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Abstract001

As big models demonstrate remarkable per-002
formance across diverse tasks, concerns about003
their potential risks and social harms are raised.004
Extensive efforts have been made towards align-005
ing big models with humans to ensure their re-006
sponsible development and human profits max-007
imization. Nevertheless, the question ‘what to008
align with’ remains largely unexplored. It is009
critical to precisely define the objectives for010
big models to pursue, since aligning with inap-011
propriate goals could cause disaster, e.g., chat-012
bots promote abusive or biased content when013
only instructed to interact freely. This paper014
conducts a comprehensive survey of different015
alignment goals, tracing their evolution paths016
to identify the most appropriate goal for big017
models. Specifically, we categorize existing018
goals into four levels: human instructions, hu-019
man preferences, value principles and basic020
values, revealing a learning process from basic021
abilities to intrinsic value concepts. For each022
goal, we elaborate its definition, limitation, how023
techniques are designed to achieve it and how024
to evaluate the alignment. Posing basic val-025
ues as a promising goal, we discuss technical026
challenges and future research directions.027

1 Introduction028

Big Models, exemplified by Large Language Mod-029

els (LLMs), e.g., GPT-3 (Brown et al., 2020) and030

ChatGPT (Ouyang et al., 2022), and Large Multi-031

modal Models (LMMs), demonstrate remarkable032

capabilities across diverse tasks (Bubeck et al.,033

2023). However, ‘opportunities and risks always034

go hand in hand’, challenges and problems also035

emerge in their applications. These models might036

struggle to follow user instructions (Tamkin et al.,037

2021; Kenton et al., 2021) or generate unethi-038

cal content against human values, eliciting social039

risks (Weidinger et al., 2021; Bommasani et al.,040

2021). Notably, these risks exhibit two character-041

istics as models scale up, 1) emergent risks (Wei042

et al., 2022a): unanticipated problems appear; 2) 043

inverse scaling (McKenzie et al., 2023): some risks 044

do not disappear but intensify, implying that bigger 045

models might raise more serious problems. 046

To eliminate potential risks and make big models 047

better serve humans, aligning them with humans re- 048

ceives great attention (Kenton et al., 2021; Gabriel, 049

2020), especially for LLMs. Existing research 050

falls into three main classes. The first enhances 051

models’ ability to understand and execute diverse 052

human instructions by supervised fine-tuning on 053

numerous task demonstrations (Sanh et al., 2021; 054

Mishra et al., 2021; Wang et al., 2022b). Second, 055

LLMs learn from human feedback on their out- 056

puts (typically preferred or dispreferred labels) to 057

match human preferences, without explicit guide- 058

lines (Nakano et al., 2021; Ouyang et al., 2022; 059

Köpf et al., 2023). An emerging third one seeks to 060

LLMs with pre-defined principles that encapsulate 061

human values (Liu et al., 2022; Sun et al., 2023d; 062

Bai et al., 2022b,a), like the ‘HHH’ criteria (Bai 063

et al., 2022a; Ganguli et al., 2022). 064

While all these efforts aim to align LLMs with 065

humans, they target different alignment goals, 066

from basic abilities to intrinsic value concepts. The 067

diversity of goals echoes the Specification Prob- 068

lem (Leike et al., 2018): how to precisely define 069

‘the purpose we really desire’ (Wiener, 1960), en- 070

coded into AI. Aligning with inappropriate goals 071

can result in disasters, e.g., chatbots, prompted to 072

interact freely, may output abusive content when 073

they only align with human instructions without ad- 074

herence to the human value of ‘no toxicity’. With- 075

out proper goals, enhancing alignment techniques 076

can only bring limited or even adverse improve- 077

ments (Gabriel, 2020). In contrast, clarifying align- 078

ment goals can provide crucial guidance for the 079

formalization and design of alignment methods. 080

Despite the importance of goal specification in 081

alignment, existing surveys are developed from the 082

perspective of methodologies (Ouyang et al., 2022; 083
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Alignment Goal Aligned ModelData Form

Instruction: Tell me if the sentence is
factually correct. Answer yes or no.

Input: Mount Rainier is the second
highest mountain in North America.

Output: No

Human
Instructions Align

Follow diverse instructions 
to complete tasks

Input: Are women more
suitable for being kinder-
garten teachers than men?

Preferred: Gender is not the
key to determine, but an
individual interest …

Non-preferred: Yes, because
women are more patient,
attentive and nurturing

Human
Preferences Align

Adapt to human preferences 
and human profits.

Principle 1: Not be
discriminatory, toxic …

Principle 2: Be helpful 
to answer…

Output: Gender is not

the key to determine, but

an individual’s interest…

Value
Principles

Value principles defined 
in the fields of AI safety or 

machine ethics.

Basic
Values

Value systems defined in 
the fields of humanity and

social science.

Output: Gender is not

the key to determine, but

an individual’s interest…

Input: Are
women more
suitable for
being kinder-
garten…

Align

Input: Are
women more
suitable for
being kinder-
garten …

Align

Associative and

Chain Learning

Discrimination
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Figure 1: Categorization of four alignment goals, in line with Gagné et al.’s five-level human learning hierarchy.

Ji et al., 2023b), i.e., how to align (details in Ap-084

pendix A.2). There lacks of an in-depth discussion085

about identifying the most appropriate and essential086

goal for alignment (i.e., what to align with?).087

This paper conducts the first comprehensive sur-088

vey of existing alignment goals, tracing their evo-089

lution paths to shed light on the critical question:090

what to align with? By dissecting the essence091

and formalization of different alignment goals, we092

categorize them into four levels that are in line093

with Gagné et al.’s five-level human learning hierar-094

chy (Gagne; Akcil et al., 2021), shown in Figure 1.095

L1. Human Instructions (Sec.2), like associative096

and chain learning that fosters logical reactions to097

specific inputs; L2. Human Preferences (Sec.3),098

akin to discrimination learning that differentiates099

contexts and reacts accordingly; L3. Value Princi-100

ples (Sec.4), akin to concept learning and rule learn-101

ing that identifies instances of a category based on102

their common features and yield consistent actions;103

and L4. Basic Values (Sec.5), related to advanced104

rule learning that captures fundamental rationales105

for generic problem-solving. Mirroring the human106

learning process of increasing abstraction and com-107

plexity, our taxonomy elucidates the progression108

of alignment goals and indicates potential advance-109

ments by integrating insights from humanity. For110

each goal, we present its definition, limitation, and111

existing works on 1) Goal Implementation, i.e.,112

how alignment methods are crafted to achieve this113

goal; and 2) Goal Evaluation, i.e., how to assess the114

alignment efficacy (More in Appendix B.1). Posing115

basic values as a promising goal, we discuss the116

challenges and future directions (Sec.6). Further-117

more, we summarize open resources to facilitate 118

future research, at Goal-Survey. 119

2 Human Instructions 120

Benefiting from numerous parameters and massive 121

training data, LLMs show notable in-context learn- 122

ing ability, motivating the prompting paradigm (Liu 123

et al., 2023c). Due to the mismatch between 124

complex downstream tasks and the simplistic 125

pre-training objective, i.e., next-token prediction, 126

LLMs sometimes struggle to understand human 127

instructions and finish tasks. Therefore, human in- 128

structions is considered as the first alignment goal, 129

defined as enabling big models to understand 130

diverse human instructions and complete tasks. 131

This goal aims to unlock the fundamental abilities 132

of big models, thereby laying the foundation for 133

more advanced alignment goals. 134

2.1 Alignment Goal Implementation 135

To achieve this goal, we need to bridge between 136

human instructions and the desired outputs. Instruc- 137

tion tuning is proposed as an effective technique, 138

which trains LLMs using a set of <instruction, in- 139

put, output> tuples. Since human instructions are 140

diverse and infinite, existing methods commit to 141

augmenting the training set. 142

Scaling the Diversity of Tasks Demonstrated 143

by (Chung et al., 2022), the instruction tuning per- 144

formance and cross-task generalization scale well 145

with the number of training tasks. Thus, instruction 146

datasets comprising more tasks are built from differ- 147

ent sources. At first, datasets are curated from exist- 148

ing NLP benchmarks with human-written prompt 149
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templates, ranging from hundreds, e.g., P3 (Sanh150

et al., 2021) and Natural Instructions (Mishra151

et al., 2021), to thousands of tasks, e.g., Super-152

NatInst (Wang et al., 2022b), Flan 2022 (Longpre153

et al., 2023) and OPT-IML Bench (Iyer et al., 2022).154

Since manually written instructions are limited in155

diversity and creativity (Wang et al., 2022a), LLMs156

are incorporated to expand datasets based on a seed157

instruction set and only fresh samples are main-158

tained, such as Self-Instruct (Wang et al., 2022a)159

and Unnatural Instruction (Honovich et al., 2022).160

In addition, ShareGPT (Chiang et al., 2023) is a161

crowd-sourcing dataset, benefiting from democ-162

ratized wisdom. Instruction data for LMMs are163

also constructed from image-text pairs, including164

LLaVA (Liu et al., 2023b) and LLaVAR (Zhang165

et al., 2023c). For further generalization, multilin-166

gual instructions are obtained by translation.167

Adding Examples & CoT Data To facili-168

tate the understanding of instructions, some of169

them are accompanied by examples. In Natu-170

ral Instructions (Mishra et al., 2021) and Super-171

NatInst (Wang et al., 2022b), their instructions con-172

tain the task definition, positive examples and nega-173

tive examples. (Wei et al., 2022b; Mukherjee et al.,174

2023) incorporates examples as CoT prompts to175

show richer signals about the step-by-step thought176

process. In addition, some work applies instruc-177

tions with multi-turn conversation histories or in-178

process revisions, such as SELFEE (Ye et al., 2023)179

and Phoenix (Chen et al., 2023b).180

Improving Data Quality & Complexity Some181

researchers commit to obtaining instruction data182

with more complex inputs or higher-quality outputs.183

Evol-Instruct (Xu et al., 2023b) creates instructions184

with varying complexity by promoting an LLM185

to rewrite a simple instruction into more complex186

ones. To enhance the quality of outputs, more ad-187

vanced LLMs (Peng et al., 2023) or human annota-188

tors are integrated for demonstration construction,189

where effective prompt engineering techniques are190

involved (Xu et al., 2023a; Ding et al., 2023).191

More dataset details are listed in Appendix B.192

2.2 Alignment Goal Evaluation193

In this evaluation, the key is to measure how well194

LLMs follow human instructions and employ their195

inner knowledge to complete various tasks, espe-196

cially those unseen tasks during fine-tuning.197

First, instruction datasets split testing sets for198

evaluation, such as OPT-IML Bench (Iyer et al.,199

2022), using quantitative metrics like accuracy200

and ROUGE (Lin, 2004). They test three lev- 201

els of generalization: 1) held-out samples from 202

applied datasets; 2) novel data distributions for 203

known tasks; and 3) entirely new tasks. Beyond 204

NLP tasks, evaluations extend to more general 205

and complex situations. BIG-bench (Srivastava 206

et al., 2022), with 204 tasks across diverse top- 207

ics, is positioned for capabilities on hard tasks, 208

as well as MMLU (Hendrycks et al., 2020b), 209

BBH (Suzgun et al., 2022) and MGSM (Shi et al., 210

2022). Moreover, AGIEval (Zhong et al., 2023), 211

C-EVAL (Huang et al., 2023b) and CMMLU (Li 212

et al., 2023b) evaluate the models’ abilities on tasks 213

of human-level complexity, which integrate exam- 214

inations across multiple difficulties and subjects. 215

In addition to the above benchmarks necessitating 216

ground truths, automatic judgment models are es- 217

tablished, such as PandaLM (Wang et al., 2023b). 218

Pros and Cons Evaluations show that aligning 219

with human instructions indeed unlocks big mod- 220

els’ abilities and enables them to complete diverse 221

tasks. However, following instructions in a literal 222

way fails to guarantee that the generated responses 223

always comply with human values, since instruc- 224

tions are difficult to precisely specify everything 225

we care about. For example, some outputs fulfill 226

the instruction first, but are of low readability or 227

contain hallucinations, gender 229 biases and hate 228

speech (Ouyang et al., 2022; Bai et al., 2022a). 229

3 Human Preferences 230

To make big models prioritize human profits, hu- 231

man preferences are incorporated as the next align- 232

ment goal, defined as empowering big models to 233

not only complete tasks but also in a way that 234

adheres to human preferences and profits. This 235

goal differs from broader human preferences men- 236

tioned in some studies, i.e., all related to human 237

values. It refers to implicit human preferences 238

reflected by feedback on responses, rather than 239

those summarized into explicit value principles. 240

3.1 Alignment Goal Implementation 241

Implicit human preferences can be expressed by 242

human demonstrations, ranking signals, or click 243

feedback on responses. These signals are incorpo- 244

rated into the design of alignment algorithms. 245

Human Demonstrations The most direct ap- 246

proach creates a dataset with human-desired out- 247

puts to fine-tune LLMs, where the ground truth 248

implies human preferences. InstructGPT (Ouyang 249
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et al., 2022) collects human demonstrations for250

13k prompts from API inputs. OpenAssistant Con-251

versation (Köpf et al., 2023) includes extensive252

manual dialogues. In addition to public SFT data,253

LLaMA2 (Touvron et al., 2023) collects more ex-254

amples of high quality and diversity. Though255

LLMs can learn some human-preferred patterns256

through behavior cloning, the SFT data is limited257

in scope and diversity due to high labor costs, and258

humans suffer from providing professional demon-259

strations for complex tasks, such as book summa-260

rization (Wu et al., 2021). Besides, limited ex-261

posure to negative samples during training makes262

LLMs vulnerable to attacks (Liu et al., 2023d).263

Human Feedback Since evaluating the quality of264

model outputs is easier than producing desirable265

demonstrations (Leike et al., 2018), ranking signals266

or click feedback on model outputs are widely used267

to indicate human preferences. The most popular268

RLHF algorithm (Wu et al., 2021; Ouyang et al.,269

2022) collects human rankings on model outputs270

to train a reward model as a generalizable proxy of271

human preference, then fine-tunes LLMs to maxi-272

mize the reward. Variants of RLHF also rely on the273

ranking signals or reward model (Rafailov et al.,274

2023; Yuan et al., 2023; Dong et al., 2023). Rather275

than only rankings, Liu et al. (2023a) include all276

intermediate feedback in the form of texts to learn277

well-informed decisions. Safe RLHF (Dai et al.,278

2023) considers finer-grained human preferences279

by comparing helpfulness and safety separately.280

Model Synthetic Feedback As obtaining high-281

quality human preference labels is costly, some282

work employs powerful AI to synthesize the feed-283

back. Given the description of user-desired behav-284

iors or a few examples, an LLM yields rewards by285

measuring the relevance between the model out-286

puts and the desired ones (Kwon et al., 2023). In287

Stable Alignment (Liu et al., 2023d), each model’s288

actions are commented on by other LLMs. In ad-289

dition, ranking data for reward model training is290

also synthesized by following heuristic rules, such291

as ‘Large LLMs with more and better shots might292

give better response overall’ (Kim et al., 2023) or293

directly querying off-the-shelf LLMs (Lee et al.,294

2023). Lee et al. (2023) find that RLAIF achieves295

comparable results to RLHF.296

3.2 Alignment Goal Evaluation297

This evaluation requires measuring human desired298

properties beyond mere adherence to instructions.299

Benchmarks Various benchmarks are employed 300

to assess different facets of human prefer- 301

ences. TruthfulQA (Lin et al., 2022) and Open- 302

BookQA (Mihaylov et al., 2018), with questions de- 303

manding identification of facts, measure the truth- 304

fulness of model responses. CrowS-Pairs (Nangia 305

et al., 2020), WinoGender (Rudinger et al., 2018), 306

BBQ (Parrish et al., 2021) and BOLD (Dhamala 307

et al., 2021) evaluates multiple types of social bias. 308

RealToxicityPrompts (Gehman et al., 2020) and 309

ToxiGen (Hartvigsen et al., 2022) indicate toxic- 310

ity levels. Beyond specific aspects, HELM (Liang 311

et al., 2022) offers a holistic assessment across var- 312

ious scenarios and metrics, such as accuracy, cali- 313

bration and fairness. Without expensive labor costs, 314

Perez et al. (2022) generates an evaluation collec- 315

tion of 154 datasets via LLMs, assessing models 316

on aspects like persona, sycophancy, and AI risks. 317

Human and LLM Evaluation For open-ended 318

questions like Vicuna-80 (Chiang et al., 2023), au- 319

tomatic metrics such as ROUGE (Lin, 2004) lack 320

ground truths and suffer from poor correlation with 321

human preferences. Thus, humans compare target 322

model outputs against either baselines (Ouyang 323

et al., 2022; Touvron et al., 2023; Yuan et al., 324

2023; Stiennon et al., 2020) or human-written ref- 325

erences (Rafailov et al., 2023). A win rate or Elo 326

score (Askell et al., 2021) is calculated to indi- 327

cate superiority. With the advancement of LLMs, 328

automatic chatbot arenas are established using a 329

powerful LLM as the judge, requiring only guide- 330

line prompts but not human efforts (Dubois et al., 331

2023; Li et al., 2023c). This approach achieves im- 332

pressive agreements with human evaluators (Zheng 333

et al., 2023; Chiang and Lee, 2023). However, 334

some work still explores to address its drawbacks, 335

such as position bias (Wang et al., 2023a). 336

Reward Model Evaluation In RLHF, the reward 337

model trained on human feedback acts as a general- 338

izable proxy of human preferences (Ouyang et al., 339

2022; Ramamurthy et al., 2022). Therefore, the 340

score returned by the reward model can serve as a 341

metric of alignment (Touvron et al., 2023; Rafailov 342

et al., 2023; Dong et al., 2023; Dai et al., 2023). 343

Pros and Cons Aligning big models with human 344

preferences yields more user-desirable responses, 345

such as more informative answers and less toxic- 346

ity (Ouyang et al., 2022). However, this alignment 347

goal is predominately directed by human feedback 348

without explicit preference criteria, encountering 349
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several challenges. First, it tends to act as a kind350

of imitation or discrimination learning, but can351

not fully recognize accurate and generalized pat-352

terns about human-desired behaviors (Guo et al.,353

2023). Second, the feedback data lacks consistent354

standards and may contain non-negligible human355

biases or noise, leading to erratic performance of356

the aligned model (Wang et al., 2024a).357

4 Value Principles358

To pursue efficient and stable alignment with hu-359

man values, a more clarified alignment goal, i.e.,360

value principles, is introduced. It means regulat-361

ing big models to perform in accordance with a362

set of explicitly defined value principles. Each363

principle (e.g., do not involve in illegal activities)364

indicates consistent behaviors in all applicable sce-365

narios. These principles are usually originated from366

observed issues and established by the AI commu-367

nity, different from basic values (Sec. 5) in the field368

of social science and humanity.369

4.1 Alignment Goal Implementation370

4.1.1 Value Principle Definition371

As shown in Figure 2, two main categories of value372

principles are considered in existing research.373

HHH (Helpful, Honest and Harmless) This is374

the most widespread criterion, which is available375

to regulate diverse tasks (Askell et al., 2021; Bai376

et al., 2022a) and serves as the source of the fol-377

lowing specific principles. Constitutional AI (Bai378

et al., 2022b) includes principles to deal with re-379

sponses that are “harmful, unethical, racist, sexist,380

toxic, dangerous, or illegal”. SELF-ALIGN (Sun381

et al., 2023d) and SALMON (Sun et al., 2023c)382

design 16 rules across various fields, such as being383

ethical and honest. In addition, Sparrow (Glaese384

et al., 2022) further specifies rules from the as-385

pects of stereotypes, misinformation and others.386

PALMS (Solaiman and Dennison, 2021) formu-387

lates desired behaviors for each sensitive topic.388

Social Norms & Ethics These are commonsense389

rules about socially acceptable behaviors. Forbes390

et al. (2020) propose Rule-of-Thumb (RoTs), each391

of which is a descriptive norm for a specific con-392

text to judge whether an action is ethical. Vari-393

ous RoTs have been constructed, such as Moral394

Integrity Corpus (MIC) (Ziems et al., 2022), So-395

cial Chemistry 101 (Forbes et al., 2020) and Moral396

Stories (Emelin et al., 2020). To deal with infi- 397

nite moral situations, some work also automatically 398

generates RoTs given a scenario and the target atti- 399

tude (Ziems et al., 2022; Sun et al., 2023b). 400

4.1.2 Principle-Based Alignment 401

To align big models with explicit value principles, 402

they are either directly set as the target or involved 403

in the optimization process. 404

In-context Learning Leveraging the inherent 405

ability of LLMs to understand contexts and follow 406

instructions, value principles are introduced as the 407

target in prompts to guide LLMs’ behaviors (Tan 408

et al., 2023). In addition to fixed principles, Xu et al. 409

(2023d) dynamically retrieves relevant rules for 410

the current situation to facilitate ethical decision- 411

making. Powerful LLMs exhibit ‘self-correction’ 412

capabilities to align their actions with the given 413

rules, while under-performing models may be in- 414

feasible to well follow the goal. 415

Fine-tuning Many studies incorporate value prin- 416

ciples into their model design for data construc- 417

tion and reward computation. With direct and 418

clear value principles, SELF-ALIGN (Sun et al., 419

2023d), Constitutional AI (Bai et al., 2022b) and 420

IterAlign (Chen et al., 2024) require an LLM to gen- 421

erate qualified outputs following principles. This 422

more transparent and understandable goal enables 423

self-alignment and RL by LLM feedback (Bai et al., 424

2022b). Beavertails (Ji et al., 2023a) manually 425

labels the harmlessness of model outputs across 426

14 risks, and the output is harmless only when 427

no risk is violated. They claim this could en- 428

hance the agreement of human annotations, thus 429

mitigating human noise and biases. In addition, 430

SALMON (Sun et al., 2023c) also designs strate- 431

gies involving value principles. First, it applies AI 432

to annotate data based on human-defined principles. 433

And it builds principle-following reward models 434

to measure good behaviors based on given value 435

principles, adaptable to different principles. 436

4.2 Alignment Goal Evaluation 437

Safety and Risk Benchmarks These bench- 438

marks consist of adversarial questions against the 439

‘HHH’ principle. The hh-rlhf dataset focuses on 440

red-teaming questions related to helpfulness and 441

harmlessness(Bai et al., 2022a; Askell et al., 2021; 442

Ganguli et al., 2022). SafetyPrompts (Sun et al., 443

2023a) is a Chinese benchmark, including 8 safety 444

scenarios (e.g. insulting) and 6 kinds of instruction 445
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Helpful, Honest, Harmless

• Ethical (refrain users on illegal
or immoral topic; prioritize user
safety, ethical conduct…)

• Informative (provide accurate,
up-to-date information)

• Helpful (positive and engaging
responses)

• Question Assessment (assess
question validity and ethics)

• Reasoning (rigorous logics and
reasoning)

...

(1a) “HHH” Principle

Norm: It is kind to sacrifice your

individual well-being to take care of

a sick person.

Ethical Scenario: Mary’s mother

is sick with flu, and she decides to 

take a few days off work to care 

for her mother.

Unethical Scenario: Peter’s 

roommate has a severe cold, but

Peter leave their apartment for the 

weekend to hang out with friends.

Ethical Judgement

(1b) Social Norms & Ethics (2a) Schwartz Basic Value Theory (2b) Moral Foundation

Universalism

Benevolence

Tradition

Conformity

SecurityPower

Achievement

Stimulation

Hedonism

Self-Direction

Culture A

Culture B

Sanctity Degradation

Fairness Cheating

Loyalty Betrayal

Authority Subversion

Care Harm

Value Principles Basic Values

Figure 2: Comparison between value principles and basic value theories.

attacks (e.g. prompt leaking). From a broader view446

of human values, CVALUES (Xu et al., 2023e) en-447

compasses fundamental safety level and broader448

responsibility level where questions are created by449

domain experts. Other benchmarks involve differ-450

ent risk categories (such as SafetyBench (Zhang451

et al., 2023f), SALAD-Bench (Li et al., 2024a) and452

Do-Not-Answer (Wang et al., 2024b)) or languages453

(such as AraTrust (Alghamdi et al., 2024))454

Social Norm Benchmarks This category eval-455

uates an AI’s capability to recognize and adhere456

to social norms, including Moral Stories (Emelin457

et al., 2020), MIC (Ziems et al., 2022), Social458

Chemistry (Forbes et al., 2020) and so on (Scherrer459

et al., 2023). Tasks of varying difficulty are con-460

sidered: 1) given an ethical situation and optional461

actions, LLMs make moral selections; 2) given a462

situation and an action, LLMs judge the morality463

of the action; 3) given a situation and an action,464

LLMs generate RoTs for judgment. In addition,465

complex real-life dilemmas, where ethical norms466

may conflict and require prioritization in decision-467

making, are involved. SCRUPLES (Lourie et al.,468

2021) presents intricate situations asking ‘Who’s469

in the wrong?’, while ETHICAL QUANDARY470

GQA (Bang et al., 2022) and MoralExceptQA (Jin471

et al., 2022) delve into moral exception questions.472

Automatic Morality Classifier Automatic473

morality classifiers have been developed to assess474

ethics of LLM-generated content. Aggregating475

diverse public moral datasets, e.g., Moral Sto-476

ries (Emelin et al., 2020) and ETHICS (Hendrycks477

et al., 2020a), Delphi (Jiang et al., 2021), an478

11B classifier, is trained for moral judgment.479

Besides, Value KALEIDO (Sorensen et al., 2023)480

is trained to identify pluralistic values behind481

manual context.482

Pros and Cons Explicit value principles define 483

the goal more clearly, allowing more stable align- 484

ment and enabling alignment driven by AI like 485

RLAIF. Since these principles originate from ob- 486

served issues, they fail to address two challenges. 487

1) Clarity: Most of these principles are heuristic 488

and hard to cover all scenarios, which cannot be 489

a precise proxy of comprehensive human values. 490

2) Adaptability: they are tightly bound with ob- 491

served issues, less adaptable to newly emerging 492

risks, evolving model capabilities and varying cul- 493

tural contexts (Graham et al., 2016; Joyce, 2007). 494

5 Basic Values 495

In social science and humanities, basic values are 496

established to characterize human values from a 497

more systematic and universal perspective. Rather 498

than formalizing principles for specific issues, they 499

identify a finite number of motivationally distinct 500

basic value dimensions that are rooted in univer- 501

sal requirements, serve as the underlying criteria 502

behind actions and can be combined to cover di- 503

verse human desires. These basic values are recog- 504

nized across cultures and each specific value type 505

corresponds to a weight distribution on all dimen- 506

sions. Therefore, basic values are not only gener- 507

alizable to express comprehensive human values, 508

but also adaptable to various value types. This goal 509

becomes growing prominent, which is defined as 510

aligning big models with a systematic distribu- 511

tion of basic values. Adaptability can be achieved 512

by adjusting the targeted value distributions. 513

5.1 Alignment Goal Implementation 514

Basic Value Theory In social science and hu- 515

manity, a broad array of basic value theories have 516

been established and tested over time. For hu- 517

man morality, Bernard Gert’s Common Moral- 518
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ity Theory posits ten universal moral rules (Gert,519

2004). Moral Foundation Theory (Graham et al.,520

2013) decomposes complex human morality into521

five foundations: Care/Harm, Fairness/Cheating,522

Loyalty/Betray, Authority/Subversion and Sanc-523

tity/Degradation. Regarding broader human val-524

ues, the most representative is Schwartz’s The-525

ory of Basic Values (Schwartz, 2012). Originated526

from Rokeach Values (Rokeach, 1967), it divides527

human values into four high-order groups (open-528

ness to change, conservation, self-enhancement and529

self-transcendence) and ten motivationally distinct530

value dimensions, as shown in Figure 2. Besides,531

Social Value Orientation (SVO) (Murphy et al.,532

2011) focuses on the balance between self and oth-533

ers’s profits. Basic values also appear in the field534

of AI, e.g., Sun et al. (2024) measure trustworthy535

LLMs from six dimensions, including truthfulness,536

safety, machine ethics and so on.537

Basic Value Alignment During alignment, the538

optimization signals should be computed on the539

target basic value distribution. Kang et al. (2023)540

explore to inject any type of value into LLMs by541

supervised fine-tuning. Given a target value dis-542

tribution, they detect the value of samples and fil-543

ter those aligned with the target value for training.544

Yao et al. (2023) design an adaptable approach545

BaseAlign, which first trains a universal evalua-546

tor to identify basic values behind LLMs outputs,547

transparently computes rewards as the distance be-548

tween the outputs’ values and the target value, fi-549

nally optimizes the value-aware rewards through550

PPO (Schulman et al., 2017). They set various val-551

ues with different distributions as the alignment552

target to prove the adaptability.553

5.2 Alignment Goal Evaluation554

Human Value Surveys Basic value theories are555

usually accompanied by surveys featuring self-556

report and abstract questions. These surveys are557

adapted to assess LLMs’ values through prompt558

engineering. Moral Foundations Questionnaire559

(MFQ) is leveraged to detect moral bias in LLMs560

(Abdulhai et al., 2023; Ji et al., 2024). Duan et al.561

(2023) propose DeNEVIL to dynamically tailor562

prompts to uncover these foundations. World Val-563

ues Survey (WVS) 1 encompasses 13 value cate-564

gories of questions such as ‘Social Values, Atti-565

tudes and Stereotypes’ and ‘Happiness and Well-566

being’. Pew Research Center’s Global Attitudes567

1https://www.worldvaluessurvey.org

Surveys (GAS) 2 contain 2,203 questions about top- 568

ics such as religion and politics. The GlobalOpin- 569

ionQA dataset is an aggregation of GAS and WVS 570

to capture LLMs’ opinions on global issues (Dur- 571

mus et al., 2023), revealing biases towards view- 572

points from English-speaking areas. Furthermore, 573

questionnaires about basic human values include 574

Schwartz Value Survey (SVS) (Schwartz, 2012) 575

that assigns importance to 57 value items and alter- 576

native Portrait Values Questionnaire (PVQ), based 577

on which Zhang et al. (2023d) generate a thousand- 578

level prompt dataset using GPT-4 to assess LLMs’ 579

value understanding ability. Social Value Orienta- 580

tion has a 6-question survey (Zhang et al., 2023e). 581

In addition, a comprehensive benchmark to eval- 582

uate the trustworthiness of LLMs has been estab- 583

lished (Sun et al., 2024). 584

Automatic Value Classifier With annotated sam- 585

ples of (text, value dimension) pairs, automatic 586

classifiers can be deployed to identify the under- 587

lying values of LLM’s outputs. DeNEVIL (Duan 588

et al., 2023) trains a value classifier for five groups 589

of moral foundations. For Schwartz’s Theory, 590

initial classifiers are trained to discern the value 591

dimensions based on manual text datasets, i.e., 592

ValueNET (Qiu et al., 2022) or the argument 593

dataset (Kiesel et al., 2022). Diverging from hu- 594

man utterances, Value FULCRA (Yao et al., 2023) 595

trains classifiers especially for LLMs outputs. 596

Pros and Cons Systematic and universal basic 597

values serve as a promising proxy of human values. 598

It is still in a preliminary stage and there are many 599

challenges to be addressed. 600

6 Challenges and Future Research 601

As shown in Figure 1, this survey presents a com- 602

prehensive progression of alignment goals and indi- 603

cates basic values beyond enumerated value princi- 604

ples as potential advancements. To inspire further 605

studies, we discuss several research directions. 606

Appropriate Value System By tracing the evo- 607

lution of existing alignment goals and analyzing 608

their strengths and weaknesses, we argue that the 609

value systems used for alignment goals should pos- 610

sess 1) clarity to comprehensively and precisely 611

represent human values; and 2) adaptability to 612

deal with emerging situations and varying cultures. 613

Aligning with ill-defined value systems would re- 614

2https://www.pewresearch.org/
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sult in serious harm, as mentioned in Sec. 1. Uni-615

versal basic values in social sciences and human-616

ity exhibit potential and receive growing attention,617

such as Schwartz’s Basic Value Theory (Schwartz,618

2012; Yao et al., 2023) and Moral Foundations The-619

ory (Graham et al., 2013). However, whether these620

human-centered value theories are suitable for AI621

and how to formalize the objectives accordingly622

remain largely unexplored. Preliminary work has623

studied the unique value dimensions embedded into624

AI from scratch (Biedma et al., 2024; Klingefjord625

et al., 2024; Cahyawijaya et al., 2024). We ar-626

gue that more appropriate value systems for LLMs627

should be built through collaboration with experts628

in philosophy, ethics, and social science.629

Alignment Goal Representation Using basic630

values to define the alignment goal, enhancements631

can be explored from three key aspects. The first632

is generalizability to provide accurate supervision633

signals for arbitrary scenarios from open domains,634

out-of-distribution cases or even unidentified ones.635

Value principles tied to observed issues struggle636

with outlier generalization. In contrast, basic val-637

ues, rooted in universal human requirements, offer638

greater generalizability and help achieve scalable639

oversight. The second is adaptability to diverse640

cultural values. Basic values, recognized across641

various cultures and differed by priority weights,642

provide flexibility in formalizing cultural values as643

alignment goals. The third is transparency to make644

the alignment process more interpretable and con-645

trollable, neglected by existing work. With a finite646

number of value dimensions, LLMs’ behaviors link647

to a specific value distribution, and alignment just648

corresponds to adjusting the priority weights.649

Value-aware Alignment Algorithms Main-650

stream alignment methods, i.e., SFT and RLHF,651

only model values implicitly through pair-wise hu-652

man feedback, which tend to be unstable since653

noise or conflicts might exist in training samples.654

Incorporating explicit value principles to direct655

pairwise data construction or reward modeling,656

more effective methods with AI-generated feed-657

back are enabled, such as Constitutional AI (Bai658

et al., 2022b), SELF-ALIGN (Sun et al., 2023d).659

The pairwise signals and rewards also become more660

robust (Ji et al., 2023a). However, the target LLM661

has not yet directly learned to behave from these662

value principles. Actually, in-context learning is663

a method to regulate their behaviors towards the664

target value (Ganguli et al., 2023). However, with-665

out fine-tuning, it is hard to completely eliminate 666

inherent harms. It is also challenging to express 667

fine-grained value priorities via simple prompts. 668

Therefore, future research should focus on devel- 669

oping efficient, stable alignment algorithms that 670

transparently align LLMs with clear and generaliz- 671

able target values instead of ambiguous proxies. 672

Automatic & Comprehensive Evaluation Ac- 673

curate benchmarks and evaluation methods are es- 674

sential for guiding alignment research. At present, 675

some benchmarks are constructed for alignment 676

evaluation (Xu et al., 2023e; Sun et al., 2023a), 677

which require human annotations or final human 678

judgment. This makes them expensive and not 679

easily scalable. Though powerful LLMs perform 680

as an alternative for judgment, it highly relies on 681

LLMs’ capabilities and introduces randomness or 682

biases. Consequently, automatic evaluation meth- 683

ods and metrics are urgently required to accelerate 684

the assessment and research process. Evaluations 685

across various abilities and difficulty levels should 686

be considered: 1) understand and agree with human 687

values; 2) diagnose scenarios involving values and 688

make correct judgments; 3) perform consistently 689

with human values, even in dilemmas; etc. This as- 690

sessment shows increasing difficulty, from simple 691

discrimination to exact behaviors, attempting to de- 692

tect essential values of LLMs behind their elicited 693

behaviors. Since priorities among values can only 694

matter in some quandary scenarios, we should also 695

consider specific dilemma cases in the evaluation 696

to figure out such fine-grained information. 697

7 Conclusion 698

This paper highlights the importance of specify- 699

ing appropriate goals for big models’ responsible 700

development and guiding the design of alignment 701

algorithms, and presents the first survey of various 702

alignment goals in existing literature. We propose a 703

novel categorization for these goals in line with the 704

human learning process: human instructions, hu- 705

man preferences, value principles and basic values, 706

which elucidate their evolution paths and indicate 707

further developments. To inspire studies aligning 708

big models from the level of basic values, we dis- 709

cuss challenges and future directions. Besides, our 710

survey provides a compilation of resources for big 711

model alignment. We expect this survey to act as 712

both a foundational guide and a source of inspira- 713

tion for researchers and practitioners in this field. 714
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Limitations715

In this paper, we provide a comprehensive survey716

from the perspective of alignment goals for big717

models and present a novel categorization for these718

increasingly complex goals, which is in line with719

human learning hierarchy thus indicative for future720

research. Due to our emphasis on the evolution721

process of alignment goals, there may be some722

limitations in this paper.723

Limited Details on Alignment Methods In724

terms of value alignment, there are two critical725

research questions: what to align with? and how726

to align? This study centers on the former one727

to clarify alignment goals, which performs as a728

premise for subsequent design of alignment meth-729

ods. As a result, details about concrete alignment730

methods are not included in our paper, such as731

the reinforcement learning from human feedback732

(RLHF) and its improved versions. Information733

about these aspects is available in other surveys ded-734

icated to LLMs alignment methodologies (Wang735

et al., 2023c; Zhang et al., 2023b), which differs736

from our paper in the reviewing perspective and737

are discussed by us in Appendix A.2.738

Scope of Considered Big Models Examples of739

big models mainly include Large Language Models740

(LLMs) and Large Multimodal Models (LMMs).741

This survey and the taxonomy are primarily con-742

structed on the alignment research of LLMs, and743

existing related works in the field of LMMs which744

still focus on the alignment goals of human instruc-745

tions. As LMMs alignment develops, we argue that746

the proposed taxonomy should be applicable to747

LMMs as well. Besides, we would conduct future748

updates to include such advancement and ensure749

the comprehensiveness of our taxonomy.750

Ethical Consideration751

This paper conducts a comprehensive survey about752

alignment goals for big models, which aims at clar-753

ifying the most appropriate values encoded into754

AI and transparently guarantee their responsible755

development. Notably, discussing these details can756

also provide inspirations for designing malicious757

alignment goals, injecting harmful noise into the758

training data and adversarial attacks. More robust759

alignment methods are required at the same time.760
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A Supplements of Introduction1485

A.1 Scope of References1486

To make the survey as comprehensive as possible,1487

we review papers in recent years (mostly 2019-1488

2024) from well-known conferences and journals,1489

including the ACL, EMNLP, NAACL, NeurIPS,1490

ICLR, arXiv where newly emergent papers are1491

released, and so on. Topics of related work en-1492

compass LLMs alignment, value alignment, value1493

evaluation, reward modeling, instruction tuning,1494

etc.1495

A.2 Related Work1496

In this section, we review related work from two1497

primary aspects: the surveys about AI alignment1498

and the discussions on alignment goals.1499

With remarkable progress in big models, great1500

efforts have been made to align them with human1501

values and ensure their responsible development.1502

To furnish a picture of existing works and inspire1503

future research, there are numerous surveys about1504

AI or large language model alignment. Zhang et al.1505

(2023b) and Wang et al. (2023c) summarize re-1506

search works about instruction tuning, including1507

the available datasets, training methods, evalua-1508

tion methods, applications to other modalities and1509

domains. Shen et al. (2023) exhibit a more com-1510

prehensive survey of alignment methodologies by1511

categorizing them into outer and inner alignment.1512

Ji et al. (2023b) also explore the methodologies and1513

practical applications of AI alignment. However,1514

these studies predominantly explore the research1515

question ‘how to align’, focusing on the algorithms1516

rather than the underlying objectives. Differently,1517

this paper provides an overview from a novel per-1518

spective of ‘what to align with’, which is critical to1519

determine the objective encoded into AI.1520

In previous studies, there are a few discus- 1521

sions about defining precise and appropriate goals 1522

for alignment. For example, Specification Prob- 1523

lem (Leike et al., 2018) underscores the necessity 1524

for precise reward modeling to ensure correct align- 1525

ment. Furthermore, various alignment goals and 1526

their differences have been analyzed in position 1527

papers (Gabriel, 2020), ranging from instructions, 1528

intentions, preferences to interests and values. Dis- 1529

tinguished from previous works, our paper con- 1530

ducts the first practical survey of alignment goals 1531

introduced in existing research works. By dissect- 1532

ing their essence and integrating the insights gained 1533

from human learning process, our paper presents 1534

a novel categorization with increasing abstraction 1535

and complexity. In addition, we also delve into the 1536

challenges and future research directions. 1537

B Supplements of Human Instructions 1538

Details of public instruction datasets are enumer- 1539

ated in Table 1. 1540

B.1 Taxonomy of Alignment Goals 1541

Figure 3 illustrates the taxonomy of alignment 1542

goals in our paper. 1543

C Comparison of Different Goals 1544

In this section, we summarize and compare dif- 1545

ferent alignment goals from the perspectives of 1546

definition, implementation, limitation and their cor- 1547

respondance to human learning hierarchy. 1548

LL1. Human Instructions 1549

• Definition: Enabling big models to understand 1550

diverse human instructions and complete tasks, 1551

mitigating the mismatch between complex down- 1552

stream tasks and the simplistic pre-training ob- 1553

jective. 1554

• Implementation: <instruction, input, output> 1555

task demonstrations, without preference signals. 1556

• Limitation: Focusing narrowly on model capa- 1557

bilities to follow instructions and complete tasks, 1558

without considering human values, such as bi- 1559

ases. Human values cannot be always precisely 1560

specified in instructions, and some instructions 1561

contain unethical requirements. 1562

• Human learning level: Associative and chain 1563

learning, which learns to conduct logical reac- 1564

tions to specific inputs. 1565
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Data Source Dataset #Tasks #Instruction Prompt Types

Existing NLP Benchmarks

PromptSource (Bach et al., 2022) 180 2,085 ZS
P3 (Sanh et al., 2021) 270 2,073 ZS

Natural Instructions (Mishra et al., 2021) 61 61 ZS & FS
Super-NatInst (Wang et al., 2022b) 76 1,616 ZS & FS

GLM-130B (Zeng et al., 2022) 74 - FS
xP3 (Muennighoff et al., 2022) 83 - ZS

OPT-IML Bench (Iyer et al., 2022) 1,991 18M ZS & FS & CoT
Flan 2022 Collection (Longpre et al., 2023) 1,836 15M ZS & FS & Co

COIG (Zhang et al., 2023a) 2k 200k ZS

Model-Generated

Unnatural Inst (Honovich et al., 2022) 117 240k ZS
Self-Instruct (Wang et al., 2022a) 175 82k ZS

Alpaca (Taori et al., 2023) 175 52k ZS & FS
Baize (Xu et al., 2023c) - 111.5k Conversation

UltraChat (Ding et al., 2023) - 675k Conversation
Evol-Instruct (Xu et al., 2023b) - 250k Varying Complexity

Phoenix (Chen et al., 2023b) - 189k Multilingual
Bactrain-X (Li et al., 2023a) - 3.4M Multilingual

Crowd-Sourcing
ShareGPT (Chiang et al., 2023) - ~100k Converastion

OpenAssistant (Köpf et al., 2023) - ~161k Conversation

Table 1: Details of public instruction datasets, ordered by their release time. ‘ZS’ and ‘FS’ mean zero-shot and
few-shot respectively and ‘CoT’ means chain-of-thought.

L2. Human Preferences1566

• Definition: Empowering big models to not only1567

complete tasks but also adhere to human pref-1568

erences and profits. Noting that "Human Pref-1569

erences" here differs from the broader interpre-1570

tation used in existing work. We distinctively1571

separate it from the subsequent levels. This cat-1572

egory refers to implicitly expressed preferences1573

through human demonstrations or ranking sig-1574

nals on various responses, without considering1575

explicit principles or criteria.1576

• Implementation: Alignment methods rely on1577

human demonstrations and ranking signals or1578

click feedback on different responses, which are1579

applied to train reward models. They do not rely1580

on any principles or criteria as the indication of1581

preferred behaviors. Though some principles1582

may be embodied in the preference data, they are1583

unconscious and unknown about the principle1584

during the data construction process.1585

• Limitation: First, it highly relies on imitation or1586

discriminative learning, while lacking the abil-1587

ity to discern accurate and generalizable human-1588

desired patterns. Second, he feedback data1589

lacks consistent standards and may contain non-1590

negligible human biases or noise, leading to er-1591

ratic performance of the aligned model.1592

• Human learning level: Discrimination learning,1593

which can differentiate varied contexts and react 1594

accordingly. 1595

L3. Value Principles 1596

• Definition: This category fundamentally dif- 1597

fers from the “Human Preferences” as it estab- 1598

lishes clear value principles that indicate human- 1599

preferred behaviors. These rules are devised to 1600

regulate behaviors for some specific scenarios, 1601

such as "No discrimination, no toxicity", and "Be 1602

helpful in answering reasonable questions". 1603

• Implementation: Value principles are proac- 1604

tively and intentionally involved in the data con- 1605

struction or model training process. For example, 1606

the pairwise labels are determined by their adher- 1607

ence to a specific value principle, Ji et al. (2023a) 1608

claim this strategy can enhance the consistency 1609

of human annotations, thus mitigating the noise 1610

in data. Moreover, rewards are also computed 1611

with value principles. 1612

• Limitation: 1) Clarity: Most of these princi- 1613

ples are heuristic and hard to cover all scenarios, 1614

which cannot be a precise proxy of comprehen- 1615

sive human values. 2) Adaptability: they are 1616

tightly bound with observed issues, less adapt- 1617

able to newly emerging risks, evolving model 1618

capabilities and varying cultural contexts. 1619

• Human learning level: Concept learning and 1620

rule learning, which identify instances of the 1621
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Alignment
Goals

Human Instructions
(Sec. 2)

Goal
Representation

NLP Task Instructions
PromptSource (Bach et al., 2022); P3 (Sanh et al., 2021); Natural Inst. (Mishra et al., 2021);
Super-Natural Inst. (Wang et al., 2022b); GLM (Zeng et al., 2022); xP3 (Muennighoff et al., 2022);
Flan 2022 (Longpre et al., 2023); OPT-IML Bench (Iyer et al., 2022);COIG (Zhang et al., 2023a)

Model-Generated Instructions
Unnatural Inst. (Honovich et al., 2022); Self-Instruct (Wang et al., 2022a); Aplaca (Taori et al., 2023);
Baize (Xu et al., 2023c); UltraChat(Ding et al., 2023); Evol-Instruct (Xu et al., 2023b);
Phoenix (Chen et al., 2023b); Baxtrain-X (Li et al., 2023a)

Human-Shared Instructions ShareGPT (Chiang et al., 2023); OpenAssistant Conversation (Köpf et al., 2023)

Goal
Evaluation Benchmark

OPT-IML Bench (Iyer et al., 2022); Flan 2022 (Longpre et al., 2023); MMLU (Hendrycks et al., 2020b);
BBH (Suzgun et al., 2022); MGSM (Shi et al., 2022); Big-Bench (Srivastava et al., 2022);
C-Eval (Huang et al., 2023b); AGIEval (Zhong et al., 2023); CMMLU (Li et al., 2023b);
LM-Written Evaluation (Perez et al., 2022); PandaLM (Wang et al., 2023b)

Human Preferences
(Sec. 3)

Goal
Representation

Human Demonstrations
InstructGPT (Ouyang et al., 2022); Summarization (Stiennon et al., 2020; Wu et al., 2021);
WebGPT (Nakano et al., 2021); OpenAssistant (Köpf et al., 2023); Game Reward (Kwon et al., 2023);
LLaMA2 (Touvron et al., 2023)

Human Feedback
Summarization (Stiennon et al., 2020; Wu et al., 2021); WebGPT (Nakano et al., 2021);
InstructGPT (Ouyang et al., 2022); OpenAssistant (Köpf et al., 2023); Safe RLHF (Dai et al., 2023);
Hindsight (Liu et al., 2023a);DPO (Rafailov et al., 2023); RAFT (Dong et al., 2023); RRHF (Yuan et al., 2023)

Model Synthetic Feedback
Game Reward (Kwon et al., 2023); IFL (Scheurer et al., 2023); ALMoST (Kim et al., 2023);
Stable Alignment (Liu et al., 2023d); RLAIF (Lee et al., 2023); CycleAlign (Hong et al., 2023);
Clever Flamingo (Chen et al., 2023a)

Goal
Evaluation

Benchmarks

TruthfulQA (Lin et al., 2022); OpenBookQA (Mihaylov et al., 2018); CrowS-Pairs (Nangia et al., 2020);
WinoGender (Rudinger et al., 2018); BBQ (Parrish et al., 2021); BOLD (Dhamala et al., 2021);
RealToxicityPrompts (Gehman et al., 2020); ToxiGen (Hartvigsen et al., 2022); BIG-Bench (Srivastava et al., 2022);
HELM (Liang et al., 2022); LM-Written Evaluation (Perez et al., 2022)

Human & LLM Evaluation
InstructGPT (Ouyang et al., 2022); Llama2 (Touvron et al., 2023); RRHF (Yuan et al., 2023);
AlpacaEval (Li et al., 2023c); AlpacaFarm (Dubois et al., 2023); Vicuna (Chiang et al., 2023);
LLM-as-a-Judge (Zheng et al., 2023); LLM Evaluation (Chiang and Lee, 2023); Position Bias (Wang et al., 2023a)

Reward Model Llama2 (Touvron et al., 2023); HH-RLHF (Yuan et al., 2023); DPO (Rafailov et al., 2023); RAFT (Dong et al., 2023);
GRUE (Ramamurthy et al., 2022); Safe RLHF (Dai et al., 2023); HPS v2 (Wu et al., 2023)

Value Principle
(Sec. 4)

Goal
Representation

Principle Definition

HHH (helpful
honest & harmless)

HH-RLHF (Bai et al., 2022a); Red-Team (Ganguli et al., 2022); Contitutional AI (Bai et al., 2022b);
SELF-ALIGN (Sun et al., 2023d); SALMON (Sun et al., 2023c); Sparrow (Glaese et al., 2022);
PALMS (Solaiman and Dennison, 2021); BeaverTails (Ji et al., 2023a); IterAlign (Chen et al., 2024)

Social Norms
& Ethics

Moral Integity Corpus (Ziems et al., 2022); Social Chemistry 101 (Forbes et al., 2020);
Moral Stories (Emelin et al., 2020); ETHICS (Hendrycks et al., 2020a); MoralDial (Sun et al., 2023b);
Scruples (Lourie et al., 2021); Goofus & Gallant (Nahian et al., 2020)

Principle Alignment

In-Context Learning Self-Criticism (Tan et al., 2023); Denevil (Duan et al., 2023); OPO (Xu et al., 2023d);
EvolvingSociety (Li et al., 2024b)

Fine-tuning
Contitutional AI (Bai et al., 2022b); SELF-ALIGN (Sun et al., 2023d); Red-Teaming (Ganguli et al., 2022);
BeaverTails (Ji et al., 2023a); Sparrow (Glaese et al., 2022); SALMON (Sun et al., 2023c);
PALMS (Solaiman and Dennison, 2021)

Goal
Evaluation

Safety Benchmarks HH-RLHF (Bai et al., 2022a); SafetyPrompts (Sun et al., 2023a); SafeText (Levy et al., 2022);
CValues (Xu et al., 2023e)

Social Norms Benchmarks
Moral Integity Corpus (Ziems et al., 2022); Social Chemistry 101 (Forbes et al., 2020);
Moral Stories (Emelin et al., 2020); ETHICS (Hendrycks et al., 2020a); TrustGPT (Huang et al., 2023a);
SCRUPLES (Lourie et al., 2021); MoralExceptQA (Jin et al., 2022); ETHICAL QUANDARY GQA (Bang et al., 2022)

Morality Classifier HH-RLHF (Bai et al., 2022a); SALMON (Sun et al., 2023c); Goofus & Gallant (Nahian et al., 2020);
Delphi (Jiang et al., 2021); Value KALEIDO (Sorensen et al., 2023)

Basic Values
(Sec. 2)

Goal
Representation

Basic Value Theory
Bernard Gert’s Common Morality Theory (Gert, 2004); Moral Foundation Theory (Graham et al., 2013);
Schwartz Theory of Basic Values (Qiu et al., 2022); Rokeach Values (Qiu et al., 2022);
Social Value Orientation (Murphy et al., 2011)

Basic Value Alignment VILLAMA (Kang et al., 2023); BaseAlign (Yao et al., 2023); CMVA (Dognin et al., 2024)

Goal
Evaluation

Human Value Surveys

GlobalOpinionQA (Durmus et al., 2023) (World Values Survey (WVS) (wor, 2021) & Pew Research
Center’s Global Attitudes surveys (GAS) (pew, 2022)); Moral Foundations (Abdulhai et al., 2023);
Schwartz Value Surveys (Zhang et al., 2023d); Social Value Orientation (Zhang et al., 2023e);
Denevil (Duan et al., 2023); MoralBench (Ji et al., 2024)

Automatic Value Classifier Moral Foundation Twitter Copus (Hoover et al., 2020); VALUENET (Qiu et al., 2022);
Arguments (Kiesel et al., 2022); Value FULCRA (Yao et al., 2023)

Figure 3: Taxonomy of reviewed papers about various alignment goals.

same category and apply corresponding rules to1622

yield consistent actions.1623

L4. Basic Value1624

• Definition: This one uses explicit expressions to1625

convey human values but does not list rules for1626

specific scenarios. Instead, it introduces the con-1627

cept of ’basic values’ derived from social science1628

and humanities, which are systematic, scientific1629

and universal. Like linearly independent basis1630

vectors in a space, they identify a finite number1631

of basic value dimensions to cover all human-1632

desired values. Besides, these basic values are1633

recognized across different nations and cultures, 1634

with varying weights on different value dimen- 1635

sions, resulting in diverse value distributions (as 1636

illustrated in Figure 2). Basic values usually cap- 1637

ture more abstract and higher-level information. 1638

Various principles which are infinite to enumer- 1639

ate can be universally represented as a combina- 1640

tion of basic values. Thus, this alignment goal 1641

offers better generalizability and adaptability. 1642

• Implementation: Each value type can be rep- 1643

resented as a distribution v = [v1, v2, . . . , vk], 1644

where k basic value dimensions are included 1645

in the theory and vi means the weight of the 1646
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ith value dimension. For supervised fine-tuning,1647

training samples are collected from the target1648

value distribution vT . Besides, the optimization1649

objective can be computed as the distance be-1650

tween the LLM’s value distribution and the target1651

one.1652

• Limitation: At an initial exploration stage.1653

• Human learning level: Advanced concept learn-1654

ing, which grasps fundamental rationales for1655

generic problem-solving.1656
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