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Abstract
Self-attention is essential to Transformer archi-
tectures, yet how information is embedded in the
self-attention matrices and how different objec-
tive functions impact this process remains unclear.
We present a mathematical framework to analyze
self-attention matrices by deriving the structures
governing their weight updates. Using this frame-
work, we demonstrate that bidirectional training
induces symmetry in the weight matrices, while
autoregressive training results in directionality
and column dominance. Our theoretical findings
are validated across multiple Transformer models
— including ModernBERT, GPT, LLaMA3, and
Mistral — and input modalities like text, vision,
and audio. Finally, we apply these insights by
showing that symmetric initialization improves
the performance of encoder-only models on lan-
guage tasks. This mathematical analysis offers a
novel theoretical perspective on how information
is embedded through self-attention, thereby im-
proving the interpretability of Transformer mod-
els.

1. Introduction
Transformer models now achieve state-of-the-art perfor-
mance across a wide range of tasks and domains (Radford
et al., 2019; Dosovitskiy et al., 2021; Radford et al., 2023).
Despite their success, the internal mechanisms governing
their decision-making processes remain poorly understood,
raising concerns regarding model alignment, reliability, and
safety (Wang et al., 2023; Yao et al., 2024). A key challenge
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in understanding these models is unraveling the structures
of self-attention, which is essential to Transformer archi-
tectures. Current literature largely overlooks the nature
of the self-attention weight matrices during autoregressive
training, where the model predicts the next token in a se-
quence given previous ones (Radford et al., 2019; Black
et al., 2021; Touvron et al., 2023) and bidirectional training,
where the model predicts a missing token given the full se-
quence (Devlin et al., 2019; Bao et al., 2022; Warner et al.,
2024). Understanding self-attention requires answering two
fundamental questions: How can we interpret the structures
learned in the self-attention matrices? What is the impact of
different objective functions on these matrices?

Previous work used sparse auto-encoders to identify inter-
pretable features (Huben et al., 2024; Bricken et al., 2023),
circuit analysis to interpret Transformer components (Olah
et al., 2020; Elhage et al., 2021; Olah, 2022), and tech-
niques like the logit lens to analyze self-attention mecha-
nisms (Geva et al., 2021; Dar et al., 2023) (for a detailed
discussion, see Section 5). However, these methods do not
reveal the structural patterns in self-attention matrices or the
transformations they encode. Crucially, how autoregressive
and bidirectional training shape specific weight structures
remains unclear.

To address this gap, we introduce a novel framework for
analyzing self-attention matrices and understanding how
different objective functions define their weight updates.
We then use this framework to derive understandable math-
ematical structures that should emerge from such updates.
Finally, we verify these interpretable structures numerically
on many pre-trained and custom models across different
modalities, supporting the universality of our results. Identi-
fying these universal structures is fundamental not only for
improving the performance of Transformer models, but also
for their safety, alignment, and interpretability (Olah, 2022).

Specifically, we connect the matrix Wqk = WqW
⊤
k of

self-attention with bilinear forms, offering novel insights
compared to studying query and key matrices alone. We
reveal structured patterns in the implicit weight updates of
Wqk, uncovering key differences between encoder-only and
decoder-only models:
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1. Decoder-only models: Training with an autoregressive
objective produces a few columns with disproportion-
ately high norms, introducing directionality in Wqk.

2. Encoder-only models: Bidirectional optimization in-
duces symmetric structures in Wqk, reflecting the bal-
anced nature of the training objective.

3. We validate these theoretical findings across diverse
Transformer architectures and input modalities, show-
ing that they generalize across models and tasks.

4. Empirically, we find that symmetric structures in Wqk

enhance training efficiency for encoder-only models,
leading to higher accuracy and faster convergence in
language tasks.

2. Autoregressive and bidirectional training
leads to directional and symmetric weight
updates

In this section, we introduce a novel framework that links the
self-attention matrices Wqk to bilinear forms, enabling us to
analyze how an objective function influences their structure.
This approach reveals fundamental patterns in Wqk that
are not apparent when examining Wq and Wk separately.
For example, we prove that autoregressive and bidirectional
training induce directional and symmetric structures in the
Wqk matrices. In the following sections, we define and
formalize these concepts.

2.1. Interpreting self-attention with bilinear forms

Self-attention (Vaswani et al., 2017; Radford et al., 2019)
is a type of score function A : RN,d ×RN,d → RN,N that
maps a sequence of N token embeddings with dimension d
into a matrix of attention scores. Except for the row-wise
softmax function σ(·), self-attention is a linear transforma-
tion of the embedded tokens. In particular,

A(X) = σ

(
1√
d
Â(X)

)
= σ

(
1√
d
QKT

)
= σ

(
1√
d
XWqkX

T

)
,

(1)

where Â(X) is the linear part of self-attention (raw un-
scaled attention scores), X = [x⊤1 , . . . ,x

⊤
N ] ∈ RN,d

is the sequence of N token embeddings xi ∈ Rd, and
Wqk = WqW

⊤
k ∈ Rd,d. This equation shows that the

linear transformation Wq and Wk are always combined
to compute attention scores with one single matrix Wqk.
While the matrices Wq and Wk are defined separately for
computational efficiency, this formulation remains mathe-
matically equivalent (see also Elhage et al., 2021; Olsson
et al., 2022; Dar et al., 2023).

We observe that XWqkX
⊤ corresponds to a bilinear form

(see Definition A.2). Specifically, the entry α̂ij = [Â]ij can
be formulated in two equivalent ways: (1) as the canonical
dot product between a query qi and a key kj (like in stan-
dard Transformer models), or (2) as the dot product between
tokens xi and xj under the bilinear form Wqk,

α̂ij = ⟨qi, kj⟩ = ⟨xi,Wqkxj⟩ = ⟨xi,xj⟩Wqk
. (2)

Intuitively, this equivalence shows that the matrices Wq

and Wk together define an alternative metric in the embed-
ding space, which quantifies the score of xi and xj without
explicitly constructing the query and key vectors. Let us
consider a specific input token xi ∈ Rd. The self-attention
layer maps it to an updated token x̂i ∈ Rd as follows,

x̂⊤i = x⊤i +

N∑
j=1

α̂ij xjWv , (3)

where the coefficients {α̂ij} in the second term represent
the projection of xi onto span{X} (the subspace spanned
by X = {x⊤0 ,x⊤1 , . . . ,x⊤N}) in the transformed embedding
space defined by Wqk,∑

j

α̂ij xj =
∑
j

⟨xi,xj⟩Wqk
xj . (4)

Because the softmax function preserves the order of its
input values, the ranking of the raw attention scores α̂ij is
maintained in the final normalized scores αij ,

αij < αij′ ⇔ α̂ij < α̂ij′ ∀i, j, j′ . (5)

As a result, the attention weights αij define a convex com-
bination of the token vectors xj , meaning the output lies
within the convex hull of the input sequence Conv(X) ⊂
span{X} (see also Appendix A.2). We note that Wv is a
linear transformation that is applied independently to each
projection in the sum and thus does not influence our deriva-
tion.

In the following sections, we demonstrate how this equiva-
lent formulation of self-attention provides a useful frame-
work for analyzing the training of Transformer models.
Specifically, we show that the choice of the objective func-
tion such as autoregressive prediction (Radford et al., 2019)
or bidirectional training (Devlin et al., 2019) produces dis-
tinct structural patterns in Wqk.

2.2. Deriving the gradients of self-attention with bilinear
forms

To show the connection between the objective function and
the structures of self-attention matrices, we derive a conve-
nient formulation for the weight update of Wqk. We first for-
mulate a sequence modeling problem with self-supervised
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Figure 1. Illustration of the computation of the self-attention score
between token xi and token xj (forward pass, see Equation (3)),
and its corresponding contribution to the weight update of Wqk

(backward pass, see Equation (8) and Equation (9)). The symbols
”⊕”, ”⊗”, and ”⊙” refer to the addition, multiplication, and dot
product operations, respectively.

training as follows. Let U = {t1, . . . , tN} be a sequence
of N tokens. For each position i, let Di ⊆ {1, 2, . . . , N}
denote the conditioning set, that is, the set of indices cor-
responding to the tokens used to predict the token ti. This
formulation makes it possible to isolate and analyze the
contribution of each token tj ∈ Di to the prediction of ti.
Let L(U) be the negative log-likelihood of each token ti,
expressed as,

L(U ;W) =

N∑
i=1

L(ti) = −
N∑
i=1

log pW(ti | tDi) , (6)

where W is the set of trainable parameters, and pW(ti | tDi
)

are the conditional densities parameterized by the model
(see also Appendix A.3).

Here, we demonstrate that the updates to the matrix Wqk

follow a structured pattern: the contribution of the token
tj in the prediction of the embedding ti results in adding a
rank-1 matrix Kij to the matrix Wqk. As a result, the total
weight update to Wqk is expressed as a linear combination
of these rank-1 matrices. We formalize this observation in
the following proposition.

Proposition 2.1. (The implicit weight update as sum of
rank-1 matrices). Let U = {t1, . . . , tN} be a sequence
of N tokens, and let L(U ;W) denote the negative log-
likelihood of the sequence under a Transformer model with
learnable parameters W ,

L(U ;W) =
∑
i

L(ti) = −
∑
i

log pW(ti | tDi
) , (7)

where Di ⊆ {1, . . . , N} is the set of indices used to condi-
tion the prediction of token ti. Let the self-attention function
be defined as in Equation (1). Following the gradient of
L(U ;W), the implicit gradient-based update to the bilin-
ear weight matrix Wl

qk at the l-th self-attention layer is
proportionally equivalent to:

1. The sum of contributions from each token tj : j ∈ Ci
used to predict ti,

∆Wl
qk ∝

∑
i

∑
j∈Ci

∆Wl
qk

∣∣∣
ti←tj

=
∑
i

∑
j∈Ci

βl
ijK

l−1
ij ,

(8)
where Ci denotes the set of context indices for predict-
ing ti.

2. The sum of contributions from each prediction target
ti : i ∈ Pj when predicted with tj ,

∆Wl
qk ∝

∑
i∈Pj

∑
j

∆Wl
qk

∣∣∣
ti←tj

=
∑
i∈Pj

∑
j

βl
ijK

l−1
ij ,

(9)
where Pj denotes the set of tokens for which tj is
included in the context.

Here, βl
ij is a scalar that quantifies the contribution of the

token embedding xj to the prediction error for xi at the l-th
layer, and the matrix Kl−1

ij ∈ Md is a rank-1 matrix defined
by the outer product of the token embeddings at the previous
layer,

Kl−1
ij = xl−1

i xl−1
j

⊤
. (10)

We provide proof for this proposition with related remarks in
Appendix A.4, and an illustrative description of the forward
and backward pass in Figure 1.

2.3. How context and prediction impact the gradient
differently

Next, we show how the formulation of ∆Wqk enables the
analysis of the contribution of any given token t∗ to the
weight updates and how this affects the properties of Wqk.
Indeed, Proposition 2.1 indicates that a token t∗ impacts
the updates of Wqk differently when serving as context for
predicting other tokens or being itself predicted.

When a token t∗ serves as context (tj = t∗), the embeddings
of all predicted tokens contribute to the column space of

3



The underlying structures of self-attention: symmetry, directionality, and emergent dynamics in Transformer training

Wqk, where the update of every k-th column w·,k is given
by

∆w·,k

∣∣∣
tj=t∗

= [xt∗ ]k

(∑
i∈Pt

βi∗xi

)
. (11)

Only the embedding of t∗ is instead added to the row space,
where the update of every m-th row ∆wm,· is given by

∆wm,·

∣∣∣
ti=t∗

=

(∑
i∈Pt

βi∗[xi]k

)
xt∗ . (12)

Intuitively, using t∗ as context increases the dimensionality
of the column space proportionally to the embeddings of
the predicted tokens, while reducing the row space along
the direction of the embedding of t∗. Conversely, when t∗

is being predicted (ti = t∗), all token embeddings from
the context are added to the row space of Wqk, while only
the embedding of t∗ is added to the column space. Con-
sequently, the role a token plays during training affects its
contribution to the weight update differently. We formalize
this in the following proposition.

Proposition 2.2. (Different implicit updates for context
and prediction). Let U = {t1, . . . , tN} be a sequence of
tokens and let xi ∈ Rd be the embedding of the i-th token.
Let ∆Wqk be the weight update from Proposition 2.1. Let
t∗ be a given token in U . When using t∗ as context, the k-th
column of ∆Wqk is given by

∆w·,k

∣∣∣∣
tj=t∗

= [xt∗ ]k

∑
i∈Pt∗

βi∗xi

 , (13)

while the m-th row of ∆Wqk is given by

∆wm,·

∣∣∣∣
tj=t∗

=

∑
i∈Pt∗

βi∗[xi]m

xt∗ . (14)

When predicting t∗, the k-th column of ∆Wqk is given by

∆wk,·

∣∣∣∣
ti=t∗

=

∑
j∈Ct∗

β∗j [xj ]k

xt∗ , (15)

while the m-th row of ∆Wqk is given by

∆wm,·

∣∣∣∣
ti=t∗

= [xt∗ ]m

∑
j∈Ct∗

β∗jx
⊤
j

 . (16)

We provide proof for this proposition with related remarks in
Appendix A.5.1. Note that all mathematical results derived
so far rely solely on the structure of self-attention and make
no assumptions about the input data. In the next section, we
build on these results to link structural patterns in Wqk with
the specific form of the objective function.

2.4. The relation between objective functions and
structures in self-attention matrices

In this final section, we show how to relate these properties
to the specific objective function. Crucially, the number
of times a token t∗ appears as context or as a prediction
depends on the training objective. Autoregressive training
implicitly introduces directionality by predicting each token
solely on its preceding tokens. In contrast, bidirectional
training uses tokens as context and as predictions symmet-
rically. This fundamental difference affects the weight up-
dates of Wqk, and consequently, the structures encoded in
its rows and columns.

We formalize this relationship in the next two theorems, un-
der the following assumptions: (a) tokens exhibit statistical
correlations, leading to partial alignment in their embed-
dings; (b) the entries of Wqk are i.i.d. at initialization with
finite mean and variance; (c) some tokens tend to occur
earlier in the sequence and are more predictive of future
content; (d) bidirectional training induces approximately
symmetric error signals. In this setting, we prove how the
objective function influences the internal structure encoded
by self-attention.

Theorem 2.3. (Autoregressive training induces direction-
ality) Let V = {t0, . . . , tV } be a vocabulary of tokens, and
let U ⊂ VN denote the sample space of all sequences of
length N . Let U = {t1, . . . , tN} ∈ U be a random vari-
able with U ∼ P (U). Define Pr[tj = t∗] as the marginal
probability that the token at position j equals t∗ ∈ V . Let
{x1, . . . ,xN} be the token embeddings corresponding to
the elements of U , where each embedding xi ∼ D is drawn
i.i.d. from a distribution D with zero mean and covariance
matrix Cov(xi) = Σ.. Let Wqk be query-key matrix of a
self-attention mechanism, and let ∆Wqk denote its gradient
update as defined in Proposition 2.1, computed under an
autoregressive objective as in Definition A.3.

It follows that the contribution of the token t∗ after training
satisfies,

ED
[
∥∆w·,k∥2

]
ED [∥∆wm,·∥2]

> 1 ∀k, ∀m s.t. Σm,m <
Tr(Σ)

d
.

(17)
Moreover, there exists a scalar γ ∈ R>0, proportional to
the product of the row and column norm variances, γ ∝
Var (∥wm,·∥) ·Var (∥w·,k∥), such that for all w > γ,

Pr
[
∥w·,k∥2 > w

]
> Pr

[
∥wm,·∥2 > w

]
, (18)

that is, columns of Wqk are more likely than rows to have
high norm under autoregressive training, indicating a direc-
tional bias in gradient updates.

Theorem 2.4. (Bidirectional training induces symmetry).
Let U = {t1, . . . , tN} be a sequence of tokens. Let Wqk

be the query-key matrix of a self-attention mechanism, and
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let ∆Wqk denote its gradient update as defined in Propo-
sition 2.1, computed under a bidirectional objective as in
Definition A.3. It follows that,

∆Wqk =

N∑
i=1

N∑
j=1

βijKij , (19)

and that every pair (i, j) with i ̸= j contributes to the
weight update with a term

∆Wqk

∣∣
ti↔tj

= βijKij + βjiKij
T , (20)

that is approximately symmetric,

∆Wqk

∣∣
ti↔tj

≈ ∆Wqk

∣∣⊤
ti↔tj

. (21)

We provide a proof of these two Theorems, and the related
Propositions and Lemmas in Appendix A.5.

3. Symmetric and directional structures are
predominant in Transformer models

In this section, we validate our theoretical findings by quanti-
fying empirically the degree of symmetry and directionality
in different families of open-source Transformer models. To
do so, we define two scores for symmetry and directionality
in square matrices. First, we define the symmetry score
s ∈ R as follows,
Definition 3.1. (Symmetry score). Given a square matrix
M ∈ Mn we define the symmetry score,

s = 2
||Ms||2F − ||Mn||2F

||M||2F
, (22)

where || · ||F is the Frobenious norm, and Ms and Mn are
the symmetric and skew-symmetric parts of the Toeplitz
decomposition of M, respectively,

Ms =
1

2

(
M+M⊤

)
; Mn =

1

2

(
M−M⊤

)
. (23)

Here, positive and negative symmetry scores indicate the
presence of symmetric and skew-symmetric structures, re-
spectively (see Appendix A.6). Second, we define the direc-
tionality score d ∈ R as follows,
Definition 3.2. (Directionality score). Given a square ma-
trix M ∈ Mn we define the directionality score,

d =
r̄M − c̄M
r̄M + c̄M

, (24)

where c̄M is the sum of the norm of the columns that are
higher than a given threshold, as follows,

c̄M =
∑
k∈C

||m·,k||2 with C = {k | ∥m·,k∥2 > µc+γσc} ,

(25)

where || · ||2 is the L2 norm, ||m·,k||2 is the norm of the k-th
column, µc = E[||m·,k||2] and σc =

√
Var||m·,k||2 are the

mean and standard deviation of the column norms, γ is a
scaling factor, and similarly r̄M is the sum of the norm of
the rows that are higher than a given threshold,

r̄M =
∑
k∈R

||mk,·||2 with R = {k | ∥mk,·∥2 > µr+γσr} ,

(26)
with ||mk,·||2 as the norm of the k-th row, µr = E[||mk,·||2]
and σr =

√
Var||mk,·||2 as the mean and standard deviation

of the row norms.

Here, positive and negative directionality scores indicate the
dominance of high norm rows or columns, respectively (see
Appendix A.7). Finally, we compute the matrix Wqk for
every layer, calculate the median symmetry and directional-
ity score across layers, and analyze the differences between
encoder- and decoder-only variants.

We find that encoder-only models remarkably show a higher
degree of symmetry than decoder-only (Figure 2a). This
difference is consistent across multiple families of models
and input modalities, such as BERT (Devlin et al., 2019),
GPT (Radford et al., 2018; 2019), LLAMA3 (Touvron et al.,
2023), Phi (Hughes, 2023; Abdin et al., 2024), MISTRAL
(Jiang et al., 2023), ModernBERT (Warner et al., 2024), and
many others (see Figure S1 for vision and audio models).
Strikingly, we observe that decoder-only models have higher
degrees of directionality than encoder-only models (Figure
2b). Again, this difference is consistent across all the models
and input modalities we consider. We show in Figure S2 that
a similar pattern is observed when including full encoder-
decoder Transformers (e.g. the language T5 models (Xue
et al., 2021)), despite these models having an overall lower
degree of directionality.

4. Experiments
In this final section, we test if using structural priors based
on our previous results can improve the pretraining of Trans-
former models. To do so, we train Transformer models from
scratch and perform a series of experiments to analyze how
symmetric and directional structures develop during training
across layers.

4.1. Evolution of symmetric and directional structures
during learning

To test the applicability of our result, we first train 12-layer
transformer models in both encoder and decoder modes
and quantify the median symmetry and directionality scores
across epochs. At initialization, the symmetry and direc-
tionality score of the matrix Wqk at any layer is zero (see
Definition 3.1 and Definition 3.2 and related Appendix A.6
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Figure 2. a) Left) Median symmetry score of the matrix Wqk as a function of the total number of parameters. Each dot corresponds to
the median and the interquartile range across layers of a given pre-trained model (see Tables in Appendix 5). Right) Example of structures
in the Wqk matrix of an encoder-only model (BERT Tiny, layer 1 (Turc et al., 2019)) b) Left) Same as in a for the median directionality
score of the matrix Wqk. Right) Example of structures in the Wqk matrix of a decoder-only model (TinyStories GPT, layer 1 (Eldan &
Li, 2023))

and A.7). The incremental update of Wqk we described
in the previous sections predicts that decoder-only models
develop high-norm columns incrementally during training
(see Theorem 2.3). Likewise, as symmetric weight updates
are added to Wqk in encoder-only models, Theorem 2.4 pre-
dicts that symmetric structures emerge incrementally during
training.

Consistent with our results on pre-trained models, encoder-
only models show a higher degree of symmetry than
decoder-only models (Figure 3a). In contrast, decoder-only
models have a higher directionality score (Figure 3b). We
observe this difference on all datasets we tested (Jigsaw
(cjadams et al., 2017), Wikipedia (Foundation, 2022), Red
Pajama (Computer, 2023), see Figure S3). Furthermore, late
layers of encoder-only models are more symmetric and con-
verge faster than early layers when training bidirectionally.
At the same time, decoder-only models learn almost non-
symmetric matrices with strong skew-symmetric matrices
in the middle layers (Figure 3c). When training unidirec-
tionally, both encoder and decoder models show a higher
degree of directionality for late layers, which is remarkably
stronger for decoder-only models (Figure 3d). We observe
similar differences across layers with all the datasets we
tested (Figure S4), despite these models having less signif-
icant differences in directionality scores. See Appendix B
for a detailed description of the experiments.

4.2. Enforcing symmetry at initialization improves the
training of encoder-only models

The previous section showed that symmetric structures in-
crementally emerge during training in the Wqk matrices of
encoder-only models. Here, we first provide evidence that
these findings can be exploited to speed up training using

symmetry as an inductive bias. Specifically, we explore how
symmetric initialization influences the training dynamics of
the model and whether it enhances learning efficiency and
overall performance.

We train 4-layer, 12-layer, and 24-layer encoder-only mod-
els, comparing two initialization strategies: initialize the
self-attention matrices independently versus initializing the
Wq and Wk in each self-attention layer to ensure that Wqk

is symmetric (see Appendix B). We report the results of our
experiments in Table 1. We observe that enforcing symme-
try at initialization leads to lower loss values at the end of
training for most of the models. Importantly, symmetric
initialization significantly accelerates convergence, reaching
the final loss value faster than those with random initializa-
tion (up to 75% faster for 4-layer models, 35% faster for
12-layer models, and 44% faster for 24-layer models; see
also Figure S5a). Moreover, we observe that self-attention
matrices initialized symmetrically lose symmetry during
training but converge to higher symmetry levels than ran-
dom initialization (Figure S5b) This symmetric initializa-
tion decreases the gap in symmetric scores between layers
compared to random initialization (Figure S5c). When we
tested symmetric initialization on vision Transformers, the
improvements were not significant compared to the gains
observed in language models (see Appendix C for a detailed
analysis). These results highlight that embedding symme-
try as an inductive bias across all Transformer layers can
enhance training efficiency and model performance.

5. Related work
Mechanistic Interpretability (MI). In contrast to inter-
pretability approaches that focus on explaining specific data
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Figure 3. a) Evolution of symmetry score during training. We train a Bert-base-uncased model with 12 layers on the Wikipedia dataset
(Foundation, 2022) in encoder-only (blue) and decoder-only (purple) mode, see legend. Shown are the median and the interquartile range.
Shown are the median and the interquartile range. b) Same as in panel a for the median directionality score. c) Evolution of the median
symmetry score across layers of the encoder-only (left) and decoder-only (right) models. Each layer is color-coded as shown on the
legend. d) Same as panel c for the median directionality score.

instances by analyzing features (Wu et al., 2020; Lundstrom
et al., 2022), attention scores (Hoover et al., 2020; Barkan
et al., 2021; Yeh et al., 2023), or output variations (Jin
et al., 2020; Wang et al., 2022a), mechanistic interpretabil-
ity (MI) seeks to provide a more general understanding of
Transformer models. MI is based on the study of “circuits,”
analyzing the between activations across different compo-
nents of a Transformer (Olah et al., 2020). Following the
categorization by (Rai et al., 2024), MI techniques include:
(i) The logit lens (nostalgebraist, 2020; Geva et al., 2021)
projects layer activations or weights into the vocabulary
space V , allowing the derivation of logits and revealing the
influence of individual components on the prediction. This
technique can also be applied to query-key matrices Wqk

to study how attention heads transform source into target
tokens (Dar et al., 2023); (ii) Probing techniques allow to
identify correlations between layer activations and features
by training a linear classifier or shallow neural network (the
probe) to predict the presence of a feature in layer activations
(Dalvi et al., 2019; Gurnee et al., 2023); (iii) Sparse autoen-
coders map activations into a higher-dimensional yet sparse
representation, facilitating the identification of independent
(monosemantic) features (Huben et al., 2024; Bricken et al.,

2023); (iv) Visualization techniques facilitate the analysis
of attention scores (Olsson et al., 2022; Lieberum et al.,
2023) and neuronal activity patterns (Elhage et al., 2022) by
rendering them in a graphical format. However, their utility
often depends on human comprehension of the resulting
visualizations; (v) Ablation studies assess the importance
of model components by systematically removing or modi-
fying them and observing the resulting behavioral changes
(Olsson et al., 2022; Wang et al., 2022b); (vi) Causal media-
tion analysis (CMA) analyzes the importance of components
(Vig et al., 2020; Meng et al., 2022) or connections (Wang
et al., 2022b; Goldowsky-Dill et al., 2023) between them by
introducing perturbations (e.g., noise) and selectively patch-
ing them to measure the recovery of lost capabilities. Our
work adds a new perspective on MI by providing a scalable
and generalizable approach to the mechanistic understand-
ing of self-attention. In contrast to existing work, it is not
limited to analyzing fully trained models but investigates the
influence of learning and can analyze models of different
sizes across all modalities.

MI for model enhancement. Insights from MI have been
instrumental in various applications, including improving
model safety (Belrose et al., 2023), updating the model’s
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Table 1. The final loss at the end of training and the speed-up
for the 4, 12, and 24-layer models trained on the Jigsaw dataset
(cjadams et al., 2017), Wikipedia (Foundation, 2022), and Red Pa-
jama (Computer, 2023), with and without symmetry initialization
(see Appendix B.1). Speed-up (%) is calculated by subtracting the
epoch at which the symmetrically initialized model reaches the
non-symmetric model’s final loss from the total number of epochs,
and then dividing by the total number of epochs. For example, a
50% speed-up means that the model with symmetric initialization
achieves the final loss of the non-symmetric model in half the
number of training epochs.

MODEL LOSS SPEED-UP

4-LAYER MODEL

JIGSAW 2.782
JIGSAW (+ SYMM) 2.758 26 %

WIKIPEDIA 0.984
WIKIPEDIA (+ SYMM) 0.812 73 %

RED PAJAMA 1.106
RED PAJAMA (+ SYMM) 0.907 69 %

12-LAYER MODEL

JIGSAW 1.419
JIGSAW (+ SYMM) 1.430 0 %

WIKIPEDIA 0.256
WIKIPEDIA (+ SYMM) 0.247 20 %

RED PAJAMA 0.297
RED PAJAMA (+ SYMM) 0.274 35 %

24-LAYER MODEL

JIGSAW 0.786
JIGSAW (+ SYMM) 0.739 14%

WIKIPEDIA 0.192
WIKIPEDIA (+ SYMM) 0.166 44%

RED PAJAMA 0.209
RED PAJAMA (+ SYMM) 0.189 34%

learned knowledge (Meng et al., 2022), and guiding the
generation process of generative models (Geva et al., 2022).
One of the most exciting applications is leveraging MI tech-
niques to improve model performance. For instance, Skean
et al. (2025) conduct information-theoretic and geometric
analyses to show that intermediate layers exhibit a favor-
able trade-off between compression and signal preservation.
Leveraging this insight, they demonstrate that features ex-
tracted from these layers consistently outperform final-layer
representations across a broad range of downstream tasks.
Similarly, Trockman & Kolter (2023) observe that query-key
matrices (Wqk) frequently exhibit a pronounced negative
diagonal, prompting them to initialize it with approximately
the identity matrix, leading to enhanced accuracy in im-
age classification tasks. Similar to (Trockman & Kolter,
2023), we demonstrate that findings about the structure of

Wqk can inform initialization strategies that improve Trans-
former performance. However, since the identity matrix is
one instance of a symmetric matrix, we consider the work
by (Trockman & Kolter, 2023) as a special instance of our
broader approach, confirming our findings in the image
domain.

6. Discussion
In this work, we demonstrate how bidirectional and au-
toregressive objective functions influence the structure of
the query-key matrix Wqk in self-attention, enhancing our
understanding of Transformer models. Our mathematical
framework shows that bidirectional training induces sym-
metric structures in Wqk, whereas autoregressive training
results in matrices characterized by directionality and col-
umn dominance. To empirically validate our analysis, we
develop and apply symmetry and directionality scores to
various Transformer encoder and decoder models across
multiple modalities, including text, audio, and images. Our
results reveal that bidirectionally trained encoder models ex-
hibit high symmetry, while autoregressively trained decoder
models demonstrate strong directionality, thereby support-
ing the predictions of our mathematical framework. This
suggests that self-attention inherently reflects these struc-
tural properties, contributing to the mechanistic interpretabil-
ity of Transformer models. Finally, we leverage our findings
to improve convergence speed during bidirectional train-
ing by initializing Wq and Wk matrices such that Wqk is
symmetric.

While our findings mark an initial step toward leveraging
symmetry for more efficient Transformer training, further
research is required to assess the scalability of symmetric
initialization in large-scale models and across diverse do-
mains. Furthermore, it is important to explore strategies
for leveraging the directionality structures of decoder-only
models. For instance, incorporating structural constraints
into the objective function or weight regularization could
enhance training efficiency and stability in autoregressive
settings. By bridging theoretical insights with practical im-
provements, our work not only advances the interpretability
of self-attention but also provides a foundation for optimiz-
ing Transformer architectures. Ultimately, these findings
contribute to a deeper understanding of the mechanisms
governing self-attention, paving the way for more reliable
and efficient Transformer-based models.
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A. Mathematical proofs
A.1. Preliminaries

Following the notation in (Vaswani et al., 2017; Radford et al., 2018), we define a Transformer architecture as,

Definition A.1. (Transformer architecture). Let U ∈ RN,V be a matrix representing the sequence of N one-hot encoded
tokens of dimension V . A Transformer architecture consists of L stacked attention blocks, each one composed of a
self-attention layer and a feedforward layer, as follows,

X0(U) = UWe +Wp{
X̂l = Xl−1 + al(Xl−1;W

l
q,W

l
k,W

l
v)

Xl = X̂l +ml(X̂l;W
l
1,W

l
2)

∀l ∈ [1, L]

σ
(
Z
)
= σ

(
XLWu

)
,

(S1)

where We ∈ RV,d represents the linear transformation from the vocabulary space to the embedding space of dimension d,
Wp ∈ RV,d represents the positional encoding, X0 ∈ RN,d is the initial embedding of the sequence, al(·) is a self-attention
function given by

a(Xl−1) = Al(Xl−1)V
l(Xl−1) (S2)

where the matrix of attention scores Al(Xl−1) is given by
Ql(Xl−1) = Xl−1W

l
q

Kl(Xl−1) = Xl−1W
l
k

Al(Xl−1) = σ
(

1√
d
QlKlT

)
,

(S3)

where 1/
√
d is a constant normalization factor, and Wl

q ∈ Rd,d and Wl
k ∈ Rd,d represent linear transformations within

the embedding space, Vl(Xl−1) = Xl−1W
l
v represents a linear transformation within the embedding space, ml(·) is

a position-wise feedforward layer with hidden dimension df and learnable matrices Wl
1 ∈ Rd,df and Wl

2 ∈ Rdf ,d,
Wu ∈ Rd,V represents the linear transformation from the embedding space back to the vocabulary space, σ(·) is the
row-wise softmax function, and σ

(
Z
)
∈ RN,V is the estimated probability distribution over the vocabulary. We omit layer

normalization and biases for simplicity (see also (Elhage et al., 2021)).

Furthermore, we use the following definition of a bilinear form,

Definition A.2. (Bilinear form). A bilinear form on a vector space V over a field F is a map M : V × V → F that is
linear in each argument separately, that is,

M(ax+ by, z) = aM(x, z) + bM(y, z)

M(x, ay + bz) = aM(x,y) + bM(x, z) ,
(S4)

for all x,y, z ∈ V and a, b ∈ F . Let {e1, . . . , ed} be a basis for the vector space V . The matrix M such that [M]ij =
M(ei, ej) is the matrix of the bilinear form on this basis, and it follows

M(x,y) = x⊤My (S5)

Finally, we provide the following definition of autoregressive and bidirectional training objectives,

Definition A.3. (Autoregressive and bidirectional objectives). Let U = {t1, . . . , tN} a sequence of tokens. The joint
probability of U is factorized autoregressively as follows,

Pr[U ] = Pr[t1, . . . , tN ] = ΠN
i=1 Pr[ti|t1, . . . , ti−1] . (S6)

During autoregressive training, a model with a set of parameters W is optimized to minimize the following negative
log-likelihood

L(U ;W) = −
N∑
i=1

log pW(ti | {tj} : j < i) , (S7)
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where the conditional probabilities are modeled with learnable parameters W . During bidirectional training, a model with a
set of parameters W is optimized to minimize the following negative log-likelihood

L(U ;W) = −
N∑
i=1

log pW(ti | {tj} : j ̸= i) . (S8)

In practice, only a subset M ∈ [1, . . . , N ] of the tokens are predicted as in Masked Language Modelling (MLM) (see
Devlin et al., 2019; Warner et al., 2024), leading to the following negative log-likelihood

L(U ;W) = −
∑
i∈M

log pW(ti | {tj} : j /∈ M) . (S9)

A.2. Related remarks to Section 2.1

Remark A.4. Each element of the sum in Equation (4) implicitly defines an operator in the subspace spanned by X =
{x⊤0 ,x⊤1 , . . . ,x⊤N} given the transformed embedding space defined by Wqk,∑

j

αij(Wqk)xj =
∑
j

x⊤i Wqkxj xj =
∑
j

PWqk
(xi,xj) , (S10)

where PWqk
( · ,xj) are operators over the subset X. The set X is in general linearly dependent, and the number of tokens

N in the sequence differs from the embedding space dimension d. Furthermore, Wqk represents a general bilinear form
(see Definition A.2), which may not satisfy all the defining axioms of a formal inner product — namely, linearity, conjugate
symmetry, and positive definiteness. Finally, the operators PWqk

(·xj) are not formal projection operators since they are not
nilpotent (PWqk

( ·xj) ◦ PWqk
( ·xj) ̸= PWqk

( ·xj)). Nonetheless, the bilinear map Wqk : Rd × Rd → R still associates
any pair of vectors with a scalar value quantifying their alignment as determined by the geometric relations encoded in Wqk.
Therefore, self-attention computes a generalized decomposition of xi on Conv(X) in the transformed embedding space
defined by Wqk. A convex combination ensures that the resulting vector remains within the region enclosed by the basis
vectors X.
Remark A.5. Following Definition A.1, multi-head attention consists of parallelizing the self-attention operation across H
different heads with an embedding space dh < d,

X̂(X) = X+ concat
(
A1V1,A2V2, . . . ,AhVh

)
Wo (S11)

where Ah = σ(d−1/2 XWq,h W
⊤
k,h X

T ) is the self-attention of the h-th head, Wq,h ∈ Rd,dh , Wk,h ∈ Rd,dh and
Wv,h ∈ Rd,dh are the query, key, and value matrices of the h-th attention head, respectively, and Wo ∈ Rd,d is a linear
transformation (Vaswani et al., 2017). Operationally, the self-attention computation is performed in parallel by factorizing
the Wq and Wk matrices into H rectangular blocks, as follows,

Wq =
[
Wq,1

∣∣Wq,2

∣∣ . . . ∣∣Wq,H

]
Wk =

[
Wk,1

∣∣Wk,2

∣∣ . . . ∣∣Wk,H

]
,

(S12)

and performing the matrix multiplication Wq,hW
⊤
k,h per every h-th head independently in one step. It follows that the full

Wqk matrix is given by the sum of the bilinear forms Wqk,h of every head, as follows,

Wqk = WqW
⊤
k =

∑
h

Wq,hW
⊤
k,h =

∑
h

Wqk,h (S13)

where each Wqk,h ∈ Rd,d is a square matrix with rank(Wqk,h) ≤ dh. Therefore, each head perform independent
projections onto Conv(X) that are then summed together, as follows,∑

j

α̂ij xj =
∑
j

x⊤i Wqkxj xj =
∑
j

x⊤i

(∑
h

Wqk,h

)
xj xj =

∑
j

∑
h

⟨xi,Wqk,hxj⟩xj , (S14)

thus performing the same operations as in Equation (4).
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A.3. Related remarks to Section 2.2

Let V = {t1, . . . , tV } be a vocabulary of tokens, and let D be a dataset of sequences Uu ∈ VN of length N , where
D = {Uu = (xu

1 , . . . , x
u
N )}Du=1 ⊂ VN . For a single sequence Uu with joint distribution p(Uu), the chain rule implies that

for any permutation σ of {1, . . . , N}, the joint probability can be written as,

p(Uu) =

N∏
t=1

p
(
xu
σ(t) | x

u
σ(1), . . . , x

u
σ(t−1)

)
. (S15)

Given a set of conditional parents Di ⊂ {1, . . . , N} \ {i}, define the **local negative log-likelihood** as:

L(U ;W) = −
N∑
i=1

log pW(xi | xDi), (S16)

where W denotes the model parameters. Let G be a directed graph where each edge is Di → i. We distinguish two cases:

1. If G is a directed acyclic graph (DAG), then a topological ordering τ exists such that Dτ(i) ⊆ {τ(1), . . . , τ(i− 1)}.
In this case, the joint distribution pW(x) =

∏N
i=1 pW(xτ(i) | xDτ(i)

) is properly normalized and the local negative
log-likelihood in (S16) is equal to the true negative log-likelihood. For example, during autoregressive training, each
token is conditioned only on its predecessors,

L(U ;W) = −
N∑
i=1

log pW(xi | x1, . . . , xi−1) = −
N∑
i=1

log pW(xi | x<i). (S17)

2. If G contains directed cycles, the product
∏N

i=1 pW(xi | xDi
) is not guaranteed to be normalized, and thus does not

define a proper joint likelihood. In this case, one can instead minimize the following pseudo log-likelihood,

L̂(U ;W) = −
N∑
i=1

log pW(xi | x1, . . . , xi−1, xi+1, . . . , xN ) = −
N∑
i=1

log pW(xi | x−i), (S18)

where x−i denotes all tokens in the sequence except xi. Following Besag’s theorem (Besag, 1975), the maximum
pseudo-likelihood estimator is consistent under standard regularity conditions, and (S18) remains compatible with
stochastic-gradient optimization even though it is not the true negative log-likelihood (Yang et al., 2019).

A.4. Proof of Proposition 2.1 and related remarks

Proof. Let U = {t1, . . . , tN} be a sequence of N tokens. Let L(U ;W) be the negative log-likelihood of each token ti,
expressed as

L(U ;W) =

N∑
i=1

L(ti) = −
N∑
i=1

log pW(ti | tDi) , (S19)

where Di ⊂ [0, 1, . . . , N ] is the conditioning set, that is, the set of indices defining the set of tokens {tj : j ∈ Di} of
the conditional probability distribution. Let U = [t0, t1, . . . , tN ] be the sequence of N one-hot encoded tokens ti ∈ RV

associated with U , where V is the dimension of the vocabulary. Let L(ti) be the cross-entropy of the one-hot encoded token
ti and the estimated probability distribution σ(zi) ∈ RV , as follows,

L(U) =

N∑
i=1

L(ti) =
N∑
i=1

ti log(σ(zi)) , (S20)

where we let zi be the prediction of the i-th token ti from the representations in the last layer of a Transformer model,
following Definition A.1, 

x0
i
⊤
= ti

⊤We +Wp

xl
i
⊤
= Fl(x

l−1
i ) ∀l ∈ [1, L]

σ
(
zi
)
= σ

(
xL
i
⊤
Wu

)
,

(S21)
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where xl
i
⊤
= Fl(x

l−1
i ) is a short notation for the self-attention and multi-layered perception transformation of the l-th layer,

Fl(x
l−1
i ) =

{
x̂l⊤

i = x̂l−1⊤
i + al(x

l−1
i )

xl⊤

i = x̂l⊤

i +ml(x̂
l
i)

, (S22)

where the self-attention function is given by

al(x
l−1
i ) =

∑
j∈Di

αl
ij(w

l)xl−1
j

⊤
Wl

v . (S23)

Let attention coefficients αl
ij ≡ αl

ij(w
l) of the l-th layer be parameterized with a general parameter wl. Let the gradient of

L(ti) w.r.t. wl (the parameterization of the attention scores) be factorized as follows,

∇wlL(ti) =
∂L(ti)
∂αl

ij

∂αl
ij

∂wl
. (S24)

It follows that,

∂L(ti)
∂αl

ij

=
∂L(ti)
∂zi

∂zi
∂xL

i

∂xL
i

∂x̂l
i

∂x̂l
i

∂αl
ij

= (ti − σ(zi))
⊤W⊤

u

∂xL
i

∂x̂l
i

Wl
v

⊤ ∑
j∈Di

xl−1
j ,

(S25)

where the term ∂xL
i /∂x̂

l
i includes the set of partial derivatives that define the gradient of the representation xL

i at the last
layer w.r.t. the self-attention representation x̂l

i at the l-layer, as follows,

∂xL
i

∂x̂l
i

=

(
1 +

L−1∑
m=l

F ′l (xm
i )

)(
1 +m′l(x̂

l
i)
)
, (S26)

where
F ′l (xm

i ) =
∂

∂xl
i

Fl(x
m
i ) ; m′l(x̂

l
i) =

∂

∂x̂l
i

ml(x̂
l
i) . (S27)

Let δli be the error at the last layer propagated to the self-attention function at the l-th layer, as follows,

δli
⊤
= (ti − σ(zi))

⊤W⊤
u

∂xL
i

∂x̂l
i

Wl
v

⊤
, (S28)

thus obtaining the following equation for the gradient,

∇wlL(ti) = δli
⊤ ∑

j∈Di

xl−1
j

∂αl
ij

∂wl
. (S29)

Let the attention scores be computed without the row-wise softmax operation and explicitly with the bilinear form Wqk,
such that the following expression gives the score between the i-th and jth token,

αl
ij ≡ αl

ij(W
l
qk) = xl−1

i

⊤
Wl

qkx
l−1
j , (S30)

from which we obtain
∂αl

ij

∂Wl
qk

= xl−1
i xl−1

j

⊤
= Kl−1

ij , (S31)

where Kl−1
ij ∈ Mn is a square rank-1 matrix given by the outer product between the i-th and j-th token from the l − 1-th

layer. It follows that the total gradient of L(ti) is given by

∇Wl
qk
L(ti) = δli

⊤ ∑
j∈Di

xl−1
j Kl−1

ij , (S32)
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where we notice that, for every j, the term δli
⊤
xl−1
j is a scalar quantity that we define as βl

ij , thus obtaining,

∇Wl
qk
L(ti) =

∑
j∈Di

βl
ijK

l−1
ij , (S33)

and therefore,
∇Wl

qk
L(U) =

∑
i

∑
j∈Di

βl
ijK

l−1
ij ∀Wl

qk, l ∈ [1, L] . (S34)

We can rewrite the double summation either as,

∇Wl
qk
L(U) =

∑
i

∑
j∈Ci

βl
ijK

l−1
ij ∀Wl

qk, l ∈ [1, L] . (S35)

where Cj ⊂ [0, 1, . . . , N ] is the set of indices defining the set of tokens {tj} used to predict ti, or equivalently as,

∇Wl
qk
L(U) =

∑
i∈Pj

∑
j

βl
ijK

l−1
ij ∀Wl

qk, l ∈ [1, L] , (S36)

where Pj ⊂ [0, 1, . . . , N ] is the set of indices defining the set of tokens {ti} that are predicted by tj , thus concluding the
proof.

In standard Transformer models, the bilinear form Wqk is not directly computed, and as such, it is not explicitly updated
through gradient descent. Nonetheless, Wqk is implicitly updated with a combination of the weight updates of Wq and
Wk having the same form as in Proposition 2.1, see the following.
Remark A.6. Let L(U) be the negative log-likelihood of a given sequence of one-hot encoded tokens U. Let Wl

q and Wl
k

be the query and key transformation matrices of the l-th layer of Transformer models, see Definition A.1. Let Wl
q and

Wl
k be updated via gradient descent, that is, Wl

q → Wl
q + η∇Wl

q
L(U) and Wl

k → Wl
k + η∇Wl

k
L(U), where η is the

learning rate. It follows that the matrix Wl
qk = Wl

qW
l
k

⊤ is implicitly updated following,

Wl
qk →

(
Wl

q + η∇Wl
q
L(U)

)(
Wl

k + η∇Wl
k
L(U)

)⊤
= Wl

qW
l
k

⊤
+ η

(
Wl

q ∇Wl
k
L⊤(U) +∇Wl

q
L(U)Wl

k

⊤ )
+ o(η2)

= Wl
qk + η

∑
i

∑
j∈Ci

βl
ij

(
Wl

qW
l
q

⊤
Kl−1

ij +Kl−1
ij Wl

kW
l
k

⊤)
+ o(η2)

= Wl
qk +∆Wl

qk + o(η2) ≃ Wl
qk +∆Wl

qk ,

(S37)

assuming that the learning rate η is small. Therefore, the implicit weight update of Wl
qk following gradient descent is given

by
∆Wl

qk = η
∑
i

∑
j∈Ci

βl
ij

[(
Wl

qW
l
q

⊤
Kl−1

ij

)
+
(
Kl−1

ij Wl
kW

l
k

⊤)] ∝∑
i

∑
j∈Ci

βl
ij K

l−1
ij , (S38)

where both Wl
qW

l
q
⊤
Kl−1

ij and Kl−1
ij Wl

kW
l
k

⊤ are rank-1 matrices,

Wl
qW

l
q

⊤
Kl−1

ij =
(
Wl

qW
l
q x

l−1
i

)
xl−1
j

⊤
= x̄l−1

i xl−1
j

⊤

Kl−1
ij Wl

kW
l
k

⊤
= xl−1

i

(
xl−1
j

⊤
Wl

kW
l
k

⊤)
= xl−1

i x̄l−1⊤
j .

(S39)

A.5. Formal proofs of Theorem 2.3 and 2.4: the connection between objective functions, directionality, and symmetry

In this section, we provide formal proofs of Theorems 2.3 and 2.4, which characterize the directional and symmetric
structures that emerge during autoregressive and bidirectional training, respectively. To this end, we introduce a series of
intermediate Propositions and Lemmas, following these steps:
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1. We begin by showing that when t∗ is used as a context token to predict other tokens, all predicted tokens contribute to
the column space of Wqk, while only t∗ contributes to the row space. Conversely, when t∗ is the token being predicted,
only t∗ contributes to the column space, whereas all context tokens contribute to the row space (Section A.5.1).

2. Next, we show that under reasonable assumptions about the statistical distribution of token embeddings, these structural
properties imply that the expected norm of column updates exceeds that of row updates when t∗ is used as context. In
contrast, row updates dominate when t∗ is the predicted token (Section A.5.2).

3. We then show that in autoregressive training, the expected number of times a token t∗ appears as context can differ
from the expected number of times it is predicted, since these two quantities are affected differently by statistical
correlations between tokens. In contrast, under bidirectional training, the expected counts are always equal, regardless
of token correlations (Section A.5.3).

4. Finally, we combine the above results to prove our main theorems: (1) the weight updates to Wqk induce column
dominance under autoregressive training (Section A.5.4-A.5.5), and (2) the weight updates to Wqk induce symmetry
under bidirectional training (Section A.5.6).

A.5.1. PROOF OF PROPOSITION 2.2

First, we show that a token t∗ contributes differently to the updates of Wqk depending on whether it serves as context for
predicting other tokens or is itself predicted.

Proof. Let U = {t1, . . . , tN} be a sequence of tokens with the embedding of every i-th token be given by xi ∈ Rd.
Proposition 2.1 shows that the implicit weight update can be decomposed with two equivalent regrouping of the double
summations, as follows,

∆Wqk =
∑

(i,j)∈U

βijxix
T
j =

∑
j

∑
i∈Pj

βijxi

x⊤j =
∑
i

xi

(∑
i∈Ci

βijx
⊤
j

)
, (S40)

where Pi ⊂ U is the set of tokens predicted by a given token ti, while Cj ⊂ U is the set of tokens that predict a given token
tj . We neglect any constant of proportionality - such as a learning rate - for simplicity, and we do not assume any specific
structure on Pi and Cj (autoregressive training, bidirectional training, or others). First, the contribution of t∗ ∈ U to the
weight update when t∗ is used as context to predict a set of tokens Pt∗ ⊂ U is

∆Wqk

∣∣∣∣
tj=t∗

=

∑
i∈Pt∗

βi∗xi

x⊤t∗ . (S41)

The associated weight update of the k-th column is then given by

∆w·,k

∣∣∣∣
tj=t∗

=

∑
i∈Pt∗

βi∗xi

 [xt∗ ]k = [xt∗ ]k

∑
i∈Pt∗

βi∗xi

 , (S42)

while the update of the m-th row is

∆wm,·

∣∣∣∣
tj=t∗

=

∑
i∈Pt∗

βi∗[xi]m

xt∗ . (S43)

A complementary argument can be made when predicting a given token t∗ from a set of tokens Ct∗ . Indeed, the contribution
to the weight update when t∗ is predicted by set of tokens Ct∗ ⊂ U is given by

∆Wqk

∣∣∣∣
ti=t∗

=

∑
j∈Ct∗

β∗jxt∗

x⊤j . (S44)

The associated weight update of the k-th column is then given by

∆wk,·

∣∣∣∣
ti=t∗

=

∑
j∈Ct∗

β∗j [xj ]k

xt∗ , (S45)
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while the update of the m-th row is

∆wm,·

∣∣∣∣
ti=t∗

=

∑
j∈Ct∗

β∗jx
⊤
j

 [xt∗ ]m = [xt∗ ]m

∑
j∈Ct∗

β∗jx
⊤
j

 . (S46)

Therefore, the weight update of each column (row) when a set of tokens predicts t∗ is equivalent to the weight update of
each row (column) when t∗ is used to predict a set of tokens. This concludes the proof.

A.5.2. ASYMMETRIC GROWTH OF ROWS AND COLUMNS DURING WEIGHT UPDATE

Next, we demonstrate that under reasonable assumptions about the statistical distribution of token embeddings, the expected
norm of column updates exceeds that of row updates when the token t∗ is used as context to predict other tokens. Conversely,
when t∗ is being predicted by other tokens, the row updates become dominant. To do so, we make the following assumptions:

• The token embeddings xi are independent and identically distributed (i.i.d.) random vectors drawn from a probability
distribution D with zero mean, E[xi] = 0, and covariance matrix Cov(xi) = Σ. This assumption holds at initialization
for any Transformer model with learnable embeddings.

• The covariance matrix is not isotropic, i.e., Σ ̸= σ2I,. More specifically, we posit that there is partial alignment between
the embeddings xi due to the semantic and predictive relationships between tokens, which typically emerge during
training.

Similar to Proposition 2.2, the scenarios where t∗ is used to predict other tokens and where t∗ is being predicted by other
tokens are complementary. In the following Proposition, we focus solely on the case where t∗ serves as context to predict a
set of tokens. A formal derivation for the opposite case where t∗ is predicted by other tokens is provided in a subsequent
Corollary.

Proposition A.7. (Asymmetric growth of columns and rows for context). Let U = {t1, . . . , tN} a sequence of tokens, and
let t∗ be a token representing the context of every token ti ∈ U . Let {x1 . . . ,xN} be the token embedding associated with U
such that each xi ∼ D is a i.i.d. random vector drawn from a probability distribution D with zero mean and non-isotropic
covariance Cov(xi) = Σ. Let ∆Wqk be the weight update from Proposition 2.1. Then the squared norm of the m-th row
and k-th column of Wqk satisfies

ED
[
||∆w·,k||2

]
ED [||∆wm,·||2]

> 1 ∀k ∈ {1, . . . , d},∀m s.t. Σm,m <
Tr(Σ)
d

(S47)

Proof. Let U = [t0, . . . , tN ] be a sequence of tokens, and let t∗ be the context of every token ti ∈ U . Let {xi} be the set
of token embeddings associated with U and let y be the token embedding of t∗. It follows from Proposition 2.2 that the
squared norm of the weight update of the k-th column is given by

∆w·,k =

N∑
i=1

βi∗xi[y]k ⇒ ||∆w·,k||2 = [y]2k||
N∑
i=1

βi∗xi||2 , (S48)

while the squared norm of the weight update of the m-th row by

∆wm,· =

N∑
i=1

βi∗[xi]my ⇒ ||∆wm,·||2 =
( N∑
i=1

βi∗[xi]m
)2||y||2 . (S49)

Let {xi} ∼ D be a set of i.i.d. random vectors from a probability distribution D such that ED[xi] = 0 and Cov(xi) = Σ ∈
Rd,d. Therefore, each k-th coordinate [xi]k is such that ED[[xi]k] = 0 and Var([xi]k) = Σk,k. We also assume that y is
statistically independent from xi ∀i with E[y] = 0 and covariance Cov(y) = σ2

yI. It follows that the expected value of
||∆w·,k||2 over D is given by

ED
[
||∆w·,k||2

]
= ED

[
[y]2k||

N∑
i=1

βi∗xi||2
]
= ED

[
[y]2k

]
ED

[
||

N∑
i=1

βi∗xi||2
]
. (S50)
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Given the statistical independence between the entries of xi, the second term is equal to

ED

[
||

N∑
i=1

βi∗xi||2
]
=
∑
i,i′

ED
[
βi∗βi′∗x

⊤
i xi′

]
=

N∑
i=1

β2
i∗ED

[
x⊤i xi

]
+
∑
i′ ̸=i

βi∗βi′∗ED
[
x⊤i xi′

]
=

N∑
i=1

β2
i∗Tr

(
ED
[
xix
⊤
i

] )
+
∑
i′ ̸=i

βi∗βi′∗ED
[
x⊤i xi′

]
= Tr(Σ)

N∑
i=1

β2
i∗ ,

(S51)

and therefore

ED
[
||∆w·,k||2

]
= Γk,kTr(Σ)

N∑
i=1

β2
i∗ . (S52)

Similarly, the expected value of ||∆wm,·||2 is given by

ED
[
||∆wm,·||2

]
= ED

[( N∑
i=1

βi∗[xi]m
)2||y||2] = ED

[( N∑
i=1

βi∗[xi]m
)2]ED [||y||2] . (S53)

The first term can be decomposed as

ED

[( N∑
i=1

βi∗[xi]m
)2]

=

N∑
i=1

β2
i∗ED

[
[xi]

2
m

]
+
∑
i′ ̸=i

βi∗βi′∗ED [[xi′ ]m[xi]m] = Σm,m

N∑
i=1

β2
i∗ , (S54)

and therefore

ED
[
||∆wm,·||2

]
= Σm,mTr(Γ)

N∑
i=1

β2
i∗ . (S55)

The ratio of the expected value of these squared norms is

ED
[
||∆w·,k||2

]
ED [||∆wm,·||2]

=
Γk,kTr(Σ)
Σm,mTr(Γ)

=
Γk,k

Tr(Γ)
Tr(Σ)
Σm,m

=
1

d

Tr(Σ)
Σm,m

. (S56)

We assume a non-isotropic covariance structure in Σ, that is, the average variance per dimension is lower than the total
variance across all dimensions. This implies Tr(Σ) > dΣm,m for some m. It follows that,

ED
[
||∆w·,k||2

]
ED [||∆wm,·||2]

=
1

d

Tr(Σ)
Σm,m

>
1

d

dΣm,m

Σm,m
= 1 ∀m s.t. Σm,m <

Tr(Σ)
d

, (S57)

thus concluding the proof.

Again, a complementary argument can be made about the asymmetric weight update when a set of tokens U = {t1, . . . , tN}
is used to predict a given token t∗. We formalize this in the following Corollary.

Corollary A.8. (Asymmetric growth of columns and rows for prediction). Let U = {t1, . . . , tN} be a sequence of tokens,
and let every token ti ∈ U be the context of a given token t∗. Let the associated embedding be drawn i.i.d. from a probability
distribution D as in Proposition A.7. Let ∆Wqk be the weight update from Proposition 2.1. Then the squared norm of the
m-th row and k-th column of Wqk satisfies

ED
[
||∆w·,k||2

]
ED [||∆wm,·||2]

< 1 ∀m ∈ {1, . . . , d},∀k s.t. Σk,k <
Tr(Σ)
d

(S58)
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Proof. Let U = [t0, . . . , tN ] a sequence of tokens, and let t∗ be predicted by every token ti ∈ U . Let {xi} be the set of
token embeddings associated with U and let y be the token embedding of t∗. It follows from Proposition 2.2 that the squared
norm of the weight update of the k-th column is given by

∆w·,k =

N∑
j=1

β∗j [xj ]ky ⇒ ||∆w·,k||2 =
( N∑
i=1

β∗j [xj ]k
)2||y||2 , (S59)

while the weight update of the m-th row follows

∆wm,· =

N∑
j=1

β∗jxj [y]m ⇒ ||∆wm,·||2 = [y]2m||
N∑
i=1

β∗jxj ||2 . (S60)

Therefore, following the same arguments as in Proposition A.7, the ratio of the expected value of the square norms is given
by

ED
[
||∆w·,k||2

]
ED [||∆wm,·||2]

=
Σk,kTr(Γ)
Γm,mTr(Σ)

= d
Σk,k

Tr(Σ)
<

dΣk,k

dΣk,k
= 1 ∀k s.t. Σk,k <

Tr(Σ)
d

, (S61)

thus concluding the proof.

A.5.3. EXPECTED CONTRIBUTION FOR CONTEXT AND PREDICTION AND RELATED REMARKS

Additionally, we show that in autoregressive training, the expected number of tokens predicted by a given token t∗ can
differ from the number of tokens that predict t∗, with this ratio influenced by token correlations, while in bidirectional
training, the two quantities are always equal regardless of such correlations, yielding a ratio of 1. We formalize this in the
following proposition and illustrate, in the subsequent remark, an example from autoregressive training where the expected
ratio exceeds 1.

Proposition A.9. (Ratio of expected counts during autoregressive and bidirectional training). Let V = {t0, . . . , tV } be a
set of tokens. Let U be the sample space of all possible sequences of N tokens, and let the sequence U = {t1, . . . , tN} ∈ U
be a random variable with probability distribution P (U) defined over U . Let Pr[tj = t∗] be the probability that the token at
index j in a sequence U ∈ U is given by t∗ ∈ V . Let EP [µc(t

∗)] be the expected number of tokens that are predicted by a
given token t∗, and EP [µp(t

∗)] the expected number of tokens that predict a given token t∗. For autoregressive training, the
ratio

EP [µc(t
∗, U)]

EP [µp(t∗, U)]
=

∑N
k=1(N − k) Pr[tk = t∗]∑N
k=1(k − 1)Pr[tk = t∗]

, (S62)

depends on Pr[tk = t∗] ∀t∗ ∈ V,∀k ∈ {1, . . . .N}, while for bidirectional training the same ratio is given by

EP [µc(t
∗, U)]

EP [µp(t∗, U)]
= 1 . (S63)

Proof. Let V = {t0, . . . , tV } be a set of tokens. Let U = VN denote the sample space of all possible sequences of N
tokens from the vocabulary V . Let F = 2U be the σ-algebra given by the power set of U , and let P be the probability
distribution over U that defines the distribution of the random variable sequence U . This defines the probability space
(U ,F , P ). For each position k ∈ {1, . . . , N} we let the random variable Tk be Tk : U → V such that Tk(U) ≡ tk. Let
E = {U ∈ U : tk = t∗} the event of all sequences where the k-th token is a fixed token t∗. The indicator function 1{E}(U)
is a random variable defined as

1{E}(U) = 1{tk = t∗}(U) =

{
1 if tk = t∗

0 otherwise ,
(S64)

and as such its expected value over P is

EP [1{tk = t∗}(U)] =
∑
U∈U

1{tk = t∗}(U) Pr[U ] =
∑

U∈U : tk=t∗

Pr[U ] = Pr[tk = t∗] . (S65)

Let µc(t
∗, U) be the random variable quantifying the number of tokens predicted by t∗, while µp(t

∗, U) is the random
variable quantifying the number of tokens predicted by t∗. We analyzed the case of autoregressive and bidirectional training
separately.
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During autoregressive training, each time the token t∗ appears at position k it is used as context to predict N − k tokens,
and it is predicted by k − 1 tokens. It follows that µc(t

∗, U) is given by

µc(t
∗, U) =

N∑
l=2

l−1∑
k=1

1{tk = t∗} =

N∑
k=1

(N − k)1{tk = t∗} , (S66)

while µp(t
∗, U) is given by

µp(t
∗, U) =

N−1∑
l=1

l−1∑
k=1

1{tl = t∗} =

N∑
k=1

(k − 1)1{tk = t∗} . (S67)

Therefore, the expected value of µc(t
∗, U) over P is

EP [µc(t
∗, U)] = EP

[
N∑

k=1

(N − k)1{tk = t∗}

]
=

N∑
k=1

(N − k) Pr[tk = t∗] , (S68)

the expected value of µp(t
∗) is

EP [µp(t
∗, U)] = EP

[
N∑

k=1

(k − 1)1{tk = t∗}

]
=

N∑
k=1

(k − 1)Pr[tk = t∗] , (S69)

and their ratio is given by
EP [µc(t

∗, U)]

EP [µp(t∗, U)]
=

∑N
k=1(N − k) Pr[tk = t∗]∑N
k=1(k − 1)Pr[tk = t∗]

. (S70)

During bidirectional training, each time the token t∗ is masked at position k, it is predicted by N − 1 tokens. We assume
that the token t∗ significantly contributes to the context of a masked token only if it is itself not masked (see Appendix
A.3). Additionally, we assume that the probability ρ of masking any given position k is the same for all positions and does
not depend on the specific token tk at that position. As such, we define masking as an independent Bernoulli variable
mk : Σk → {0.1} ∼ Pm such that Pr[mk = 1] = ρ, independently of the token and sequence spaces. It follows that
µc(t

∗, U,m) is given by

µc(t
∗, U,m) =

N∑
k=1

1{tk = t∗}1{mk = 0}
∑
k′ ̸=k

1{mk′ = 1} , (S71)

while µp(t
∗, U,m) is given by

µp(t
∗, U,m) =

N∑
k=1

1{tk = t∗}1{mk = 1}
∑
k′ ̸=k

1{mk′ = 0} . (S72)

Therefore, by taking the expectation with respect to both distributions P and Pm, their respective expected values are given
by

EP,Pm
[µc(t

∗, U,m)] = EP,Pm

 N∑
k=1

1{tk = t∗}1{mk = 0}
∑
k′ ̸=k

1{mk′ = 1}


=

N∑
k=1

EP,Pm

1{tk = t∗}1{mk = 0}
∑
k′ ̸=k

1{mk′ = 1}


=

N∑
k=1

EP,Pm
[1{tk = t∗}1{mk = 0}]

∑
k′ ̸=k

[1{mk′ = 1}]

=

N∑
k=1

Pr(tk = t∗)Pr(mk = 0)
∑
k′ ̸=k

Pr(mk′ = 1)

= Nρ(N − 1)(1− ρ)

N∑
k=1

Pr(tk = t∗) ,

(S73)
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and

EP,Pm
[µp(t

∗, U,m)] = EP,Pm

 N∑
k=1

1{tk = t∗}1{mk = 1}
∑
k′ ̸=k

1{mk′ = 0}


= Nρ(N − 1)(1− ρ)

N∑
k=1

Pr(tk = t∗) ,

(S74)

and their ratio is
EP [µc(t

∗, U)]

EP [µp(t∗, U)]
= 1 , (S75)

where we omit the dependence on the independent random variable m for simplicity, thus concluding the proof.

The following remark highlights how, during autoregressive training, the ratio of expected token counts can vary depending
on the correlations and conditional dependencies among the tokens.
Remark A.10. We separately analyze the following two cases:

• No statistical correlation between tokens. Assume that the tokens are statistically independent and identically
distributed (i.i.d.) across positions, i.e., the probability of each token is the same at every position and does not depend
on surrounding tokens. Under this assumption, during autoregressive training, the expected number of times token t∗ is
used to predict future tokens is given by,

EP [µc(t
∗, U)] =

N∑
k=1

(N − k) Pr[tk = t∗] = Pr[t∗]

N∑
k=1

(N − k) = Pr[t∗]
N(N − 1)

2
. (S76)

Similarly, the expected number of times token t∗ is predicted by preceding tokens is,

EP [µp(t
∗, U)] =

N∑
k=1

(k − 1)Pr[tk = t∗] = Pr[t∗]

N∑
k=1

(k − 1) = Pr[t∗]
N(N − 1)

2
. (S77)

Therefore, when tokens are independent and identically distributed, the expected number of tokens predicted by t∗ and
the expected number of tokens used to predict t∗ are equal. In this case, there is no difference between autoregressive
and bidirectional training.

• Statistical correlation between tokens. Let us assume that the probability distribution P encodes statistical dependencies
between tokens. Define µ(t∗) as the expected position index of token t∗,

µ(t∗) =

∑N
k=1 kPr[tk = t∗]∑N
k=1 Pr[tk = t∗]

. (S78)

Using this, the ratio of expected counts under autoregressive training becomes,

EP [µc(t
∗, U)]

EP [µp(t∗, U)]
=

N − µ(t∗)

µ(t∗)− 1
. (S79)

This expression shows that if t∗ tends to appear earlier in the sequence, that is, if µ(t∗) < (N + 1)/2 (left of center),
then the ratio is greater than 1. Conversely, if t∗ appears later in the sequence (right of center), the ratio is less than 1.
More formally, suppose there exists δ > 0 such that

µ(t∗) ≤ N + 1

2
− δ . (S80)

Then the ratio can be rewritten as,

EP [µc(t
∗, U)]

EP [µp(t∗), U ]
− 1 =

N + 1− 2µ(t∗)

µ(t∗)− 1
, (S81)

where the numerator satisfies N + 1− 2µ(t∗) ≥ 2δ, and the denominator is positive for any token that can appear at
position 1 (i.e., µ(t∗) > 1). Hence, the ratio is bounded below by,

EP [µc(t
∗, U)]

EP [µp(t∗, U)]
≥ 1 + ε(t∗) , with ε(t∗) =

2δ

µ(t∗)− 1
. (S82)
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A.5.4. TAIL PROBABILITIES OF DISTRIBUTIONS WITH EQUAL MEAN AND DIFFERENT VARIANCES

Before proving column dominance in the next Theorem, we first establish that a probability distribution with higher variance
is more likely to produce large values. Specifically, when two distributions share the same mean but differ in variance, the
one with higher variance has a greater probability of generating samples that exceed a given threshold. We formalize this in
the following lemma.

Lemma A.11. Let a and b be two probability distributions with the same mean µ, but different variances such that σ2
a > σ2

b .
Then, for all values z >

√
σaσb − µ, the probability that a random sample from distribution a exceeds z is greater than or

equal to the probability that a sample from distribution b exceeds z, that is,

Pr[Xa > z] ≥ Pr[Xb > z] for all z >
√
σaσb − µ . (S83)

Proof. Our goal is to find a z such that
Pr [Xa > z] ≥ Pr [Xb > z] (S84)

for which we need the following steps: A lower bound for Pr [Xa > z], an upper bound for Pr [Xb > z], and a value of z
that makes the upper bound lower than the lower bound.

We start by using Chebyshev’s inequality, to derive an upper bound for Pr [Xb > z],

Pr [Xb > z] = Pr [Xb − µ > qσb] ≤
1

q2
=

(
σb

z − µ

)2

. (S85)

Now compute a lower bound for Pr [Xb > z] through the second moment method (which is very similar to the previous one,
but inverted),

Pr [Xa > z] = Pr [Xa − z > 0] ≥ (E [Xa − z])
2

E
[
(Xa − z)

2
] =

(
µ− z

σa

)2

(S86)

Thus, we now only need to find z satisfying (
σb

z − µ

)2

<

(
z − µ

σa

)2

(S87)

for the case z > µ, the inequality is fulfilled when

z >
√
σaσb − µ. (S88)

A.5.5. PROOF OF THEOREM 2.3

Here, we show that the weight updates of Wqk induce column dominance during autoregressive training, leading to the
emergence of directionality. To do so, we make the following assumptions:

• We adopt the same assumptions stated in Propositions A.7 and A.9.
• At initialization, the entries of Wqk are drawn from a probability distribution P with finite mean µ and variance σ2.

This is satisfied by any standard machine learning initialization scheme. This second assumption implies that each k-th
column w·,k and m-th row wm,· have the same mean µ and variance σ2/

√
n. Furthermore, the squared norm of both

rows and columns has equal mean n(σ2 + µ2) and variance n(2σ4 + 4µ2).

Proof. Let {U1, . . . , UD} be a dataset of sequences of length N drawn i.i.d. from a distribution P . Let ku denote the
position of token t∗ in sequence Uu, and let superscript u refer to tokens in the u-th sequence. Following Proposition 2.2
and A.7, we obtain

∆w·,k =

D∑
u=1

[y]k N∑
i=ku+1

βu
i∗x

u
i +

ku−1∑
j=1

βu
∗j [x

u
j ]ky

 , (S89)
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while the squared norm of the weight update of the m-th row by

∆wm,· =

D∑
u=1

 N∑
i=ku+1

βu
i∗[x

u
i ]my + [y]m

ku−1∑
j=1

βu
∗jx

u
j

 , (S90)

where in both equations the superscript u indicates tokens belonging to the u-th sequence in the dataset, and ku indicates the
position index of t∗. It follows again from Proposition A.7 that the expected value of the squared norm of these updates is

ED
[
||∆w·,k||2

]
ED [||∆wm,·||2]

≈
ΓkkTr(Σ)

(∑D
u=1

∑N
i=ku+1 β

u
i∗
)
+ΣkkTr(Γ)

(∑D
u=1

∑ku−1
j=1 βu

∗j
)

ΣmmTr(Γ)
(∑D

u=1

∑N
i=ku+1 β

u
i∗
)
+ ΓmmTr(Σ)

(∑D
u=1

∑ku−1
j=1 βu

∗j
) . (S91)

Following Proposition A.9, let µc(t
∗, U) be the random variable quantifying the number of tokens predicted by t∗, while

µp(t
∗, U) is the random variable quantifying the number of tokens predicted by t∗. When assuming autoregressive training,

it follows that the empirical average of µc(t
∗, U) and µp(t

∗, U) over the dataset {U1, . . . , UD} approaches,

EP [µc(t
∗, U)]

EP [µp(t∗, U)]
=

∑N
j=1(N − j) Pr[tj = t∗]∑N
j=1(j − 1)Pr[tj = t∗]

. (S92)

Following Remark A.10, assume that the expected position µ(t∗) of t∗ satisfies µ(t∗) < (N + 1)/2− δ for some δ > 0,
then

EP [µc(t
∗, U)]

EP [µp(t∗, U)]
> 1 + ϵ(t∗) , (S93)

for some ϵ(t∗) > 0. Hence, across the dataset, t∗ appears more often as a context token than as a predicted token. This
implies EP [ku] < (N + 1)/2, so that the first terms in the numerator and denominator of Equation (S91) dominate, leading
to,

E
[
||∆w·,k||2

]
E [||∆wm,·||2]

> 1 , (S94)

that is, the net increase in column norms exceeds that of row norms. Assume Wqk is initialized with i.i.d. entries from
a distribution with mean µ and variance σ2, then at the beginning of training Var(∥w·,k∥) = Var(∥wm,·∥), while after
training we have Var(∥w·,k∥) > Var(∥wm,·∥) ∀k,m. Applying Lemma A.11, it follows that for all w > γ, where
γ =

√
Var(∥w·,k∥) ·Var(∥wm,·∥)− µ,

Pr[||w·,k|| > w] > Pr[||wm,·|| > w] ∀w > γ , (S95)

thus concluding the proof.

A.5.6. PROOF OF THEOREM 2.4 AND RELATED REMARKS

Finally, we prove that the weight updates of Wqk induce symmetry during bidirectional training. Importantly, the column
dominance is present only during autoregressive training. Indeed, it follows from Proposition A.9 that, during bidirectional
training, the net increase of the norm of the columns is equal to the net increase of the norm of the rows. We formalize this
in the following Corollary.

Corollary A.12. (Bidirectional training does not induce directionality) Let V = {t0, . . . , tV } be a vocabulary of tokens,
and let U ⊂ VN denote the sample space of all sequences of length N . Let U = {t1, . . . , tN} ∈ U be a random variable with
U ∼ P (U). Define Pr[tj = t∗] as the marginal probability that the token at position j equals t∗ ∈ V . Let {x1, . . . ,xN} be
the token embeddings corresponding to the elements of U , where each embedding xi ∼ D is drawn i.i.d. from a distribution
D with zero mean and covariance matrix Cov(xi) = Σ.. Let Wqk be query-key matrix of a self-attention mechanism,
and let ∆Wqk denote its gradient update as defined in Proposition 2.1, computed under an autoregressive objective as in
Definition A.3. Then, the variance of the norm of the rows and the columns at the end of training is equal,

Var (||wm,·||) = Var (||w·,k||) ∀k,m . (S96)
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Proof. Let {U1, . . . , UD} be a dataset of sequences of length N drawn i.i.d. from a distribution P . Let ku denote the
position of token t∗ in sequence Uu, and let superscript u refer to tokens in the u-th sequence. Following Proposition 2.2
and A.7, we obtain

∆w·,k =

D∑
u=1

[y]k N∑
i=ku+1

βu
i∗x

u
i +

ku−1∑
j=1

βu
∗j [x

u
j ]ky

 , (S97)

while the squared norm of the weight update of the m-th row by

∆wm,· =

D∑
u=1

 N∑
i=ku+1

βu
i∗[x

u
i ]my + [y]m

ku−1∑
j=1

βu
∗jx

u
j

 , (S98)

where in both equations the superscript u indicates tokens belonging to the u-th sequence in the dataset, and ku indicates the
position index of t∗. It follows again from Proposition A.7 that the expected value of the squared norm of these updates is

ED
[
||∆w·,k||2

]
ED [||∆wm,·||2]

≈
ΓkkTr(Σ)

(∑D
u=1

∑N
i=ku+1 β

u
i∗
)
+ΣkkTr(Γ)

(∑D
u=1

∑ku−1
j=1 βu

∗j
)

ΣmmTr(Γ)
(∑D

u=1

∑N
i=ku+1 β

u
i∗
)
+ ΓmmTr(Σ)

(∑D
u=1

∑ku−1
j=1 βu

∗j
) . (S99)

Following Proposition A.9, let µc(t
∗, U) be the random variable quantifying the number of tokens predicted by t∗, while

µp(t
∗, U) is the random variable quantifying the number of tokens predicted by t∗. When assuming bidirectional training

training, it follows that the empirical average of µc(t
∗, U) and µp(t

∗, U) over the dataset {U1, . . . , UD} approaches,

EP [µc(t
∗, U)]

EP [µp(t∗, U)]
= 1 . (S100)

From Proposition A.7, it follows that the net increase in the norms of the columns and rows of Wqk is the same. Assuming
the same initialization conditions as in Theorem 2.3, it follows that by the end of training,

Var(∥wm,·∥) = Var(∥w·,k∥) ∀ k,m , (S101)

which concludes the proof.

We now prove Theorem 2.4, showing that the bidirectional training objective induces approximate symmetry in the gradient
contributions of each token pair (i, j). Specifically, we assume that predicting token ti from tj is correlated with predicting tj
from ti, that is, the terms βij and βji from Proposition 2.1 are correlated, leading to similar contributions in both directions.

Proof. Let U = {t1, . . . , tN} be a sequence of tokens. It follows from Proposition 2.1 that the implciit weight update for
Wqk following the gradient of L(U) w.r.t. Wqk is given by

∆Wqk =

N∑
i=1

N∑
j=1

βijKij , (S102)

where we neglect any constant of proportionality (e.g. learning rate) for simplicity. The double summation in Equation
(S102) contains N2 elements. Note that Kji = K⊤ij , so we can rewrite the double summation as follows,

N∑
i=1

N∑
j=1

βijKij =

N∑
i=1

βiiKii +

N∑
i,j=1
i<j

(βijKij + βjiKji) (S103)

where the first term includes the diagonal terms, and the second includes the contributions of every pair (i, j) with
i, j ∈ [0, . . . , N ]. The second term can be written as,

N∑
i,j=1
i<j

(βijKij + βjiKji) =

N∑
i,j=1
i<j

(βijKij + βjiKij
⊤) , (S104)
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and by decomposing Kij in its symmetric and skew-symmetric parts, such that Kij = Sij +Nij , we obtain,

N∑
i,j=1
i<j

(βijKij + βjiKij
⊤) =

N∑
i,j=1
i<j

[
βij(Sij +Nij) + βji(Sij +Nij)

T
]

=

N∑
i,j=1
i<j

[
(βij + βji)Sij + (βij − βji)Nij

]
.

(S105)

Let βij and βji be such that sign(βij) = sign(βji) and |βij | ≈|βji|. By defining ∆Wqk

∣∣
ti↔tj

= βijKij + βjiKij
T , it

follows that

∆Wqk

∣∣
ti↔tj

≈
N∑

i,j=1
i<j

βijSij =

N∑
i,j=1
i<j

βijS
⊤
ij = ∆Wqk

⊤∣∣
ti↔tj

(S106)

thus concluding the proof.

Encoder-only models are typically not trained to predict every token in a sequence, but rather a random subset of tokens,
and the model can attend to tokens bidirectionally. This is usually called Masked Language Modeling (MLM) (Devlin et al.,
2019; Liu et al., 2019; Lan et al., 2020; Warner et al., 2024). Therefore, only a subset of terms in the double summation of
Equation (S105) has the symmetric properties described above. We generalize the proof to this case in the following.
Remark A.13. Let Ci = [0, 1, . . . , N ] and let the summation indexed by i to run over a random subset of tokens M ⊂
[0, 1, . . . , N ]. The weight update of Wqk is then given by

∆Wl
qk =

∑
i∈M

N∑
j=1

βl
ijK

l−1
ij . (S107)

The double summation contains N |M | elements, where |M | is the cardinality of the subset M . We can rewrite the double
summation as follows,

∑
i∈M

N∑
j=1

βl
ijK

l−1
ij =

∑
i∈M

βl
iiK

l−1
ii +

∑
i,j∈M
i<j

(βl
ijK

l−1
ij + βl

jiK
l−1
ji ) +

∑
i∈M

∑
j∈M̄

βl
ijK

l−1
ij , (S108)

where the first term includes the diagonal terms, the second includes the contributions of the pairs (i, j) with i, j ∈ M , and
the third includes the remaining terms with M̄ = [1, . . . , N ] \M . The second term can be written as,∑

i,j∈M
i<j

(βl
ijK

l−1
ij + βl

jiK
l−1
ji ) =

∑
i,j∈M
i<j

(βl
ijK

l−1
ij + βl

jiK
l−1
ij

⊤
) , (S109)

and by decomposing Kl−1
ij in its symmetric and skew-symmetric parts, such that Kl−1

ij = Sl−1
ij +Nl−1

ij , we obtain,∑
i,j∈M
i<j

(βl
ijK

l−1
ij + βl

jiK
l−1
ij

⊤
) =

∑
i,j∈M
i<j

[
βl
ij(S

l−1
ij +Nl−1

ij ) + βl
ji(S

l−1
ij +Nl−1

ij )T
]

=
∑

i,j∈M
i<j

[
(βl

ij + βl
ji)S

l−1
ij + (βl

ij − βl
ji)N

l−1
ij

]
,

(S110)

with a similar structure as in Equation (S105).

Let |M | = pN with 0 < p < 1 being the percentage of tokens to be predicted during bidirectional training. The total
number of pairs in the second term of Equation (S108) is given by a binomial coefficient, thus the total number of elements
in the summation is pN(pN − 1). The total number of elements in the third term is instead the product pN(N − pN).

27



The underlying structures of self-attention: symmetry, directionality, and emergent dynamics in Transformer training

Therefore, the percentage of symmetric weight updates from the second term over the total number of updates in the third
term is given by

pN(pN − 1)

pN(N − pN)
≈ pN

(N − pN)
, (S111)

in the limit of large N . In practice, p is set to be around 15%-30% (Devlin et al., 2019; Liu et al., 2019; Lan et al., 2020;
Warner et al., 2024), leading to ≈ 25% of symmetric weight updates on average.

A.6. Properties of the symmetry score in Definition 3.1 and related proofs

The score s we introduce in Section 3 indicates the degree of symmetry of a matrix M by quantifying the contribution to the
Frobenious norm of its symmetric and skew-symmetric parts. In particular, s equals 1 and -1 for a fully symmetric and
skew-symmetric matrix. Accordingly, positive (negative) values of s indicate the presence of symmetric (skew-symmetric)
structures. Here, we provide a proof for these properties. First, we show that the Frobenious norm of any square matrix
M can be decomposed in the sum of the Frobenious norm of its symmetric and skew-symmetric components, as in the
following Lemma,

Lemma A.14. For any square matrix M ∈ Mn the following equivalence holds

||M||2F = ||Ms||2F + ||Mn||2F . (S112)

Proof. The Frobenius norm of a matrix M can be defined as ||M||F =
√

Tr(MM⊤), and as such we observe that for any
square matrix M we get

||M||F =
√

Tr
(
MM⊤

)
=
√

Tr
(
(Ms +Mn)(Ms +Mn)⊤

)
=

=
√

Tr(MsM⊤s ) + Tr(MsM⊤n ) + Tr(MnM⊤s ) + Tr(MnM⊤n ) .
(S113)

It follows from the cyclic property of the trace operator that the mixing terms cancel out as follows,

Tr(MsM
⊤
n ) + Tr(MnM

⊤
s ) = −Tr(MsMn) + Tr(MsMn) = 0 , (S114)

resulting in

||M||F =
√

Tr(MsM⊤s ) + Tr(MnM⊤n ) . (S115)

Therefore, as both terms on the right-hand side are semi-positive definite, we conclude the proof as follows,

||M||2F = Tr(MsM
⊤
s ) + Tr(MnM

⊤
n ) = ||Ms||2F + ||Mn||2F . (S116)

Next, we formulate the properties of the symmetry score as follows,

Proposition A.15. The symmetry score s quantifies the degree of symmetry or skew-symmetry of a given square matrix M.
In particular,
1) The symmetry score s is a scalar value bounded in the range [−1, 1].
2) A symmetry score s = ±1 indicates a fully symmetric or skew-symmetric matrix, respectively.
3) The symmetry score of a random matrix M ∈ Mn with entries Mij ∼ p(0, σ) from a probability distribution with zero
mean and finite variance tends to zero as 8/n in the limit n → ∞.

Proof. To prove the points (1) and (2), we first show that it follows from Lemma A.14 that the squared Frobenious norm of
Ms and Mn are in an orthogonal relation

||M||F =
√
||Ms||2F + ||Mn||2F . (S117)

Therefore, for any given M, the norms ||Ms||22 and ||Mn||22 are such that a higher value of the first leads to to a lower value
of the second, and vice versa. In particular, it is straightforward to observe that ||Ms||2 = ||M||2 and ||Mn||2 = 0 if M is
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symmetric. Next, we derive a decomposition of the squared Frobenious norm of the symmetric and skew-symmetric part of
M. From the definition of Ms we obtain that

||Ms||2F = Tr
(
MsM

⊤
s

)
=

1

4
Tr
[
(M+M⊤)(M⊤ +M)

]
=

1

4

[
Tr(MM⊤) + Tr(MM) + Tr(M⊤M⊤) + Tr(M⊤M)

]
=

1

2

[
Tr(MM⊤) + Tr(MM)

]
=

1

2

[
||M||2F + Tr(MM)

]
.

(S118)

Since the upper bound for ||Ms||2F is given by ||M||2F , the second term on the left-hand side has an upper bound given by,

Tr(MM) ≤ 1

2
||M||2F , (S119)

A complementary relation holds for the skew-symmetric component of M,

||Mn||2F =
1

4
Tr
[
(M−M⊤)(M⊤ −M)

]
=

1

2

[
||M||2F − Tr(MM)

]
, (S120)

which, following the same logic, defines a lower-bound for Tr(MM) as follows,

−1

2
||M||2F ≤ Tr(MM) . (S121)

Given Definition 3.1 we can write,

s =
||M||2F + Tr(MM)− ||M||2F + Tr(MM)

||M||2F
= 2

Tr(MM)

||M||2F
(S122)

and by combining the bounds derived previously we obtain,

−1 ≤ s ≤ 1 (S123)

with {
s = 1 if M = M⊤

s = −1 if M = −M⊤
(S124)

To prove the point (3), let each entry mij = [M]ij be an independent, identically distributed sample from a random
distribution with mean zero and a finite variance σ2. We compute the Frobenius norm of the symmetric and skew-symmetric
parts as follows,

∥Ms∥2F =
∑
i ̸=j

(Mij +Mji)
2
+
∑
i

(2Mii)
2

∥Mn∥2F =
∑
i ̸=j

(Mij −Mji)
2
.

(S125)

Here, the skew-symmetric part has a zero diagonal term (because of the subtraction), and the symmetric part has twice
the diagonal of the original matrix M (because of the addition). Since the entries are independent, Mij is independent of
Mji for all j ̸= i, and thus we can treat the off-diagonal entries of the Ms and Mn terms as a sum and difference of two
independent random samples having mean zero and the same variance. It follows that the resulting distribution has a mean
zero and a variance of 2σ2 in both cases,

∑
i̸=j

(Mij ±Mji)
2
= 2

n∑
i=1

n∑
j=i+1

(Mij ±Mji)
2 ≈

n→∞
n(n− 1)Var [Mij ±Mji] = n(n− 1)2σ2 , (S126)
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where the approximation is due to the central limit theorem. Applying a similar logic to the second term on the symmetric
norm, each entry is the double of a random i.i.d. distribution with

N∑
i=1

(2Mii)
2 ≈

N→∞
nVar [Mij ] = n4σ2 . (S127)

Finally, we take the Frobenius norm of the random matrix itself and apply the same logic, where there are n2 entries with a
variance of σ2,

∥M∥2F ≈
n→∞

n2σ2 . (S128)

It follows that the symmetry score is given by

s = 2
∥Ms∥2F − ∥Mn∥2F

∥M∥2F
≈

n→∞

8σ2n

σ2n2
=

8

n
, (S129)

where the symmetry score is zero in the limit n → ∞ with convergence from the positive side.

A.7. Properties of the directionality score in Definition 3.2 and related proofs

The score d we introduce in Section 3 quantifies the directional bias of a square matrix M by comparing the total norm of
the ”outliers” rows and columns, that is, that are higher than γ times the standard deviations of the norms. A directionality
score d of 1 indicates the presence of rows with high “outlier” norms and the absence of outliers in the distribution of the
column norms. The opposite is true for a directionality score d of -1. Accordingly, positive (negative) values of d indicate
the presence of row (column) dominance in the matrix. Here, we provide a proof for these properties.

Proposition A.16. The symmetry score d provides a quantitative measure of the degree of directional bias in a given square
matrix M.
1) The directionality score d is a scalar value that lies within the range [−1, 1].
2) For any given γ > 0, a directionality score d = ±1 indicates that vectors satisfying the condition defined by γ are
exclusively present in the rows or the column distribution, respectively.
3) The directionality score of a random matrix M ∈ Mn with entries Mij ∼ p(0, σ) from a probability distribution with
zero mean and a variance that scales as O(n−1) tends to zero in the limit n → ∞.

Proof. To prove that the directionality score is bounded in the interval [−1, 1], note that c̄M, r̄M > 0 simply because they
are sums of norms. As both are positive,

|c̄M − r̄M| < c̄M < c̄M + r̄M (S130)

and thus
c̄M − r̄M
c̄M + r̄M

< 1 (S131)

and taking the negative sign for the absolute value,

− r̄M − c̄M
c̄M + r̄M

> −1 ⇒ c̄M − r̄M
c̄M + r̄M

> −1. (S132)

In the extremes d = ±1, the numerator must be equal to the denominator in absolute value, implying that either r̄M or c̄M
are zero and the other is positive. For completeness, we define the score as zero if both are zero.

Finally, we study the case of a random matrix. We start by noting that the values of r̄M, c̄M are interchanged when we take
the transpose, hence

r̄M = c̄M⊤ (S133)

Regardless of the scaling of the matrix and the value γ, the key property of a random matrix is that all entries are drawn
from the same distribution. Hence,

Pr [Mij = x] = Pr [Mji = x] ⇒ Pr [M = X] = Pr
[
M = X⊤

]
(S134)

30



The underlying structures of self-attention: symmetry, directionality, and emergent dynamics in Transformer training

Configuration BERT BERT-Mini BERT-Large

Hidden Size 768 256 1024
Intermediate Size 3072 1024 4096
Number of Attention Heads 12 4 16
Number of Hidden Layers 12 4 24
Attention Dropout Probability 0.1 0.1 0.1
Hidden Activation Function gelu gelu gelu
Hidden Dropout Probability 0.1 0.1 0.1
Layer Normalization Epsilon 1e-12 1e-12 1e-12
Max Position Embeddings 512 512 512
Position Embedding Type absolute absolute absolute
Vocabulary Size 30522 30522 30522

Table 1. Configurations for BERT, BERT-Mini, and BERT-Large models.

for x and X being any arbitrary value or matrix. As a consequence,

Pr [c̄M = x] = Pr [c̄M⊤ = x] = Pr [r̄M = x] (S135)

where the last equality comes from Eq. S133. The main point here is that the probability distribution of both rows and
columns is the same. Pushing this forward, the expected value of r̄M − c̄M is

E [r̄M − c̄M] = E [r̄M]− E [c̄M] =

∫
c̄MPr [M] dM−

∫
r̄MPr [M] dM (S136)

=

∫
r̄MPr

[
M⊤

]
dM⊤ −

∫
r̄MPr [M] dM = 0 (S137)

Furthermore, the expected value of r̄M + c̄M is strictly positive, since both values are positive. Thus, their ratio, the
directionality score of a random matrix, is zero.

Notice that to be thorough we must show that their variance is bounded scales down. Since weight initialization has been
extensively studied, we will just make a general reference to it here. In machine learning, all weights are initialized with
zero mean and variances that scale as O(n−1). As M is a product of two matrices with such scaling, each entry would
consist of the sum of n random variables, where each one has a scaling of O(n−2) since it is the product of two random
variables with an O(n−1) scaling. Thus, the entries of M also have a scaling of O(n−1). Applying the mean value theorem
gives us the desired result.

B. Experimental Details
We trained three BERT models (Devlin et al., 2019) to examine the evolution of the symmetry and directionality scores
throughout the training process. Detailed information regarding the training procedure is provided below.

B.1. Models

We train the standard BERT model (referred to as BERT), a smaller version (referred to as BERT-Mini), and a larger version
(referred to as BERT-Large), following the implementation by (Devlin et al., 2019). Table 1 provides an overview of the
model parameters. The standard BERT model has 12 layers, 12 attention heads, and embedding dimensions of 768 for the
hidden layers and 3072 for the intermediate layers. In contrast, the smaller BERT-Mini model uses 4 layers, 4 attention
heads, and embedding dimensions of 256 and 1024, respectively. The larger BERT-Large model features 24 layers, 16
attention heads, and embedding dimensions of 1024 and 4096 for the hidden and intermediate layers, respectively.

Initialization We optionally initialize the models using symmetric attention weights. Specifically, in each self-attention
block, the query weight matrix Wq is initialized randomly, and the key weight matrix is set equal to it, Wk = Wq. This
ensures that the key and query matrices are identical at initialization, introducing symmetry into the attention mechanism.
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Configuration ViT (6 layers) ViT (12 layers)
CIFAR-10 ImageNet-1k

Hidden Size 512 768
Intermediate Size 2048 3072
Number of Attention Heads 8 12
Number of Hidden Layers 6 12
Attention Dropout Probability 0.0 0.0
Hidden Activation Function gelu gelu
Hidden Dropout Probability 0.0 0.0
Layer Normalization Epsilon 1e-6 1e-6
Patch Size 4 16
QKV Bias true true
Encoder Stride 16 16

Table 2. Configurations for the 6-layer and 12-layer vision transformer models.

B.2. Datasets

The models are trained on three datasets. First, we use the “20220301.en” snapshot from the Wikipedia dataset, which
consists of 6.46 million samples crawled from Wikipedia. Second, we utilize the Jigsaw dataset with 159K samples,
originally collected for a toxic comment classification challenge. Finally, we train on the English “2023-14” snapshot of the
RedPajama-V2 dataset, which contains approximately 5.12 billion samples.

B.3. Training Settings

The models are trained for 200, 000 update steps with a batch size of 32 and 8 gradient accumulation steps, effectively
increasing the batch size to 256 before each parameter update. The optimization is done using the AdamW optimizer
(Loshchilov & Hutter, 2019), and the training schedule includes 200 warmup steps to stabilize early training, followed by a
linear decay learning rate schedule, starting at an initial learning rate of 5× 10−5 and weight decay of 0.01. Mixed precision
(fp16) training was utilized to maximize training efficiency, which reduces memory consumption and speeds up computation
without significant loss of precision. The training data was processed with a masked language modeling (MLM) probability
of 15%, ensuring that 15% of tokens were masked during training. The models are trained in the encoder and decoder mode,
i.e., to predict masked tokens and subsequent tokens respectively.

C. Enforcing symmetry at initialization for vision transformers
In parallel to the experiments described in Section 4.2, where symmetric initialization of the query-key weight matrix Wqk

is investigated for BERT models, we extend the investigation to the vision domain. Specifically, we evaluate the impact
of symmetric initialization in vision transformers (ViTs) (Dosovitskiy et al., 2021), training a 6-layer ViT on CIFAR-10
(Krizhevsky, 2009) and a 12-layer ViT on ImageNet-1k (Deng et al., 2009), using the same initialization strategy as applied
to BERT models (see Appendix B.1 for implementation details). The architectural configurations for both models are
summarized in Table 2.

Training is performed using the AdamW optimizer (Loshchilov & Hutter, 2019) with weight decay and a cosine annealing
learning rate schedule. A linear warm-up phase is used during the first 30 epochs, with an initial learning rate scaled by
a factor of 0.033. The ImageNet-1k model is trained for 200 epochs using a per-device batch size of 256 and gradient
accumulation over two steps, while the CIFAR-10 model is trained for 500 epochs with a batch size of 128 and no gradient
accumulation. Both setups use a base learning rate of 0.003, optimizer hyperparameters β1 = 0.9 and β2 = 0.999, and
automatic mixed-precision training (fp16). We apply advanced data augmentation tailored to each dataset, including mixup
(α = 0.2) (Zhang et al., 2018), cutmix (α = 1.0) (Yun et al., 2019), and label smoothing (0.11 for ImageNet-1k and 0.01
for CIFAR-10). An exponential moving average (EMA) of the model weights (Tarvainen & Valpola, 2017) is maintained
throughout training (decay rate = 0.99998, update frequency = 32 steps).

Contrary to the trends observed in our language model experiments, symmetric initialization does not result in faster
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Table 3. Final training and evaluation metrics for ViT models on CIFAR-10 (Krizhevsky, 2009) and ImageNet-1k (Deng et al., 2009),
trained with and without symmetric initialization. Evaluation metrics include final loss and top-1 accuracy. For each dataset, we compare
models trained with standard initialization and with symmetric initialization.

DATASET TRAIN LOSS EVAL LOSS EVAL ACCURACY

CIFAR-10

VIT 6-LAYERS 1.07 0.40 0.90
VIT 6-LAYERS (+ SYMM.) 1.08 0.42 0.89

IMAGENET-1K

VIT 12-LAYERS 2.49 1.97 0.76
VIT 12-LAYERS (+ SYMM.) 2.49 1.96 0.76

convergence or improved final performance for the vision transformer models. As shown in Table 3, training and evaluation
losses, as well as top-1 accuracy, remained nearly identical between the standard and symmetric initialization conditions
across both datasets. Importantly, the results with symmetric initialization are not degraded, indicating that such initialization
is at least performance-neutral in our vision setting. While our findings suggest that symmetric initialization does not
yield immediate benefits for ViTs under the given training regime, we do not rule out the possibility that alternative
configurations or optimization strategies could leverage its potential. Further research may uncover conditions under which
vision transformer architectures can benefit more substantially from symmetric initialization.

D. Supplementary Figures
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Figure S1. a) Median symmetry score of the matrix Wqk as a function of the total number of parameters for vision and audio models.
Each dot corresponds to the median and the interquartile range across layers of a given pre-trained model. b) Same as in a for the median
directionality score of the matrix Wqk.

E. Supplementary Tables
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Table 4. Symmetry score for open-source pretrained language models. All models are available on Hugging Face (Wolf et al., 2020).

Model Median Interquartile range Model Median Interquartile range

BERT-tiny 0.77 ± [0.07, 0.07] GPT-Neo1.3B 0.14 ± [0.03, 0.03]
BERT-mini 0.62 ± [0.03, 0.05] GPT-Neo2.7B 0.13 ± [0.02, 0.04]
BERT-small 0.69 ± [0.10, 0.08] GPT-J6B 0.11 ± [0.02, 0.03]
BERT-medium 0.60 ± [0.01, 0.02] OpenAI-GPT 0.07 ± [0.04, 0.03]
BERT-base 0.51 ± [0.09, 0.07] GPT2-XL 0.12 ± [0.03, 0.05]
BERT-large 0.44 ± [0.03, 0.08] DistilGPT2 0.19 ± [0.05, 0.05]
DistilBERT 0.43 ± [0.10, 0.13] GPT-Neo125M 0.14 ± [0.09, 0.14]
BERT-2L-128 0.77 ± [0.07, 0.07] GPT-Neo1.3B 0.14 ± [0.03, 0.03]
BERT-4L-256 0.62 ± [0.03, 0.05] GPT-Neo2.7B 0.14 ± [0.03, 0.02]
BERT-4L-512 0.69 ± [0.10, 0.08] GPT-J6B 0.11 ± [0.02, 0.03]
BERT-8L-512 0.60 ± [0.01, 0.02] LLaMA2-7B 0.12 ± [0.02, 0.03]
BERT-base 0.51 ± [0.09, 0.07] LLaMA2-13B 0.17 ± [0.02, 0.02]
BERT-large 0.44 ± [0.03, 0.08] LLaMA3-8B 0.00 ± [0.00, 0.01]
DistilBERT 0.43 ± [0.10, 0.13] LLaMA3.1-8B 0.00 ± [0.00, 0.01]
BEiT-base 0.40 ± [0.08, 0.02] LLaMA3.2-8B 0.01 ± [0.01, 0.01]
BEiT-large 0.33 ± [0.05, 0.07] LLaMA3.2-1B 0.01 ± [0.01, 0.01]
BEiT-base 0.39 ± [0.23, 0.07] LLaMA3.2-3B 0.01 ± [0.01, 0.01]
BEiT-large 0.26 ± [0.17, 0.13] LLaMA2-7B-chat 0.12 ± [0.02, 0.03]
BEiT-base 0.39 ± [0.23, 0.07] LLaMA2-70B 0.02 ± [0.01, 0.02]
BEiT-large 0.26 ± [0.17, 0.13] LLaMA2-7B-chat 0.12 ± [0.02, 0.03]
BEiT-large 0.26 ± [0.17, 0.13] LLaMA2-13B-chat 0.17 ± [0.02, 0.02]
ALBERT-base 0.72 ± [0.00, 0.00] LLaMA3-8B 0.00 ± [0.00, 0.00]
ALBERT-large 0.70 ± [0.00, 0.00] LLaMA3-70B 0.02 ± [0.01, 0.01]
ALBERT-xlarge 0.59 ± [0.00, 0.00] LLaMA3.1-8B 0.00 ± [0.00, 0.01]
ALBERT-xxlarge 0.46 ± [0.00, 0.00] LLaMA3.1-70B 0.01 ± [0.00, 0.01]
RoBERTa-base 0.49 ± [0.03, 0.06] LLaMA3.1-405B 0.03 ± [0.01, 0.03]
RoBERTa-large 0.47 ± [0.06, 0.06] LLaMA3.2-1B 0.00 ± [0.00, 0.00]
XLM-R-base 0.51 ± [0.05, 0.03] LLaMA3.2-3B 0.01 ± [0.01, 0.01]
XLM-R-large 0.49 ± [0.16, 0.12] Mistral-7B 0.00 ± [0.00, 0.01]
RoBERTa-mnli 0.47 ± [0.06, 0.06] Mixtral-8x22B 0.00 ± [0.00, 0.00]
DistilRoBERTa 0.53 ± [0.02, 0.06] MobileLLM125M 0.03 ± [0.02, 0.03]
ModernBERT-base 0.18 ± [0.06, 0.18] MobileLLM350M 0.01 ± [0.01, 0.01]
GPT1 0.07 ± [0.04, 0.03] Phi-1.5 0.09 ± [0.03, 0.03]
GPT2 0.15 ± [0.02, 0.03] Phi-1 0.14 ± [0.02, 0.01]
GPT2-medium 0.17 ± [0.03, 0.05] Phi-2 0.07 ± [0.03, 0.06]
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Table 5. Directionality score for open-source pretrained language models. All models are available on Hugging Face (Wolf et al., 2020).

Model Median Interquartile range Model Median Interquartile range

BERT-tiny -0.79 ± [0.11, 0.11] GPT-Neo1.3B -0.49 ± [0.19, 0.13]
BERT-mini -0.33 ± [0.03, 0.04] GPT-Neo2.7B -0.57 ± [0.15, 0.16]
BERT-small -0.22 ± [0.04, 0.03] GPT-J6B -0.28 ± [0.09, 0.08]
BERT-medium -0.23 ± [0.06, 0.10] OpenAI-GPT -0.18 ± [0.08, 0.07]
BERT-base -0.08 ± [0.02, 0.03] GPT2-XL -0.23 ± [0.11, 0.10]
BERT-large -0.03 ± [0.02, 0.06] DistilGPT2 -0.51 ± [0.03, 0.07]
DistilBERT -0.13 ± [0.00, 0.06] GPT-Neo125M -0.56 ± [0.21, 0.08]
BERT-2L-128 -0.79 ± [0.11, 0.11] GPT-Neo1.3B -0.49 ± [0.19, 0.13]
BERT-4L-256 -0.33 ± [0.03, 0.04] GPT-Neo2.7B -0.49 ± [0.15, 0.21]
BERT-4L-512 -0.22 ± [0.04, 0.03] GPT-J6B -0.28 ± [0.09, 0.08]
BERT-8L-512 -0.23 ± [0.06, 0.10] LLaMA2-7B -0.26 ± [0.09, 0.13]
BERT-base -0.08 ± [0.02, 0.03] LLaMA2-13B -0.15 ± [0.11, 0.03]
BERT-large -0.03 ± [0.02, 0.06] LLaMA3-8B -0.65 ± [0.13, 0.20]
DistilBERT -0.13 ± [0.00, 0.06] LLaMA3.1-8B -0.64 ± [0.17, 0.19]
BEiT-base -0.10 ± [0.06, 0.15] LLaMA3.2-8B -0.59 ± [0.18, 0.22]
BEiT-large -0.15 ± [0.08, 0.07] LLaMA3.2-1B -0.59 ± [0.18, 0.22]
BEiT-base -0.14 ± [0.15, 0.21] LLaMA3.2-3B -0.77 ± [0.08, 0.19]
BEiT-large -0.14 ± [0.04, 0.14] LLaMA2-7B-chat -0.29 ± [0.07, 0.14]
BEiT-base -0.14 ± [0.15, 0.21] LLaMA2-70B -0.24 ± [0.10, 0.06]
BEiT-large -0.14 ± [0.04, 0.14] LLaMA2-7B-chat -0.29 ± [0.07, 0.14]
BEiT-large -0.15 ± [0.03, 0.14] LLaMA2-13B-chat -0.19 ± [0.12, 0.04]
ALBERT-base -0.07 ± [0.00, 0.00] LLaMA3-8B 0.01 ± [0.05, 0.05]
ALBERT-large -0.17 ± [0.00, 0.00] LLaMA3-70B -0.37 ± [0.09, 0.12]
ALBERT-xlarge -0.24 ± [0.00, 0.00] LLaMA3.1-8B -0.57 ± [0.16, 0.13]
ALBERT-xxlarge -0.15 ± [0.00, 0.00] LLaMA3.1-70B -0.37 ± [0.08, 0.11]
RoBERTa-base -0.12 ± [0.11, 0.03] LLaMA3.1-405B -0.17 ± [0.07, 0.07]
RoBERTa-large -0.06 ± [0.03, 0.03] LLaMA3.2-1B -0.02 ± [0.13, 0.08]
XLM-R-base -0.02 ± [0.02, 0.02] LLaMA3.2-3B -0.70 ± [0.07, 0.22]
XLM-R-large -0.02 ± [0.03, 0.02] Mistral-7B -0.58 ± [0.15, 0.13]
RoBERTa-mnli -0.06 ± [0.03, 0.03] Mixtral-8x22B -0.66 ± [0.09, 0.16]
DistilRoBERTa -0.14 ± [0.09, 0.07] MobileLLM125M -0.13 ± [0.15, 0.10]
ModernBERT-base -0.04 ± [0.05, 0.04] MobileLLM350M -0.34 ± [0.13, 0.23]
GPT1 -0.18 ± [0.08, 0.07] Phi-1.5 -0.28 ± [0.22, 0.19]
GPT2 -0.58 ± [0.06, 0.14] Phi-1 -0.40 ± [0.03, 0.04]
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Figure S2. a) Median symmetry score of the matrix Wqk as a function of the total number of parameters for vision and audio models.
Each dot corresponds to the median and the interquartile range across layers of the encoder component (blue) and decoder component
(purple) of an encoder-decoder Transformer model. The encoder component of these models shows a high degree of symmetry compared
to the decoder component. b) Same as in a for the median directionality score of the matrix Wqk. The encoder and decoder components
of these models do not show significant differences in directionality scores.
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Figure S3. a) Evolution of symmetry score during training. Shown are the median and the interquartile range. Models were trained on
the Jigsaw dataset (cjadams et al., 2017) (left) and on the Red Pajama dataset (Computer, 2023) (right). Encoder-only and decoder-only
models are color-coded in blue and purple, respectively (see legend). b) Same as in panel a for the median directionality score.
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Figure S4. a) Evolution of the median symmetry score across layers of the encoder-only (left) and decoder-only (right) models. Each
layer is color-coded as shown on the legend of Figure 3. Shown are the median and the interquartile range. Models were trained on the
Jigsaw dataset (cjadams et al., 2017). b) Same as in panel a for the median directionality score. c) Same as in panel a for models trained
on the Red Pajama dataset (Computer, 2023). d) Same as panel c for the median directionality score.
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Figure S5. a) Loss a 4-layer encoder-only model with (dark blue) and without (light blue) symmetric initialization, respectively. Models
are trained on the Red Pajama dataset (Computer, 2023). b) Median symmetry score during training Color code is as in panel a. c) Same
as in panel a for each layer in the model with and without symmetric initialization. Each layer is color-coded as in the illustration on the
left. All plots show the median and the interquartile range across the heads of a given layer.
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