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ABSTRACT

The stochastic block model (SBM) is widely studied as a benchmark for graph
clustering aka community detection. In practice, graph data often come with node
attributes that bear additional information about the communities. Previous works
modelled such data by considering that the node attributes are generated from the
node community memberships. In this work, motivated by recent surge of works
in signal processing using deep neural networks as priors, we propose to model
the communities as being determined by the node attributes rather than the op-
posite. We define the corresponding model; that we call the neural-prior SBM.
We propose an algorithm, stemming from statistical physics, based on a combina-
tion of belief propagation and approximate message passing. We argue it achieves
Bayes-optimal performance for the considered setting. The proposed model and
algorithm can hence be used as a benchmark for both theory and algorithms. To il-
lustrate this, we compare the optimal performances to the performance of a simple
graph convolution network.

1 INTRODUCTION

The stochastic block model (SBM) is widely studied as a benchmark for graph clustering aka com-
munity detection, see e.g. reviews Fortunato (2010); Abbe (2017). There are several possible sources
of information on communities one can use: the structure of the graph, and the features or attributes
of the nodes. Past work developed algorithms and models accounting for such node information.
Among the well known is the CESNA model of Yang et al. (2013) where the attributes are generated
via logistic regression on the community membership. Another model that recently became popular
in the context of benchmarking graph neural networks (e.g. Chien et al. (2021); Fountoulakis et al.
(2022); Tsitsulin et al. (2021)) is the the contextual-SBM Binkiewicz et al. (2017); Deshpande et al.
(2018), where communities determine centroids for a Gaussian mixture model generating the fea-
tures. In both these examples the node attributes are generated via conditioning on the community
label of the node.

In signal processing, another separate line of work, that witnesses a surge of interest, is modelling
signals as the output of a deep generative neural network; for recent reviews see e.g. Ongie et al.
(2020); Shlezinger et al. (2020). Deep generative neural networks can be trained on data, and due to
their expressivity are able to capture any structural properties of the signal. In community detection
the signal are the community memberships; following the line of work on deep generative priors it
is hence of interest to propose a model where the node attributes are an input of a generative neural
network and the node community memberships are the output thereof.

One of the attires of the stochastic block model is that it is amenable to exact statistical analysis
of what is the best achievable performance from an information-theoretic and from an algorithmic
point of view. This has led to a line of work, originating in statistical physics, where statistical
and computational thresholds are analyzed; see e.g. Decelle et al. (2011a); Abbe et al. (2015);
Abbe (2017). It is valuable to have a solvable case for which we know what is statistically and
algorithmically possible; because in the context of modern machine learning it is rarely known if
or how much the observed performance can be further improved. Asymptotically exact analysis of
the detectability threshold was also performed for the contextual stochastic block model Deshpande
et al. (2018); Lu & Sen (2020). The main topic of the present paper is the statistical physics analysis
of optimal algorithmic performance for the proposed neural-prior stochastic block model.
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The model we propose can be used for benchmarking graph neural networks (GNNs). Since our
model is analysable, we can compare the performance of the evaluated GNN to the optimal algo-
rithmic performance.

As far as we found, the model we propose has one previous use in Cho et al. (2022). In that work it
is used as a building block for a large neural network; it was not analyzed per se.

2 THE NEURAL-PRIOR STOCHASTIC BLOCK MODEL

We consider a set V of |V | = N nodes, a graph G(V,E) on those nodes. Nodes have fea-
tures/attributes Fµ ∈ RM of dimension M , µ = 1 . . . , N . The features and the graphs are observed.
We aim to divide the set of nodes into q communities with labels sµ ∈ {1, . . . , q} in such a way that
(a) the graph structure correlates with the labels, e.g. nodes being in the same community are more
likely to be connected, and (b) the node attributes Fµ are correlated with the labels.

Standard SBM: In the stochastic block model the edges Aµν of the graph G are generated condi-
tioned on the group-memberships sµ as follows

P (Aµν = 1|sµ, sν) =

{
ci/N if sµ = sν ,
co/N if sµ 6= sν ,

(1)

and Aµν = 0 otherwise. Here ci and co are the affinity coefficients common to the SBM. We define
the affinity matrix whose elements are cs,t = ciδs=t + coδs 6=t. In the usual stochastic block model
the ground truth group memberships sµ are generated at random from a prior that only accounts for
the sizes of the q groups.

Neural-prior SBM: In neural-prior SBM, that we define here, the group memberships sµ can be a
generic function on the attributes Fµ. Such a function can be represented by a deep neural networks
and learned from ground-truth data. The training data would be pairs {Fµ, sµ} where attributes act
as the neural network inputs and the group memberships as output labels. For instance for a L-layer
fully connected neural network this reads sµ = ϕ(L)

(
W (L) . . . ϕ(2)

(
W (2)ϕ(1)(W (1)F )

)
. . .
)
; for

the last activation function ϕ(L) chosen as in multi-class classification tasks.

The aim of this paper is to provide a benchmark model where the optimal performance can be
analyzed asymptotically exactly. For this we need to (a) define the corresponding asymptotic limit,
(b) consider a simple neural network prior that is amenable to asymptotic analysis. We will also
limit ourselves to consider community detection with two groups only, q = 2 (this is not a strong
limitation, but is considered in the follow up for simplicity). With this in mind, in the rest of the
paper we will consider the following model generating the group memberships sµ.

GLM–SBM: In order to make analysis amenable we will consider the features F to be random
and drawn independently as Fµl ∼ N (0, 1/M). We then consider M latent variables wl ∼ Pw,
l = 1, . . . ,M and generate the community memberships as

sµ = sign
( M∑

l

Fµlwl
)

(2)

This corresponds to a single-layer neural network with a sign activation function. Such a neural
network is also often referred to as the generalized linear model (GLM). We will hence call this
variant of the neural-prior SBM the GLM–SBM.

Concerning the asymptotic limit, we work in the challenging sparse case of SBM. We parameterize
the SBM by the standard parameterization ci = c +

√
cλ and co = c −

√
cλ. We then consider

N → ∞ with c = (ci + co)/2 = O(1) is the average degree, and λ = O(1) is the signal-to-
noise ratio. We further work in the high-dimensional limit of the GLM where N

M = α = O(1),
with α being the aspect ratio that will play a role of another signal-to-noise ratio. This is because the
higher α the more correlation there is between the group memberships and the easier the community
detection should be.

The GLM–SBM differs from the standard SBM because communities are not independent, condi-
tionally on the features. For instance, in the extreme case M = 1, all memberships are known, up
to a global flip given by w1; that is to say they are all very strongly correlated. The GLM–SBM
tends toward a standard SBM when α → 0. Indeed, for large M ,

∑M
l Fµlwl tend to independent

Gaussian variables.
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3 THE AMP–BP ALGORITHM

The algorithm we propose is based on belief propagation (BP) and approximate message-passing
(AMP). BP was used to solve SBM in Decelle et al. (2011b) and conjectured asymptotically optimal
among efficient algorithms in doing so; AMP to solve GLM, see e.g. Krzakala et al. (2012), and
again conjecture asymptotically optimal among efficient algorithms in doing so. We glue these
two algorithms together along the lines of Manoel et al. (2017); Aubin et al. (2019) to solve the
GLM–SBM. The derivation of the resulting AMP–BP algorithm is given in the appendix. Using
statistical physics arguments analogous to those in Decelle et al. (2011b); Krzakala et al. (2012) we
conjecture that this algorithm provides asymptotically optimal performance in the considered cases.
The AMP–BP algorithm can be used in the unsupervised case as well as in the semi-supervised case
where group memberships are known for a fraction of nodes. In the next section, we compare it to
a graph-convolution baseline and a GNN baseline.

In the following the χs and ψs are probability distributions; the Zs are normalization factors. We
introduce the denoising function:

go(ω, χ, V ) =

∫
dz
∑
s χsP0(s|z)(z − ω)e−(z−ω)2/2V

V
∫

dz
∑
s χsP0(s|z)e−(z−ω)2/2V

(3)

We define the input functions as fa(Λ,Γ) =
∫

dwPw(w)we−Λw2/2+Γw∫
dwPw(w)e−Λw2/2+Γw

and fv(Λ,Γ) = ∂Γfa(Λ,Γ)

We introduce also the output distribution Po(s|z) = δs=sign(z) and the prior distribution Ps,µ, which
is used to inject additional information about the membership of node µ: Ps,µ(t) = 1/2 in the
unsupervised case, Ps,µ(t) = δt=sµ if sµ is given in the semi-supervised case. The algorithm is:

AMP–BP
input features Fµl, graphG, affinity matrix cs,t,

prior information Ps,µ.
Initialize a

(0)
l = εl, v

(0)
l = 1, g(0)

o,µ = 0,
χ
µ→ν,(0)
sµ = 1

2 + sµε
µ→ν , χµ→µ,(0)

sµ = 1
2 ,

χ
µ,(0)
sµ = 1

2 , t = 0; where εs are zero-mean
small random variables.
repeat

AMP update of ωµ, Vµ

V (t+1) ← 1

M

∑
l

v
(t)
l

ω(t+1)
µ ←

∑
l

Fµla
(t)
l − V

(t+1)g(t)
o,µ

AMP update of ψµ→µ, go,µ,Λ,Γl

ψµ→µ,(t+1)
sµ ←

∫
dzP0(sµ|z)√

2πV
(t+1)
µ

e
− (z−ω(t+1)

µ )2

2V
(t+1)
µ

g(t+1)
o,µ ← go(ω

(t+1)
µ , χµ→µ,(t), V (t+1))

Λ(t+1) ← 1

M

∑
µ

g2,(t+1)
o,µ

Γ
(t+1)
l ← Λ(t+1)a

(t)
l +

∑
µ

Fµlg
(t+1)
o,µ

AMP update of the estimated marginals
al, vl

a
(t+1)
l ← fa(Λ(t+1),Γ

(t+1)
l )

v
(t+1)
l ← fv(Λ

(t+1),Γ
(t+1)
l )

BP update of the field h

h(t+1)
s ← 1

N

∑
µ

∑
sµ

cs,sµχ
µ,(t)
sµ

BP update of the messages χµ→ν for
(µν) ∈ G and of the marginals χµ

χµ→ν,(t+1)
sµ ←Ps,µ(sµ)

Zµ→ν
e
−h(t+1)

sµ ψµ→µ,(t+1)
sµ∏

η∈∂µ\ν

∑
sη

csη,sµχ
η→µ,(t)
sη

χµ,(t+1)
sµ ←Ps,µ(sµ)

Zµ
e
−h(t+1)

sµ ψµ→µ,(t+1)
sµ∏

η∈∂µ

∑
sη

csη,sµχ
η→µ,(t)
sη

BP update of the SBM-to-GLM messages
χµ→µ

χµ→µ,(t+1)
sµ ←Ps,µ(sµ)

Zµ→µ
e
−h(t+1)

sµ∏
η∈∂µ

∑
sη

csη,sµχ
η→µ,(t)
sη

t← t+ 1
until convergence of al, vl, χµ

output estimated mean al and variance vl of wl
and marginal distribution χµ of sµ.
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We draw attention on the output function go that covers the difference between AMP for GLM–SBM
and AMP for GLM alone. In AMP for GLM alone go depends on the observed labels while here we
use their estimated marginals. On the other side, the difference between BP for GLM–SBM and BP
for SBM alone are the messages ψµ→µ in BP update. ψµ→µ can be interpreted as the conditional
probability of sµ given w without SBM. We provide an implementation of AMP–BP for GLM-SBM
in the supplementary material.

4 PERFORMANCE COMPARISON

We measure the performance of the recovery thanks to the overlaps between the ground truths sµ or
wl and their estimators. Their estimators are ŝµ = sign(2χµ+ − 1) and ŵl = al. The overlaps are
qS = |ŝ.s|/N and qW = |ŵ.w|/||ŵ||2||w||2.

The performance is depicted on figs. 2 and 3 in appendix D. The larger λ or α the better the
recovery. The recovery is eased when community memberships are explained by few features. In
the unsupervised case with q = 2 the problem admits a sharp transition from a non-informative
fixed-point (qS = qW = 0) to an informative fixed-point (qS > 0, qW > 0). The transition is
located at a particular λc, called critical lambda. This transition is well known for standard SBM,
where λc = 1. The transition is of 2nd order; this means that the overlaps vary continuously with
respect to λ. In the semi-supervised case the sharp transition disappears.

We compute λc by linearizing the algorithm around its non-informative fixed-point and studying
its stability. At a given λ, if it is not stable then the algorithm will move away to the informative
fixed-point. In the appendix B we derive that λc =

(
1 + 4α/π2

)−1/2
.

An unsupervised baseline The algorithm to which we compare is inspired by graph convolution
networks; it performs unsupervised clustering. We compare its performances to the optimal ones
given by AMP–BP. The algorithm is detailed in appendix C. Its performances are shown on fig. 1.

Figure 1: Overlap qS of the baseline algorithms, vs λ. We compare to the overlap obtained by
AMP–BP. Left: unsupervised; for the parameters of the graph convolution we choose a = 0.1 and
n = 4. Right: semi-supervised; for the hyperparameters of the GNN we choose n = 2, learning
rate 10−3 and L2 penalty 10−2. The train set is 1/10th of the nodes. N = 104, c = 5. We ran ten
experiments per datapoint.

A semi-supervised baseline The algorithm to which we compare is a simple GNN, trained in a
semi-supervised way for node classification. The GNN is made of a perceptron and a readout layer
for the binary classification. It reads: F (t+1)

µ = F
(t)
µ + A.

∑
ν∈∂µ F

(t)
ν , ŝµ = wT .F

(n)
µ , where A

is M ×M learnable, w ∈ RM learnable and n is the number of steps. We train it given the labels
of a subset of nodes. We use gradient descent with logistic loss and L2 regularization. We do not
fine-tune the hyperparameters. Its performances are shown on fig. 1.

Conclusion on the comparison Fig. 1 illustrates that both in the unsupervised and the semi-
supervised settings the used baseline methods have a considerable gap to the performance of the
AMP–BP algorithm. The GLM–SBM setting is hence suitable to develop GNN algorithms that are
able to provide higher accuracy.
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A DERIVATION OF THE ALGORITHM

We write belief propagation for this problem. We start from the factor graph. It contains six different
messages:

wl
χl→µw // ψµ→µs // sµ χµ→νs ))

ψµ→νs

yy
wm

ψν→mw

oo
χν→νs

oo sν

These messages satisfy these equations:

χl→µwl
∝ Pw(wl)

∏
ν 6=µ

ψν→lwl
(4)

ψν→lwl
∝
∑
sν

χν→νsν

∫ ∏
m 6=l

(
dwmχ

m→ν
wm

)
P0(sν |Fν .w) (5)

ψν→νsν ∝
∫ ∏

m

(
dwmχ

m→ν
wm

)
P0(sν |Fν .w) (6)

χµ→µsµ ∝ Ps,µ(sµ)
∏
ν 6=µ

ψν→µsµ (7)

χµ→νsµ ∝ Ps,µ(sµ)ψµ→µsµ

∏
η 6=µ,ν

ψη→µsµ (8)

ψµ→νsν ∝
∑
sµ

χµ→νsµ P (Aµν |sµ, sν) (9)

We can plug ψ messages into the χ to obtain, for the GLM part:

χl→µwl
=
Pw(wl)

Zl→µ

∏
ν 6=µ

∑
sν

χν→νsν

∫ ∏
m 6=l

(
dwmχ

m→ν
wm

)
P0(sν |Fν .w)

 (10)

the marginals

χlwl =
Pw(wl)

Zl

∏
ν

∑
sν

χν→νsν

∫ ∏
m 6=l

(
dwmχ

m→ν
wm

)
P0(sν |Fν .w)

 (11)

and for the SBM part:

χµ→νsµ ∝ Ps,µ(sµ)ψµ→µsµ

∏
η 6=µ,ν

∑
sη

χη→µsη P (Aµη|sµ, sη) (12)

the marginals
χµsµ ∝ Ps,µ(sµ)ψµ→µsµ

∏
η 6=µ

∑
sη

χη→µsη P (Aµη|sµ, sη) (13)

and
χµ→µsµ ∝ Ps,µ(sµ)

∏
ν 6=µ

∑
sν

χν→µsν P (Aµν |sµ, sν) (14)
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A.1 SBM

We can apply the standard simplifications for sparse SBM Decelle et al. (2011b), Zdeborová &
Krzakala (2016). We consider only messages on G. This gives

χµ→µsµ =
1

Zµ→µ
Ps,µ(sµ)e−hsµ

∏
η∈∂µ

∑
sη

csη,sµχ
η→µ
sη (15)

χµ→νsµ =
1

Zµ→ν
Ps,µ(sµ)ψµ→µsµ e−hsµ

∏
η∈∂µ\ν

∑
sη

csη,sµχ
η→µ
sη (16)

and the marginals

χµsµ =
1

Zµ
Ps,µ(sµ)ψµ→µsµ e−hsµ

∏
η∈∂µ

∑
sη

csη,sµχ
η→µ
sη (17)

where hs = 1
N

∑
µ

∑
sµ
cs,sµχ

µ
sµ .

A.2 GLM

For the GLM, we follow closely Zdeborová & Krzakala (2016).

A.2.1 R-BP

We apply first the simplifications that lead to r-BP. We define and consider the inner part of the χl→µwl
message:

ψ̃ν→lwl
=
∑
sν

χν→νsν

∫ ∏
m6=l

(
dwmχ

m→ν
wm

)
P0(sν |Fν .w) (18)

We set zν = Fνlwl +
∑
m 6=l Fνmwm. By independence of the ws the partial sum behaves like a

Gaussian with mean and variance

ων→l =
∑
m6=l

Fνmam→ν Vν→l =
∑
m 6=l

F 2
νmvm→ν (19)

with

am→ν =

∫
dwmχ

m→ν
wm wm vm→ν =

∫
dwmχ

m→ν
wm w2

m − a2
m→ν (20)

We replace the integral over all ws by a Gaussian integral over zν ; we obtain

ψ̃ν→lwl
=
∑
sν

χν→νsν

∫
dzν√

2πVν→l
e−(zν−Fνlwl−ων→l)2/2Vν→lP0(sν |zν) (21)

We can simplify. Fνl is small, we expand the exponential:

e
− (zν−Fνlwl−ων→l)

2

2Vν→l = e
− (zν−ων→l)

2

2Vν→l

(
1− F 2

νlw
2
l

2Vν→l
+

(zν − ων→l)Fνlwl
Vν→l

+
(zν − ων→l)2F 2

νlw
2
l

2V 2
ν→l

)
(22)

We introduce the denoising function; its expression differs from the one of Zdeborová & Krzakala
(2016):

go(ω, χ, V ) =

∫
dz
∑
s χsP0(s|z)(z − ω)e−(z−ω)2/2V

V
∫

dz
∑
s χsP0(s|z)e−(z−ω)2/2V

(23)

So

ψ̃ν→lwl
∝
(

1− F 2
νlw

2
l

2Vν→l
+ goFνlwl +

1

2
(

1

Vν→l
+ ∂ωgo + g2

o)F 2
νlw

2
l

)
(24)

where we evaluate go in (ων→l, χ
ν→ν , Vν→l). We exponentiate:

ψ̃ν→lwl
∝ egoFνlwl+ 1

2∂ωgoF
2
νlw

2
l (25)
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We take the product of the ψ̃ to obtain

χl→µwl
∝ Pw(wl)e

−Λl→µw
2
l /2+Γl→µwl (26)

where

Λl→µ = −
∑
ν 6=µ

∂ωgo(ων→l, χ
ν→ν , Vν→l)F

2
νl , Γl→µ =

∑
ν 6=µ

go(ων→l, χ
ν→ν , Vν→l)Fνl (27)

We close the loop defining the input functions

fa(Λ,Γ) =

∫
dwPw(w)we−Λw2/2+Γw∫
dwPw(w)e−Λw2/2+Γw

, fv(Λ,Γ) = ∂Γfa(Λ,Γ) (28)

so

al→µ = fa(Γl→µ,Λl→µ) , vl→µ = fv(Γl→µ,Λl→µ) (29)

The mean and the variance of the marginals are estimated by

al = fa(Γl,Λl) , vl = fv(Γl,Λl) (30)

where

Λl = −
∑
ν

∂ωgo(ων→l, χ
ν→ν , Vν→l)F

2
νl , Γl =

∑
ν

go(ων→l, χ
ν→ν , Vν→l)Fνl (31)

We obtain also the expression of the GLM-to-SBM message

ψµ→µsµ =
1√

2πVµ

∫
dzP0(sµ|z)e−(z−ωµ)2/2Vµ (32)

where

ωµ =
∑
m

Fµmam→µ , Vµ =
∑
m

F 2
µmvm→µ (33)

A.2.2 TIME INDICES

There are two possibilities for mixing the GLM part and the SBM part:
a, v(t) // ω, V (t+1) //

��

Γ,Λ(t+1) // a, v(t+1)

ψ(t+1)

%%

g
(t+1)
o

OO

χ(t) // χ(t+1)

KS

or
a, v(t) // ω, V (t+1) //

��

Γ,Λ(t+1) // a, v(t+1)

ψ(t+1)

%%

g
(t+1)
o

OO

χ(t) //

5=

χ(t+1)

We try both; we do not observe any numerical difference.
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A.2.3 AMP

Then we go from r-BP to AMP. We remove the dependence of the messages on the target. We keep
only the marginals. The derivation is given by Zdeborová & Krzakala (2016). We obtain that

V (t+1)
µ =

∑
l

F 2
µmv

(t)
l (34)

ω(t+1)
µ =

∑
l

Fµla
(t)
l − V

(t+1)
µ g(t)

o,µ (35)

g(t+1)
o,µ = go(ω

(t+1)
µ , χµ→µ,(t), V (t+1)

µ ) (36)

Λ
(t+1)
l = −

∑
µ

F 2
µl∂ωgo(ω

(t+1)
µ , χµ→µ,(t), V (t+1)

µ ) (37)

Γ
(t+1)
l = Λ

(t+1)
l a

(t)
l +

∑
µ

Fµlg
(t+1)
o,µ (38)

A.2.4 FURTHER SIMPLIFICATIONS

F 2
µm self-averages. We can replace it by its average 1/M in eq. equation 34 and equation 37. So

Λ and V become scalars. Also, on average, −∂ωgo,µ = g2
o,µ. We obtain the algorithm given in the

main part.

B LINEARIZATION AND PARTIAL RECOVERY THRESHOLD

We take Ps,µ(s) = 1/2. The non-informative point qS = qW = 0 is a fixed-point of the AMP–BP
algorithm. At this point, we have χµ→ν = 1

2 , χµ→µ = 1
2 , χµ→ν = 1

2 , al = 0, vl = 1, ωµ = 0,
V = 1, ψµ→µ = 1

2 , go,µ = 0, Λ = 0 and Γl = 0.

We linearize the equations of the algorithm around this point. We write |∗ the evaluation of functions
in this point. We have

δχµ→ν,(t+1) =
∑

η∈∂µ\ν

1

2

(c.,.
c
− 1
)
.δχη→µ,(t) + ∂ωψ

µ→µ|∗δω(t+1)
µ + ∂V ψ

µ→µ|∗δV (t+1) (39)

δχµ→µ,(t+1) =
∑
η∈∂µ

1

2

(c.,.
c
− 1
)
.δχη→µ,(t) (40)

δa
(t+1)
l = ∂Λfa|∗δΛ(t+1) + ∂Γfa|∗δΓ(t+1)

l (41)

δv
(t+1)
l = ∂ΛΓfa|∗δΛ(t+1) + ∂ΓΓfa|∗δΓ(t+1)

l (42)

δg(t+1)
o,µ = ∂ωgo|∗δω(t+1)

µ +∇χgo|∗.δχµ→µ,(t+1) + ∂V go|∗δV (t+1) (43)

where we write c.,. for the affinity matrix and where we have used the standard linearization for
SBM. We have also

δω(t+1)
µ =

∑
l

Fµlδa
(t)
l − δV

(t+1)go|∗ − V |∗δg(t)
o,µ (44)

δV (t+1) =
1

M

∑
l

δv
(t)
l (45)

δΛ(t+1) =
2

M

∑
µ

go|∗δg(t+1)
o,µ (46)

δΓ
(t+1)
l = δΛ(t+1)al|∗ + Λ|∗δa(t)

l +
∑
µ

Fµlδg
(t+1)
o,µ (47)

9
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We simplify: go|∗ = 0, ∂ωgo|∗ = 0, ∂V go|∗ = 0, ∂V ψ|∗ = 0 and ∂Γfa|∗ = 1. We compute that
∂ωψ|∗ = 1√

2π

(
1
−1

)
and ∇χgo|∗ = 2√

2π

(
1
−1

)T
. We assemble equations together:

δχµ→ν,(t+1) =
∑

η∈∂µ\ν

1

2

(c.,.
c
− 1
)
.δχη→µ,(t) + ∂ωψ|∗

(∑
l

Fµlδa
(t)
l −∇χgo|∗.δχ

µ→µ,(t)

)
(48)

δχµ→ν,(t+1) =
∑

η∈∂µ\ν

1

2

(c.,.
c
− 1
)
.δχη→µ,(t)

+
∑
η,l

FµlFηl(∂ωψ|∗.∇χgo|∗).δχη→η,(t) − (∂ωψ|∗.∇χgo|∗).δχµ→µ,(t) (49)

δχη→η,(t) =
∑
ρ∈∂η

1

2

(c.,.
c
− 1
)
.δχρ→η,(t−1) (50)

The matrices 1
2

( c.,.
c − 1

)
and ∂ωψ|∗.∇χgo|∗ share the same eigenvectors. They have one null eigen-

value and one positive: ci−co2c = λ√
c

and 2
π . We project to obtain

xµ→ν,(t+1) =
λ√
c

 ∑
η∈∂µ\ν

xη→µ,(t) +
2

π

∑
η

(F.FT )µ,η
∑
ρ∈∂η

xρ→η,(t−1) − 2

π

∑
η∈∂µ

xη→µ,(t−1)


(51)

xµ→ν,(t+1) =
λ√
c

 ∑
η∈∂µ\ν

xη→µ,(t) +
2

π

∑
η

(F.FT − IN )µ,η
∑
ρ∈∂η

xρ→η,(t−1)

 (52)

where the xs are real random variables.

We obtain the threshold λc of partial recovery taking the mean of the variance of the expression 52,
discarding the time indices. We use that (F.FT − IN )2

µ,ν averages to 1/M if µ 6= ν and toO(1/M)
otherwise. We obtain:

1 = λ2
c

(
1 +

4α

π2

)
(53)

C BASELINE UNSUPERVISED ALGORITHM

We perform n steps of graph convolution on the features; perform PCA on the transformed features
and keep the largest component; threshold its left vector to obtain the membership of each node.
Formally, we consider the rows F (0)

µ ∈ RM of the feature matrix F ; we apply n times

F (t+1)
µ = F (t)

µ + a
∑
ν∈∂µ

F (t)
ν (54)

where a is a scalar. We apply PCA on the new matrix F̂ whose rows are F (n)
µ . Writing u ∈ RN

the left vector of its largest component, the estimator is ŝ = sign(u). We tune n and a empirically
to optimize the recovery. We observe that roughly it depends on n and a only by their product an.
Also, the optimal a scales like 1/c.
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D PERFORMANCES OF AMP–BP

Figure 2: Left and right: overlaps qS and qW of the fixed-point of the algorithm AMP–BP, vs λ
for many compression ratios αs. Vertical dashed lines: theoretical thresholds λc to partial recovery.
N = 104, c = 5. We ran ten experiments per point.

Figure 3: Semi-supervised case: test overlap qS of the fixed-point of the algorithm AMP–BP, vs λ
for many compression ratios αs. ρ is the proportion of train nodes; ρ = 0 for unsupervised. Semi-
supervised always performs better than unsupervised. N = 104, c = 5. We ran ten experiments per
point.
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