applications to data science. Foundations and
Trends® in Machine Learning, 11(5-6):355–607, 2019.

Pham, K., Le, K., Ho, N., Pham, T., and Bui, H. On un-
balanced optimal transport: An analysis of Sinkhorn
algorithm. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 7673–7682. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/pham20a.html.

Piccoli, B. and Rossi, F. Generalized wasserstein distance
and its application to transport equations with source.
Archive for Rational Mechanics and Analysis, 211:335–
358, 2014.

Prabhat, Kashinath, K., Mudigonda, M., Kim, S., Kapp-
Schwoerer, L., Graubner, A., Karaismailoglu, E., von
Kleist, L., Kurth, T., Greiner, A., Mahesh, A., Yang,
K., Lewis, C., Chen, J., Lou, A., Chandran, S., Toms,
B., Chapman, W., Dagon, K., Shields, C. A., O’Brien,
T., Wehner, M., and Collins, W. Climatenet: an expert-
labeled open dataset and deep learning architecture for
enabling high-precision analyses of extreme weather.
Geoscientific Model Development, 14(1):107–124, 2021.
doi: 10.5194/gmd-14-107-2021. URL https://gmd.
copernicus.org/articles/14/107/2021/.
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Séjourné, T., Vialard, F.-X., and Peyré, G. Faster unbal-
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A. Postponed proofs for Section 3
A.1. Existence of minimizers

We provide the formal statement and detailed proof on the existence of a solution for both SUOT and USOT, as mentioned
in Section 3.
Proposition A.1. (Existence of minimizers) Assume that C1 is lower-semicontinuous and that either (i) φ′

1,∞ = φ′
2,∞ =

+∞, or (ii) C1 has compact sublevels on R × R and φ′
1,∞ + φ′

2,∞ + inf C1 > 0. Then the solution of SUOT(α, β) and
USOT(α, β) exist, i.e. the infimum in (5) and (6) is attained. More precisely, there exists (π1, π2) which attains the infimum
for USOT(α, β) (see Equation (6)). Concerning SUOT(α, β), there exists for any θ ∈ supp(σ) a plan πθ attaining the
infimum in UOT(θ⋆♯α, θ

⋆
♯β) (see Equation (2)).

Proof. We leverage (Liero et al., 2018, Theorem 3.3) to prove this proposition. In the setting of SUOT, if such assumptions
(i) or (ii) are satisfied for (α, β), then they also hold for (θ⋆♯α, θ

⋆
♯β) for any θ ∈ Sd−1. Hence, UOT(θ⋆♯α, θ

⋆
♯β) admits a

solution πθ.

Concerning USOT, note that one necessarily has m(π1) = m(π2), otherwise SOT(π1, π2) = +∞. From (Liero et al., 2018,
Equation (3.10)), that for any admissible (π1, π2, π), one has

USOT(α, β) ≥ m(π) inf C1 +m(α)φ1(
m(π)
m(α) ) +m(β)φ2(

m(π)
m(β) ).

In both settings the above bounds implies coercivity of the functional of USOT w.r.t. the masses of the measures (π1, π2, π).
Thus there exists M > 0 such that m(π1) = m(π2) = m(π) < M , otherwise USOT(α, β) = +∞. By the Banach-Alaoglu
theorem, the set of bounded measures (π1, π2) is compact, and the set of plans π with such marginals is also compact
because Rd is Polish and C1 is lower-semicontinuous (Santambrogio, 2015, Theorem 1.7). Because the functional of USOT
is lower-semicontinuous in (π1, π2, π) and we can restrict optimization over a compact set, we have existence of minimizers
for USOT by standard proofs of calculus of variations.

A.2. Metric properties: Proof of Proposition 3.2

Proof of Proposition 3.2. Metric properties of SUOT. Symmetry and non-negativity are immediate. Assume
SUOT(α, β) = 0. Since σ is the uniform distribution on Sd−1, then for any θ ∈ Sd−1, UOT(θ⋆♯α, θ

⋆
♯β) = 0, and

since UOT is assumed to be definite, then θ⋆♯α = θ⋆♯β. By (Bogachev & Ruas, 2007, Proposition 3.8.6), this implies that α
and β have the same Fourier transform. By injectivity of the Fourier transform, we conclude that α = β, hence SUOT is
definite. The triangle inequality results from applying the Minkowski inequality then the triangle inequality for UOT1/p for
p ∈ [1,+∞): for any α, β, γ ∈ M+(Rd),

SUOT1/p(α, β)

=

(∫
Sd−1

UOT(θ⋆♯α, θ
⋆
♯β)dσ(θ)

)1/p

≤

(∫
Sd−1

[
UOT1/p(θ⋆♯α, θ

⋆
♯ γ) + UOT1/p(θ⋆♯ γ, θ

⋆
♯β)
]p
dσ(θ)

)1/p

≤

(∫
Sd−1

[
UOT1/p(θ⋆♯α, θ

⋆
♯ γ)
]p
dσ(θ)

)1/p

+

(∫
Sd−1

[
UOT1/p(θ⋆♯ γ, θ

⋆
♯β)
]p
dσ(θ)

)1/p

= SUOT1/p(α, γ) + SUOT1/p(γ, β).

Metric properties of USOT. Let (α, β) ∈ M+(Rd). Non-negativity is immediate, as USOT is defined as a program
minimizing a sum of positive terms. SOT is symmetric, thus when φ1 = φ2, we obtain symmetry of the functional w.r.t.
(α, β). Assume Dφ is definite, i.e. Dφ(α|β) = 0 implies α = β. Assume now that USOT(α, β) = 0, and denote by (π1, π2)
the optimal marginals attaining the infimum in (6). USOT(α, β) = 0 implies that SOT(π1, π2) = 0, Dφ(π1|α) = 0 and
Dφ(π2|β) = 0. These three terms are definite, which yields α = π1 = π2 = β, hence the definiteness of USOT.
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A.3. Comparison of SUOT, USOT, SOT, and proof of Theorem 3.3

In this section, we establish several bounds to compare SUOT, USOT and SOT on the space of compactly-supported
measures. We provide the detailed derivations and auxiliary lemmas needed for the proofs. Note that Theorem 3.3 is a direct
consequence from Theorems A.2 to A.4.

Theorem A.2. Let X be a compact subset of Rd with radius R and consider α, β ∈ M+(X). Then, SUOT(α, β) ≤
USOT(α, β).

Proof. To show that SUOT(α, β) ≤ USOT(α, β), we use a sub-optimality argument. Let π be the solution USOT(α, β)
and denote by (π1, π2) the marginals of π. For any θ ∈ Sd−1, denote by πθ the solution of OT(θ⋆♯π1, θ

⋆
♯π2). By definition of

USOT, the marginals of πθ are given by (θ⋆♯π1, θ
⋆
♯π2). Since the sequence (πθ)θ is suboptimal for the problem SUOT(α, β),

one has

SUOT(α, β) ≤
∫
Sd−1

{∫
C1dπθ +Dφ1

(θ⋆♯π1|θ⋆♯α) + Dφ2
(θ⋆♯π2|θ⋆♯β)

}
dσ(θ) (11)

≤
∫
Sd−1

∫
C1dπθdσ(θ) + Dφ1(π1|α) + Dφ2(π2|β) (12)

= USOT(α, β), (13)

where the second inequality results from Lemma A.5, and the last equality follows from the definition of USOT(α, β).

Theorem A.3. Let X be a compact subset of Rd with radius R and consider α, β ∈ M+(X). Additionally, let p ∈ [1,+∞)
and assume C1(x, y) = |x− y|p for (x, y) ∈ R×R and Cd(x, y) = ∥x− y∥p for (x, y) ∈ Rd ×Rd. Then, USOT(α, β) ≤
UOT(α, β).

Proof. By (Bonnotte, 2013, Proposition 5.1.3), SOT(µ, ν) ≤ K OT(µ, ν) with K ≤ 1. Let π be the solution of UOT(α, β)
with marginals (π1, π2). These marginals are sub-optimal for USOT(α, β), we have

USOT(α, β) ≤ SOT(π1, π2) + Dφ1(π1|α) + Dφ2(π2|β) , (14)
≤ OT(π1, π2) + Dφ1(π1|α) + Dφ2(π2|β) , (15)
= UOT(α, β) , (16)

where the last equality is obtained because π is optimal in UOT(α, β).

Theorem A.4. Let X be a compact subset of Rd with radius R and consider α, β ∈ M+(X). Additionally, let p ∈ [1,+∞)
and assume C1(x, y) = |x − y|p for (x, y) ∈ R and Cd(x, y) = ∥x − y∥p for (x, y) ∈ Rd. Let ρ > 0 and assume
Dφ1

= Dφ2
= ρKL. Then, UOT(α, β) ≤ cSUOT(α, β)1/(d+1), where c = c(m(α),m(β), ρ, R) is a non-decreasing

function of m(α) and m(β).

Proof. We adapt the proof of (Bonnotte, 2013, Lemma 5.1.4), which establishes a bound between OT and SOT. The first
step consists in bounding from above the distance between two regularized measures.

Let ψ : Rd → R+ be a smooth and radial function verifying supp(ψ) ⊆ Bd(0, 1) and
∫
Rd ψ(x)dLeb(x) = 1. Let

ψλ(x) = λ−dψ(x/λ)/A(Sd−1) where A(Sd−1) is the surface area of Sd−1, i.e. A(Sd−1) = 2πd/2

Γ(d/2) with Γ the gamma
function. For any function f defined on Rs (s ≥ 1), denote by F [f ] the Fourier transform of f defined for x ∈ Rs as
F [f ](x) =

∫
Rs f(w)e

−i⟨w,x⟩dw. Let αλ = α ∗ φλ and βλ = β ∗ φλ where ∗ is the convolution operator. Let (f, g) such
that f ⊕ g ≤ Cd. By using the isometry properties of the Fourier transform and the definition of ψλ, then representing the
variables with polar coordinates, we have∫

Rd

φ◦(f(x))dαλ(x) =

∫
Rd

F [φ◦ ◦ f ](w)F [α](w)F [ψ](λw)dw (17)

=

∫
Sd−1

∫ +∞

0

F [φ◦ ◦ f ](rθ)F [α](rθ)F [ψ](λr)rd−1drdσ(θ) . (18)
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Since φ◦ ◦ f is a real-valued function, F [φ◦ ◦ f ] is an even function, then∫
Rd

φ◦(f(x))dαλ(x) (19)

=
1

2

∫
Sd−1

∫
R
F [φ◦ ◦ f ](rθ)F [α](rθ)F [ψ](λr)|r|d−1drdσ(θ) (20)

=
1

2

∫
Sd−1

∫
R
F [φ◦ ◦ f ](rθ)F [θ⋆♯α](r)F [ψ](λr)|r|d−1drdσ(θ) (21)

=
1

2

∫
Sd−1

∫
R
F [φ◦ ◦ f ](rθ)

(∫ R

−R

e−irudθ⋆♯α(u)

)
F [ψ](λr) |r|d−1

drdσ(θ) (22)

=
1

2

∫
Sd−1

∫
R

(∫
Rd

∫ R

−R

φ◦(f(x))e−ir(u+⟨θ,x⟩)dθ⋆♯α(u)

)
F [ψ](λr) |r|d−1

dxdrdσ(θ) . (23)

Equation (21) follows from the property of push-forward measures, (22) results from the definition of the Fourier transform
and u ∈ [−R,R], and (23) results from the definition of the Fourier transform and Fubini’s theorem. By making a change of
variables (x becomes x− uθ), we obtain∫

Rd

φ◦(f(x))dαλ(x) (24)

=
1

2

∫
Sd−1

∫
R

∫
Rd

∫ R

−R

φ◦(f(x− uθ))e−ir⟨θ,x⟩dθ⋆♯α(u)F [ψ](λr) |r|d−1
dxdrdσ(θ) (25)

=
1

2

∫
Sd−1

∫
R

∫
Bd(0,2R+λ)

∫ R

−R

φ◦(f(x− uθ))e−ir⟨θ,x⟩dθ⋆♯α(u)F [ψ](λr) |r|d−1
dxdrdσ(θ) , (26)

where (26) follows from the assumption that supp(α) ⊆ Bd(0, R). Indeed, this implies that supp(αλ) ⊆ Bd(0, R + λ),
thus the domain of x 7→ φ◦ ◦ f(x− uθ) is contained in Bd(0, 2R+ λ).

Similarly, one can show that∫
Rd

φ◦(g(y))dβλ(y) (27)

=
1

2

∫
Sd−1

∫
R

∫
Bd(0,2R+λ)

∫ R

−R

φ◦(g(y − uθ))e−ir⟨θ,y⟩dθ⋆♯β(u)F [ψ](λr) |r|d−1
dydrdσ(θ) . (28)

By (26) and (28), and applying Fubini’s theorem, we obtain∫
Rd

φ◦(f(x))dαλ(x) +

∫
Rd

φ◦(g(y))dβλ(y) (29)

≤ 1

2

∫
R

∫
Bd(0,2R+λ)

∫
Sd−1

{∫ R

−R

φ◦(f(x− uθ))dθ⋆♯α(u)

+

∫ R

−R

φ◦(g(x− uθ))dθ⋆♯β(u)
}
e−ir⟨θ,x⟩F [ψ](λr) |r|d−1

dσ(θ)dxdr (30)

≤ c1(2R+ λ)d
∫
Sd−1

UOT(θ⋆♯α, θ
⋆
♯β)dσ(θ)

∫
R
λ−d

∣∣F [ψ](r) |r|d−1 ∣∣dr (31)

≤ c2(2R+ λ)dλ−dSUOT(α, β) (32)

where c1 > 0 is independent from α and β, and c2 = c1
∫
R
∣∣F [ψ](r)

∣∣ |r|d−1
dr. Equation (32) is obtained by taking

the supremum of (30) over the set of potentials (f̃ , g̃) such that for u ∈ [−R,R], ∃(x, θ) ∈ Bd(0, 2R + λ) × Sd−1,
f̃(u) = f(x− uθ), g̃(u) = g(x− uθ), which is included in the set of potentials (f ′, g′) s.t. f ′ : R → R, g′ : R → R and
f ′ ⊕ g′ ≤ C1.
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We deduce from the dual formulation of UOT (3) and (32) that,

UOT(αλ, βλ) ≤ c2(2R+ λ)dλ−dSUOT(α, β) . (33)

The last step of the proof consists in relating UOT(αλ, βλ) with UOT(α, β). For any (f, g) such that f ⊕ g ≤ Cd, we have∫
Rd

φ◦(f(x))dα(x) +

∫
Rd

φ◦(g(y))dβ(y)− UOT(αλ, βλ) (34)

≤
∫
Rd

φ◦(f(x))dα(x) +

∫
Rd

φ◦(g(x))dβ(x)−
∫
Rd

φ◦(f(x))dαλ(x)−
∫
Rd

φ◦(g(y))dβλ(y) (35)

≤
∫
Rd

{φ◦(f(x))− ψλ ∗ φ◦(f(x))}dα(x) +
∫
Rd

{φ◦(g(y))− ψλ ∗ φ◦(g(y))}dβ(y) . (36)

For x ∈ Rd,

φ◦(f(x))− ψλ ∗ φ◦(f(x)) =
λ−d

A(Sd−1)

∫
Rd

(
φ◦(f(x))− φ◦(f(y))

)
ψ

(
x− y

λ

)
dy (37)

≤ λ−d

A(Sd−1)

∫
Rd

∣∣φ◦(f(x))− φ◦(f(y))
∣∣ψ(x− y

λ

)
dy , (38)

Since Dφ = ρKL, then for z ∈ R, φ◦(z) = ρ(1− e−z/ρ), so for (x, y) ∈ Rd × Rd,

φ◦(f(x))− φ◦(f(y)) = ρ(e−f(y)/ρ − e−f(x)/ρ) (39)

By Lemma A.8, the potentials (f, g) are bounded by constants depending on m(α),m(β), thus we can bound (39) as
follows.

|φ◦(f(x))− φ◦(f(y))| ≤ ρe−λ⋆/ρ
(
1− e−R/ρ

)
, (40)

with λ⋆ ∈ [−R+ ρ
2 log

m(α)
m(β) ,

R
2 + ρ

2 log
m(α)
m(β) ]. We thus derive the following upper-bound on (38).

φ◦(f(x))− ψλ ∗ φ◦(f(x)) ≤ λ−d

A(Sd−1)
ρe−λ⋆/ρ

(
1− e−R/ρ

)∫
Rd

ψ

(
x− y

λ

)
dy (41)

≤ λ−d+1

A(Sd−1)
ρe−λ⋆/ρ

(
1− e−R/ρ

)∫
Rd

1

λ
ψ

(
x− y

λ

)
dy (42)

≤ λ−d+1

A(Sd−1)

√
m(β)

m(α)
ρeR/ρ

(
1− e−R/ρ

)∫
Rd

1

λ
ψ

(
x− y

λ

)
dy (43)

By doing the change of variables z = (y − x)/λ and using the fact that ψ is a radial function and
∫
Rd ψ(z)dLeb(z) = 1,

we obtain
∫
Rd

1
λψ
(
x−y
λ

)
dy = 1. Therefore,

φ◦(f(x))− ψλ ∗ φ◦(f(x)) ≤ λ−d+1

A(Sd−1)

√
m(β)

m(α)
ρeR/ρ

(
1− e−R/ρ

)
(44)

≤ λ

A(Sd−1)

√
m(β)

m(α)
ρeR/ρ

(
1− e−R/ρ

)
. (45)

Similarly, using the bounds on g in Lemma A.8, one can show that

|φ◦(g(x))− φ◦(g(y))| ≤ ρeλ
⋆/ρ
(
eR/ρ − e−R/ρ

)
≤ ρ

√
m(α)

m(β)
eR/2ρ

(
eR/ρ − e−R/ρ

)
, (46)
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therefore,

φ◦(g(x))− ψλ ∗ φ◦(g(x)) ≤ λ

A(Sd−1)

√
m(α)

m(β)
ρeR/2ρ

(
eR/ρ − e−R/ρ

)
. (47)

We conclude that, ∫
Rd

φ◦(f(x))dα(x) +

∫
Rd

φ◦(g(y))dβ(y)− UOT(αλ, βλ) (48)

≤ λρ

A(Sd−1)

{
m(α)e−λ⋆/ρ

(
1− e−R/ρ

)
+m(β)eλ

⋆/ρ
(
eR/ρ − e−R/ρ

)}
(49)

≤ λρ

A(Sd−1)

√
m(α)m(β)

{
eR/ρ

(
1− e−R/ρ

)
+ eR/2ρ

(
eR/ρ − e−R/ρ

)}
(50)

Taking the supremum on both sides over (f, g) such that f ⊕ g ≤ Cd yields,

UOT(α, β)− UOT(αλ, βλ) (51)

≤ λρ

A(Sd−1)

{
m(α)e−λ⋆/ρ

(
1− e−R/ρ

)
+m(β)eλ

⋆/ρ
(
eR/ρ − e−R/ρ

)}
(52)

≤ λρ

A(Sd−1)

√
m(α)m(β)

{
eR/ρ

(
1− e−R/ρ

)
+ eR/2ρ

(
eR/ρ − e−R/ρ

)}
. (53)

Finally, by combining (33) with the above inequality, we obtain

UOT(α, β) (54)

≤ λρ

A(Sd−1)

√
m(α)m(β)

{
eR/ρ

(
1− e−R/ρ

)
+ eR/2ρ

(
eR/ρ − e−R/ρ

)}
(55)

+ c2(2R+ λ)dλ−dSUOT(α, β) (56)

≤ cλ
(
1 + (2R+ λ)dλ−(d+1)SUOT(α, β)

)
, (57)

where c is a constant satisfying c ≥ c2 and

c ≥ ρ
√
m(α)m(β)

{
eR/ρ

(
1− e−R/ρ

)
+ eR/2ρ

(
eR/ρ − e−R/ρ

)}
/A(Sd−1). (58)

We conclude the proof by plugging λ = Rd/(d+1)SUOT(α, β)1/(d+1) in (57) and using the fact that SUOT(α, β) is
bounded from above: SUOT(α, β) ≤ ρ(m(α) +m(β)) since on the one hand, π is suboptimal in (3) thus UOT(α, β) ≤
ρ(m(α) +m(β)), and on the other hand, m(α) = m(θ⋆♯α) for any θ ∈ Sd−1.

Lemma A.5. For any θ ∈ Sd−1 and α, β ∈ M+(Rd), Dφ(θ
⋆
♯α|θ⋆♯β) ≤ Dφ(α|β).

Proof. For α, β ∈ M+(Rs) with s ≥ 1, the dual characterization of φ-divergences reads (Liero et al., 2018, Theorem 2.7)

Dφ(α|β) = sup
f∈E(Rs)

∫
Rs

φ◦(f(x))dβ(x)−
∫
Rs

f(x)dα(x),

where E(Rs) denotes the space of lower semi-continuous functions from Rs to R ∪ {+∞}. Therefore, for any θ ∈ Sd−1

and α, β ∈ M+(Rd),

Dφ(θ
⋆
♯α|θ⋆♯β) = sup

f∈E(R)

∫
R
φ◦(f(t))d(θ⋆♯β)(t)−

∫
R
f(t)d(θ⋆♯α)(t) (59)

= sup
g:Rd→R s.t. ∃f∈E(R), g=f◦θ⋆

∫
Rd

φ◦(g(x))dβ(x)−
∫
Rd

g(x)dα(x) (60)

where (60) results from the definition of push-forward measures. We conclude the proof by observing that the supremum in
(60) is taken over a subset of E(Rd).
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Lemma A.6. (Santambrogio, 2015, Proposition 1.11) Let p ∈ [1,+∞) and assume Cd(x, y) = ∥x− y∥p. Let α, β with
compact support, such that Cd(x, y) ≤ Rp for (x, y) ∈ supp(α) × supp(β). Then without loss of generality the dual
potentials (f, g) of UOT(α, β) satisfy f(x) ∈ [0, R] and g(y) ∈ [−R,R].
Lemma A.7. (Séjourné et al., 2022b, Proposition 2) Define the translation-invariant dual formulation

UOT(α, β) = sup
f⊕g≤Cd

sup
λ∈R

∫
φ◦
1(f + λ)dα+

∫
φ◦
2(g − λ)dβ. (61)

Let ρ > 0 and assume Dφ1
= Dφ2

= ρKL. Take optimal potentials (f, g) in (61). Then optimal potentials in (3) are given
by (f + λ⋆(f, g), g − λ⋆(f, g)), where the optimal translation λ⋆ reads

λ⋆(f, g) ≜
1

2

[
Sβ
ρ (g)− Sα

ρ (f)

]
, Sα

ρ (f) ≜ −ρ log
∫
e−f/ρdα,

and we call Sα
ρ (f) the soft-minimum of f . When m(α) = 1 and m ≤ f(x) ≤M , then m ≤ Sα

ρ (f) ≤M .

Lemma A.8. Assume (α, β) have compact support such that, for (x, y) ∈ supp(α)×supp(β), C(x, y) ≤ R. Then, without
loss of generality, one can restrict the optimization of the dual formulation (3) of UOT(α, β) over the set of potentials
satisfying for (x, y) ∈ supp(α)× supp(β),

f(x) ∈ [λ⋆, λ⋆ +R] , g(y) ∈ [−λ⋆ −R,−λ⋆ +R] ,

where λ⋆ ∈ [−R+ ρ
2 log

m(α)
m(β) ,

R
2 + ρ

2 log
m(α)
m(β) ]. In particular, one has

f(x) ∈ [−R+ ρ
2 log

m(α)
m(β) ,

3R
2 + ρ

2 log
m(α)
m(β) ] , g(y) ∈ [− 3R

2 − ρ
2 log

m(α)
m(β) , 2R− ρ

2 log
m(α)
m(β) ]

Proof. Consider the translation-invariant dual formulation (61): if (f, g) are optimal, then for any λ ∈ R, (f + λ, g − λ)
are also optimal. We leverage the structure of the dual constraint f ⊕ g ≤ Cd with Lemma A.6. Since for (x, y) ∈
supp(α) × supp(β), Cd(x, y) ≤ R, then without loss of generality, f(x) ∈ [0, R] and g(y) ∈ [−R,R]. The potentials
(f, g) are optimal for the translation-invariant dual energy, and we need a bound for the original dual functional (3). To
this end, we leverage Lemma A.7 to compute the optimal translation, such that (f, g) = (f + λ⋆(f, g), g − λ⋆(f, g)). Let
ᾱ = α/m(α) and β̄ = β/m(β) be the normalized probability measures. The translation can be written as,

λ⋆(f, g) =
1

2

[
Sβ̄
ρ (g)− Sᾱ

ρ (f)

]
+
ρ

2
log

m(α)

m(β)
, (62)

where the functional Sα
ρ is defined in Lemma A.7. Since ᾱ and β̄ are probability measures, then by (Genevay et al., 2019,

Proposition 1), f(x) ∈ [0, R] and g(x) ∈ [−R,R] respectively imply Sᾱ
ρ (f) ∈ [0, R] and Sβ̄

ρ (g) ∈ [−R,R]. Combining
these bounds on Sᾱ

ρ (f), Sβ̄
ρ (g) with the expression of λ⋆(f, g) (62) yields the desired bounds on the optimal potentials

(f, g) of the dual formulation (3).

A.4. Metrizing weak∗ convergence: Proof of Theorem 3.4

Proof. Let (αn) be a sequence of measures in M+(X) and α ∈ M+(X), where X ⊂ Rd is compact with radius R > 0.
First, we assume that αn ⇀ α. Then, by (Liero et al., 2018, Theorem 2.25), under our assumptions, αn ⇀ α is equivalent
to limn→+∞ UOT(αn, α) = 0. This implies that limn→+∞ SUOT(αn, α) = 0 and limn→+∞ USOT(αn, α) = 0, since by
Theorem 3.3 and non-negativity of SUOT (Proposition 3.2),

0 ≤ SUOT(αn, α) ≤ USOT(αn, α) ≤ UOT(αn, α) .

Conversely, assume either that limn→+∞ SUOT(αn, α) = 0 or limn→+∞ USOT(αn, α) = 0. First assume there exists
M > 0 such that for large enough n ∈ N∗,m(αn) ≤M , then by Theorem 3.3, there exists c > 0 such that UOT(αn, α) ≤
c
(
SUOT(αn, α)

)1/(d+1)
. Since c is doesn’t depend on the masses (m(αn),m(α)), it does not depend on n. By Theorem 3.3,

it yields metric equivalence between SUOT, USOT and UOT, thus limn→+∞ UOT(αn, α) = 0. By (Liero et al., 2018,
Theorem 2.25), we eventually obtain αn ⇀ α, which is the desired result.
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The remaining step thus consists in proving that the sequence of masses (m(αn))n∈N∗ is indeed uniformly bounded by
M > 0 for large enough n. Note that for any (α, β) ∈ M+(Rd), one has UOT(α, β) ≥ ρ(

√
m(α)−

√
m(β))2. Indeed

one has UOT(α, β) ≥ D(λ,−λ), where D denotes the dual functional (3) and λ = ρ
2 log

m(α)
m(β) . Note that the pair (λ,−λ)

are feasible dual potentials for the constraint f ⊕ g ≤ Cd, because the cost Cd is positive in our setting. The property of
push-forwards measures means that for any θ ∈ Sd−1, one has m(θ⋆♯α) = m(α). Therefore, we obtain the following bounds
for n large enough.

USOT(αn, α) ≥ SUOT(αn, α) ≥
∫
Sd−1

ρ

(√
m(θ⋆♯αn)−

√
m(θ⋆♯α)

)2

dσ(θ),

= ρ(
√
m(αn)−

√
m(α))2.

Hence, limn→+∞ SUOT(αn, α) = 0 or limn→+∞ USOT(αn, α) = 0 implies limn→+∞m(αn) = m(α). In other terms
the mass of sequence converges and is thus uniformly bounded for large enough n. Since we proved that m(αn) < M and
m(α) is finite, it ends the proof.

A.5. Application to sliced partial OT: Proof of Theorem 3.5

The proof of Theorem 3.5 relies on a formulation for SUOT and USOT when Dφ1 = Dφ2 = ρTV, which we prove below.
Equation (63) is proved in (Piccoli & Rossi, 2014), and can then be applied to SUOT. We include it for completeness.
Equation (64) is our contribution and is specific to USOT.

Lemma A.9. Let ρ > 0 and assume Dφ1 = Dφ2 = ρTV and Cd(x, y) = ||x− y||. Then, for any (α, β) ∈ M+(Rd),

UOT(α, β) = sup
f∈E

∫
f(x)d(α− β)(x), (63)

where

E = {f : Rd → R, ||f ||Lip ≤ 1, ||f ||∞ ≤ ρ},

and ||f ||∞ ≜ supx∈Rd |f(x)| and ||f ||Lip ≜ sup(x,y)∈Rd
|f(x)−f(y)|

Cd(x,y)
.

Furthermore, for C1(x, y) = |x− y| and an empirical approximation σ̂N = 1
N

∑N
i=1 δθi of σ, one has

USOT(α, β) = sup
(fθ)∈E

∫
Rd

(∫
Sd−1

fθ(θ
⋆(x))dσ̂N (θ)

)
d(α− β)(x) , (64)

where

E = {∀θ ∈ supp(σ̂N ), fθ : R → R, ||fθ||Lip ≤ 1, ||
∫
Sd−1

fθ ◦ θ⋆dσ̂N (θ)||∞ ≤ ρ},

and the Lipschitz norm here is defined w.r.t. C1 as ||f ||Lip ≜ sup(x,y)∈Rd
|f(x)−f(y)|

C1(x,y)

Proof. We start with the formulation of Equation 3 and Theorem 3.7. For USOT one has

USOT(α, β) = sup
fθ(·)⊕gθ(·)≤C1

∫
φ◦
1

(∫
Sd−1

fθ(θ
⋆(x))dσN (θ)

)
dα(x)

+

∫
φ◦
2

(∫
Sd−1

gθ(θ
⋆(y))dσN (θ)

)
dβ(y) .

When Dφ = ρTV, the function φ◦ reads φ◦(x) = x for x ∈ [−ρ, ρ], φ◦(x) = ρ when x ≥ ρ, and φ◦(x) = −∞
otherwise. Noting favg(x) =

∫
Sd−1 fθ(θ

⋆(x))dσN (θ) and gavg(x) =
∫
Sd−1 gθ(θ

⋆(x))dσN (θ). This formula on φ◦

imposes favg(x) ≥ −ρ and gavg(x) ≥ −ρ. Furthermore, since we perform a supremum w.r.t. (favg, gavg) where φ◦ attains
a plateau, then without loss of generality, we can impose the constraint favg(x) ≤ ρ and gavg(x) ≥ ρ, as it will have no
impact on the optimal dual functional value. Thus we have that ||favg||∞ ≤ ρ and ||gavg||∞ ≤ ρ. To obtain the Lipschitz
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property, we use the constraint that fθ(·)⊕ gθ(·) ≤ C1 for any θ ∈ supp(σN ), as well as (Santambrogio, 2015, Proposition
3.1). Thus by using c-transform for the cost C1(x, y) = |x− y|, we can take w.l.o.g fθ(·) = −gθ(·) with fθ(·) a 1-Lipschitz
function. Thus w.l.o.g we can perform the supremum over (fθ)θ ∈ E , and rephrase the functional as desired, since we have
that φ◦(favg) = favg .

The proof for UOT is exactly the same, except that our inputs are (f, g) instead of (fθ, gθ).

We can now prove Theorem 3.5.

Proof of Theorem 3.5. First we prove that in that setting USOT is a metric. Reusing Lemma A.9, we have that for any
measures (α, β, γ)

USOT(α, γ) = sup
(fθ)θ∈E

∫ (∫
Sd−1

fθ(θ
⋆(x))dσN

)
d(α− γ)(x)

= sup
(fθ)θ∈E

∫ (∫
Sd−1

fθ(θ
⋆(x))dσN

)
d(α− β + β − γ)(x)

≤ sup
(fθ)θ∈E

∫ (∫
Sd−1

fθ(θ
⋆(x))dσN

)
d(α− β)(x)

+ sup
(fθ)θ∈E

∫ (∫
Sd−1

fθ(θ
⋆(x))dσN

)
d(β − γ)(x)

= USOT(α, β) + USOT(β, γ).

Note that reusing Lemma A.9, we have that SUOT is a sliced integral probability metric over the space of bounded and
Lipschitz functions. More precisely, we satisfy the assumptions of (Nadjahi et al., 2020, Theorem 3), so that one has
UOT(α, β) ≤ c(ρ,R)(SUOT(α, β))1/(d+1).

To prove that USOT and SUOT metrize the weak* convergence, the proof is very similar to that of Theorem 3.4 detailed
above. Assuming that αn ⇀ α implies SUOT(αn, α) → 0 and USOT(αn, α) → 0 is already proved in Appendix A.4.
To prove the converse, the proof is also the same, i.e. we use the property that SUOT, USOT and UOT are equivalent
metrics, which holds as we assumed that supports of (α, β) are compact in a ball of radius R. Note that since the bound
UOT(α, β) ≤ c(ρ,R)(SUOT(α, β))1/(d+1) holds independently of the measure’s masses, we do not need to uniformly
bound m(αn), compared to the KL setting of Theorem 3.4.

A.6. Sample complexity: Proof of Theorem 3.6

Theorem 3.6 is obtained by adapting (Nadjahi et al., 2020, Theorems 4 and 5). We provide the detailed derivations below.

Proof of Theorem 3.6. Let α, β in M+(Rd) with respective empirical approximations α̂n, β̂n over n samples. By using the
definition of SUOT, the triangle inequality and the assumed sample complexity of UOT for univariate measures, we show
that

E
∣∣∣SUOT(α, β)− SUOT(α̂n, β̂n)

∣∣∣ (65)

= E
∣∣∣∣∫

Sd−1

{
UOT(θ⋆♯α, θ

⋆
♯β)− UOT(θ⋆♯ α̂n, θ

⋆
♯ β̂n)

}
dσ(θ)

∣∣∣∣ (66)

≤ E
{∫

Sd−1

∣∣UOT(θ⋆♯α, θ
⋆
♯β)− UOT(θ⋆♯ α̂n, θ

⋆
♯ β̂n)

∣∣dσ(θ)} (67)

≤
∫
Sd−1

E
∣∣UOT(θ⋆♯α, θ

⋆
♯β)− UOT(θ⋆♯ α̂n, θ

⋆
♯ β̂n)

∣∣dσ(θ) (68)

≤
∫
Sd−1

κ(n)dσ(θ) = κ(n) , (69)

which completes the proof for the first setting.



1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Unbalanced Optimal Transport meets Sliced-Wasserstein

Next, let α ∈ M+(Rd) with corresponding empirical approximation α̂n. Then, using the definition of SUOT, the triangle
inequality (w.r.t. integral) and the assumed convergence rate in UOT,

E |SUOT(α̂n, α)| (70)

= E
∣∣∣∣∫

Sd−1

UOT(θ⋆♯ α̂n, θ
⋆
♯α)dσ(θ)

∣∣∣∣ ≤ E
{∫

Sd−1

∣∣UOT(θ⋆♯ α̂n, θ
⋆
♯α)
∣∣ dσ(θ)} (71)

≤
∫
Sd−1

E
∣∣UOT(θ⋆♯ α̂n, θ

⋆
♯α)
∣∣dσ(θ) ≤ ∫

Sd−1

ξ(n)dσ(θ) = ξ(n) . (72)

Additionally, if we assume that UOT1/p satisfies non-negativity, symmetry and the triangle inequality on M+(R)×M+(R),
then by Proposition 3.2, SUOT1/p verifies these three metric properties on M+(Rd) ×M+(Rd), and we can derive its
sample complexity as follows. For any α, β in M+(Rd) with respective empirical approximations α̂n, β̂n, applying the
triangle inequality yields for p ∈ [1,+∞),∣∣∣UOT1/p(α, β)− UOT1/p(α̂n, β̂n)

∣∣∣ ≤ UOT1/p(α̂n, α) + UOT1/p(β̂n, β) . (73)

Taking the expectation of (73) with respect to α̂n, β̂n gives,

E
∣∣∣SUOT1/p(α, β)− SUOT1/p(α̂n, β̂n)

∣∣∣ ≤ E|SUOT1/p(α̂n, α)|+ E|SUOT1/p(β̂n, β)| (74)

≤ {E |SUOT(α̂n, α)|}1/p + {E|SUOT(β̂n, β)|}1/p (75)

≤ ξ(n)1/p + ξ(n)1/p = 2ξ(n)1/p , (76)

where (75) is immediate if p = 1, and results from applying Hölder’s inequality on Sd−1 if p > 1, and (76) follows from
(72).

A.7. Strong duality: Proof of Theorem 3.7

Proof of Theorem 3.7. Note that the result for SUOT is already proved in Lemma A.12. Thus we focus on the proof of
duality for USOT. We start from the definition of USOT, reformulate it to apply the strong duality result of Proposition A.10
and obtain our reformulation. We first have that

USOT(α, β) = inf
(π1,π2)∈M+(Rd)2

{
SOT(π1, π2) + Dφ1

(π1|α) + Dφ2
(π2|β)

}
,

= inf
(π1,π2)∈M+(Rd)2

{∫
Sd−1

[
sup

fθ⊕gθ≤C1

∫
fθd(θ

⋆
♯π1) +

∫
gθd(θ

⋆
♯π2)

]
dσ̂K(θ)

+ sup
f̃∈E(Rd)

∫
φ◦
1(f̃(x))dα(x)−

∫
f̃(x)dπ1(x)

+ sup
g̃∈E(Rd)

∫
φ◦
2(g̃(y))dβ(y)−

∫
g̃(y)dπ2(y)

}
,

= inf
(π1,π2)∈M+(Rd)2

{
sup

fθ⊕gθ≤C1

∫
Sd−1

[ ∫
fθd(θ

⋆
♯π1) +

∫
gθd(θ

⋆
♯π2)

]
dσ̂K(θ)

+ sup
f̃∈E(Rd)

∫
φ◦
1(f̃(x))dα(x)−

∫
f̃(x)dπ1(x)

+ sup
g̃∈E(Rd)

∫
φ◦
2(g̃(y))dβ(y)−

∫
g̃(y)dπ2(y)

}
,

where E(Rd) denotes a set of lower-semicontinuous functions, and the last equality holds thanks to Lemma A.11.
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We focus now on verifying that Proposition A.10 holds, so that we can swap the infimum and the supremum. Define the
functional

L((π1, π2), ((fθ)θ, (gθ)θ, f̃ , g̃)) ≜
∫
Sd−1

[ ∫
fθd(θ

⋆
♯π1) +

∫
gθd(θ

⋆
♯π2)

]
dσ̂K(θ)

+

∫
φ◦
1(f̃(x))dα(x)−

∫
f̃(x)dπ1(x)

+

∫
φ◦
2(g̃(y))dβ(y)−

∫
g̃(y)dπ2(y) .

One has that,

• For any ((fθ)θ, (gθ)θ, f̃ , g̃), L is linear (thus convex) and lower-semicontinuous.

• For any (π1, π2), L is concave in ((fθ)θ, (gθ)θ, f̃ , g̃) because φ◦
i is concave and thus L is a sum of linear or concave

functions.

Furthermore, since we assumed e.g. that 0 ∈ dom(φ), then

sup
((fθ)θ,(gθ)θ,f̃ ,g̃)

inf
(π1,π2)∈M+(Rd)2

L ≤ USOT(α, β) ≤ φ1(0)m(α) + φ2(0)m(β) ,

because the marginals (π1, π2) = (0, 0) are admissible and suboptimal. If we consider instead that (m(α),m(β)) ∈ dom(φ),
then we take the marginals π1 = α/m(α) and π2 = β/m(β), which yields an upper-bound by m(α)φ1(

1
m(α) ) +

m(β)φ2(
1

m(β) ). Then we consider an anchor dual point b⋆ = ((fθ)θ, (gθ)θ, f̃ , g̃) to bound L over a compact set. We take
fθ = 0, gθ = 0, which are always admissible since we take C1(x, y) ≥ 0. Then, since we assume there exists pi ≤ 0 in
dom(φ∗

i ), we take f̃ = p1 and g̃ = p2. For these potentials one has:

L((π1, π2), b⋆) = φ◦
1(p1)m(α)− p1m(π1) + φ◦

2(p2)m(α)− p2m(π2).

Note that the functional at this point only depends on the masses of the marginals (π1, π2). Since (p1, p2) ≥ 0 the
set of (π1, π2) such that L((π1, π2), b⋆) ≤ φ1(0)m(α) + φ2(0)m(β) is non-empty (at least in a neighbourhood of
(π1, π2) = (0, 0), and that (m(π1),m(π2)) are uniformly bounded by some constant M > 0. By the Banach-Alaoglu
theorem, such set of measures is compact for the weak* topology.

Therefore, Proposition A.10 holds and we have strong duality, i.e.

USOT(α, β) = sup fθ ⊕ gθ ≤ C1

(f̃ , g̃) ∈ E(Rd)


inf

(π1,π2)∈M+(Rd)2
L((π1, π2), ((fθ)θ, (gθ)θ, f̃ , g̃)).

To achieve the proof, note that taking the infimum in (π1, π2) (for fixed dual variables) reads

inf
π1,π2≥0

∫ (∫
Sd−1

fθ(θ
⋆(x))dσ̂K(θ)

)
dπ1(x)−

∫
f̃(x)dπ1(x)

+

∫ (∫
Sd−1

gθ(θ
⋆(y))dσ̂K(θ)

)
dπ2(y)−

∫
g̃(y)dπ2(y).

Note that we applied Fubini’s theorem here, which holds here because all measures have compact support, thus all quantities
are finite. It allows to rephrase the minimization over π1, π2 ≥ 0 as the following constraint∫

Sd−1

fθ(θ
⋆(x))dσ̂K(θ) ≥ f̃(x),

∫
Sd−1

gθ(θ
⋆(y))dσ̂K(θ) ≥ g̃(y),
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otherwise the infimum is −∞. However, the function φ◦ is non-decreasing (see (Séjourné et al., 2019, Proposition 2)). Thus
the maximization in (f̃ , g̃) is optimal when the above inequality is actually an equality, i.e.∫

Sd−1

fθ(θ
⋆(x))dσ̂K(θ) = f̃(x),

∫
Sd−1

gθ(θ
⋆(y))dσ̂K(θ) = g̃(y).

Plugging the above relation in the functional L yields the desired result on the dual of USOT and ends the proof.

We mention a strong duality result which is very general and which we use in the proof of 3.7. This result is taken from (Liero
et al., 2018, Theorem 2.4) which itself takes it from (Simons, 2006).

Proposition A.10. (Liero et al., 2018, Theorem 2.4) Consider two sets A and B be nonempty convex sets of some vector
spaces. Assume A is endowed with a Hausdorff topology. Let L : A×B → R be a function such that

1. a 7→ L(a, b) is convex and lower-semicontinuous on A, for every b ∈ B

2. b 7→ L(a, b) is concave on B, for every a ∈ A.

If there exists b⋆ ∈ B and κ > supb∈B infa∈A L(a, b) such that the set {a ∈ A, L(a, b⋆) < κ} is compact in A, then

inf
a∈A

sup
b∈B

L(a, b) = sup
b∈B

inf
a∈A

L(a, b)

We also consider the following to swap the supremum in the integral which defines sliced-UOT (and in particular sliced-OT).
In what follows we note sliced potentials as functions fθ(z) with (θ, z) ∈ Sd−1 × R, such that

SUOT(α, β) =
∫
Sd−1

[
sup

fθ⊕gθ≤C1

∫
φ◦ ◦ fθd(θ⋆♯α) +

∫
φ◦ ◦ gθd(θ⋆♯β)

]
dσ̂K(θ).

Note that with the above definition, z 7→ fθ(z) is continuous for any θ, but θ 7→ fθ(z) is only σ̂K-measurable.

Lemma A.11. Consider two sets X and Y , a measure σ such that σ(X) < +∞. Assume Y is compact. Consider a
function F : X × Y → R. Assume there exists a sequence (yn) in Y such that F(·, yn) → supy∈Y F(·, y) uniformly. Then
one has

sup
y∈Y

∫
X

F(x, y)dσ(x) =

∫
X

sup
y∈Y

F(x, y)dσ(x).

Proof. Define G(x) = supy∈Y F(x, y) and H(x, y) ≜ G(x) − F(x, y). One has H ≥ 0 by definition, and the desired
equality can be rewritten as

sup
y∈Y

∫
X

F(x, y)dσ(x) =

∫
X

sup
y∈Y

F(x, y)dσ(x)

⇔ inf
y∈Y

∫
X

H(x, y)dσ(x) = 0.

Since the integral involving H is non-negative, the infimum is zero if and only if we have a sequence (yn) such that∫
X
H(·, yn)dσ → 0. By assumption, one has F(·, yn) → supy∈Y F(·, y) uniformly, i.e. ||H(·, yn)||∞ → 0. This implies

thanks to Holder’s inequality that

0 ≤
∫
X

H(·, yn)dσ ≤ σ(X)||H(·, yn)||∞

Thus by assumption one has
∫
X
F(·, yn)dσ →

∫
X
Gdσ, which indeed means that we have the desired permutation between

supremum and integral.
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Lemma A.12. Let p ∈ [1,+∞) and assume that C1(x, y) = |x− y|p. Consider two positive measures (α, β) with compact
support. Assume that the measure σ̂K is discrete, i.e. σ̂K = 1

K

∑K
i=1 δθi with θi ∈ Sd−1, i = 1, . . . , n. Then, one can swap

the integral over the sphere and the supremum in the dual formulation of SUOT, such that

SUOT(α, β) = sup
fθ⊕gθ≤C1

∫
Sd−1

[ ∫
φ◦ ◦ fθd(θ⋆♯α) +

∫
φ◦ ◦ gθd(θ⋆♯β)

]
dσ̂K(θ).

In particular, this result is valid for SOT.

Proof. The proof consists in applying Lemma A.11 for (X,Y ) chosen as X = supp(σ̂K) ⊂ Sd−1 and

Y =
{
∀θ ∈ supp(σ̂K), fθ : R → R, gθ : R → R, fθ(x) + gθ(y) ≤ C1(x, y)

}
.

The functions in Y are dual potentials, and by definition are continuous for any θ. Let F : X × Y → R be the functional
defined as

F : (θ, (fθ)θ, (gθ)θ) 7→
∫
fθd(θ

⋆
♯α) +

∫
gθd(θ

⋆
♯β) .

Since the measures (α, β) have compact support, then by Lemma A.13, the supremum is attained over a subset of dual
potentials of Y such that for any fixed θ ∈ X , (fθ, gθ) are Lipschitz-continuous and bounded, thus uniformly equicontinuous
functions (with constants independent of θ). By the Ascoli-Arzela theorem, the set of uniformly equicontinuous functions is
compact for the uniform convergence. Hence, for any θ ∈ X , there exists a sequence of dual potentials (fθ,n, gθ,n) which
uniformly converges to optimal dual potentials (fθ, gθ) (up to extraction of subsequence). Besides, we have OT(θ⋆♯α, θ

⋆
♯β) =

F(θ, fθ, gθ) and F(θ, (fθ,n)θ, (gθ,n)θ) → OT(θ⋆♯α, θ
⋆
♯β) as n → +∞. Denote Fn(θ) ≜ F(θ, (fθ,n)θ, (gθ,n)θ) and

OT(θ) ≜ OT(θ⋆♯α, θ
⋆
♯β). In order to apply Lemma A.11, we need to prove that the convergence of (Fn(θ))n∈N∗ to

OT(θ⋆♯α, θ
⋆
♯β) is uniform w.r.t. θ, i.e. supθ∈X |Fn(θ)− OT(θ)| → 0 as n→ +∞.

First, note that for any θ ∈ X ,

|Fn(θ)− OT(θ)| ≤ m(α)∥fθ,n − fθ∥∞ +m(β)∥gθ,n − gθ∥∞.

Since for a fixed θ ∈ X , (fθ,n, gθ,n)n∈N∗ uniformly converge to (fθ, gθ), this means that

∀θ ∈ X, ∀ε > 0, ∃N(ε, θ),∀n ≥ N(ε, θ), m(α)∥fθ,n − fθ∥∞ +m(β)∥gθ,n − gθ∥∞ < ε.

Since we assume that σ is supported on a discrete set, then the cardinal of X is finite and one can define N(ε) ≜
maxθ∈X N(ε, θ). This yields,

∀ε > 0, ∃N(ε),∀n ≥ N(ε), sup
θ∈X

|Fn(θ)− OT(θ)| < ε.

which means that supθ∈X |Fn(θ)− OT(θ)| → 0, thus concludes the proof.

Lemma A.13. Let p ∈ [1,+∞) and C1(x, y) = |x − y|p. Consider two positive measures (α, β) ∈ M+(Rd) whose
support is such that Cd(x, y) = ||x − y||p ≤ R. Then for any θ ∈ Sd−1, one can restrict without loss of generality the
problem UOT(θ⋆♯α, θ

⋆
♯β) as a supremum over dual potentials satisfying fθ(x) + gθ(y) ≤ C1(x, y), uniformly bounded by

M and uniformly L-Lipschitz, where M and L do not depend on θ.

Proof. We adapt the proof of (Santambrogio, 2015, Proposition 1.11), and focus on showing that the uniform boundedness
and Lipschitz constant are independent of θ ∈ Sd−1 in this setting. Here we consider the translation-invariant formulation
of UOT from (Séjourné et al., 2022b), i.e. UOT(α, β) = supf⊕g≤Cd

H(f, g), where H(f, g) = supλ∈R D(f + λ, g − λ).
It is proved in (Séjourné et al., 2022b, Proposition 9) that the above problem has the same primal and is thus equivalent
to optimize D. By definition one has H(f, g) = H(f + λ, g − λ) for any λ ∈ R, i.e. this formulation shares the same
invariance as Balanced OT. Thus we can reuse all arguments from (Santambrogio, 2015, Proposition 1.11), such that for
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Unbalanced Optimal Transport meets Sliced-Wasserstein

UOT(α, β), one can use the constraint f(x) + g(y) ≤ Cd(x, y) and the assumption Cd(x, y) ≤ R to prove that without loss
of generality, on can restrict to potentials such that f(x) ∈ [0, R] and g(y) ∈ [−R,R]. Furthermore if the cost satisfies in
Rd

|Cd(x, y)− Cd(x
′, y′)| ≤ L(||x− x′||+ ||y − y′||),

then one can also restrict w.l.o.g. to potentials which are L-Lipschitz. For the cost Cd(x, y) = ||x− y||p with p ≥ 1, this
holds with constant L = pRp−1 because the support is bounded and the gradient of Cd is radially non-decreasing.

Regarding OT(θ⋆♯α, θ
⋆
♯β), the bounds (Mθ, Lθ) could be refined by considering the dependence in θ ∈ Sd−1. However we

prove now these constants can be upper-bounded by a finite constant independent of θ. In this setting we consider the cost

C1(θ
⋆(x), θ⋆(y)) = | ⟨θ, x− y⟩ |p ≤ ||θ||p||x− y||p ≤ ||x− y||p,

by Cauchy-Schwarz inequality. Therefore, if (α, β) have supports such that ||x − y||p ≤ R, then (θ⋆♯α, θ
⋆
♯β) also have

supports bounded by R in R. Similarly note that the derivative of h(x) = xp is non-decreasing for p ≥ 1. Hence the cost
C1(θ

⋆(x), θ⋆(y)) has a bounded derivative, which reads

p| ⟨θ, x− y⟩ |p−1 ≤ p||θ||p−1||x− y||p−1 ≤ p|x− y||p−1 ≤ pRp−1.

Thus on the supports of (θ⋆♯α, θ
⋆
♯β) one can also bound the Lipschitz constant of the cost C1(x, y) = |x− y|p by the same

constant L.

Remark: Extending Theorem 3.7. We conjecture that Theorem 3.7 also holds when σ is the uniform measures over Sd−1,
since the above holds for any N ∈ N∗ and σ̂N converges weakly* to σ. Proving this result would require that potentials
(fθ, gθ) are also regular (i.e., Lipschitz and bounded) w.r.t θ ∈ Sd−1. This regularity is proved in (Xi & Niles-Weed,
2022) assuming (α, β) have densities, but remains unknown for discrete measures. Since discretizing σ corresponds to
the computational approach, we assume it to be discrete, so that no additional assumption than boundedness on (α, β) is
required. For instance, such result remains valid for semi-discrete UOT computation.

B. Additional details for Section 4
B.1. Frank-Wolfe methodology for computing UOT

Background: FW for UOT. Our approach to compute SUOT and USOT builds upon the construction of (Séjourné
et al., 2022b). It consists in applying a Frank-Wolfe (FW) procedure over the dual formulation of UOT. Such approach is
equivalent to solve a sequence of balanced OT problems between measures (α̃, β̃) which are iterative renormalizations of
(α, β). While the idea holds in wide generality, it is especially efficient in 1D where OT has low algorithmic complexity,
and we reuse it in our sliced setting.

FW algorithm consists in optimizing a functional H over a compact, convex set C by optimizing its linearization ∇H.
Given a current iterate xt of FW algorithm, one computes rt+1 ∈ argmaxr∈C ⟨∇H(xt), r⟩, and performs a convex update
xt+1 = (1− γt+1)x

t + γt+1r
t+1. One typically chooses the learning rate γt = 2

2+t . This yields the routine FWStep of
Section 4 which is detailed below.

Algorithm 3 – FWStep(f, g, r, s, γ)
Input: α, β, f , g, γ
Output: Normalized measures (α, β) as in Equation (80)

f(x)← (1− γ)f(x) + γr(x)
g(y)← (1− γ)g(y) + γs(y)
Return (f, g)

In the setting of UOT, one would take C = {f ⊕ g ≤ Cd}. However, this set is not compact as it contains (λ,−λ)
for any λ ∈ R. Thus, (Séjourné et al., 2022b) propose to optimise a translation-invariant dual functional H(f, g) ≜
supλ∈R D(f +λ, g−λ), with D defined Equation (3). Similar to the balanced OT dual, one has H(f +λ, g−λ) = H(f, g),
thus one can apply (Santambrogio, 2015, Proposition 1.11) to assume w.l.o.g. that e.g. f(0) = 0 and restrict to a compact
set of functions. We emphasize that FW algorithm is well-posed to optimize H, but not D.
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Note that once we have the dual variables (f, g) maximizing H, we retrieve optimal dual variables maximizing D as
(f + λ⋆(f, g), g − λ⋆(f, g)), where λ⋆(f, g) ≜ argmaxλ∈R D(f + λ, g − λ). The KL setting where Dφ1 = ρ1KL and
Dφ2 = ρ2KL is especially convenient, because λ⋆(f, g) admits a closed form, which avoids iterative subroutines to compute
it. In that case, it reads

λ⋆(f, g) =
ρ1ρ2
ρ1 + ρ2

log

(∫
e−f(x)/ρ1dα(x)∫
e−g(y)/ρ2dβ(y)

)
. (77)

We summarize the FW algorithm for UOT in the proposition below. We refer to (Séjourné et al., 2022b) for more details on
the algorithm and pseudo-code. We adapt this approach and result for SUOT and USOT.

Proposition B.1. (Séjourné et al., 2022b) Assume φ◦ is smooth. Given current iterates (f (t), g(t)), the linear FW oracle
of UOT(α, β) is OT(ᾱ(t), β̄(t)), where ᾱ(t) = ∇φ◦(f (t) + λ⋆(f (t), g(t)))α and β̄(t) = ∇φ◦(g(t) − λ⋆(f (t), g(t)))β. In
particular, one has m(ᾱ(t)) = m(β̄(t)), thus the balanced OT problem always has finite value. More precisely, the FW
update reads

(f (t+1), g(t+1)) = (1− γ(t+1))(f (t), g(t)) + γ(t+1)(r(t+1), s(t+1)), (78)

where (r(t+1), s(t+1)) ∈ arg max
r⊕s≤Cd

∫
r(x)dᾱ(t)(x) +

∫
s(y)dβ̄(t)(y). (79)

Recall that the in KL setting one has φ◦
i (x) = ρi(1− e−x/ρi), thus ∇φ◦

i (x) = e−x/ρi . Thus in that case one normalizes
the measures as

ᾱ = exp

(
− f + λ⋆(f, g)

ρ1

)
α, β̄ = exp

(
− g − λ⋆(f, g)

ρ2

)
β, (80)

where λ⋆ is defined in (77).

This defines the Norm routine in Section 4, which we detail below.

Algorithm 4 – Norm(α, β, f, g, ρ1, ρ2)
Input: α, β, f , g, ρ = (ρ1, ρ2)
Output: Normalized measures (α, β) as in eq. (80)

Compute λ⋆ = λ⋆(f, g) as in eq. (77)

ᾱ(x)← exp

(
− f(x)+λ⋆

ρ1

)
α(x)

β̄(y)← exp

(
− g(y)−λ⋆

ρ2

)
β(y)

Return (α, β)

B.2. Frank-Wolfe methodology for computing SUOT

Proposition B.2. Given current iterates (fθ, gθ), the linear Frank-Wolfe oracle of USOT(α, β) is∫
Sd−1 OT(θ⋆♯α

θ, θ⋆♯β
θ)dσ(θ), where

αθ = ∇φ◦
(
fθ + λ⋆(fθ, gθ)

)
α, βθ = ∇φ◦

(
gθ − λ⋆(fθ, gθ)

)
β.

As a consequence, given dual sliced potentials (rθ, sθ) solving OT(θ⋆♯α
θ, θ⋆♯β

θ), one can perform Frank-Wolfe updates (78)
on (fθ, gθ).

Proof. Our goal is to compute the first order variation of the SUOT functional. Given that SUOT(α, β) =∫
Sd−1 UOT(θ⋆♯α, θ

⋆
♯β)dσ(θ), one can apply Proposition B.1 slice-wise. Since measures are assumed to have compact
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support, one can apply the dominated convergence theorem and differentiate under the integral sign. Furthermore, the
translation-invariant formulation in the setting of SUOT reads

SUOT(α, β) =
∫
Sd−1

sup
fθ⊕gθ≤C1

[
sup
λθ∈R

∫
φ◦
(
fθ(·) + λθ

)
dθ⋆♯α (81)

+

∫
φ◦
(
gθ(·)− λθ

)
dθ⋆♯β

]
, (82)

In the setting where φ◦ is smooth and strictly concave (such as Dφ = ρKL), there always exists a unique optimal λ⋆θ .
Furthermore, one can apply the envelope theorem such that the Fréchet differential w.r.t. to a perturbation (rθ, sθ) of (fθ, gθ)
reads ∫

Sd−1

[∫
rθ(·)×∇φ◦

(
fθ(·) + λ⋆θ(fθ, gθ)

)
dθ⋆♯α (83)

+

∫
sθ(·)×∇φ◦

(
gθ(·)− λ⋆θ(fθ, gθ)

)
dθ⋆♯β

]
(84)

Setting

αθ = ∇φ◦
(
fθ(·) + λ⋆(fθ, gθ)

)
α, βθ = ∇φ◦

(
gθ(·)− λ⋆(fθ, gθ)

)
β ,

yields the desired result, i.e. the first order variation is∫
Sd−1

[∫
rθ(·)d(θ⋆♯αθ) +

∫
sθ(·)d(θ⋆♯βθ)

]
. (85)

B.3. Frank-Wolfe methodology for computing USOT

To compute USOT, we leverage Theorem 3.7 and derive the linear Frank-Wolfe oracle based on its translation-invariant
formulation. We state the associated FW updates in the following proposition.

Proposition B.3. Given current iterates (fθ, gθ), the linear Frank-Wolfe oracle of USOT(α, β) is SOT(ᾱ, β̄), where

ᾱ = ∇φ◦(favg + λ⋆(favg, gavg))α, β̄ = ∇φ◦(gavg − λ⋆(favg, gavg))β,

favg(x) =

∫
Sd−1

fθ(θ
⋆(x))dσ̂K(θ), gavg(y) =

∫
Sd−1

gθ(θ
⋆(y))dσ̂K(θ)

Thus given dual sliced potentials (rθ(·), sθ(·)) which solve SOT(ᾱ, β̄), one can then perform Frank-Wolfe updates (78) on
(fθ, gθ) and thus (favg, gavg).

Proof. Our goal is to compute the first order variation of the USOT functional. First, we leverage Theorem 3.7 such that
USOT reads

USOT(α, β) = sup
fθ(·)⊕gθ(·)≤C1

∫
φ◦
1

(∫
Sd−1

fθ(θ
⋆(x))dσ̂K(θ)

)
dα(x) (86)

+

∫
φ◦
2

(∫
Sd−1

gθ(θ
⋆(y))dσ̂K(θ)

)
dβ(y) (87)

= sup
fθ(·)⊕gθ(·)≤C1

∫
φ◦
1

(
favg(x)

)
dα(x) +

∫
φ◦
2

(
gavg(y)

)
dβ(y), (88)
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where

favg(x) =

∫
Sd−1

fθ(θ
⋆(x))dσ̂K(θ), gavg(y) =

∫
Sd−1

gθ(θ
⋆(y))dσ̂K(θ).

From this, we derive the translation-invariant formulation as follows.

USOT(α, β) = sup
fθ(·)⊕gθ(·)≤C1

sup
λ∈R

∫
φ◦
1

(
favg(x) + λ

)
dα(x) (89)

+

∫
φ◦
2

(
gavg(y)− λ

)
dβ(y), (90)

For smooth and strictly concave φ◦, there exists a unique λ⋆(favg, gavg) attaining the supremum. Furthermore, one can
apply the enveloppe theorem and differentiate under the integral sign (since the support is compact). Consider perturbations
(rθ(·), sθ(·)) of (fθ(·), gθ(·)). Write

ravg(x) =

∫
Sd−1

rθ(θ
⋆(x))dσ̂K(θ), savg(y) =

∫
Sd−1

sθ(θ
⋆(y))dσ̂K(θ).

Given that φ◦
1(favg + ravg) = φ◦

1(favg) + ravg∇φ◦
1(favg) + o(||ravg||∞), the first order variation reads∫

ravg(x)∇φ◦
1

(
favg(x) + λ⋆(favg, gavg)

)
dα(x) (91)

+

∫
savg(y)∇φ◦

2

(
gavg(y)− λ⋆(favg, gavg)

)
dβ(y). (92)

Then we define

ᾱ = ∇φ◦
1(favg + λ⋆(favg, gavg))α, β̄ = ∇φ◦

2(gavg − λ⋆(favg, gavg))β,

such that the first order variation reads ∫
ravg(x)dᾱ(x) +

∫
savg(y)dβ̄(y). (93)

One can then explicit the definition of (ravg, savg), such that it reads∫
Sd−1

∫
rθ(θ

⋆(x))dᾱ(x) +

∫
Sd−1

∫
sθ(θ

⋆(y))dβ̄(y) (94)

=

∫
Sd−1

∫
rθdθ

⋆
♯ ᾱ(x) +

∫
Sd−1

∫
sθdθ

⋆
♯ β̄(y). (95)

By optimizing the above over the constraint set {rθ⊕sθ ≤ C1}, we identify the computation of SOT(ᾱ, β̄), which concludes
the proof.

Since Proposition B.3 involves potentials averaged over σ, we thus need to define the AvgPot routine detailed below.

Algorithm 5 – AvgPot(fθ)
Input: sliced potentials (fθ) with (θk)

K
k

Output: Averaged potential favg as in Proposition B.3
Average favg = 1

K

∑K
k=1 fθ
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B.4. Implementation of Sliced OT to return dual potentials

Recall from Section 4, Algorithms 1 and 2 and more precisely, Propositions B.2 and B.3, that FW linear oracle is a sliced
OT program, i.e. a set of OT problems computed between univariate distributions of M+(R). Therefore, a key building
block of our algorithm is to compute the loss and dual variables of these univariate OT problems. We explain below how
one can compute the sliced OT loss and dual potentials. The computation of the loss consists in implementing closed
formulas of OT between univariate distributions, as detailed in (Santambrogio, 2015, Proposition 2.17). More precisely,
when C1(x, y) = |x− y|p and (µ, ν) ∈ M+(R), then

OT(µ, ν) =
∫ 1

0

|F [−1]
µ (t)− F [−1]

ν (t)|pdt, (96)

where F [−1]
µ denotes the inverse cumulative distribution function (ICDF) of µ.

Algorithm 6 – SlicedOTLoss(α, β, {θ}, p)
Input: α, β, projections {θ}, exponent p
Output: OT(θ⋆♯α, θ

⋆
♯β) as in eq. (96)

for θ ∈ {θ} do
Project support of θ⋆♯α and θ⋆♯β
Sort weights of (θ⋆♯α, θ

⋆
♯β) and support (θ⋆(x)), (θ⋆(y)) s.t. support is non-decreasing

Compute ICDF of θ⋆♯α and θ⋆♯β
Compute OT(θ⋆♯α, θ

⋆
♯β) as in eq. (96) with exponent p

end for

To compute dual potentials using backpropagation, one computes the sliced OT losses (using Algorithm 6) then calls the
backpropagation w.r.t to inputs (α, β), because their gradients are optimal dual potentials (Santambrogio, 2015, Proposition
7.17). We describe this procedure in Algorithm 7.

Algorithm 7 – SlicedOTPotentialsBackprop(α, β, {θ}, p)
Input: α, β, projections {θ}, exponent p
Output: Dual potentials (fθ, gθ) solving OT(θ⋆♯α, θ

⋆
♯β)

Enable gradients w.r.t. (θ⋆♯α, θ
⋆
♯β)

Call SlicedOTLoss(α, β, {θ}, p)
Sum (but do not average) losses L =

∑
θ OT(θ⋆♯α, θ

⋆
♯β).

Backpropagate L w.r.t. (α, β)
Return (fθ, gθ) as gradients of L w.r.t. (α, β).

The implementation of the dual potentials using 1D closed forms relies on the north-west corner rule principle, which can be
vectorized in PyTorch in order to be computed in parallel. The contribution of our implementation thus consists in making
such algorithm GPU-compatible and allowing for a parallel computation for every slice simultaneously. We stress that this
constitutes a non-trivial piece of code, and we refer the interested reader to the code in our supplementary material for more
details on the implementation.

B.5. Output optimal sliced marginals

In all our algorithms, we focus on dual formulations of SUOT and USOT, which optimize the dual potentials. However,
one might want the output variables of the primal formulation (See Definition 3.1). In particular, the marginals of optimal
transport plans are interested because they are interpreted as normalized versions of inputs (α, β) where geometric outliers
have been removed. We detail where this interpretation comes from in the setting of UOT, and then give how it is adapted to
SUOT and USOT. In particular, we justify that the Norm routine suffices to compute them.

Case of UOT. We focus on the Dφi
= ρiKL. As per (Liero et al., 2018, Equation 4.21), we have at optimality that the

optimal transport π⋆ plan solving UOT(α, β) as in Equation (2) has marginals (π⋆
1 , π

⋆
2) which read π⋆

1 = e−f⋆/ρ1α and
π⋆
2 = e−g⋆/ρ2β, where (f⋆, g⋆) are the optimal dual potentials solving Equation (3). Since on supp(π⋆) one also has
f⋆(x)+g⋆(y) = Cd(x, y), if the transportation cost Cd(x, y) is large (i.e. we are matching a geometric outlier), so are f⋆(x)
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Figure 5: |SUOT(α, β)− ŜUOTt| and |USOT(α, β)− ÛSOTt| against iteration t, where ŜUOTt, ÛSOTt are the estimated
SUOT, USOT using t FW iterations. Plots are in log-scale. All figures are issued from the same run, but zoomed on a subset
of first iterations: (left) 1000 iterations of FW, (middle) 200 iterations, (right) 20 iterations.

and g⋆(y), and eventually the weights π⋆
1(x) and π⋆

2(y) are small, hence the interpretation of the geometric normalization of
the measures. Note that in that case, one obtain (π⋆

1 , π
⋆
2) by calling Norm(α, β, f⋆, g⋆, ρ1, ρ2).

Case of SUOT. Since SUOT(α, β) consists in integrating UOT(θ⋆♯α, θ
⋆
♯β) w.r.t. σ, it shares many similarities with UOT.

For any θ, we consider πθ and (fθ, gθ) solving the primal and dual formulation of UOT(θ⋆♯α, θ
⋆
♯β). The marginals of πθ are

thus given by (e−fθ/ρ1α, e−gθ/ρ2β). In particular, we retrieve the observation made in Figure 1 that the optimal marginals
change for each θ. In that case we call for each θ the routine Norm(α, β, fθ, gθ, ρ1, ρ2).

Case of USOT. Recall that the optimal marginals (π1, π2) in USOT(α, β) do not depend on θ, contrary to SUOT(α, β).
Leveraging the dual formulation of Theorem 3.7, and looking at the Lagrangian which is defined in the proof of Theorem 3.7
(see Appendix A.7), we have the optimality condition that π1 = e−favg/ρ1α and π2 = e−gavg/ρ2β. Thus in that case, calling
Norm(α, β, favg, gavg, ρ1, ρ2) yields the desired marginals.

B.6. Convergence of Frank-Wolfe iterations: Empirical analysis

We display below an experiment on synthetic dataset to illustrate the convergence of Frank-Wolfe iterations. We also provide
insights on the number of iterations that yields a reasonable approximation: a few iterations suffices in our practical settings,
typically F = 20.

The results are displayed in Figure 5. We consider the empirical distributions (α, β) computed over respectively, N = 400
and M = 500 samples over the unit hypercube [0, 1]d, d = 10. Moreover, β is slightly shifted by a vector of uniform
coordinates 0.5× 1d. We choose ρ = 1 and report the estimation of SUOT(α, β) and USOT(α, β) through Frank-Wolfe
iterations. We estimate the true values by running F = 5000 iterations, and display the difference between the estimated
score and the ’true’ values. Appendix B.6 shows that numerical precision is reached in a few tens of iterations. As learning
tasks do not usually require an estimation of losses up to numerical precision, we think that it is hence reasonable to take
F ≈ 20 in numerical applications.

C. Additional details on Section 5
C.1. Document classification: Technical details and additional results

C.1.1. DATASETS

We sum up the statistics of the different datasets in Table 2.
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Table 2: Dataset characteristics.

BBCSport Movies Goodreads genre Goodreads like
Doc 737 2000 1003 1003
Train 517 1500 752 752
Test 220 500 251 251

Classes 5 2 8 2
Mean words by doc 116± 54 182± 65 1491± 538 1491± 538

Median words by doc 104 175 1518 1518
Max words by doc 469 577 3499 3499

BBCSport. The BBCSport dataset contains articles between 2004 and 2005, and is composed of 5 classes. We average
over the 5 same train/test split of (Kusner et al., 2015). The dataset can be found in https://github.com/mkusner/
wmd/tree/master.

Movie Reviews. The movie reviews dataset is composed of 1000 positive and 1000 negative reviews. We take five
different random 75/25 train/test split. The data can be found in http://www.cs.cornell.edu/people/pabo/
movie-review-data/.

Goodreads. This dataset, proposed in (Maharjan et al., 2017), and which can be found at https://ritual.uh.edu/
multi_task_book_success_2017/, is composed of 1003 books from 8 genres. A first possible classification task
is to predict the genre. A second task is to predict the likability, which is a binary task where a book is said to have success
if it has an average rating ≥ 3.5 on the website Goodreads (https://www.goodreads.com). The five train/test split
are randomly drawn with 75/25 proportions.

C.1.2. TECHNICAL DETAILS

All documents are embedded with the Word2Vec model (Mikolov et al., 2013) in dimension d = 300. The embed-
ding can be found in https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/view?
resourcekey=0-wjGZdNAUop6WykTtMip30g.

In this experiment, we report the results averaged over 5 random train/test split. For discrepancies which are approximated
using random projections, we additionally average the results over 3 different computations, and we report this standard
deviation in Table 1. Furthermore, we always use 500 projections to approximate the sliced discrepancies. For Frank-Wolfe
based methods, we use 10 iterations, which we found to be enough to have a good accuracy. We added an ablation of these
two hyperparameters in Figure 7. We report the results obtained with the best ρ for USOT and SUOT computed among
a grid ρ ∈ {10−4, 5 · 10−4, 10−3, 5 · 10−3, 10−2, 10−1, 1}. For USOT, the best ρ is consistently 5 · 10−3 for the Movies
and Goodreads datasets, and 5 · 10−4 for the BBCSport dataset. For SUOT, the best ρ obtained was 0.01 for the BBCSport
dataset, 1.0 for the movies dataset and 0.5 for the goodreads dataset. For UOT, we used ρ = 1.0 on the BBCSport dataset.
For the movies dataset, the best ρ obtained on a subset was 50, but it took an unreasonable amount of time to run on the full
dataset as the runtime increases with ρ (see (Chapel et al., 2021, Figure 3)). On the goodreads dataset, it took too much
memory on the GPU. For Sinkhorn UOT, we used ε = 0.001 and ρ = 0.1 on the BBCSport and Goodreads datasets, and
ε = 0.01 on the Movies dataset. For each method, the number of neighbors used for the k-NN method is obtained via
cross-validation.

C.1.3. ADDITIONAL EXPERIMENTS

Runtime. We report in Figure 6 the runtime of computing the different discrepancies between each pair of documents. On
the BBCSport dataset, the documents have in average 116 words, thus the main bottleneck is the projection step for sliced
OT methods. Hence, we observe that OT runs slightly faster than SOT and the sliced unbalanced counterparts. Goodreads
is a dataset with larger documents, with on average 1491 words by document. Therefore, as OT scales cubically with the
number of samples, we observe here that all sliced methods run faster than OT, which confirms that sliced methods scale
better w.r.t. the number of samples. In this setting, we were not able to compute UOT with the POT implementation in a
reasonable time. Computations have been performed with a NVIDIA A100 GPU.

https://github.com/mkusner/wmd/tree/master
https://github.com/mkusner/wmd/tree/master
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
https://ritual.uh.edu/multi_task_book_success_2017/
https://ritual.uh.edu/multi_task_book_success_2017/
https://www.goodreads.com
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/view?resourcekey=0-wjGZdNAUop6WykTtMip30g
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/view?resourcekey=0-wjGZdNAUop6WykTtMip30g
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Figure 6: Runtime on the BBCSport dataset (left) and on the Goodreads dataset (right).
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Figure 7: Ablation on BBCSport of the number of projections (left) and of the number of Frank-Wolfe iterations (right).

Ablations. We plot in Figure 7 accuracy as a function of the number of projections and the number of iterations of the
Frank-Wolfe algorithm. We averaged the accuracy obtained with the same setting described in Appendix C.1.2, with varying
number of projections K ∈ {4, 10, 21, 46, 100, 215, 464, 1000} and number of FW iterations F ∈ {1, 2, 3, 4, 5, 10, 15, 20}.
Regarding the hyperparameter ρ, we selected the one returning the best accuracy, i.e. ρ = 5 · 10−4 for USOT and ρ = 10−2

for SUOT.

C.2. Unbalanced sliced Wasserstein barycenters

We define below the formulation of the USOT barycenter which was used in the experiments of Figure 4 to average
predictions of geophysical data. We then detail how we computed it.
Definition C.1. Consider a set of measures (α1, . . . , αB) ∈ M+(Rd)B , and a set of non-negative coefficients
(ω1, . . . , ωB) ≥ 0 such that

∑B
b=1 ωb = 1. We define the barycenter problem (in the KL setting) as

B((αb)b, (ωb)b) ≜ inf
β∈P(Rd)

B∑
b=1

ωbUSOT(αb, β), (97)

= inf
β∈P(Rd)

B∑
b=1

inf
(πb,1,πb,2)

SOT(πb,1, πb,2) + ρ1KL(πb,1|αb) + ρ2KL(πb,2|β), (98)

where P(Rd) denotes the set of probability measures.

To compute the barycenter, we aggregate several building blocks. First, since we consider that the barycenter β ∈ P(Rd) is
a probability, we perform mirror descent as in (Beck & Teboulle, 2003; Cuturi & Doucet, 2014b). More precisely, we use
a Nesterov accelerated version of mirror descent. We also tried projected gradient descent, but it did not yield consistent
outputs (due to convergence speed (Beck & Teboulle, 2003)). Second, we use a Stochastic-USOT version (see Section 4),
i.e. we sample new projections at each iteration of the barycenter update (but not a each iteration of the FW subroutines in
Algorithm 2). This procedure is described in Algorithm 8.



1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759

Unbalanced Optimal Transport meets Sliced-Wasserstein

Algorithm 8 – Barycenter((αb)b, (ωb)b, ρ1, ρ2, lr)

Input: measures (αb)b, weights (ωb)b, ρ1, ρ2, learning rate lr, FW iter F
Output: Optimal barycenter β of Equation (97)

t← 1
Init (β, β̃, β̂) as uniform distribution over a grid
while not converged do do

γ ← 2
(t+1)

,

β → (1− γ)β̂ + γβ̃
Sample projections (θk)Kk=1

Compute B((αb)b, (ωb)b) by calling USOT(αb, β, F, (θk)
K
k=1, ρ1, ρ2) in Algorithm 2 for each b

Compute g as the gradient of B((αb)b, (ωb)b) w.r.t. variable β

β̃ ← exp(−lr × γ−1 × g)β

β̃ ← β̃/m(β̃)

β̂ ← (1− γ)β̂ + γβ̃
t← t+ 1

end while

We illustrate this algorithm with several examples of interpolation in Figure 8. We propose to compute an interpolation
between two measures located on a fixed grid of size 200× 200 with different values of ρi in Dφi

= ρiKL. For illustration
purposes, we construct the source distribution as a mixture of two Gaussians with a small and a larger mode, and the target
distribution as a single Gaussian. Those distributions are normalized over the grid such that both total norms are equal to
one (which is not required by our unbalanced sliced variants but grants more interpretability and possible comparisons with
SOT). Figure 8a shows the result of the interpolation at three timestamps (t = 0.25, 0.5 and 0.75) of a SOT interpolation
(within this setting, ω1 = 1− t and ω2 = t). As expected, the two modes of the source distribution are transported over the
target one. We verify in Figure 8b that for a large value of ρ1 = ρ2 = 100, the USOT interpolation behaves similarly as
SOT, as expected from the theory. When ρ1 = ρ2 = 0.01, the smaller mode is not moved during the interpolation, whereas
the larger one is stretched toward the target (Figure 8c). Finally, in Figure 8d, an asymmetric configuration of ρ1 = 0.01 and
ρ2 = 100 allows to get an interpolation when only the big mode of the source distribution is displaced toward the target. In
all those cases, the mirror-descent algorithm 8 is run for 500 iterations. Even for a large grid of 200× 200, those different
results are obtained in a 2 − 3 minutes on a commodity GPU, while the OT or UOT barycenters are untractable with a
limited computational budget.
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(a) SOT barycenters
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(b) USOT barycenters with ρ1 = ρ2 = 100
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(c) USOT barycenters with ρ1 = ρ2 = 0.01
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(d) USOT barycenters with ρ1 = 0.01 and ρ2 = 100

Figure 8: Interpolation with USOT as a barycenter computation. We compare different interpolations using SOT or
USOT with different settings for the ρ values


