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ABSTRACT

We prove that image classifiers are fundamentally sensitive to small perturbations
in their inputs. Specifically, we show that given some image space of n-by-n
images, all but a tiny fraction of images in any image class induced over that space
can be moved outside that class by adding some perturbation whose p-norm is
O(n!/™ax(P:1)) a5 long as that image class takes up at most half of the image
space. We then show that O(n!/™x (1)) is asymptotically optimal. Finally,
we show that an increase in the bit depth of the image space leads to a loss in
robustness. We supplement our results with a discussion of their implications for
vision systems.

1 INTRODUCTION

Image classification, the task of partitioning images into various classes, is a classical problem in
computer science with countless practical applications. Progress on this problem has advanced with
leaps and bounds since the advent of deep learning, with modern image classifiers attaining some
incredible results(Beyer et al.,[2020). However, it has been observed that image classes tend to be
brittle - classifiers like to partition images in a way such that most images lie very close to images of
different classes(Szegedy et al.,2013)). Although usually studied in computer vision systems, such
phenomena also appear to manifest in natural vision systems(Elsayed et al.|[2018;|Zhou & Firestone)|
2019).

Given these observations, it is natural to ask the following question: is the brittleness of image classes
a result of classifier construction, or does it arise from some fundamental property of image spaces?
Previous work demonstrate that classifiers can be made more robust as a function of how they are
constructed, and attempts to improve the robustness of existing computer vision systems through
such means is an active area of research(Moosavi-Dezfooli et al., 2016; Madry et al.,[2017; Ma et al.|
2018; Tramer et al.l [2020; [Machado et al., [2021)). However, there is also a fundamental limit to the
robustness achievable by any classifier that arises as a consequence of the geometry of image spaces.

In this work we show that this fundamental limit of achievable robustness is surprisingly low. Roughly
speaking, in most cases it suffices to change the contents of only a few columns of pixels in an image
to change its class. Even smaller changes are sufficient when measured using other metrics, such as
the Euclidean metric. Our results are a consequence of the geometry of image spaces, and so they
apply regardless of the architecture of the classifier. This suggests that there is an inherent brittleness
in the semantic content of images, and that robustness as an objective is only desirable with respect
to distributions that are concentrated over small subsets of the image space.

1.1 OUR CONTRIBUTIONS AND RELATED WORK

The observation that image classes tend to be brittle was popularized by [Szegedy et al.| (2013), where
it was observed that tiny perturbations suffice to change the image class of many images. This has
since opened up a rich field of research on how the brittleness of image classes arise from specific
classifier formulations or training distributions (Goodfellow et al., 2014;|Gilmer et al., [2018; [T'sipras
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et al., 2018ﬂ While these advances offer insights into the deficiencies of our current methodologies,
their analyses ultimately depend on some aspect of the architecture or training distribution, so do not
rule out the possible existence of ideal classifiers that do not induce brittle image classes.

By contrast, our work provides a non-trivial upper bound to the robustness of any image classﬂ
Specifically:

* We prove that most images in any image class consisting of at most half the images in an
image space of n-by-n images can be moved into a different class by adding a perturbation
whose p-norm is O(n!/ ™ax(P.1))  This is a vanishingly small quantity in relation to the
average distances in the image space, which is O(n2/ max (pvl)), and therefore provides a
non-trivial upper bound for the robustness attainable by even an ideal classifier.

» We show that there exist image classes where most images cannot be moved into a different
class with any perturbation whose p-norm is o(n!/ ™2 (P:1)) (note the small-o notatio.
Therefore, the bound we derive is asymptotically optimal in n, so proving stronger robustness
bounds will require examining classifier-specific properties.

* We show that discretization through lowering the bit depth of the image space permits the
existence of more robust image classes. This lends theoretical backing to the idea of using
discretization as a method of defending against adversarial attacks (Panda et al., [2019)).

* We demonstrate that brittle features in images can deliver semantic content. We argue that a
deeper understanding of such features can lead to advances in aligning human and computer
vision systems.

To our knowledge, there are two previous works that investigate upper bounds of robustness that
arise from the geometry of image spaces. One is from Fawzi et al.| (2018a), which provides an upper
bound for the probability that an image drawn from a given distribution is far from images of a
different class. They further perform numerical experimental analyses of their bounds. However, our
analysis differs and improves on theirs in a few key aspects. Firstly, they only analyze the case where
distance is measured using the 2-norm, while we provide bounds for p-norms for any p. Secondly,
they do not account for the discrete nature of image spaces with finite bit depth, which allows for
classifiers that are more robust than their bounds implyﬂ Finally, their bound is parametrized by a
modulus of continuity which differs depending on the image distribution, potentially resulting in
trivial bounds for certain distributions. Furthermore, this parameter cannot be computed exactly, so
in application their bound is inexact. By contrast, we formulate our results independently of specific
image distributionﬂ Our bounds can therefore be computed exactly and unconditionally, and we are
able to show the asymptotic optimality of our result.

The other work is from Diochnos et al.|(2018), which investigates partitions of bit vectors. Since bit
vectors can be used to encode discrete inputs, their results can be viewed as results about classifiers
over discrete inputs. They also view each bit vector as being equally weighted, so their results are not
parametrized by data distributions and are unambiguous. They show that given a finite probability of
misclassification, an arbitrarily high proportion of vectors can be turned into misclassified vectors
through small numbers of bit flips proportional to the square root of the vector dimension. This result
has been generalized in follow-up work (Mahloujifar et al.| 2019), where it was shown that a small
number of modifications proportional to the square root of the data dimension suffices to induce
misclassification in the more general setting of Lévy families as well. However, these results are
still dependent on the existence of a finite fraction of misclassified datapoints, and therefore do not
preclude the existence of asymptotically infinitesimal image classes that are robust, something which

"'Goodfellow et al.| (2014) demonstrate how linearity can allow imperceptible changes across a large amount
of dimensions to accumulate to something significant, |Gilmer et al.|(2018) derive a relation between classification
error rate and the distance to the closest misclassification on a specific dataset of concentric spheres, and Tsipras
et al.| (2018) derive a fundamental tradeoff between accuracy and robustness.

“Consisting of at most half the images in the image space.

f(n) _

3f(n) € O(g(n)) <= limsup,_, ., ’;((23 < ooand f(n) € o(g(n)) <= limn o0 iy =0
4Other work, such as that of |Diochnos et al|(2018), does analyze discrete input spaces, but does not
investigate the relation between discretization and robustness.
31t is still possible adapt our result to account for image distribution using their techniques. See our discussion

for additional details.
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our analysis does preclude. Furthermore our bounds, due to our focus on image spaces, are much
stronger than the ones they derive and are asymptotically optimal.

The observation that brittle features can deliver semantic content is an observation on the inadequacy
of p-norms for quantifying visual similarity. While such inadequacies have been noted in prior work
(Tramer et al., [2020; [Fawzi et al., 2018b), to our knowledge ours is the first that have been derived
as a consequence of theoretical bounds. The theoretical foundation of our observations allows for
quantification and has the potential to imply further consequences.

2 RESULTS

2.1 PRELIMINARIES

Images consist of pixels on a two dimensional grid, with each pixel consisting of a set of channels
(for example R, G, and B) of varying intensity. We therefore define the image space of h-channel
images of height n and aspect ratio q, denoted Z,, , 1, (o) as the set of all real valued tensors with
shape (gn, n, h) with entries lying in the interval [0, 1]. We require that gn be an integelﬁ The first
two dimensions index the x and y coordinate of the pixel, while the third indexes the channel.

Only a finite subset of these images can be represented with finite bit strings. Therefore, we use
1,,, h(b) 1O denote the subset of Z,, h,q,(c0) where each entry in the tensor is one of 2b equally spaced
values between 0 and 1 inclusive (in other words, each entry belongs to [0, 1] N {i/(2° — 1)|i € Z}).
We will refer to b as the bit depth of the image space. Although technically image spaces of equal
height, aspect ratio, and number of channels intersect, we will treat them as disjoint (in other words,
ifz e In,q,h,(b)5 then = ¢ I’n’,q’,h’,(b’) ifIn,q,h,(b) 7é In’,q/,h’,(b’))'

Images in the image space Z,, 4 5, (») contain n?qh entries. This quantity n?qh appears often in our
result{] and can be thought of as the data dimension (the number of dimensions required to specify
the data), which we will often denote with N for simplicity. The data dimension can be set to any
integer value (for example by setting n = 1 and ¢ = 1), so any data type that can be represented as a
Cartesian product of some fixed number of unit intervals [0, 1] can be viewed as an image as we have
defined it. Consequently our theoretical results can be applied to a more general class of inputs than
images, though we will continue to focus on the case of image classification in this work.

2.1.1 CLASSIFIERS AND CLASSES

A classifier C is a function Z,, . hy(b) — Y, where ) is some finite set of labels. For each y € )/, we
define the class of y as the preimage of y, denoted as the set of images C~1(y). We say that such
a class is induced by C. If a class takes up a large part of the image space, then it contains a lot
of images that look like randomly sampled noise, since randomly sampling channel values from a
uniform distribution yields a uniform distribution over the image space. Therefore, many images in
these classes tend to be uninteresting, which motivates the following definition:

Definition 1. A set C C Z,, , 1, (1) is an interesting image class if it is not empty, and if it contains no
more than half of the total number of images inZL,, , 1, (p)-

Note that as long as every class of a classifier is populated, no more than one class can be uninteresting
since image classes are disjoint. Therefore, if a classifier does induce an uninteresting class, we can
think of it as the uninteresting class. Intuitively we can think of it as a junk class, since it contains
images that look like randomly sampled noise.

Most of our results will pertain to interesting image classes. This is to eliminate pathological
considerations such as when an image class covers the entire image space.

5We opt to use gn rather than a separate value for image width to suggest that the height and width of an
image should have similar magnitudes.
"This is because our results depend only on the size of the image tensor rather than its shape.
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2.1.2 PERTURBATIONS AND ROBUSTNESS

In order to discuss perturbations, we define addition and subtraction over tensors that are of the same
shape to be element-wise, and we define the p-norm of a tensor A, denoted || A[|,,, to be the pth root
of the sum of the absolute values of the entries of A raised to the pth power. p is assumed to be a
non-negative integer, and for the special case of p = 0 we let || A||o be the number of non-zero entries
in A. Note that when p is 0 the 0-“norm” is not truly a norm since it does not obey homogeneity.

We can then define what it means for an image to be robust to perturbations:

Definition 2. Let C' C Z,, ;. ) be a class of images. We say an image I € C' is robust to
LP-perturbations of size d if for all I' € L,, o ,, vy, || — I'||, < d implies I' € C.

We can then define what it means for a class to be robust to perturbations. Note that unless a class
occupies the entire image space, it must contain some non-robust images, so the best we can hope
for is to attain robustness for a large fraction of the images within a class. This is reflected in the
following definition.

Definition 3. Let C C 7, , 1 1) be a class of images. Then we say that C'is r-robust to LP-
perturbations of size d if it is not empty, and the number of images I € C that are robust to
LP-perturbations of size d is at least r|C|, where |C| is the number of images in C.

2.2 UNIVERSAL UPPER BOUND ON CLASSIFIER ROBUSTNESS

We can now state a universal non-robustness result that applies to all classifiers over discrete image
spaces L, . n,(b)-

Theorem 1. For all real values c > 0, there exists no interesting class C C L, , p, () (the image

C

space of h-channel images of height n and aspect ratio q with bit depth b) that is 2e > *_robust to

LP-perturbations of size (2 + cv/N)'/ ™2X(:1) ywhere N = n2qh is the data dimension.

Proof sketch. We can use the images in Z, ; » (») to form a graph where images are the vertices,
and images are connected if and only if they differ at exactly one channel. In other words, the
image tensors must differ at precisely one entry. Figure[Th illustrates the construction of this graph.
Note that graph distance between vertices coincides with the Hamming distance between the images
represented by the vertices. Such graphs are known as Hamming graphs, and they have a vertex
expansion (or isoperimetry) property (Harper, 1999) which implies that for any sufficiently small
set, if we add all vertices that are within a graph distance of O(v/N) to that set, then the size of that
set increases by at least some given factor (see Figure[Ip for an example). This expansion property
is contingent on the size of the vertex set being sufficiently small, which is why we require the
“interesting class” property.

We can then show that an interesting class C' cannot be too robust in the following way: suppose for
contradiction that it is. Then there must be some set C’ C C that is pretty large, and has the property
that all vertices within some graph distance of C’ are in C'. We can then use the vertex expansion
property to show that adding these vertices to C” gives a set larger than C, which contradicts the
assumption that all vertices within some graph distance to C” are in C. Plugging explicit values into
this argument yields the statement of the theorem.

We can then generalize to LP-perturbations for arbitrary p since each coordinate varies by at most 1
unit. The full proof can be found in Appendix O

Intuitively, the above results state that to change the class of most “interesting” images, the number
of pixels that need to be changed is roughly the number contained in a few columns of the image.

2.2.1 THE UNIVERSAL NON-ROBUSTNESS RESULTS ARE ASYMPTOTICALLY OPTIMAL UP TO A
CONSTANT FACTOR

Up to a constant factor, the bounds in Theorem [I]are the best possible for a universal non-robustness
result that applies to arbitrary predictors if we only consider the data dimension /N and hold the bit
depth b constant. In other words, there exists no bound on robustness that applies universally to all
classifiers that grows much more slowly in N than the ones given in Theorem|[I] Therefore, if we wish
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Figure 1: Interpreting image spaces as Hamming graphs
a) We show how we construct a Hamming graph using the elements of Z5 ; 1 (1), the space of binary
images on four pixels. By construction, graph distance coincides exactly with Hamming distance.
b) We demonstrate the expansion property of Hamming graphs on a Hamming graph constructed
using 73 1 1,(1) as the vertex set. If we pick some initial set of vertices (in black), then the set of
vertices that are a graph distance of at most 3 (3 being the image height n in this case) from that initial
set (in black and red) is much larger than that initial set. The nature of “much larger” is expanded on

in Appendix [A-T]

to show that the classes induced by some classifier are not robust to, for instance, LO-perturbations of
size O(log(N)), more specific properties of that classifier would need to be considered.

To prove this, consider the classifier defined by Algorithm

Algorithm 1: Robust Classifier
Input:Animage I € Z,, 4 1, 3)
Result: A label belonging to {0,1}
S« 0;

for x <+ 1to gn do

for y < 1 ton do
Lforcﬂ—ltohdo

| S+ S+ 1ILsyas

if S < n2qh/2 then
| return O;

else
| return I;

Theorem 2. The classifier described by Algorithm|l|induces an interesting class C' C I, 4 v) (the
image space of h-channel images of height n and aspect ratio q with bit depth b) such that for all
c>0:

1. Cis (1 — 4c¢)-robust to LP-perturbations of size c/N — 2 for all p < 1.

2. C'is (1 — 4c)-robust to LP-perturbations of size ((CW_Q)I/]J forallp > 2.

20 —1)(p—1)/p
Where N = n2qh is the data dimension.

Proof sketch. Given an image I, let S(I) be the sum of all its channel values subtracted by N/2
(where N = n2gh is the data dimension). Then I being robust to L!-perturbations of size x is
approximately equivalent to S(I) ¢ [—x,z]. By the central limit theorem, the fraction of images
I such that S(I) ¢ [~cV/N,cV/N] is some monotonic function of ¢ independent of N if N is
sufficiently large, which is our desired result. Appendix [A.2] provides a more careful analysis of this
that does not rely on limiting behaviour and extends the result to all p-norms. O

8In Einstein notation, the algorithm returns I, , ,1%°%** > n?qh/2 on an image tensor I, where 1 is shaped
like I and has 1 at each entry. We spell out the algorithm in pseudocode for clarity.
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We remark that the ¢ in Theorem |2 should be set to less than 1/4 in order to yield a non-trivial
statement.

2.2.2 CLASSIFIER ROBUSTNESS TO LP-PERTURBATIONS DECREASES WITH INCREASING BIT
DEPTH FOR p > 2

In this section we investigate the role played by the bit depth b. Theorem 2] has a dependency on b
when considering LP-perturbations for p > 2, so the statement about attainable robustness becomes
increasingly vacuous as the bit depth increases. Somewhat surprisingly, this is not an artifact of
suboptimal analysis: it is really the case that the fundamental limits of robustness drops as a function
of the bit depth of the image space.

Theorem 3. For all real values ¢ > 0 and p > 2, no interesting class C € I, 4 () (the image

—c%/2

space of h-channel images of height n and aspect ratio q with bit depth b) is 2e -robust to

LP-perturbations of size (c + 2@)2/1), where N = n?qh is the data dimension.

Proof sketch. We will focus on the 2-norm. Extension to higher p-norms is straightforward and is
given as part of the full proof found in Appendix[A.3] The main idea of the proof rests on the fact
that if we extend the classifier to the continuous image space with something like a nearest neighbour
approach, the measure of the images that are robust to perturbations of a constant size is small (the
statement and proof may be found in Appendix [A.4). Therefore, if we randomly jump from an image
in the discrete image space to an image in the continuous image space, with high probability we will
be within a constant distance of an image in a different class. The size of this random jump can be
controlled with a factor that shrinks with increasing bit depth. Summing up the budget required for
this jump, the perturbation required on the continuous image space, and the jump back to the discrete
image space yields the desired bound. O

We remark that this suggests that the bounds in Theorem 1| pertaining to LP-perturbations for p > 2
can be improved to reflect its dependency on the bit depth b. However, whether the component that
shrinks with b scales with N''/?? rather than N''/? remains an open problem.

3 DISCUSSION

3.1 SUMMARY OF ROBUSTNESS LIMITS AND THEIR RELATION TO AVERAGE IMAGE DISTANCES

We summarize the bounds we derived in the previous section in Table [I] where the bounds are
reparametrized in terms of the robustness. An asymptotic bound is also provided with respect to the
data dimension N and bit depth b. A plot of the relation between perturbation sizes and robustness
can be found in Appendix[A.G

With respect to N and b, the bounds derived for the 0-norm and 1-norm are asymptotically optimal,
while the bounds for the other p-norms are asymptotically optimal with respect to /N. Finding the
optimal bound with respect to both b and IV for p-norms for p > 2 remains an open problem, although
our current analysis suffices to show that b does fundamentally influence how robust an interesting
class can be.

We note that the bounds we derived are vanishingly small when compared to typical distances between
random elements of the image space. If a pair of images I, I" € Z,, ; ,,(») are sampled independently
and uniformly, we have:

E(Il = I'llp] > Fyp Nt/ mexCP) (D

Where £y, ,, is some constant parametrized by b and p, and N = n?gh is the data dimension. See
Appendix [A.5|for additional details. While our analysis there does not necessarily hold for images
drawn non uniformly, we demonstrate in Appendix[A.5.T]that typical distances on natural distributions
tend to be similar in size.

When this observation is combined with the bounds in Table[T} we can see that when N is sufficiently
large, for 99% (or some arbitrarily high percentage) of images I”” within an interesting class C":
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Table 1: Fundamental bounds for robustness attainable by any interesting image class in Z,, ¢ 5 (3)-

N = n2qh is the data dimension. Rather than leaving the robustness and bound parametrized by
a separate constant ¢, the bounds have been reparametrized in terms of the robustness r. Figures
plotting the relation between the bounds and r can be found in Appendix The bounds are
also given in big-© notation, where r is held constant for simplicity. The upper bound should be
understood as “no interesting class is r-robust to perturbations of these sizes” and the lower bound
should be interpreted as “there exists an interesting class that is r-robust to perturbations of these
sizes”.

PERTURBATION UPPER BOUND LOWER BOUND

L°-PERTURBATION 5 -

L'-PERTURBATION 2+ 5ln(—)\/N -2+ ( 1 )VN
r

min ((2+ %ln(%)\/ﬁ)l/p’

1—r 1/p
LP-PERTURBATION, 5 1 2 ( -2+ 1 )\/ﬁ)
p
p=2 ( 21”(;) T 551 VN) ) (26 — 1)(-D7/p
PERTURBATION UPPER BOUND LOWER BOUND
LC°-PERTURBATION
L'-PERTURBATION ~ O(V/N) O(VN)
LP-PERTURBATION VN 1/2
s N N P
; 1/2p 2/p
p>2 O (min(N"7=P, ( o T D) @(Qb((p,l)/p))

minyer, |, o xec 17— X1
EfI7 - 27T,

1
S Cb,pN 2max(p,1) (2)

Where c; ), is some constant parametrized by b and p.

The right hand side approaches 0 as N grows without bound, so compared to typical distances one
finds in an image space, the distance of an image to an image outside of its class is vanishingly small
in any p-norm it is measured in.

3.2 IMPLICATIONS OF ROBUSTNESS LIMITS FOR COMPUTER VISION SYSTEMS

According to our results, a large fraction of images in any interesting image class are can have their
classes modified by a small perturbation. We note that we only consider the case of image classifiers
that partition images into a finite number of discrete classes, so our results do not apply directly to
vision models that output class probabilities or some more abstract representation. However, these
outputs must ultimately be converted into decisions when the model is deployed, at which point our
bounds do apply.

Taken at face value, our results appear to pose a barrier for the construction of reliable computer
vision systems. For illustration, suppose we implement a system that selects from a finite pool of
actions to take depending on the output of some image classifier. Then for most images, a tiny
perturbation can make the given image trigger undesired behaviour, ostensibly making the classifier
unreliable.

One way of circumventing this barrier is to consider reliability conditioned on a prespecified image
distribution. Our bounds do not immediately preclude the existence of small fractions of images
within interesting image classes that are robust to large perturbations, and it is possible that those are
precisely the set of images that are commonly encountered in deployment. Therefore, our bounds do
not directly prevent the construction of classifiers that are robust with respect to some given image
distribution, which is an ongoing field of research(Madry et al., [2017).
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We remark that our bounds can be converted into bounds that take an image distribution into account
through tricks similar to ones used by Fawzi et al.| (2018a). We can define a map f : Z,, 4 ) —
Ty,,q,h,(b) Such that f(X') approximates the desired image distribution if X is distributed uniformly
over Z,, 4 n,(») (We can think of the preimage as some latent space). If we then define a monotonically
increasing w : R — R such that || f(X) — f(X')]l, < w(]|X — X’||,) for all pairs of images,
then all our bounds stating that no interesting class is r-robust to LP-perturbations of size d can
be converted into statements about how the probability of encountering an image in an interesting
class that is robust to LP-perturbations of size w(d) is less than r. Clearly the value of such a
bound necessarily depends on f and w, and it is easy to construct examples where these bounds
must be vacuous - for example, we could make f map all images of one class to the entirely black
image and all images of the other class to the entirely white image. However, this is an unrealistic
toy example, and experimental analysis carried out by |[Fawzi et al.[(2018a) suggest that analyzing
plausible approximations of f that produce useful distributions can produce informative bounds.

However, we also note that formulating robustness in a distribution specific way does not address
all reliability concerns: for example, an ostensibly benign image modified imperceptibly to trigger
dangerous behaviour can be a reliability concern regardless of whether said image is drawn from
a prespecified distribution. Furthermore, identifying the correct distribution of such images is a
non-trivial task, and distribution gaps can lead to significant reductions in performance(Recht et al.|
2019).

Another way of circumventing the barrier to constructing reliable computer vision systems imposed
by our bounds is to note that a perturbation with a small p-norm is not necessarily imperceptible. In
these cases, the classifier ought to adjust its output with respect to such perturbations. Robustness
should then be defined with respect to a perception aligned metric, as opposed to with some p-norm.
The barrier to constructing reliable computer vision systems then becomes the alignment problem for
human and computer vision systems.

3.3 BRITTLE FEATURES CAN IMPART SEMANTICALLY SALIENT INFORMATION

We show in this section that the semantic contents of most images are contained within brittle features
that can be erased with a small perturbation. First, we note that our bounds apply universally to
any image classifier, so they must apply to an ideal classifier that is able to faithfully mimic human
classifications. Although such a classifier has yet to be achieved in the computer vision space, human
based classifiers can be built quite easily: simply place people in front monitors and ask them to apply
labels to imagesﬂ Memoization could be applied to prevent the same image from being classified
multiple times with conflicting labels. This system, on top of producing human classifications, acts
like a classifier which partitions the set of all images into disjoint classes (as described in Section
2.1.1)), therefore our bounds must be satisfie

At this point, we have proven the existence of a classifier that reproduces human classifications. To
simplify the discussion, we will consider classifiers with only two classes: given a set of words[rl, we
will consider the class of images that such a label can be applied to and its complement. Specifically,
the words should be chosen in a way such that random noise should not receive a label with high
probability. Roughly speaking, the idea we attempt to capture here is that the first class is the class of
“meaningful” images, and the latter is the class of “meaningless” images.

Since images drawn from random noise should not receive a label with high probability, the class
of meaningless images is far larger than the class of meaningful images. Therefore, the class
of meaningful images is an interesting class, and all our bounds apply. This has the surprising
consequence that the semantic content of most images can be “erased” with a small perturbation by
turning them into meaningless images. Put differently, the semantic contents of most meaningful
images are contained in brittle features that can be erased with a small perturbation, which is what
we set out to show.

°Such constructions have been commercially implemented for purposes like content moderation.

19Tt may be the case that a pair of counterfactual trajectories of classifications would yield contradictory labels
on certain images. However, since only one such trajectory can occur factually, memoization suffices to make
such a classifier observationally indistinguishable from the kind of classifiers discussed in Section@}

"For example, words like “truck” or “parachute”.
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P

Figure 2: Small perturbations can be semantically salient

A small perturbation (a) when applied to a uniformly randomly drawn image (b) can add meaning to
it (c). Conversely the meaning present in (c) can be removed with a small perturbation to attain (b).
Such a perturbation can also add information to a natural image](d, e) - although the information
present in the natural image largely remains after applying the perturbation, new information was
still added by the perturbation.

“Sourced from from (Howard)

What do these features look like? A possible example of brittle features that convey semantic
information is line drawings (see Figure[2). Line drawings can be erased with a perturbation of size
O(n) (proportional to the height of the image) when measured using the 1-norm or 0-norm, which is
congruent with the bounds we derived for those metrics. Line drawings are also semantically salient.
However, the size of a line drawing is generally larger than O(1) when measured with a p-norm
with p > 2, so the saliency of line drawings do not necessarily account for our bit depth dependent
bounds. Phenomena like optical illusions and pareidolia may offer some hints as to how saliency can
be present in even more brittle features. Some past work highlight other possible ideas, such as the
object of interest only taking up a small portion of the picture (Tramer et al., |2020), or salient patterns
being drawn with low opacity (Fawzi et al., 2018b). However, a full understanding remains elusive.

Understanding the ways in which brittle features can carry semantic meaning is not merely of
academic curiosity. We have shown that the robustness of computer vision systems have fundamental
limits. However, a computer vision system that is aligned to the human visual system ought to obey
these limits, since a human based classifier must do so as well. Over the past decade we have learned
that standard machine learning methodology does not automatically produce vision systems that are
aligned to the human visual system with respect to small perturbations (Szegedy et al.,|2013)), and
methodologies that seek to produce such vision systems still contain misalignments (Tramer et al.|
2020). A deeper understanding of how semantic content is conveyed in brittle features may inform the
development of future methodologies (for example we may wish to explicitly train computer vision
systems on such features), which is becoming increasingly necessary as computer vision systems
become increasingly deployed in safety and security critical applications, where the trustworthiness
of the system is essential (Pereira & Thomas, |[2020;[Ma et al., 2018).

4 CONCLUSION

We have derived universal non-robustness bounds that apply to any arbitrary image classifier. We have
further demonstrated that up to a constant factor, these are the best bounds attainable with respect to
the dimensions of the image. These bounds provide fundamental limits to the robustness achievable by
computer vision systems, and reveal that most images in any interesting class, even those induced by
ideal classifiers, can have their class changed with a perturbation that is asymptotically infinitesimal
when compared to the average distance between images. We then discuss the barriers to constructing
safe and secure computer vision systems imposed by our results and how these barriers may be
circumvented. Finally, we show the abundance of brittle features that convey semantic information,
and propose that an improved understanding of these features may yield progress on the problem of
aligning human and computer vision systems. We discuss line drawings as an attractive candidate for
brittle features that are semantically salient. However, they are not sufficiently brittle to account for
all our bounds, so a full understanding of these features remains the subject of future work.

5 REPRODUCIBILITY STATEMENT

Complete proofs for our claims can be found in the appendix.
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A APPENDIX

A.1 PROOF OF THEOREMII]
A.1.1 PROPERTIES OF BINOMIAL COEFFICIENTS

We will work with binomial coefficients extensively. To simplify some of our statements, we will
extend the definition of a binomial coefficient to work with any n > 0 and arbitrary integer k:

n!
—— f0<Ek<
<Z>: Mn k) TUsksn 3)
0 otherwise

Binomial coefficients can be bound in the following way:
2n

Lemma 1. (}) < —= whenn > 1.

n

NG

Proof. We first note that n! is bounded by the following for all n > 1 (Robbins), [1955)):

n" n! n" 1/(12n)
— < — — " 4
\/Een < o < \/ﬁen e 4)

Applying the appropriate inequalities for the numerator and denominator yields the following for
when n is even:

(0)= () = o <22 S

11
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When n is odd, we have:

(+) = (1) ®

1 n+1
= 2<(n+ 1)/2) @
on 61/(12("—"_1))
<2 (8)
vn+1 V2T
5 on el/(lZn) 9
P —
N RO ®

Where the third comparison is an application of Equation [5]

g1/ (12m)

V2

If n > 1, we have < 0.5, which proves the claim. O

It will also be useful to define the following cumulative sums (which are also the tails of binomial
distributions):

S (M1 —p)»t ifk>0
n k) = =0 \1¢ 1
Un,p(F) {O otherwise (10)

We can show that the ratio of these cumulative sums are monotonic increasing:

Lemma 2. Letp € (0,1). Then UZ}#I(;)’C) is monotonic increasing in x, where 0 < x < n and k is
n.p

any positive integer.

Proof. First, we note that the ratio (mﬁk) / (2) is monotonic increasing in x when x > 0. This holds

by definition if x — k < 0. Otherwise, we have the following:

(zﬁk)/(;l) _ (n—x) . (x—k+1)
G o)/Gr)  (—z+k) (@+1) =1 (11)

We then claim the following holds for all x where 0 < z < n — 1:

Unp(z —k) _ Unplz —k+1) _ (, i )a-p*
Unp() = Unple+1) = (})pF

(12)

The above holds with equality when x — k + 1 < 0. If x — k + 1 = 0, the above also holds: the
leftmost ratio is 0. For the other two ratios, if we multiply the rightmost ratio by (1 — p)"~* above
we can see that the numerators are equal while the denominator of the rightmost ratio is smaller. We
can prove the other cases by induction on x:

Unple k) _ ()1 =p)*

Uen@) = (O (49
n 1— k
< (”{ le()pk ?) (14)
n r—k+1 1— n—x+k—1
_ (x7k+1)p (1-p) (15)

(mil)px-i-l (1 _ p)n—x—l

12
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Where the first inequality follows by induction, and the second inequality follows because (") /(%)
is monotonic increasing in x.

For any positive numbers a, c and strictly positive numbers b, d, where ¢ < <, we have § < errg <3z
because:
d (a+ A bc — ad
- = >0 16
d)\(b+)\d> Y (16)
Therefore, we have:
Upplz—k)
Unp()
Unle = K) + ()"~ (1 = p)otit "
> Un,p(x) + (x’il)prrl(l 7p)nfmfl
U, —k+1
_ »(T +1) (18)
Upp(z+1)
n 1— k
< (m—k‘*'ln)# (19)
(z+1)p
As claimed. Carrying on the induction up to x = n — 1 yields the statement. [

A.1.2 BOUNDING THE INTERIOR OF A SET OVER A HAMMING GRAPH

We will prove our main results by an application of isoperimetry bounds over a Hamming graph. Let
W be a set of w symbols. Then we define the n dimensional Hamming graph over w letters, denoted
H(n,w), as the graph with a vertex set W™ and an edge set containing all edges between vertices
that differ at precisely one coordinate. For example, (n, 2) is isomorphic to the Boolean hypercube.
We will use V/(#H(n,w)) to denote the vertex set of the Hamming graph.

Let S C H(n,w). We define the expansion of .S, denoted EXP(.S), as the set of vertices that are
either in S or have a neighbour in S. Since EXP(.) inputs and outputs sets of vertices, we can iterate
it. We will use ExP”(.) to denote k applications of EXP(.).

We now adapt a a result from (Harper, [1999) (Theorem 3 in the paper). Additional details on how it
has been adapted can be found in Appendix [B.1]

Lemma 3 (Isoperimetric Theorem on Hamming graphs). Let S C H(n,w). Then:

7|EXPI€(S)| min r
VG, ] = MO )
s
) = G, )
pe (0,1)77’6 [O7n_k)} (20)

To work with this we first obtain bounds for the expression on the right hand side of Lemma 3]
Up,p(r—Ek)

Lemma 4. Let p be any value in (0,1). Let n > r > k such that Uy, ,(r) < % Then = @) <

26—2(max(k—1,0))2/n.

Proof. Let X be a binomially distributed random variable with n trials and probability of success p.
Let m be the median of X. We have m < np + 1 because the median and mean differ by at most 1
(Kaas & Buhrman, |1980).

Up,p(m — k) can be interpreted as Pr(X < m — k), We can then apply Hoeffding’s inequality (Ho;
effding, [1994):

13
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Pr(X <m—k) <Pr(X <np+1-k) 21

672(max(k71,0))2/n (22)

IN

Since m is the median of X, we also have U,, ,(m) > 1. Combining this with the above equation
gives:

Un-,p(m — k’) S 2672(max(k71,0))2/n (23)

Un,p(m)
Since U;LJ#I(;)’C) is monotonically increasing in = via Lemma this also implies that the above
relation holds for all 7 < m. This completes the proof. O

We can then plug this into Lemma [3]to obtain a non-robustness result on Hamming graphs, which we
will then apply to image spaces.

Theorem 4. Let S C V(H(n,w)) such that |S| < |V(H(n,w))|/2, and ¢ > 0 be any number. Let
S’ C S be the set of vertices for which no path with c\/n + 2 edges or less leads to a vertex not in S.

Then % < 2e2¢",

Proof. Suppose for contradiction that |S’| > 22" |S]. Since for any vertex in S’ no path with

cy/n + 2 edges or less leads to a vertex outside of S, we have Exp®Y"2(5) C S. Then:

[EXPV™H2(8")| 2|V (H(n, w))| min{U, ,(r + cv/n + 2)

157
2 l) = G,
pe(0,1),r€[0,n—cyvn—2)} (24)
2%62(max(c\/ﬁ+1,0))2/n|sl‘ (25)
>%e2€2 S| (26)

The first relation follows from Lemma 3] and the second follows from Lemma[d] Lemma[]applies
since EXPC‘/E”(S’) C S, so |EXPC‘/E+2(S’)| < |91 < %

But then [ExP°V"2(§")| > Le2°|§"| > | S|, which implies that Exp°Y"+2(S") ¢ S. This is a
contradiction, so we obtain our desired statement. O

A.1.3 PROVING THEOREM[I]

All that remains is to massage Theorem into the form of Theorem Let C C Z, 4. v) be any
interesting class.

Lemma 5. C is not 2¢~2° -robust to LO-perturbations of size cv/qh * n + 2.

Proof. This is a straightforward corollary of Theorem []since we can construct a hamming graph out
of Z,, ¢.n,(v) as shown in Figure[T)in the main text.

In detail: let M : V(H(n?qh,2%)) — Z,, 4 n.(v) be the following bijection: first let Q be a set of
2™ equally spaced values between 0 and 1, where the largest value is 0 and the smallest is 1. Then

the elements of V(#H(n%qh,2%)) can be viewed as Q"zqh. We then map elements from Q”zqh to
Ty ,q,n,(v) Such that the inverse operation is a flattening of the image tensor. Note that such a mapping

preserves graph distance on V (#H(n2qh, 2%)) as Hamming distance on T q.h(b)-

14
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Let C’ C C be the set of images that are robust to L°-perturbations of size c\/qh * n + 2. Let
S =M"YC)and S’ = M~Y(C"). S’ is then the set of vertices for which no path with ¢\/qgh*n +2
edges or less leads to a vertex outside of S.

C' is an interesting class and M(.) preserves cardinality due to it being a bijection. Therefore
|IC'| < |V(H(n3gh,2%))|/2, so by Theoremwe have |S’|/|S] < 272", Again, since M(.)

preserves cardinality, this implies that |C”|/|C| < 2e=2¢", which means that C' is not 2¢ 2% -robust
to LO-perturbations of size c\/qh * n + 2. [

We remark that if the domain of M(.) is changed to H(qn?, h2°), the above argument also shows
that C'is not 2e =2 -robust to cy/qn + 2 pixel changes.

It is straightforward to generalize this to p-norms with larger p.

—2¢2

Lemma 6. C is not 2e -robust to LP-perturbations of size (c\/qh * n + 2)'/P.

Proof. Let S; be the set of images that are r-robust to L°-perturbations of size d, and let S be the
set of images that are r-robust to LP-perturbations of size d'/?.

Suppose I ¢ Sy. Then there exists some image I’ in a different class from I such that ||I — I’||o < d.
Therefore, for all p > 0, we have:

d>|I-1I'o 27)

= Moy =Lyl (28)
x,y,c

> Z |I€F7ZI;C - I;:,y,c|p (29)
x,y,c

=1 -1, (30)

Where the second and third relation follows from the fact that channel values are contained in [0, 1].
Therefore, I ¢ Ss either since || — I'||, < d*/P. Taking the contraposition yields Sy C S;.

Setting d = ¢v/qh * n + 2 and applying Lemma gives the desired result. O

A.2 PROOF OF THEOREM[2|
A.2.1 ANTI-CONCENTRATION INEQUALITIES

We first prove an anti-concentration lemma concerning the binomial distribution.

Lemma 7. Let X be a random variable following the binomial distribution with n trials and
a probability of success of 0.5. Let Y be a discrete random variable independent of X whose
distribution is symmetric about the origin. Then for any t where t < E[X] andt — |t] = 1/2, we
have:

PriX+Y <t)>Pr(X <t) 31)
Proof. We have the following:
Pr(X+Y <t)=Pr(X+Y <t,X <1t) (32)
+Pr(X+Y <t, X >t)
Pr(X <t)=Pr(X4+Y <t, X <t) (33)

FP(X4+Y >t X <t)

15
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Therefore it suffices to show that Pr(X +Y < ¢, X >¢) > Pr(X +Y > ¢, X < t). We have for
any r > 0:

Pr(X+Y <t,X=t+7r)=Pr(Y < —r)Pr(X =t +7) (34)
>Pr(Y >r)Pr(X =t +7) (35)
>Pr(Y >r)Pr(X =¢t—r) (36)
=Pr(X+Y>t,X=t-r) (37)

Where Equation [34] follows from the independence of X and Y, Equation [35] follows from the
symmetry of the distribution of Y, and Equation [36|follows from our assumption that ¢ < E[X] and
t— [t =1/2.

Summing over all positive r for which Pr(X =t 4 r) > 0 yields the desired result. O

Lemma 8. Ler X1, Xo, ..., X,, be independently and identically distributed random variables such
that each X; is uniformly distributed on 2k evenly spaced real numbers a = r1 < ro < ... < T = b.
Then for t > 0, we have:

(3%)

Proof. Let Y1,Y5, ..., Y, be independently and identically distributed Bernoulli random variables
with p = 0.5. Let Z1, Zs, ..., Z,, be a set of independently and identically distributed random
variables uniformly distributed between the integers between 1 and & inclusive. If the Y's and Zs are
independent of each other as well, we have:

X, —E[X)]) == N (kY; + Z; — E[kY; + Z;
,;( i — E[X;]) Qkilg(kﬂr i — E[kY; + Z))) (39)
b—a o ", 7, - E[Z]
—kizk_l((;mﬂi;ik )
- O _EMm)) (40)
=1
Z; — E[Z;
Lety ' ,Y; =B, Z?:lszzD, and k=% = c. Then for any ¢ > 0, we have:

16
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n

Pr(Z(XZ- —E[X;]) < —t) =Pr(B+ D < —Z +E[B]) (41)
=1
>Pr(B+ D
< —z +E[B] — u) (42)
>Pr(B < —% +E[B] - 1) (43)
>Pr(B — E[B]
2t
<-7— - 1) (44)
>_ — Pr(B — E[B]
2t
€ [—m—l’o]) (45)
1 n .
25 (Ljay)?
2t
(m +2) (46)

Where 1 > u > 0 is chosen such that —% +[E[B] — u is the average of two adjacent integers. Equation
is then an application of Lemma [7]since B is binomially distributed with p = 0.5 and D has a
distribution that is symmetric about the origin, and Equation 6] follows from the fact that no more
than = + 1 values are supported on an interval of length x, and no supported value has probability
greater than (L";;? | )2 ™.

Observing that (L7L72 J)2’” < ﬁ due to Lemmaand substituting ¢ with ¢ — (b — a) yields the
desired result. O

A.2.2 PROVING THEOREM[2]

LetA: T, g0 — {0, 1} be described by Algorithm In other words, it is the classifier that inputs

an image, sums all of its channels, and outputs 0 if the sum is less than nzqh /2 and 1 otherwise. Let
Z be the class of images that A outputs 0 on. Note that Z is an interesting class since it cannot be
larger than its complement, so it suffices to prove that Z is robust.

Lemma9. Z is (1 — 4c)-robust to L*-perturbations of size c\/qh * n — 2

Proof. Let Z' C Z be the set of images in Z that are robust to L'-perturbations of size c\/qh *n — 2.

Let I be a random image sampled uniformly. Then |Z’| = Pr(I € Z')2~("*4h2")_ We then have the
following:

Pr(I € Z') =Pr( > ILiya+cy/ghsn—2<n’qh/2) (47)
T,Y,a

>Pr( Y Ioya <ngh/2 = c/qhxn+1) (48)
xT,Yy,a

S (49)
B C

Where the last inequality follows from Lemma [§] since each channel is sampled from a uniform

distribution over a set of 2° evenly spaced values between 0 and 1. Noting that |Z| < 9(n*qh2")-1
12|

since it cannot be larger than its complement yields 7z > 1 — 4c. Therefore, Z is (1 — 4c¢)-robust to
L!-perturbations of size c¢\/qh * n — 2. O

Lemma 10. Z is (1 — 4c)-robust to L°-perturbations of size c\/qh * n — 2
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Proof. It suffices to show that an image that is robust to L!-perturbations of size d is also robust to
Lo—perturbations of size d, since the statement then follows directly from Lemma@

Let I be an image that is not robust to L°-perturbations of size d, so there exists some I’ in a different
class such that ||I — I'||o < d. Then:

d>|[I—TIo (50)

= Z HLE,?J;G - I;:,y,a ~| (51)
(@,y,a)

N S (52)
(@,9,a)

= I -1l (53)

Where the second and third relations hold since channel values lie in [0, 1].

This implies that I is not robust to L*-perturbations of size d. Therefore any image that is not robust
to L°-perturbations of size d is also not robust to L!-perturbations of size d. The contraposition
yields the desired statement. O

-/qhxn—2)1/P
((CQ\{f]_l)”(Lp—l))/p forp 2 2.

Lemma 11. Z is (1 — 4c)-robust to LP-perturbations of size
Proof. It suffices to show that any image that is robust to L!-perturbations of size d is also robust to

. . 1/ . .
LP-perturbations of size (dﬁ for any p > 2, since the statement then follows directly from
Lemma

201)

Let I € 1y, 4 n,v) be an image that is robust to L!-perturbations of size d. Let I’ be any image in a
different class, so ||[I — I'||o > d. Then for any p > 1:

I =11E= 3" eye— 11yl (54)

(@.y.a)
2" = Dlay,a = I yal \p

= Z ( (2b _ 1) 5 ) (55)

(@.y.a)
| RY

> Z (2" = DIl ya — I;ya|(m) (56)

(@.y.a)
I-TI'|
_ @ opl=tlh 57
( ) @ — 1y (57)
d
—_— 58
Z @1 (58)

Where the second relation follows from the fact that if two channel values differ, they must differ by
at least .
Therefore, ||I — I'||, > (zbff;% for any I’ whose class is different from I, so I is robust to

. . 1/
LP-perturbations of size Mﬁ forp > 2. O

A.3 PROOF OF THEOREM 3]

We fix arbitrary n, q, h, and b. For simplicity, we define N = n?qh as the data dimension. Let
C C T, ¢,n,p) be any interesting class. Our objective is to show that C' is not robust to various
perturbations.

For the first part of the proof, we construct a grid over the unit hypercube and then map Z,, , 1, () to
cells in this lattice while preserving distances up to a constant factor.

* Let T be a set of 2 disjoint intervals of equal length whose union is the interval [0, 1]
(specifically, we have T = {[z *27% (z + 1) *27%) |z € ZN[0,2° — 2]} U {[1 — 27, 1]}).

18
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o Let TV be their Nth Cartesian power. This forms a partition over the unit hypercube [0, 1]V
since the elements of 7'V are disjoint and their union is precisely the hypercube. Note that
each element in the partition has equal measure.

* We can associate each element of Z,, , 1, (5 With an element of TN . We first map Ly qh,(b)

to [0, 1]V, which can be done by flattening the image tensor (which we denote by b(I) for
animage I € Z, ;  (»))- We then map that point to the element of TN the point falls within.
The overall mapping is bijective, and we will denote it by F.

This completes the construction. To recap: each element in Z,, , 5 () is now associated to a cell in
TN viaF : T,

b, (b) — TN. TV is a partitioning of the unit hypercube into cells of equal measure.

In the next part of the proof we define an algorithm that is able to find small perturbations. We then
show that this algorithm succeeds with high probability, which proves the statement.

Let A:[0,1]Y x R — [0, 1]V U {L} be a partial function that maps a point p; and a real value c to
a point py such that the following hold:
L lp1 —p2llz <
2. Let I, Iy € Z,, 4, such that p; € F(I;) and po € F(I2). Then we require that
LeC = I, ¢ C.
A(.) returns L if and only if no such py exists.

We can then define a procedure FINDPERTURBATION for finding a perturbation given an image 7,
which is outlined in Algorithm 2]

Algorithm 2: Find Perturbation

Input : An image I € C and a real value c.
Result: Animage I’ € Z,, ; , ) such that I’ ¢ C, or L.
Sample p; from F'(I) uniformly at random;
P2 < A(pla C)
if po = 1 then
| return L;
else
Find I ¢ C such that p, € F'(I3);
return /;

Our proof strategy is to show that the perturbations found by FINDPERTURBATION are guaranteed to
be small, and that the probability of failure is low. This must then imply that most images are not
robust.

Lemma 12. [f I' = FINDPERTURBATION(I, ¢) is not L, then |[I — I'||s < ¢ + 2%,

Proof. Each element of T has a diameter of %, thus p; differs from b(I) by at most that distance.
Similarly, py differs from b(I5) = b(I’) by that distance. We also must have ||p; — pa|2 < ¢ since
I' # 1. Putting it altogether with the triangle inequality we get |[>() — b(I’)||2 < ¢ + 24}. Since

b(.) preserves distances, we get the desired statement. O

Lemma 13. If I is drawn uniformly from C, then Pr(FINDPERTURBATION(I, ¢) = L) < 2¢</2,

Proof. Let F(C) denote the image of C under F. Let | J F(C) denote the union of all elements in
F(C).

If the input I is drawn uniformly from C, then p; is distributed uniformly over (J F'(C). The
procedure fails if and only if A(p1, ¢) = L, which happens if and only if all elements within a radius
of ¢ from p; all belong to | J F/(C). Let C’ denote the set of all such points.
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PT(A(IQ, C) = L) = m (59)
< 2e=/2 (60)

Where p(.) denotes the Lebesgue measure.

The last inequality comes from Theorem [5] which is given in the next section. The statement applies
for any set S formed from a union of elements of 77V whose measure is no larger than 1/2. | J F(C)
satisfies these criteria since C'is an interesting class and each element of 7 is of equal measure and
disjoint, so we attain the desired statement. O

VN

2
Lemma 14. C is not 2e ¢ /2-robust to L-perturbations of size ¢ + 2 5

Proof. Let I be drawn uniformly from C. Let C, be the set of images that are robust to L2-

perturbations of size ¢ + 2@.

Let I’ = FINDPERTURBATION(I, c). Then I’ is randomly distributed over Z,, , , ) U {L}. By

Lemma[12] if I' € Z,, 5. then [T — I'll; < ¢ + 23, which implies that I ¢ C. By
contraposition, I € C, implies that FINDPERTURBATION(/, ¢) = L. Therefore:

Pr(I' = 1) =Pr(I € C,) + Pr(I ¢ C,., I' = 1) (61)
> Pl € C,) (62)
Cy]
- 63
] (63)

By Lemma Pr(I’ = 1) < 2¢~/2. Thus, |‘CCT“ < 2¢=¢"/2 which yields the desired statement.
O

Lemma 15. C is not 2¢~<"/2-robust to LP-perturbations of size (c + 2@)2/1) forp > 2.

Proof. We use the identical argument from Lemma 6]

Let S; be the set of images that are r-robust to L?-perturbations of size d, and let S, be the set of
images that are r-robust to LP-perturbations of size d?/?, where p>2.

Suppose I ¢ S;. Then there exists some image I’ in a different class from I such that || — I'||2 < d.
Therefore, for all p > 2, we have:

d*> > ||I-T'|3 (64)

=3 Noye =1, (65)
CU,’y,C

> | Leye— 1y (66)
I,y,C

= (IlF = I'||p)" (67)

Where the third relation follows from the fact that channel values are contained in [0, 1]. Therefore,
I ¢ S, either since || — I'||, < d*/P. Taking the contraposition yields Sy C S;.

Setting d = ¢ + 2%—? and applying Lemma gives the desired result. O

Substituting VN = /gh * n to Lemma@yields the exact form of Theorem
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A.4 PROOF OF THEOREM[3

Our objective in this section is to complete the proof of Theorem 3] by proving Theorem [5] stated
below. We will use 4(.) to denote Lebesgue measure throughout this section.

Definition 4. We say a set S C [0,1]™ is a regular set if there exists some finite set T such that
S = UteTt and T consists of elements that are Cartesian products of n intervals that are either
open or closed.

By this definition the sets defined in the proof of Lemma [[3]are regular, so the following theorem is
applicable.

Theorem 5. Let S C [0,1]™ be a regular set such that 1(S) < 1/2. Let S, C S contain all the

points in S such that for all y € [0,1], ||z — y|lo <r = y € S. Then *:L((SST)) < 2e¢°/2,

A.4.1 PROPERTIES OF THE STANDARD NORMAL DISTRIBUTION

First, we define the cumulative distribution function for the standard normal distribution and its
derivative.

D(z) = / Lty (68)
5o s
P (z) = L e (69)

Similarly to the discrete case, the ratio of the cumulative distribution functions is monotonic increas-
ing.

Lemma 16. {)g(;)k ) is monotonic increasing in x for all k > 0.
—z2/2
Proof. Let f(x) = . Then:

- IZ. e—t2/2dt

e /2y ffoo et 204 — o7 /2p—2%/2

70
(ffoo et2/2dt)2 ( )

d
%f(x) =

When x > 0, this derivative is negative since both terms in the numerator are negative. If x < 0, we
have the following:

T xr 1
—x/ et < —x/ et/2 4 t—ze_tz/th (71)
=—z(- 1e_tz/2 ’ ) (72)
t _
g (73)

So the sum is strictly smaller than (e~ /2)2 — (¢=*°/2)2 = (. Therefore, the derivative is everywhere
negative, so f(x) is strictly decreasing.

Therefore, we have the following for any non-negative k:

d  Ox—k)

—I1 = —k)— >0 74
Since In(.) is a monotonic increasing function, <Dg‘(;)k ) must also be monotonic increasing. O
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A.4.2 PROVING THEOREM[3]

Similarly to the discrete case, our main result relies on an isoperimetry statement, this time on the
unit hypercube (Barthe & Maureyl, 2000).

Lemma 17 (Isoperimetric Theorem on the Unit Hypercube). For any n, let A C [0, 1]™ be a Borel
set. Let Ac = {x € [0,1]"|32’ € A: ||z — 2'|| < €}. Then we have the following:

hminfM > V21 d (L (u(A))) (75)

e—0t €

Let C C [0, 1] be a regular set such that 0 < u(C) < 1/2. Let C;. C C denote the points p; in C
such that for any point py € [0, 1], |[p1 — p2lle <r = py € C.

Lemma 18. C,. < &(d~1(u(C)) — 1)

Proof. Let z = ®~1(u(C)) and let f(x) = ®(x + 2). Let v(.) be a Lebesgue integrable function
such that the following holds:

_ _fu(C—) ifr <0
vir) = /(_OO,T) o(t)dt = {M(Co) otherwise (76)

This exists since C' is a regular set. Since V' (z) results from integration, it is also a continuous
function.

It then suffices to show that V(x) < f(z) for all z, since V' (x) corresponds to the left hand side of
the theorem statement and f () corresponds to the right hand side. Suppose this is not the case. We
know that V'(x) < f(z) for all z > 0, so if this is violated it must happen when = < 0. Since V' (z)
and f(x) are both continuous, by the intermediate value theorem there must exist some interval [a, b)
where V(z) > f(z) ifx € [a,b), V(b) = f(b),and a < b < 0.

This gives us the following:

V(b) — V(a) :/ o(t)dt (77)

[a.b)

— / lim wdt (78)
[a,b)\Z e—0t €

:/ Jim inf AC=t=0) =#C0) (79)
[a,b)\Z e—0t €

> V2rd (&N (u(C_y)))dt (80)
[a.b)

> Vord' (& (f(1)))dt 31)
[a.b)

> f(b) — f(a) (82)

Where Z is the set of values where the limit in Equation[78|is not equal to v(t), which by the Lebesgue
differentiation theorem is a set of measure 0. Equation [80]is an application of Lemma[I7} which is
applicable since C_; is a Borel set because C' is a regular set. Equation [81]follows from the fact that
f(x) < V(z) forall z € [a,b] and the fact that ®'(®~1(.)) is monotonically increasing if the input
is no greater than 1/2.

We also have V(a) > f(a) and V' (b) = f(b), so it must be the case that V' (b) — V (a) < f(b) — f(a).
This contradicts the above, so it must be the case that V(z) < f(x) for all . O

Lemma 19. ;1(C.) < 2¢=</214(C)
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Proof. Let 2 = ®~1(u(C)). Then for any ¢ > 0,

w(Ce)  ®(z—c)  D(1/2-¢) o /2
WC) = ek - ey

(83)

Where the first inequality follows from Lemma [I8] the second inequality follows from Lemma
and the fact that 4(C) < 1/2, and the third inequality follows from the Gaussian tail bound

d(z) < e /2 forallz < 1/2. O

A.5 AVERAGE DISTANCE BETWEEN IMAGES

We wish to show that for a pair of images I, I’ € Z,, ;1 () that are sampled independently and
uniformly, there exists a k j, such that:

E(|I - I'||p) > Ky, N/ max(1p) (84)

If p=_0thensetky,to 1 — 2~b and the relation will hold with equality, so we are done. Otherwise,
we note that we have:

B[] — I'[;>") = N« E[LX - v[m(t2)] (85)

Where X and Y are independent random variables that are both drawn uniformly from a set of
2" equally spaced values, where the largest is 1 and the smallest is 0. For simplicity, we denote
E[|X — Y|max(LP)] with 2.

| — |21 is non-negative and cannot be larger than N. Therefore, the probability that

T = I'||mex(tP) > N2 /2 is at least 52

2—z"

Via a monotonicity argument we can deduce that the probability that [|[I — I'||, >
(z/2)1/ max(p.1) N1/ max(p.1) is at least 2 as well. We can then apply Markov’s inequality to
get the following:

z

Em[ _ I/”p] > 5 (2/2)1/max(p,l)Nl/max(p,l) (86)

—Zz

55— (2/2)1/ max(P:1) we attain our desired result.

By setting kj , to be
A.5.1 AVERAGE DISTANCES BETWEEN IMAGES FROM NATURAL DISTRIBUTIONS ARE ALSO
LARGE

The above analysis shows that average distances between images over the entire image space is large,
but it does not preclude the possibility that average distances between images from a distribution of
natural images is small.

To investigate this, we computed average distances between images in Imagenette, a subset of
Imagenet consisting of 10 classes (tench, English springer, cassette player, chain saw, church, French
horn, garbage truck, gas pump, golf ball, parachute)(Howard)). In detail, we took all the images within
the training set of Imagenette with the shorter side resized to 320 pixels and discarded all images that
were not in RGB, resulting in 9296 images. Each image had a bit depth of 8. We then cropped the
images such that only the top left 320x320 pixels remained. We then computed the average distance
measured in p-norms where p ranged from 1 to 5:

ZzED ZyED llz — pr
|DJ?

87)
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320%x320 160x160
40x40 20x20

Figure 3: Subsampling 320x320 images to smaller sizes

Where D is the set of 320x320 images. We also subsampled the images to 160x160, 80x80, 40x40,
and 20x20 by taking the top left pixel of each region as the representative sample (see Figure[3) and
computed the average distances between them too. The results are presented in Figure d] and indicate
that the average distances between images drawn from natural distributions are not dramatically
lower than those between images drawn uniformly if we believe the Imagenette dataset is sufficiently
representative of natural image distributions.

The average distances between uniformly drawn images were each approximated with 200000 pairs
of randomly drawn images, except for the 1-norm where a closed form solution exists: for a pair
of nxn images with h channels and bit depth b, the average distance between all pairs of images,
measured with the 1-norm, is ¢,n?h, where c; is given by:

i=0 J=0 9b _q
22b

21 2v—1 |1 — J]
>

Cp (88)

A.6 PLOTS OF THE RELATION BETWEEN ROBUSTNESS AND PERTURBATION SIZE

We plotted the curves defined by the upper bounds in Table [I]to facilitate interpretation. The curves
are plotted in Figure[3] &, b, and ¢ have been fixed at 3, 8, and 1 respectively, so the bounds apply to
square RGB images where each channel has a bit depth of 8. Perturbations sizes are then plotted on
the y-axis, and a corresponding upper bound on the robustness achievable is plotted on the x-axis on
a logarithmic scale. Sizes are measured in 0-norms, 1-norms, and 2-norms, and we plot these curves
for n = 32, n = 256, and n = 1024.
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B APPENDIX

B.1 ADAPTING OF LEMMA [3]FROM (HARPER}, [1999)

In this section we will show how we adapt Theorem 3 from (Harper, [1999) in its exact form into the
form given in Lemma 3]

B.1.1 PRELIMINARIES

Some additional terminology is required to parse Theorem 3 from (Harper, [1999) in its original form.
We note that the terminology concern elements from the unit hypercube [0, 1]%.

H(z,y) is used to denote the Hamming distance between two elements z,y € [0, 1], in other words
the number of coordinates at which they differ.

A lower set is a set S C [0,1]% such that if € S, then any vector y € [0, 1]¢ with the property
y; < x; forall i where 1 <4 < disalsoin S.

A weighting ¢ is a vector in (0, 1) that splits the unit hypercube [0, 1] into 2¢ distinct regions. The
set of regions is x¢_; {[0,#;], (t;,1]}, and it is said that ¢ is constant if t; = ¢; for all i, j where
1<i<dand1 < j <d. Here we use x to denote the Cartesian product.

H B(r,d) with weighting ¢ is a subset of [0, 1], and is referred to as a Hamming ball of radius r. A
Hamming ball of radius 7 is usually used to denote a subset of {0, 1}¢ that contains all vectors where
the sum of the entries does not exceed r. This concept can be naturally be extended to [0, 1]¢ with
weighting ¢: if we define F; as a map that maps 0 to [0, ¢;] and 1 to (¢;, 1], we have:

HB(rd) = | x Fi(v;) (89)
vEH,

Where H, is a Hamming ball of radius r in the traditional sense.

B.1.2 ADAPTING THE NOTATION

We are now ready to give Theorem 3 as it is stated in (Harper, [1999).

Theorem. Vv,0 < v < 1, 3r such that H B(r, d) minimizes
|®p(r,d)|=|{y ¢ S:3x e S, H(x,y) < h}

over all lower sets, S C [0, 1], with |S| = v. The optimal weighting for HB(r,d) is constant

To bring the theorem statement closer to our terminology, we have EXp(S) = SU{y ¢ S : 3z €

S, H(z,y) < h}. Since the volume of S is constant, H B(r, d) also minimizes [EXP"(S)| over all
lower sets .S of a given volume. Note that for our expansion notation to make sense here, we act as
though [0, 1]¢ is an infinite graph where there exists an edge between any pair of vectors that differ at
exactly one index.

Since the theorem states that the weighting ¢ should be constant, we have an exact form for
HB(r,d). Let p denote the value of all entires of t. We then have |HB(r,d)| = Uqgp(r) and

|Exp"(HB(r,d))| = Uqp(r + h).

Therefore, for any lower set .S, it must be the case that

|[ExP"(S)| > min{|ExP"(HB(r,d))| | t € (0,1)%,7 € [0,d — h),|HB(r,d)| = |S|}  (90)
=min{Uqp(r+h) | r€[0,d—h),p € (0,1),Uqp(r) = 1|5} 91)

We can then restate Theorem 3 from (Harper, |1999) in the following form:
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Lemma 20. Let S C [0,1]" be a lower set. Then:
|ExP*(S)| > min{U, ,(r + k)
Unp(r) = [S];
peE (071),7‘ € [07’”’_ k)}

Note that we have replaced d with n and h with &k to match our notation. This is now nearly in the
form of Lemma [3| All that remains is to show that this inequality implies an analogous one for
Hamming graphs.

B.1.3 EMBEDDING A HAMMING GRAPH

Let [w] be the set integers from 1 to w inclusive and let H(n, w) be the Hamming graph with the
vertex set [w]™. If S C [w]™, we call it a lower set if 2 € .S implies that any y with the property that
y; < x; for all s where 1 <1¢ < mnisalsoin S.

Lemma 21. For all S C [w]", there exists a lower set S' where |S'| = |S| and |Exp*(S")| <
|[ExP"(9)|.

Proof. Let S C [w]™. Let i be an index such that there exists some = € S and y ¢ S such that
yi < x4, and for all j y; < z;. If not such ¢ exists, then we are done, since S must be a lower set.

Group together all vertices that are equal on all coordinates except ¢. Each group contains exactly w
elements. For each group G, reorganize which elements belong to .S by moving them to the bottom.
Denote the new set by S*. For example, suppose that G N S = {(1,2,2),(1,2,3),(1,2,5)},
and ¢ = 3. Then we will shuffle those elements downwards such that we get G N §* =

{(1,2,1),(1,2,2),(1,2,3)}.

Note that this action cannot increase the size of the expansion. Given a group G, consider the number

of elements that are not in EXPk(S). Denote it by z. If z = 0, then that number clearly cannot
decrease after reorganization.

If 2z # 0, then no vertex that is within k steps of any element of G is a member of a group G’ such
that |G’ N S| > w — z. Otherwise, G must have more than w — z elements that can be reached by
those elements in k steps, which means G must have less than z elements that are not in EXp*(S).

But then that means EXP"(S*) cannot reach more than w — z elements of G, specifically the ones
where the ith coordinate is at most w — z. Therefore, G has at least z elements that are not in
ExP"(S*). Therefore [EXP*(S* N G)| < |[ExP"(S N G)|, and since every vertex is covered by

exactly one group, we have [EXP*(S*)| < |[ExpP*(9)).

We can keep iterating this. With each iteration, the sum of all coordinates of all elements in .S will
strictly decrease, and since this sum is positive, this process will eventually terminate, leaving us with
a lower set S’ that has equal size and with an expansion that is no larger than that of the original
set. O

We can map elements from H (n, w) to subsets of [0, 1]™ via the following map:

1 —1 a1 To—1 x9 Tn, —1 x,

F ey X)) = , — ,—] X ... , — 92
(21,22, ) = [Fom, S [, 2 [ By o

This mapping preserves expansion for any set .S in the following sense:
U F)=Eexe*({] F(x)) (93)

zEEXPF (S) z€S
Furthermore, we have for any set S’
S

S LI E— U F=)] (94)
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Finally, this mapping also preserves the property of being a lower set.

Therefore, for any set S C H(n,w), we have:

[ExP*(5))| o [ExPR(SY) : /
———— > min{ ——— |5’ € H(n,w) is alower set, |\S’| = |S (95)
VW) = P Vw1 = S

=min{| |J F()|[8' C H(n,w)isalowerset,|S'| =S|} (96)

z€EXPF (S7)
= min{|ExpP*( U F(x))| |9 € H(n,w) is a lower set, |S’| = | S|} o7

zes’
> min{|Exp"(S")| |5’ C [0,1]" is a lower set, |S"| = W(;LJ(SM} (98)

. S

> (U + ) nplr) = i€ 017 € D= b} 99)

The second and third relations are properties of the mapping F', the fourth relation holds because we
are expanding the set of sets that we consider, and the last relation follows from our derivation in the
previous section.

The gives the statement of Lemma[3] which we restate here for convenience:
Lemma (Isoperimetric Theorem on Hamming graphs). Let S C H(n,w). Then:
|ExPF(S)]

VHmwy] = U+ h)

g
") = )

pe(0,1),r€[0,n—k)}
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